en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵志博,男,1995年出生,硕士研究生。主要研究方向为激光焊接等。E-mail: zzbmeng@163.com

通讯作者:

朱加雷,男,1981年出生,博士,教授,硕士研究生导师。主要研究方向为水下焊接维修、激光增材制造和激光成型加工等。E-mail: zhujialei@bipt.edu.cn

中图分类号:TG456

DOI:10.11933/j.issn.1007-9289.20230919001

参考文献 1
屈凡玉,李言瑞,杨彬.积极安全有序发展核电助力“双碳”目标顺利实现[J].能源,2022(12):38-43.QU Fanyu,LI Yanrui,YANG Bin.Proactive,safe and orderly development of nuclear power to help the smooth realization of the “double carbon” goal[J].Energy,2022(12):38-43.(in Chinese)
参考文献 2
王茜,李林蔚,高彬,等.世界核电发展趋势走向分析 [J].产业与科技论坛,2022,21(13):17-19.WANG Qian,LI Linwei,GAO Bin,et al.Analysis of the development trend of nuclear power in the world[J].Industry and Technology Forum,2022,21(13):17-19.(in Chinese)
参考文献 3
李锴,钟志民,孟令强.压水堆核电厂乏燃料水池失效分析与预防初探[J].金属热处理,2019,44(S1):435-440.LI Kai,ZHONG Zhimin,MENG Lingqiang.Failure analysis and prevention of spent fuel pool in PWR nuclear power plant[J].Metal Heat Treatment,2019,44(S1):435-440.(in Chinese)
参考文献 4
GUO N,FU Y,XING X,et al.Underwater local dry cavity laser welding of 304 stainless steel[J].Journal of Materials Processing Technology,2018,260:146-155.
参考文献 5
FU Y,GUO N,ZHU B,et al.Microstructure and properties of underwater laser welding of TC4 titanium alloy[J].Journal of Materials Processing Technology,2019,275:116372.
参考文献 6
黄潞.TC4 钛合金水下激光填丝焊接控形控性工艺研 [D].哈尔滨:哈尔滨工业大学,2019.HUANG Lu.Research on shape control process of TC4 titanium alloy underwater laser wire filling welding[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)
参考文献 7
姚杞,罗震,李洋,等.不锈钢水下激光焊接焊缝成形与力学性能[J].上海交通大学学报,2015,49(3):333-336.YAO Qi,LUO Zhen,LI Yang,et al.Stainless steel underwater laser welding weld formation and mechanical properties[J].Journal of Shanghai Jiao Tong University,2015,49(3):333-336.(in Chinese)
参考文献 8
张恒泉,周晓辉,魏连峰,等.316L 双层排水罩局部干法水下激光焊接接头组织演变及力学性能研究[J].中国激光,2023,50(12):58-67.ZHANG Hengquan,ZHOU Xiaohui,WEI Lianfeng,et al.316L Local dry underwater laser welding joint microstructure evolution and mechanical properties[J].China Laser,2023,50(12):58-67.(in Chinese)
参考文献 9
MORITA I,OWAKI K,YAMAOKA H,et al.Study of underwater laser welding repair technology[J].Welding in the World,2006,50(7-8):37-43.
参考文献 10
TAMURA M,KAWANO S,KOUNO W,et al.Development of underwater laser cladding and underwater laser seal welding techniques for reactor components(II)[C]//International Conference on Nuclear Engineering.July 17-20,2006,Miami,Florida,USA.ICONE14-89346,2006.
参考文献 11
OBANA T,HAMADA Y,OOTSUKA T,et al.Development of maintenance technology with underwater TIG welding for spent fuel storage pool[J].Welding International,2009,23(5):382-396.
参考文献 12
李丛伟,邵长磊,朱加雷,等.304 不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J].焊接学报,2021,42(8):67-74,101.LI Congwei,SHAO Changlei,ZHU Jialei,et al.Microstructure and properties of 304 stainless steel local dry underwater laser cladding layer with filler wire[J].Journal of Welding,2021,42(8):67-74,101.(in Chinese)
参考文献 13
何远灵.SUS304 不锈钢TIG焊接接头的组织表征与性能研究[D].太原:山西农业大学,2019.HE Yuanling.Research on organization characterization and properties of TIG welded joints of SUS304 stainless steel[D].Taiyuan:Shanxi Agricultural University,2019.(in Chinese)
参考文献 14
陈勇,陆建华,徐育烺,等.不同焊接工艺下304不锈钢薄壁管件纵缝微观组织及力学性能研究[J].热加工工艺,2022,51(11):127-131.CHEN Yong,LU Jianhua,XU Yulang,et al.Study on the microstructure and mechanical properties of longitudinal joints of 304 stainless steel thin-walled tubes under different welding processes[J].Hot Processing Technology,2022,51(11):127-131.(in Chinese)
参考文献 15
朱加雷.核电厂检修局部干法自动水下焊接技术研究[D].北京:北京化工大学,2010.ZHU Jialei.Research on local dry automatic underwater welding technology for nuclear power plant maintenance[D].Bejing:Beijing University of Chemical Technology,2010.(in Chinese)
参考文献 16
姚杞.不锈钢水下激光焊接研究[D].天津:天津大学,2014.YAO Qi.Research on underwater laser welding of stainless steel[D].Tianjin:Tianjin University,2014.(in Chinese)
参考文献 17
李庆.SUS304 不锈钢薄板激光焊接工艺及接头性能研究[D].武汉:华中科技大学,2014.LI Qing.Research on laser welding process and joint properties of SUS304 stainless steel thin plate[D].Wuhan:Huazhong University of Science and Technology,2014.(in Chinese)
参考文献 18
舒玮,廉晓洁,张寿禄,等.固溶处理对超低碳奥氏体不锈钢00Cr24Ni13铸坯δ-铁素体转变的影响[J].特殊钢,2013,34(2):62-64.SHU Wei,LIAN Xiaojie,ZHANG Shoulu,et al.Effect of solid solution treatment on δ-ferrite transformation of ultra-low carbon austenitic stainless steel 00Cr24Ni13 cast billets[J].Special Steel,2013,34(2):62-64.(in Chinese)
参考文献 19
陈兴.304 不锈钢多层多道焊接热影响区晶粒长大的计算机模拟[D].镇江:江苏大学,2013.CHEN Xing.Computer simulation of grain growth in the heat affected zone of multilayer multi-pass welding of 304 stainless steel[D].Zhenjiang:Jiangsu University,2013.(in Chinese)
参考文献 20
冯家玮,江来珠,徐锴,等.低镍含氮奥氏体不锈钢脉冲TIG焊接接头组织性能研究[J].电焊机,2022,52(1):68-76.FENG Jiawei,JIANG Laizhu,XU Kai,et al.Study on the organization and properties of pulse TIG welded joints of low-nickel nitrogen-containing austenitic stainless steel[J].Electric Welding Machine,2022,52(1):68-76.(in Chinese)
参考文献 21
刘铠瑜,朱加雷,李丛伟,等.S32101 双相不锈钢单道多层激光填丝熔覆层研究[J].精密成形工程,2022,14(12):176-183.LIU Kaiyu,ZHU Jialei,LI Congwei,et al.Study on s ingle-pass multilayer laser wire-filled cladding layer of S32101 duplex stainless steel[J].Precision Molding Engineering,2022,14(12):176-183.(in Chinese)
目录contents

