en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张棋翔,男,1994年出生,博士研究生。主要研究方向为振动与噪声控制。E-mail: Zqx137@my.swjtu.edu.cn

通讯作者:

莫继良,男,1982年出生,研究员,博士研究生导师。主要研究方向为振动与噪声控制、机械表界面科学等。E-mail: jlmo@swjtu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007-9289.20231101001

参考文献 1
WANG Zhiqiang,LEI Zhenyu.Cause analysis of rail corrugation based on stick-slip characteristics[J].Periodica Polytechnica Mechanical Engineering,2023,67(1):70-80.
参考文献 2
LU Chun,YIN Jiabao,MO Jiliang,et al.Accumulated wear degradation prediction of railway friction block considering the evolution of contact status[J].Wear,2022,494:204251.
参考文献 3
PREZELJ J,MUROVEC J,HUEMER-KALS S,et al.Identification of different manifestations of nonlinear stick-slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing map[J].Mechanical Systems and Signal Processing,2022,166:108349.
参考文献 4
ZHAO Xingwei,GRÄBNER N,VON WAGNER U.Avoiding creep groan:Investigation on active suppression of stick-slip limit cycle vibrations in an automotive disk brake via piezoceramic actuators[J].Journal of Sound and Vibration,2019,441:174-186.
参考文献 5
XIANG Zaiyu,ZHANG Jiakun,XIE Songlan,et al.Friction-induced vibration and noise characteristics,and interface tribological behavior during high-speed train braking:The effect of the residual height of the brake pad friction block[J].Wear,2023,516:204619.
参考文献 6
王晓翠.低相对速度下摩擦诱发振动-试验和理论研究及抑制方法[D].成都:西南交通大学,2020.WANG Xiaocui.A combined experimental and theoretical study of friction-induced-vibration at low relative velocities and its suppression[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)
参考文献 7
GWEON J H,JOO B S,JANG H.The effect of short glass fiber dispersion on the friction and vibration of brake friction materials[J].Wear,2016,362:61-67.
参考文献 8
LEE S M,SHIN M W,JANG H.Friction-induced intermittent motion affected by surface roughness of brake friction materials[J].Wear,2013,308(1-2):29-34.
参考文献 9
LEE S M,SHIN M W,LEE W K,et al.The correlation between contact stiffness and stick-slip of brake friction materials[J].Wear,2013,302(1-2):1414-1420.
参考文献 10
PARK C W,SHIN M W,JANG H.Friction-induced stick-slip intensified by corrosion of gray iron brake disc[J].Wear,2014,309(1-2):89-95.
参考文献 11
WANG Xiaocui,MO Jiliang,OUYANG Huajiang,et al.The effects of grooved rubber blocks on stick-slip and wear behaviours[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2019,233(11):2939-2954.
参考文献 12
LU Xiaodong,ZHAO Jing,MO Jiliang,et al.Suppression of friction-induced stick-slip behavior and improvement of tribological characteristics of sliding systems by introducing damping materials[J].Tribology Transactions,2020,63(2):222-234.
参考文献 13
NEIS P D,DE BAETS P,OST W,et al.Investigation of the dynamic response in a dry friction process using a rotating stick-slip tester[J].Wear,2011,271(9-10):2640-2650.
参考文献 14
李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)
参考文献 15
赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)
参考文献 16
NSILANI KOUEDIATOUKA A,MA Qiang,LIU Qi,et al.Design methodology and application of surface texture:A review[J].Coatings,2022,12(7):1015.
参考文献 17
WANG Hao,XIE Xuan,HUA Xijun,et al.The effect of laser surface texturing to inhibit stick-slip phenomenon in sliding contact[J].Advances in Mechanical Engineering,2019,11(9):1687814019874635.
参考文献 18
HE Yuyang,YANG Jie,WANG Hao,et al.Micro-dimple and micro-bulge textures:Influence of surface topography types on stick-slip behavior under starved lubrication[J].Applied Surface Science,2022,585:152501.
参考文献 19
唐鹏,袁琼.摩擦离合器黏滑振动特性的显式动力学分析[J].现代制造工程,2021(3):138-145.TANG Peng,YUAN Qiong.Explicit dynamics analysis of stick-slip vibration characteristics of friction clutch[J].Modern Manufacturing Engineering,2021(3):138-145.(in Chinese)
参考文献 20
王权,王安宇,吴元科,等.基于界面调控的摩擦系统减振降噪方法[J].振动与冲击,2022,41(15):146-152.WANG Quan,WANG Anyu,WU Yuanke,et al.Vibration and noise reduction method of friction system based on interface regulation [J].Journal of Vibration and Shock,2022,41(15):146-152.(in Chinese)
参考文献 21
GAO C,KUHLMANN-WILSDORF D,MAKEL D D.The dynamic analysis of stick-slip motion[J].Wear,1994,173(1-2):1-12.
参考文献 22
SHAMSUL BAHARIN A F,GHAZALI M J,A WAHAB J.Laser surface texturing and its contribution to friction and wear reduction:A brief review[J].Industrial Lubrication and Tribology,2016,68(1):57-66.
参考文献 23
ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear-a review[J].Tribology International,2021,155:106792.
目录contents

