引用本文: | 陈建敏,陈磊,李红轩,周惠娣.极端条件润滑耐磨表面工程技术的研究与发展[J].中国表面工程,2024,37(5):1~18 |
| CHEN Jianmin,CHEN Lei,LI Hongxuan,ZHOU Huidi.Research and Development of Extreme Condition Lubrication and Wear Resistant Surface Engineering Technology[J].China Surface Engineering,2024,37(5):1~18 |
|
摘要: |
极端条件是高技术装备经常遇到的使役工况,在极端条件下,常规材料将难以满足应用需求,急需发展超高极限性能的材料和技术。针对国家高技术领域装备发展对极端条件润滑耐磨表面工程技术的需求,在综述极端条件润滑耐磨表面工程技术研究与发展的基础上,以粘结固体润滑涂层为主要对象,聚焦关键共性技术难题,以解决实际工程技术难题为目标,重点介绍近年来围绕国家航空航天和核能领域对高极限性能润滑耐磨表面工程关键技术的需求开展相关研究所取得的突破,并列举在此基础上研发的典型产品,展示相关产品在解决高技术领域重大装备极端条件摩擦学问题方面的典型应用成果,体现高极限性能润滑耐磨表面工程技术对国家高技术装备发展的不可替代的重要作用。最后结合国家先进制造未来发展需求,探讨极端条件润滑耐磨表面工程技术的未来发展方向。对全面了解国家高技术领域对极端条件润滑耐磨表面工程技术的需求,推进相关技术和产品的高技术应用,针对未来高技术装备需求发展更高极限性能的润滑耐磨表面工程技术,具有借鉴和参考意义。 |
关键词: 极端条件 苛刻工况 润滑 耐磨 表面工程 粘结固体润滑涂层 高技术应用 高技术装备 |
DOI:10.11933/j.issn.1007-9289.20240408001 |
分类号:TH117 |
基金项目: |
|
Research and Development of Extreme Condition Lubrication and Wear Resistant Surface Engineering Technology |
CHEN Jianmin,CHEN Lei,LI Hongxuan,ZHOU Huidi
|
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, Lanzhou 730000 , China
|
Abstract: |
It is often the case that extreme conditions are frequently encountered in high-tech equipment, where conventional materials often prove inadequate inmeeting the requirements of intended application. It is therefore imperative that ultra-high-performance materials and technologies be developed to tackle these challenges. In view of the demand for lubricating and wear-resistant surface technology in the development of national frontier equipment under harsh conditions, this study presents a review of recent advancements in this special materials field, with particular focus on the aerospace and nuclear energy sectors. It takes the adhesive solid lubricant coatings developed by our team as object, emphasizing key common technical challenges and addressing practical engineering issues. Including key technologies such as the modification of tough and strong integrated basic resins, the improvement of atomic oxygen resistance by POSS modified resins, the design and adaptive control of lubrication components over a wide temperature range, the design of surface and interface of coatings resistant to special media, and the control of system compatibility. Additionally, a compilation of representative products developed based on this basis is listed, together with an illustration of their exemplary applications in addressing friction-related challenges under extreme conditions within high-tech equipment domains. The application in key components of aircraft and aviation engines, in key components of rockets and satellites, especially in the docking mechanism of space stations, has solved the lubrication and wear problems of components under many extreme conditions in aerospace. This underscores the indispensable and crucial role played by advanced lubrication and wear-resistant surface engineering technologies in driving forward national advancements in high-tech equipment. Finally, considering future developmental requirements for cutting-edge manufacturing at a national level, potential directions for further advancing extreme condition lubrication and wear-resistant surface engineering technologies are explored. This article provides a comprehensive understanding of the demand for extreme condition lubrication and wear-resistant surface engineering technology in the national high-tech field, promotes the high-tech application of related technologies and products, and develops higher limit performance lubrication and wear-resistant surface engineering technology for future high-tech equipment needs. It offers a valuable reference point and provides guidance significance on these matters. |
Key words: extreme conditions severe working conditions lubrication wear-resistant surface engineering bonded solid lubricating coating high-tech applications high-tech equipment |