    摘要

    核电乏燃料池在长期的服役过程中不可避免会出现缺陷,目前针对核电站乏燃料池底面和壁面交界处 L 型拐角位置存在的裂纹缺陷修复研究还鲜有报道。自主设计一款局部干法水下角焊排水罩,并以第二代核电站乏燃料池覆板用的 304L 不锈钢为研究对象,开展局部干法水下激光填丝角焊试验。通过光学显微镜分析多层多道角焊缝的显微组织;用 DPT-5 着色渗透探伤剂对焊缝表面及其横截面进行渗透检测;采用显微硬度计测试不同区域的显微硬度分布情况;使用 VersaSTAT 3F 电化学工作站测定 3.5%NaCl 溶液中不同区域的极化曲线和 Nyquist 图谱。结果表明:焊缝的成型质量高,宏观和微观均无明显缺陷,显微组织主要由奥氏体和铁素体组成;焊缝区域层与层之间有明显的分界,热影响区不明显;搭接区由于多次热积累,铁素体含量减少,奥氏体晶粒变大;各区域晶粒尺寸大小的不同,致使硬度呈近似“M”形分布;极化曲线和 Nyquist 图谱结果均表明不同区域抗电化学腐蚀能力的顺序为 BM>WM>HAZ。利用自主设计的角焊排水罩进行了水下激光填丝角焊修复试验,获得良好的角焊接头工艺性能,可为乏燃料池的裂纹修复提供技术参考。

    Abstract

    At the 75th United Nations General Assembly, China announced that its carbon dioxide emissions would peak before 2030, and the nation will achieve carbon neutrality before 2060. In this context, nuclear power, as a clean, safe, efficient, and stable green and low-carbon energy source that can be developed on a large scale, can play a significant role in promoting green development and helping to achieve the “dual carbon” goals. During the long-term service of nuclear power plants, the stainless steel cladding of the spent fuel pool experiences aging effects, and its failure mechanisms primarily include mechanical impact, uniform corrosion, stress corrosion cracking, and pitting corrosion. Reliable underwater maintenance technology is crucial to ensure the safe operation and smooth life extension of nuclear power plants. Underwater laser welding, a relatively efficient in-situ repair technology, has the advantages of accurate heat input, low residual stress, high welding quality, and fully automated welding process, in addition to being less affected by water pressure. It has received widespread attention for underwater operations. Currently, there are few reports on the repair of crack defects at the L-shaped corner position at the junction between the bottom and wall of spent fuel pools in nuclear power plants. Therefore, a local dry underwater corner welding drainage cover was independently designed, and a local dry underwater laser wire-filling corner welding test was conducted on the 304 L stainless steel used for second-generation spent fuel pool cladding in nuclear power plants. The microstructures of the multi-layer and multi-pass fillet welds were analyzed using an optical microscope. Penetration testing was performed on the surface and cross-section of the weld using a DPT-5 dye penetrant. The micro-hardness distribution in different areas was tested using a micro-hardness tester. The polarization curves and Nyquist spectra of different regions in a 3.5% NaCl solution were measured using a VersaSTAT 3F electrochemical workstation. The results demonstrate that the forming quality of the fillet weld is high, and the metallurgical bonding is tight, with no obvious defects at both macro and micro levels. Owing to the protection of the pure argon gas environment, the surface of the fillet weld inside the underwater drainage hood presents a silver white fish scale as a delicate ripple. The penetration results revealed no obvious defects on the cross-section and surface of the weld seam. The microstructure is mainly composed of austenite and ferrite, and there is a clear boundary between the layers in the weld seam area. The heat-affected zone is not clearly displayed owing to the rapid cooling effect of water. The center structure of the fillet weld is mainly composed of vermicular ferrite, γ Austenite, and lath ferrite, and the crystal morphology is mainly equiaxed crystal. The fusion zone is mainly composed of vermicular ferrite and γ Austenite, with a small amount of feathery ferrite. The crystalline form is mainly columnar crystals, which grow perpendicular to the fusion line toward the center of the weld seam. The overlapping area is mainly composed of vermicular ferrite and γ Austenite. Owing to multiple heat accumulations in the overlap zone, it is equivalent to solid solution treatment on the surface of the weld, resulting in a decrease in the ferrite content and an increase in the austenite grains. The average micro-hardness values of BM, HAZ, and WM for multi-layer and multi-pass corner welding joints are 209 HV, 226 HV, and 234 HV, respectively, with uneven distribution and an approximate M-shaped distribution. The polarization curve and Nyquist spectrum results indicate that the order of resistance to electrochemical corrosion in different regions is BM>WM>HAZ. Underwater laser wire-filling corner welding repair experiments were conducted using a self-designed corner welding drainage cover. A good process performance of the corner welding joints was obtained, which can provide a technical reference for the crack repair of spent fuel pools.

