引用本文:杨晔,谢紫凌,程奕,户其钊,金琼雅,袁晨.夹层式WO3-NiO电致变色玻璃:从材料到器件的体系化研究[J].中国表面工程,2024,37(4):117~133
YANG Ye,XIE Ziling,CHENG Yi,HU Qizhao,JIN Qiongya,YUAN Chen.Laminated WO3-NiO Electrochromic Glass: From Starting Material to Device Assembling[J].China Surface Engineering,2024,37(4):117~133
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1658次   下载 1285 本文二维码信息
码上扫一扫!
分享到: 微信 更多
夹层式WO3-NiO电致变色玻璃:从材料到器件的体系化研究
杨晔1,谢紫凌1,2,程奕3,户其钊1,金琼雅1,袁晨1
1.中国科学院宁波材料技术与工程研究所光电信息材料与器件实验室 宁波 315201 ;2.中国科学院大学材料科学与光电技术学院 北京 100049 ;3.森祥(宁波)新材料有限公司 宁波 315171
摘要:
基于 WO3-NiO 体系的电致变色(EC)玻璃具有优异的可见与红外的主动调控特性和节能效果,在建筑、新能源汽车等产业的应用得到越来越多的关注。生产效率与制造成本等因素的限制,使得大面积 WO3-NiO 电致变色玻璃未规模化地投入市场。相比于在单一玻璃表面采用膜层堆栈方式制备多层膜结构的电致变色器件,以高性能锂离子胶膜为中间层,将磁控溅射沉积的 Glass / TCO / WO3以及 Glass / TCO / NiO 通过层压的方式组装成夹层式器件是一种可行地实现电致变色玻璃大面积、低成本规模化生产的技术手段,正逐渐成为器件制备技术的主流。然而,面向于大面积夹层式 WO3-NiO 电致变色玻璃的低成本制造和新的应用需求,仍有必要开展从材料到器件的体系化研究。在材料端,开发兼容现有镀膜产线的高质量 EC 氧化物陶瓷靶材制备技术,高性能 WO、NiO 薄膜成分、结构、性能与色彩的调控技术,具备高离子电导率、高粘结强度、 高热稳定、高透明且易于实现大面积规模化生产的锂离子胶膜材料及其制备技术等。在器件端,开发与现有玻璃产业兼容的大尺寸器件的层压工艺,弧型器件的制备技术,具备更高效节能且能呈现中性着褪色的器件技术等。针对上述挑战,综述了国内外相关研究团队在上述领域的研究进展,结果表明,可以制备出满足高性能电致变色薄膜沉积的 EC 氧化物陶瓷靶材, 通过调节磁控溅射工艺参数可以有效实现对薄膜成份、结构以及性能调控,开发出满足层压工艺的、具有高离子电导率 (1.51×10-4 S·cm-1 )的固态聚合物电解质,最终利用商用高压釜实现 30 cm×30 cm WO3-NiO 电致变色器件高质量制备。
关键词:  电致变色器件  玻璃  靶材  磁控溅射  薄膜
DOI:10.11933/j.issn.1007-9289.20231228005
分类号:TU524;TE08;O439
基金项目:国家重点研发计划(2023YFC3011602);宁波市北仑区关键核心技术攻关(2023BLG007)
Laminated WO3-NiO Electrochromic Glass: From Starting Material to Device Assembling
YANG Ye1,XIE Ziling1,2,CHENG Yi3,HU Qizhao1,JIN Qiongya1,YUAN Chen1
1.Laboratory of Optoelectronic and Information Materials and Devices,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 , China ;2.University of Chinese Academy of Sciences, College of Materials Science and Opto-electronic Technology, Beijing 100049 , China ;3.SenXiang (NingBo) New Material Co., Ltd., Ningbo 315171 , China
Abstract:
WO3-NiO-based electrochromic devices (ECDs), which can actively regulate visible and infrared (IR) light and offer outstanding energy-efficient performance, have been extensively investigated owing to their potential application in smart windows for energy-efficient buildings and light-modulated skylight glass for electric vehicles. However, the high cost and low production efficiency of ECDs severely restrict their large-scale application. Compared with the conventional ECD fabrication process, which involves stacking multiple films on a single glass substrate, the lamination process for assembling a WO3–NiO ECD by laminating the individual components of glass / TCO / WO3 and glass / TCO / NiO with a transparent adhesive electrolyte interlayer is gradually becoming mainstream for realizing low-cost, commercially viable, large-area ECDs. However, for the practical production and new application of large-area laminated devices, one must perform a systematic survey from the starting material to device assembly, including high-quality EC oxide targets for large-area sputtering deposition; sputtered EC films with a regulated composition, microstructure, high performance, and color; achieve large transparent adhesive electrolyte foils with high room-temperature ionic conductivity, temperature stability, and high adhesive strength; perform a large-area ECD lamination process in the existing commercialized facilities; realize curved-device fabrication; and achieve an energy-efficient device with neutral color in both tinted and bleached states. Hence, researchers have conducted a series of studies, and the progress is presented in this review. First, the requirements and preparation methods of WO3 and NiO ceramic targets for large-scale production are presented. An appropriate level of electrical conductivity is required to satisfy middle-frequency sputtering, which is the most commonly used sputtering mode in commercialized films. The EC performance and W / O stoichiometric ratio of a WO3 film sputtered using a ceramic target can be effectively adjusted by changing the sputtering power and gas pressure under pure Ar atmosphere. In this study, the deposition rate increases from 6.9 to 20.8 nm as the sputtering power increases from 100 to 250 W. Additionally, an 18-nm-thick amorphous tin-zinc-oxide film is used to shield the sputtered WO3 film so that a room-temperature-deposited film with excellent cyclic stability can be achieved. A high content of niobium (Nb / (Nb+W) = 54.1 at.%) is introduced into the WO3 matrix to realize a neutral-tinted color and a relatively lower IR absorption in the tinted state. In the NiO film, Li / Si co-doping followed by rapid thermal annealing can enhance the transmittance near the short-wavelength zone in the bleached state, the charge capacity, and the cyclic stability. Additionally, W / Zn co-doping enables a NiO EC film with superior performance to be achieved after tempering at 640 ℃. For the transparent adhesive electrolyte interlayer, a new strategy for significantly improving the ionic conductivity of polyvinyl-butyral (PVB) via a cross-linking reaction with 3-glycidoxypropyltrimethoxysilane (KH560) is established. The cross-linked PVB solid polymer electrolyte (SPE) with 10 wt.% KH560 exhibits a high room-temperature ionic conductivity (1.51 × 10?4 S·cm?1 ). Additionally, the prepared PVB-SPE exhibits comprehensive optical, mechanical, and thermal performances, including high visible transmittance (> 91%), relatively high adhesive strength (2.13 MPa), and superior thermal stability (up to 150 ℃). The WO3-NiO ECDs with sizes of 5 cm × 5 cm to 30 cm × 30 cm can be assembled in a commercialized autoclave to realize perfect lamination using the PVB-SPE foil. The device can be operated stably at temperatures ranging from -20 ℃ to 80 ℃, thus underscoring the potential of the PVB-SPE for realizing commercially viable large-area ECDs. Additionally, an ECD is assembled using the WO3 system with a high Nb doping content. The ECD has a neutral color (a* = 0.6; b* =-2.7) and presents a high energy efficiency in reducing the interior-space air temperature by approximately 4.3 ℃ in its fully tinted state.
Key words:  electrochromic devices  glass  targets  magnetron sputtering  film
手机扫一扫看