    摘要

    高速列车在制动过程中出现的低频粘滑振动现象给制动系统的安全性和稳定性构成了极大的挑战,因此,降低或抑制制动过程中的粘滑振动对于提高列车安全运营具有重要意义。为此,通过在摩擦块表面设计了一系列不同数量的平行微织构,并结合有限元仿真和试验分析,研究了其对粘滑振动的抑制效果。结果表明,表面微织构能改善盘 / 块界面接触状态,增加实际接触面积,使接触应力分布均匀,降低磨损并提高界面贴合稳定性。在所设计的微织构参数范围内,粘滑振动强度随表面微织构数量的增加而降低,其振动形式由不规则粘滑振动逐渐转为近简谐振动。因此,改善摩擦界面接触状态是降低粘滑振动强度的主要因素,良好的界面贴合度和轻微的磨损有助于实现粘滑振动的有效抑制。研究成果可为抑制高速列车制动系统粘滑振动的摩擦界面调控方案提供一定的理论依据和应用指导。

    Abstract

    High-speed train braking systems experience stick-slip vibrations during low-speed braking, particularly before new brake pads reach a stable wear stage. Stick-slip vibrations lead to the abnormal wear and fracture of the friction blocks, threatening train braking safety. Moreover, they produce significant braking noise, which impacts passenger comfort and the everyday lives of residents along the route as well as leads to numerous complaints. Therefore, an in-depth study of the stick-slip vibration mechanism of high-speed train braking systems and the development of effective suppression strategies are crucial for enhancing train safety and passenger comfort. Stick-slip vibration, a typical friction-induced phenomenon, is significantly influenced by interface contact characteristics. Researchers have focused on studying interface contact characteristics and suggested that controlling these characteristics may suppress stick-slip vibrations. Considering the role of the surface texture in improving tribological performance, a series of parallel microgrooved textures of varying quantities are designed on the surfaces of the friction blocks. Finite element simulations and experimental analyses are combined to assess the effectiveness of microgrooved surface textures in suppressing stick-slip vibrations during high-speed train braking. Initially, finite element simulations reveal the effects of the number of surface microgrooved textures of the friction block on the contact stress, wear depth, interface contact degree, and vibration characteristics. These results indicate that the surface-microgrooved textures extended the primary load-bearing area in the direction of the texture, increase the contact area, and achieve a more uniform distribution of the contact stress. As the number of surface-microgrooved textures increases, the degree of interface contact gradually improves, and the amplitude of the displacement and velocity of the friction blocks decreases, transitioning from complex motion to more regular motion. However, finite element analysis alone struggles to account for the effects of wear debris generation and flow during friction, changes in wear surface morphology, and system vibrations, resulting in an incomplete reflection of the interface control function of the microgrooved surface textures. Therefore, friction tests must be conducted to verify the actual effects of surface-microgrooved textures in suppressing stick-slip vibrations. The experimental results indicate that surface-microgrooved textures effectively suppress high-frequency irregular vibrations and reduce the intensity of stick-slip vibrations. An analysis of the contact behavior reveals that microgrooved surface textures increase the actual contact area between the brake disc and friction block and thus play a role in reducing wear and dispersing interface contact stress, thereby favoring a rapid transition to a stable wear state. In addition, the design of surface-microgrooved textures optimizes the flow of interface wear debris, thereby facilitating their easy detachment and ejection, maintaining stable fluctuations in the friction force, and further weakening the intensity of the stick-slip vibration. Consequently, enhancing the friction interface contact state is the key to diminishing the stick-slip vibration intensity, and the optimal interface contact degree and mild wear characteristics contribute significantly to this improvement. The conclusions drawn from this study underscore the significance of enhancing the friction interface contact state to reduce stick-slip vibration intensity. The optimal degree of interface contact and mild wear characteristics are key contributors to this improvement. This study demonstrates that surface-microgrooved textures on friction blocks hold significant potential for mitigating friction-induced stick-slip vibrations during the bedding-in phase. The innovation of this study lies in its comprehensive approach to addressing the stick-slip vibration problem in high-speed train braking systems. Integrating finite element simulations with experimental validation provides a thorough analysis of the effectiveness of surface microgrooved textures. The mechanism by which these textures suppress stick-slip vibrations is elucidated, and practical insights into the design and optimization of friction blocks for high-speed trains are offered.