  • 0 前言

  • 在第 75 届联合国大会上,中国宣布二氧化碳排放将“力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和”。在此背景下,核电作为清洁低碳安全高效稳定可大规模发展的绿色低碳能源,在推动绿色发展和助力“双碳”目标实现方面可以发挥重要的作用[1]。核电站通常设计寿命为 40 年,一旦超过设计寿命,就会面临着退役。但是欧美一些发达国家为了降低费用、保障电力安全,正在制定核电站延寿计划,将核电站延寿至 50 年、60 年,乃至更长的寿期[2]。核电站在长期服役过程中,乏燃料水池的不锈钢覆板会出现老化效应,其失效机理主要为机械冲击、均匀腐蚀、应力腐蚀开裂、点腐蚀等[3],对核电站安全运行构成严重威胁。为保证核电安全运行和顺利延寿,可靠的水下维修技术至关重要。

  • 水下激光焊接具有受水压影响小、热输入量准确、残余应力低、焊接质量高以及焊接过程完全自动化等优点[4-5],是一种比较高效的原位修复技术,在水下作业领域受到了广泛的关注[6]。在局部干法水下激光焊接不锈钢研究方面,姚杞等[7]针对 1 mm 厚SU304不锈钢进行了水下单层排水气罩的焊接试验,结果发现适当的水深与保护气体流量匹配,可以获得成形良好、剪切拉伸强度与母材相当的焊缝。在水深一定时,随着气体流量的增加,焊缝熔宽变宽,熔深变浅。在气体流量一定时,随着水深的增加,焊缝熔深和熔宽也表现出类似的变化规律。张恒泉等[8]采用自主搭建的双层排水罩局部干法装置对 3 mm 厚 316L 不锈钢进行激光焊接,对比陆地焊接条件研究了排水气压对焊接接头的影响。结果表明:当排水气压为 0.3 MPa 时,焊缝无法有效熔透,焊缝中易产生气孔缺陷,且焊缝内生成了魏氏奥氏体,接头的抗拉强度仅为 347 MPa;随着排水气压增大至 0.5 MPa,接头抗拉强度显著提高至 584 MPa。MORITA 等[9]采用激光水下焊接对薄壁 304 不锈钢进行修复。结果表明在平焊、水平和垂直向下位置均取得了良好的焊接性,采用激光修复可有效地避免裂纹萌生。TAMURA 等[10]针对管道内部的平焊、向上立焊、向下立焊、仰焊的焊接位置和角焊缝的补板焊接的焊缝形状进行了水下激光堆焊维修工艺研究,获得了良好的焊缝成形,但是缺乏对焊缝的综合检测分析。OBANA 等[11]开发了乏池水下 TIG 焊补板维修技术,针对乏池狭窄角落位置,通过高压气体排水方法,研发了局部干式和气室式两种焊接设备系统,通过试验验证表明水下 TIG焊接补板维修工艺可获得和空气中 TIG焊接相同的焊接质量。综上所述,目前针对水下焊接,国内学者大多集中于排水装置的设计,并且适应的位姿势是水平位置;国外学者大多集中于各种位姿的焊接研究,并且焊接的热源也不仅仅局限于激光,同时焊缝缺乏综合的检测以评价焊缝的质量。为此,本文针对乏燃料水池底面和壁面交界处 L 型拐角位置进行局部干法水下激光填丝焊接修复研究,分析焊缝的金相组织、显微硬度和耐腐蚀性能,验证水下原位修复核电站乏燃料池拐角位置的可行性。

  • 1 试验准备

  • 1.1 试验材料和设备

  • 试验采用 304L 奥氏体不锈钢作为母材,其尺寸为 250 mm×200 mm×14 mm,化学成分(质量分数)见表1,焊丝选取 ER308L 焊丝,直径为 ϕ1.2 mm,焊丝成分见表2。选用 Ar(纯度 99.99%) 作为保护气体。

  • 表1 304L 不锈钢的化学成分(质量分数 / %)

  • Table1 Chemical composition of 304L stainless steel (wt.%)

  • 表2 ER308L 焊丝化学成分(质量分数 / %)

  • Table2 Chemical composition of ER308L wire (wt.%)

  • 研究所用的水下激光填丝角焊试验装置如图1 示。激光器选用锐科连续激光器(RFL-C6600S),排水装置采用自主设计的局部干法水下角焊排水罩,如图2 所示,送丝机选用 WF-007A 氩弧焊送丝机。角焊焊接试验过程如图3 所示。

  • 图1 水下激光填丝角焊试验装置

  • Fig.1 Underwater laser fillet filling fillet welding test device

  • 图2 角焊排水罩

  • Fig.2 Fillet welding drain cover

  • 图3 角焊焊接过程

  • Fig.3 Fillet welding process

  • 1.2 试验过程

  • 试验前,将母材的表面使用酒精进行清洗去除污渍,用角磨机打磨去除氧化膜。为了模拟乏燃料池 L 型拐角,自主设计了角焊夹具,在图1 中所示。将两块母材(一块为竖板,一块为底板)分别固定在角焊夹具的相应位置即可形成 L 型拐角。图4 所示为激光角焊焊接示意图。在试验时,激光与水平方向呈 45°夹角照射到 L 型拐角处。为了在焊接过程中使 L 型拐角处形成局部干燥的施焊环境,自主设计了如图2 所示的角焊排水罩。通过通入纯度 99.99%的氩气排出角焊排水罩内的水以营造局部干燥的施焊环境,同时通入罩内的氩气也充当了焊接保护气。图5 所示为激光角焊多层多道焊接路径,完成第一道焊接后,在底板方向向外偏移 2.5 mm 焊接第二道。第二道焊接完成后,向里偏移 2.5 mm 以保证光斑直径相对于焊接位置不变,再在竖板方向向上偏移 2.5 mm 完成第三道焊接。经过前期的工艺参数的探索,最终确定局部干法水下激光填丝角焊的工艺参数见表3。

  • 图4 激光角焊焊接示意图

  • Fig.4 Schematic of laser fillet welding

  • 图5 激光角焊多层多道焊接路径

  • Fig.5 Laser fillet welding multi-layer multi-pass weld paths

  • 焊接完成后,用 DPT-5 着色渗透探伤剂对焊缝表面及其横截面进行渗透检测,用电火花线切割机在焊缝的中间垂直于焊接方向处切割出厚度为5 mm 的焊接试样,然后用冷镶嵌方法进行镶样。焊缝截面经过 SiC 砂纸打磨、研磨喷剂抛光后,使用三氯化铁-盐酸水溶液进行金相腐蚀处理。利用光学显微镜观察焊缝组织形貌;使用显微硬度计测试了在 1 kg 载荷作用下保持 10 s 的显微硬度;采用 VersaSTAT3F 电化学工作站,以饱和甘汞电极为参照电极,铂电极为辅助电极,扫描速度 0.167 mV / s,测定了 3.5%NaCl 溶液中不同区域的 Nyquist 图谱和极化曲线。

  • 表3 局部干法水下激光填丝角焊工艺参数

  • Table3 Parameters of localized dry underwater laser fillet fillet welding process

  • 2 结果与讨论

  • 2.1 宏观形貌

  • 采用表3 的焊接工艺参数,以 304L 奥氏体不锈钢为母材对其进行局部干法水下激光填丝 L 型拐角焊接。焊接完成后对焊缝的表面进行目视检查,多层多道角焊缝宏观形貌如图6 所示,角焊缝外观呈鱼鳞状细腻波纹,成形良好,宽度均匀,未见有咬边、焊瘤、未焊透、裂纹等缺陷。焊缝颜色以银白色为主,主要是因为局部干法水下焊接时角焊排水罩内充满了纯氩气,提高了焊接过程的保护效果,有效避免了氧化。在金相显微镜下对垂直于焊道方向的角焊缝横截面进行宏观观察,多层多道角焊缝横截面形貌如图7 所示,未见裂纹、烧穿、夹杂、气孔和未熔合等缺陷,填充金属与母材完全熔合,冶金结合紧密。从宏观上看,多层多道角焊接头可分为焊缝(WM)、搭接区(OZ)、热影响区(HAZ) 和母材(BM),填充金属与母材有明显的分界,第一焊道与第二、三焊道也有明显的分界。由于水下焊接时水的快速冷却作用导致熔池凝固加快、热循环速度加快,热影响区减小且不明显[12]

  • 图6 多层多道角焊缝宏观形貌

  • Fig.6 Macroscopic morphology of multi-layer and multi-pass fillet weld

  • 图7 多层多道角焊缝横截面形貌

  • Fig.7 Cross-sectional morphology of multi-layer multi-pass fillet weld

  • 2.2 渗透检测

  • 用 DPT-5 着色渗透探伤剂对焊缝横截面及焊缝表面进行渗透探伤检测,渗透时间 5~10 min,显像时间 2 min,焊缝横截面和焊缝表面渗透结果分别如图8 和图9 所示。渗透结果表明,焊缝横截面和焊缝表面均未发现明显缺陷。

  • 图8 横截面渗透结果

  • Fig.8 Cross-sectional penetration results

  • 图9 焊缝表面渗透结果

  • Fig.9 Weld surface penetration results

  • 2.3 微观组织

  • 奥氏体不锈钢凝固时,其初始的析出相在很大程度上取决于不锈钢的化学成分[13]。为了正确地估计出焊缝的相组成,本文采用 Hammar 和 Svensson 提出的模型,Cr 和 Ni 当量计算公式见式(1)、(2):