  • 0 前言

  • 高速列车通过制动闸片摩擦块与制动盘之间的摩擦作用实现列车制动及速度调控。然而,在车速较低时(小于 5 km / h),盘 / 块摩擦制动极易导致制动系统出现粘滑振动现象。特别是对于尚未进入稳定磨损阶段的新制动闸片,这种现象尤为显著[1-2]。粘滑振动不仅会引发摩擦块的异常磨损及破裂,威胁列车制动安全,还会产生制动噪声,影响乘坐体验和沿途居民正常生活,从而引起众多投诉[3-5]。因此,开展列车制动系统粘滑振动特性研究,并寻找有效的抑制策略,对于提高列车安全运营具有重要意义。

  • 粘滑振动的产生及演变与摩擦副材料、表面粗糙度等界面特征及惯性、刚度、阻尼、质量等系统参数密切相关。因此,研究者从调控界面特征和调整系统结构参数等方面,寻求有效抑制粘滑振动的方法。如王晓翠[6]选用五种摩擦盘材料开展摩擦振动试验,发现采用 Mn-Cu 阻尼合金在整个试验阶段均能有效抑制粘滑振动。GWEON 等[7]发现短玻璃纤维摩擦材料在制动过程中更容易引发摩擦振动。 LEE 等[8-9]认为具有低表面刚度的摩擦材料可以避免摩擦诱导不稳定振动。PARK 等[10]发现摩擦过程中腐蚀过的摩擦盘表面转移的氧化铁纳米颗粒会使摩擦膜致密化,导致接触刚度变化并影响系统的稳定性。WANG 等[11]和 LU 等[12]通过橡胶阻尼元件表面沟槽设计,提高了阻尼元件抑制粘滑振动的能力。 NEIS 等[13]通过理论分析和试验,发现增加系统刚度可以减小粘滑振动幅值。这些研究成果为抑制粘滑振动提供一定的指导。然而,对高速列车制动系统来说,改变摩擦副材料、表面粗糙度及系统结构来抑制粘滑振动存在一些局限性。例如,改变摩擦副材料需要考虑闸片材料与制动盘材料的匹配性问题,变闸片表面粗糙度存在表面形貌不稳定、不持久等问题,调整系统结构可能会影响系统的稳定性。因此,在不改变系统结构及不影响有效制动的前提下,亟需寻找一种有效抑制粘滑振动的方案。

  • 近年来,表面织构在改善摩擦性能方面的优异性引起了研究者的广泛关注[14-15],其在机械加工、航空航天、生物医疗等领域取得了显著应用成果。相比于改变表面粗糙度,表面织构具有较好的表面形貌保持性,在织构磨损退化之前,均能起到调节界面摩擦的作用。研究表明,特定的表面织构设计,可以调整界面接触状态,改善界面应力分布;同时,表面织构可以收集摩擦过程中产生的磨屑,避免磨屑堆积[16],从而改变系统摩擦自激振动特性。因此,在摩擦块表面进行织构化设计,对于降低粘滑振动具有一定的潜力[17-18],但其在高速列车制动系统的应用仍然缺乏足够的理论基础和实践经验。