  • Crre=Cr+1.3Mo+1.5Si+2Nb+3Ti
    (1)
  • Nieq=Ni+22C+14.2N+0.21Mn+Cu
    (2)
  • 对于 304L 奥氏体不锈钢母材,利用式(1)和 ( 2)结合母材和焊丝的化学成分计算出: Creq=18.525, Nieq=9.56, Creq / Nieq=1.93;对于 ER308L 焊丝, Creq=20.116, Nieq=12.045, Creq / Nieq=1.67。根据图10 奥氏体不锈钢凝固模式和伪二元相图的关系图,铬镍当量比值在 1.5~2.0,为 FA 凝固模式。因此,本文中母材和焊丝的凝固模式均为 FA 凝固模式。在填丝焊接的过程中,δ 铁素体首先从液态的金属中析出,随着温度的降低,δ 铁素体发生向γ奥氏体转变的固态相变。然而,在非平衡的凝固条件下,较快的冷却速度会导致 δ 铁素体向 γ 奥氏体的转变不能完全进行[14],致使部分 δ 铁素体残留分布在奥氏体基体上。因此,焊缝凝固后的组织为奥氏体和部分铁素体。此外,根据冷却速度的不同,残留在奥氏体基体上的 δ 铁素体的形态也不尽相同,在慢冷却速度下,δ 铁素体呈蠕虫状;在较快冷却速度下,δ 铁素体呈侧板条状; 冷却速度继续提高,δ 铁素体呈点状或者线状;在极冷条件下,铁素体完全转变为奥氏体[15]

  • 图10 奥氏体不锈钢凝固模式和伪二元相图的关系

  • Fig.10 Relationship between solidification mode and pseudo-binary phase diagram of austenitic stainless steel

  • 图11 为多层多道角焊缝的显微组织。焊缝区组织主要由 δ 铁素体和 γ 奥氏体组成,铁素体的形态主要是蠕虫状、板条状和羽毛状,同时沿 γ 奥氏体柱状晶和等轴晶分布,如图11b、11g 和 11i 所示。焊缝中心的组织(如图11b 所示)主要以蠕虫状铁素体、γ 奥氏体和板条状铁素体为主,结晶形态以等轴晶为主。熔合区(FZ)向焊缝一侧附近主要以蠕虫状铁素体和 γ 奥氏体为主,也有少部分的羽毛状铁素体,结晶形态以柱状晶为主,并且垂直于熔合线向焊缝中心生长。因为水下环境焊接过程中水对熔融填充金属较快的冷却作用,熔合线附近存在较大的温度梯度,此时依附于熔合区母材表面形成的晶核便会沿着最大温度梯度方向优先生长,形成柱状晶[16],如图11g 和 11i 所示。焊缝中心区域的温度都很高,其温度梯度很小,在焊缝中心处形成较宽的成分过冷区,整个焊缝中心几乎是同时凝固的,液态金属内部会自由形核,这些在液态金属内部产生的晶粒四周不受阻碍,可以自由生长,也就形成杂乱无序的等轴晶[17]。在水下焊接过程中,尽管由于水的作用提高了冷却的速度,但是焊缝区域不同的位置依然存在不同的温度梯度,在不同程度上影响着焊接热循环,使得不同位置的冷却速度也不尽相同,致使焊缝区组织形成了不同形态的铁素体。图11a、11c 中搭接区(OZ)组织主要以蠕虫状铁素体、γ 奥氏体和板条状铁素体为主。两个均有明显的熔合线,结晶形态以柱状晶为主,且垂直于熔合线生长。对比搭接区附近的组织,搭接区的铁素体含量较少,奥氏体晶粒较大。这是因为在水下激光多层多道填充金属的过程中,虽然大部分的激光能量集中在焊丝上用于熔化焊丝,但另外一部分能量分散到上一道焊缝表面,相当于对上一道焊缝进行了再加热,并且停留了一段时间。上述过程相当于对上一道焊缝表面进行了固溶处理,致使非平衡 δ 铁素体随着固溶温度的升高和保温时间的延长而转变成奥氏体基体组织[18],导致了铁素体含量的减少。由于上一道焊缝表面分散了一部分热量,提高了搭接区的层间温度,致使奥氏体晶粒继续生长,最终变大[19]

  • 图11 多层多道角焊缝显微组织

  • Fig.11 Microstructure of multi-layer multi-pass fillet weld

  • 2.4 显微硬度

  • 对试件进行硬度测试,打点位置如图12 所示,显微硬度分布情况如图13 所示。从曲线图可以看出,角焊接头的显微硬度分布不均,近似“M”形分布。测得母材(BM)、热影响区(HAZ)和焊缝 (WM)平均显微硬度值分别为 209、226 和 234 HV。根据 Hall-Patch 公式与细晶强化理论,晶粒越细,晶界越多,阻碍位错和抵抗局部塑性变形能力越强,显微硬度也就越高[20]。从上述金相显微组织可以看出,焊缝中心分布较多的细小的等轴晶,母材及热影响区分布的是较为粗大的柱状晶。因此,相对于母材及热影响区,焊缝区域的晶粒尺寸要小,同时加上细晶强化作用,验证了焊缝的显微硬度要比母材及热影响区大。从热影响区和焊缝的平均显微硬度值可以看出,两个区域的显微硬度接近。这是因为在水下环境焊接时,水的冷却作用明显,冷却速度较快,受热区域小,热影响区晶粒没有足够的时间生长。此外,从焊缝(WM)显微硬度的分布可看出显微硬度有一段呈下降的趋势,其原因是在水下多层多道焊接过程中,由于上一道焊缝表面分散了一部分热量,提高了搭接区的层间温度,致使奥氏体晶粒继续生长,晶粒变大。

  • 图12 角焊多层多道维氏硬度测试示意图

  • Fig.12 Multi-layer and multi-channel Vickers hardness test diagram of fillet welding

  • 图13 显微硬度分布图

  • Fig.13 Microhardness distribution

  • 2.5 耐腐蚀性能

  • 角焊接头不同区域的极化曲线如图14 所示。通过 Tafel 拟合得到接头各区域的腐蚀电流密度及其对应的自腐蚀电位,拟合结果见表4。根据电化学腐蚀相关原理可知,自腐蚀电位表征电化学腐蚀的难易程度,自腐蚀电流密度表征电化学腐蚀的速率及腐蚀的程度。通常自腐蚀电位越小,表明阴极和阳极的电位差越大,材料更容易发生腐蚀;一般自腐蚀电流密度越小,材料的耐腐蚀性能越强。从表4 比较三个区域的自腐蚀电位和自腐蚀电流密度显示,三个区域的自腐蚀电位相差不大,自腐蚀电流密度相差较大,其大小为 HAZ>WM>BM。因此,三个区域的抗电化学腐蚀能力的顺序为BM>WM> HAZ,其原因是各区域的奥氏体含量不同。此外, BM 和 HAZ 均出现了电流随电位升高反而减小的现象,这是由于在腐蚀过程中出现钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降[21]。角焊接头不同区域的 Nyquist 图谱如图15 所示。从中可以看出三个区域的阻抗图谱均出现了一个单容抗弧,并且容抗弧大小为 BM>WM> HAZ。根据相关腐蚀理论,容抗弧半径越大,代表电阻越大,对电荷阻碍越大,越不容易发生腐蚀,所以三个区域的耐腐蚀性能:BM>WM>HAZ,这与极化曲线分析结果相符。

  • 图14 不同区域的极化曲线

  • Fig.14 Polarization curves of different regions

  • 表4 Tafel 拟合结果

  • Table4 Tafel fitting results

  • 图15 不同区域的 Nyquist 图谱

  • Fig.15 Nyquist plots of different regions

  • 3 结论

  • (1)自主设计了一款局部干法水下角焊排水罩,采用局部干法水下激光填丝技术成功制备出冶金结合紧密、无明显缺陷的多层多道角焊接头,获得了良好的角焊接头工艺性能。

  • (2)所形成的局部水下干法激光填丝技术可助力核电延寿,在水下结构物原位修复领域有着广阔的应用潜力。

  • (3)研究结果可为乏燃料池的裂纹修复提供技术参考,但是在深水环境中的激光填丝修复,还须要对排水罩的结构、密封性及修复工艺做进一步优化。

  • 参考文献

    • [1] 屈凡玉,李言瑞,杨彬.积极安全有序发展核电助力“双碳”目标顺利实现[J].能源,2022(12):38-43.QU Fanyu,LI Yanrui,YANG Bin.Proactive,safe and orderly development of nuclear power to help the smooth realization of the “double carbon” goal[J].Energy,2022(12):38-43.(in Chinese)

    • [2] 王茜,李林蔚,高彬,等.世界核电发展趋势走向分析 [J].产业与科技论坛,2022,21(13):17-19.WANG Qian,LI Linwei,GAO Bin,et al.Analysis of the development trend of nuclear power in the world[J].Industry and Technology Forum,2022,21(13):17-19.(in Chinese)

    • [3] 李锴,钟志民,孟令强.压水堆核电厂乏燃料水池失效分析与预防初探[J].金属热处理,2019,44(S1):435-440.LI Kai,ZHONG Zhimin,MENG Lingqiang.Failure analysis and prevention of spent fuel pool in PWR nuclear power plant[J].Metal Heat Treatment,2019,44(S1):435-440.(in Chinese)

    • [4] GUO N,FU Y,XING X,et al.Underwater local dry cavity laser welding of 304 stainless steel[J].Journal of Materials Processing Technology,2018,260:146-155.

    • [5] FU Y,GUO N,ZHU B,et al.Microstructure and properties of underwater laser welding of TC4 titanium alloy[J].Journal of Materials Processing Technology,2019,275:116372.

    • [6] 黄潞.TC4 钛合金水下激光填丝焊接控形控性工艺研 [D].哈尔滨:哈尔滨工业大学,2019.HUANG Lu.Research on shape control process of TC4 titanium alloy underwater laser wire filling welding[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [7] 姚杞,罗震,李洋,等.不锈钢水下激光焊接焊缝成形与力学性能[J].上海交通大学学报,2015,49(3):333-336.YAO Qi,LUO Zhen,LI Yang,et al.Stainless steel underwater laser welding weld formation and mechanical properties[J].Journal of Shanghai Jiao Tong University,2015,49(3):333-336.(in Chinese)

    • [8] 张恒泉,周晓辉,魏连峰,等.316L 双层排水罩局部干法水下激光焊接接头组织演变及力学性能研究[J].中国激光,2023,50(12):58-67.ZHANG Hengquan,ZHOU Xiaohui,WEI Lianfeng,et al.316L Local dry underwater laser welding joint microstructure evolution and mechanical properties[J].China Laser,2023,50(12):58-67.(in Chinese)

    • [9] MORITA I,OWAKI K,YAMAOKA H,et al.Study of underwater laser welding repair technology[J].Welding in the World,2006,50(7-8):37-43.

    • [10] TAMURA M,KAWANO S,KOUNO W,et al.Development of underwater laser cladding and underwater laser seal welding techniques for reactor components(II)[C]//International Conference on Nuclear Engineering.July 17-20,2006,Miami,Florida,USA.ICONE14-89346,2006.

    • [11] OBANA T,HAMADA Y,OOTSUKA T,et al.Development of maintenance technology with underwater TIG welding for spent fuel storage pool[J].Welding International,2009,23(5):382-396.

    • [12] 李丛伟,邵长磊,朱加雷,等.304 不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J].焊接学报,2021,42(8):67-74,101.LI Congwei,SHAO Changlei,ZHU Jialei,et al.Microstructure and properties of 304 stainless steel local dry underwater laser cladding layer with filler wire[J].Journal of Welding,2021,42(8):67-74,101.(in Chinese)

    • [13] 何远灵.SUS304 不锈钢TIG焊接接头的组织表征与性能研究[D].太原:山西农业大学,2019.HE Yuanling.Research on organization characterization and properties of TIG welded joints of SUS304 stainless steel[D].Taiyuan:Shanxi Agricultural University,2019.(in Chinese)

    • [14] 陈勇,陆建华,徐育烺,等.不同焊接工艺下304不锈钢薄壁管件纵缝微观组织及力学性能研究[J].热加工工艺,2022,51(11):127-131.CHEN Yong,LU Jianhua,XU Yulang,et al.Study on the microstructure and mechanical properties of longitudinal joints of 304 stainless steel thin-walled tubes under different welding processes[J].Hot Processing Technology,2022,51(11):127-131.(in Chinese)

    • [15] 朱加雷.核电厂检修局部干法自动水下焊接技术研究[D].北京:北京化工大学,2010.ZHU Jialei.Research on local dry automatic underwater welding technology for nuclear power plant maintenance[D].Bejing:Beijing University of Chemical Technology,2010.(in Chinese)

    • [16] 姚杞.不锈钢水下激光焊接研究[D].天津:天津大学,2014.YAO Qi.Research on underwater laser welding of stainless steel[D].Tianjin:Tianjin University,2014.(in Chinese)

    • [17] 李庆.SUS304 不锈钢薄板激光焊接工艺及接头性能研究[D].武汉:华中科技大学,2014.LI Qing.Research on laser welding process and joint properties of SUS304 stainless steel thin plate[D].Wuhan:Huazhong University of Science and Technology,2014.(in Chinese)

    • [18] 舒玮,廉晓洁,张寿禄,等.固溶处理对超低碳奥氏体不锈钢00Cr24Ni13铸坯δ-铁素体转变的影响[J].特殊钢,2013,34(2):62-64.SHU Wei,LIAN Xiaojie,ZHANG Shoulu,et al.Effect of solid solution treatment on δ-ferrite transformation of ultra-low carbon austenitic stainless steel 00Cr24Ni13 cast billets[J].Special Steel,2013,34(2):62-64.(in Chinese)

    • [19] 陈兴.304 不锈钢多层多道焊接热影响区晶粒长大的计算机模拟[D].镇江:江苏大学,2013.CHEN Xing.Computer simulation of grain growth in the heat affected zone of multilayer multi-pass welding of 304 stainless steel[D].Zhenjiang:Jiangsu University,2013.(in Chinese)

    • [20] 冯家玮,江来珠,徐锴,等.低镍含氮奥氏体不锈钢脉冲TIG焊接接头组织性能研究[J].电焊机,2022,52(1):68-76.FENG Jiawei,JIANG Laizhu,XU Kai,et al.Study on the organization and properties of pulse TIG welded joints of low-nickel nitrogen-containing austenitic stainless steel[J].Electric Welding Machine,2022,52(1):68-76.(in Chinese)

    • [21] 刘铠瑜,朱加雷,李丛伟,等.S32101 双相不锈钢单道多层激光填丝熔覆层研究[J].精密成形工程,2022,14(12):176-183.LIU Kaiyu,ZHU Jialei,LI Congwei,et al.Study on s ingle-pass multilayer laser wire-filled cladding layer of S32101 duplex stainless steel[J].Precision Molding Engineering,2022,14(12):176-183.(in Chinese)

  • 参考文献

    • [1] 屈凡玉,李言瑞,杨彬.积极安全有序发展核电助力“双碳”目标顺利实现[J].能源,2022(12):38-43.QU Fanyu,LI Yanrui,YANG Bin.Proactive,safe and orderly development of nuclear power to help the smooth realization of the “double carbon” goal[J].Energy,2022(12):38-43.(in Chinese)

    • [2] 王茜,李林蔚,高彬,等.世界核电发展趋势走向分析 [J].产业与科技论坛,2022,21(13):17-19.WANG Qian,LI Linwei,GAO Bin,et al.Analysis of the development trend of nuclear power in the world[J].Industry and Technology Forum,2022,21(13):17-19.(in Chinese)

    • [3] 李锴,钟志民,孟令强.压水堆核电厂乏燃料水池失效分析与预防初探[J].金属热处理,2019,44(S1):435-440.LI Kai,ZHONG Zhimin,MENG Lingqiang.Failure analysis and prevention of spent fuel pool in PWR nuclear power plant[J].Metal Heat Treatment,2019,44(S1):435-440.(in Chinese)

    • [4] GUO N,FU Y,XING X,et al.Underwater local dry cavity laser welding of 304 stainless steel[J].Journal of Materials Processing Technology,2018,260:146-155.

    • [5] FU Y,GUO N,ZHU B,et al.Microstructure and properties of underwater laser welding of TC4 titanium alloy[J].Journal of Materials Processing Technology,2019,275:116372.

    • [6] 黄潞.TC4 钛合金水下激光填丝焊接控形控性工艺研 [D].哈尔滨:哈尔滨工业大学,2019.HUANG Lu.Research on shape control process of TC4 titanium alloy underwater laser wire filling welding[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [7] 姚杞,罗震,李洋,等.不锈钢水下激光焊接焊缝成形与力学性能[J].上海交通大学学报,2015,49(3):333-336.YAO Qi,LUO Zhen,LI Yang,et al.Stainless steel underwater laser welding weld formation and mechanical properties[J].Journal of Shanghai Jiao Tong University,2015,49(3):333-336.(in Chinese)

    • [8] 张恒泉,周晓辉,魏连峰,等.316L 双层排水罩局部干法水下激光焊接接头组织演变及力学性能研究[J].中国激光,2023,50(12):58-67.ZHANG Hengquan,ZHOU Xiaohui,WEI Lianfeng,et al.316L Local dry underwater laser welding joint microstructure evolution and mechanical properties[J].China Laser,2023,50(12):58-67.(in Chinese)

    • [9] MORITA I,OWAKI K,YAMAOKA H,et al.Study of underwater laser welding repair technology[J].Welding in the World,2006,50(7-8):37-43.

    • [10] TAMURA M,KAWANO S,KOUNO W,et al.Development of underwater laser cladding and underwater laser seal welding techniques for reactor components(II)[C]//International Conference on Nuclear Engineering.July 17-20,2006,Miami,Florida,USA.ICONE14-89346,2006.

    • [11] OBANA T,HAMADA Y,OOTSUKA T,et al.Development of maintenance technology with underwater TIG welding for spent fuel storage pool[J].Welding International,2009,23(5):382-396.

    • [12] 李丛伟,邵长磊,朱加雷,等.304 不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J].焊接学报,2021,42(8):67-74,101.LI Congwei,SHAO Changlei,ZHU Jialei,et al.Microstructure and properties of 304 stainless steel local dry underwater laser cladding layer with filler wire[J].Journal of Welding,2021,42(8):67-74,101.(in Chinese)

    • [13] 何远灵.SUS304 不锈钢TIG焊接接头的组织表征与性能研究[D].太原:山西农业大学,2019.HE Yuanling.Research on organization characterization and properties of TIG welded joints of SUS304 stainless steel[D].Taiyuan:Shanxi Agricultural University,2019.(in Chinese)

    • [14] 陈勇,陆建华,徐育烺,等.不同焊接工艺下304不锈钢薄壁管件纵缝微观组织及力学性能研究[J].热加工工艺,2022,51(11):127-131.CHEN Yong,LU Jianhua,XU Yulang,et al.Study on the microstructure and mechanical properties of longitudinal joints of 304 stainless steel thin-walled tubes under different welding processes[J].Hot Processing Technology,2022,51(11):127-131.(in Chinese)

    • [15] 朱加雷.核电厂检修局部干法自动水下焊接技术研究[D].北京:北京化工大学,2010.ZHU Jialei.Research on local dry automatic underwater welding technology for nuclear power plant maintenance[D].Bejing:Beijing University of Chemical Technology,2010.(in Chinese)

    • [16] 姚杞.不锈钢水下激光焊接研究[D].天津:天津大学,2014.YAO Qi.Research on underwater laser welding of stainless steel[D].Tianjin:Tianjin University,2014.(in Chinese)

    • [17] 李庆.SUS304 不锈钢薄板激光焊接工艺及接头性能研究[D].武汉:华中科技大学,2014.LI Qing.Research on laser welding process and joint properties of SUS304 stainless steel thin plate[D].Wuhan:Huazhong University of Science and Technology,2014.(in Chinese)

    • [18] 舒玮,廉晓洁,张寿禄,等.固溶处理对超低碳奥氏体不锈钢00Cr24Ni13铸坯δ-铁素体转变的影响[J].特殊钢,2013,34(2):62-64.SHU Wei,LIAN Xiaojie,ZHANG Shoulu,et al.Effect of solid solution treatment on δ-ferrite transformation of ultra-low carbon austenitic stainless steel 00Cr24Ni13 cast billets[J].Special Steel,2013,34(2):62-64.(in Chinese)

    • [19] 陈兴.304 不锈钢多层多道焊接热影响区晶粒长大的计算机模拟[D].镇江:江苏大学,2013.CHEN Xing.Computer simulation of grain growth in the heat affected zone of multilayer multi-pass welding of 304 stainless steel[D].Zhenjiang:Jiangsu University,2013.(in Chinese)

    • [20] 冯家玮,江来珠,徐锴,等.低镍含氮奥氏体不锈钢脉冲TIG焊接接头组织性能研究[J].电焊机,2022,52(1):68-76.FENG Jiawei,JIANG Laizhu,XU Kai,et al.Study on the organization and properties of pulse TIG welded joints of low-nickel nitrogen-containing austenitic stainless steel[J].Electric Welding Machine,2022,52(1):68-76.(in Chinese)

    • [21] 刘铠瑜,朱加雷,李丛伟,等.S32101 双相不锈钢单道多层激光填丝熔覆层研究[J].精密成形工程,2022,14(12):176-183.LIU Kaiyu,ZHU Jialei,LI Congwei,et al.Study on s ingle-pass multilayer laser wire-filled cladding layer of S32101 duplex stainless steel[J].Precision Molding Engineering,2022,14(12):176-183.(in Chinese)

  • 手机扫一扫看