  • 因此,针对高速列车摩擦制动过程中的粘滑振动问题,通过在摩擦块表面设计一系列不同数量的平行微织构,结合有限元仿真和试验分析,探索了表面微织构在抑制粘滑振动方面的可行性和有效性。首先,通过有限元仿真分析了具有不同微织构数量摩擦块的接触应力、磨损深度、界面贴合程度及振动等特征,探索了表面微织构对粘滑振动的影响;然后,通过试验验证了表面微织构抑制粘滑振动的有效性;最后,通过表面接触行为分析,揭示了表面微织构对粘滑振动的作用机制。研究成果可为抑制高速列车制动系统粘滑振动的摩擦界面调控提供一定的理论依据和应用指导。

  • 1 研究方法

  • 1.1 样品设计

  • 摩擦块样品取自高速列车铜基粉末冶金闸片摩擦块。摩擦块横截面形状与我国 CRH2A 型列车制动系统采用的六边形摩擦块一致。摩擦块内切圆直径为 31.84 mm,厚度为 17 mm,用于散热和排屑的中心圆孔直径为 9.9 mm、高度为 14 mm。制动盘样品由锻钢材料制成,直径为 330 mm,厚度为 30 mm。摩擦块及制动盘样品尺寸和安装位置如图1a 示。图1b 为摩擦块表面微织构示意图。微织构形状为凹槽形,宽度和深度均为 0.2 mm,微织构数量分别为 3、 5 和 7 条,各微织构之间等间距排布,沟槽方向与摩擦方向平行。为便于描述,将设计有 3、5 和 7 条微织构的摩擦块分别定义为 T-3、T-5 和 T-7 摩擦块,同时选用无表面织构的摩擦块作为对照组。

  • 图1 样品制备及测试

  • Fig.1 Sample preparation and testing

  • 1.2 有限元建模

  • 为揭示不同表面微织构对界面粘滑振动的影响规律,首先利用有限元方法对摩擦块表面接触行为及粘滑振动响应进行分析。图2 为高速列车制动性能模拟试验装置。该试验装置参照中国高速列车制动系统缩比设计,由控制系统、驱动系统、惯量系统及制动系统组成,可以实现不同工况(高中低速、沙尘环境等) 和不同模式(拖曳制动、紧急制动等)下的制动模拟。

  • 图2 高速列车制动性能模拟试验装置示意图

  • Fig.2 Schematic diagram of brake performance simulation test device for high-speed train

  • 为提高仿真计算的效率和收敛性,对试验台进行简化,并只考虑摩擦接触部分的关键部件。有限元模型主要包括:制动盘、摩擦块、夹具、夹钳和支座,其材料参数如表1 所示。其有限元模型及边界条件如图3 所示。摩擦块夹具和夹钳之间、夹钳和支座之间均通过铰链约束来实现摩擦块夹具和夹钳之间的转动。制动盘和摩擦块之间设置为面-面接触,其中制动盘盘面为主面,摩擦块接触面为从面。制动盘和摩擦块之间的切向接触设置为静态-动态指数衰减(Static-kinetic exponential decay)摩擦接触,其中静摩擦因数为 0.5,动摩擦因数为 0.32,衰减系数为 0.08[19]。法向设置为硬接触。限制支座的六个自由度,将其完全固定。摩擦块和夹具之间为绑定约束。将制动盘耦合至制动盘质心位置,并仅保留绕 Y 轴的旋转自由度。仿真模拟的工况与试验工况保持一致,参考点绕 Y 轴的转速为 3 r/min,夹钳末端夹紧力为 300 N。

  • 表1 有限元模型部件材料参数

  • Table1 The component material parameters of the finite element model

  • 图3 制动系统有限元模型及边界条件

  • Fig.3 Finite element model and boundary condition of braking system

  • 1.3 试验验证

  • 粘滑振动试验基于图2 所示的试验装置开展。试验采用拖曳制动模式,试验工况为:制动盘转速 3 r/min,法向载荷 300 N,拖曳时间 300 s。摩擦块中点到制动盘中心的距离为 110 mm。试验过程中,采用非接触式的激光测振仪( 测量范围:± 500 mm / s,频率范围:0.5 Hz~22 kHz,灵敏度: 8 mV /(mm / s)采集摩擦过程中摩擦块的切向振动速度信号。采样频率为 5 kHz,采样时间为 300 s。每组试验重复进行 5 次,确保试验结果和数据的稳定性和可靠性。试验结束后,对摩擦块的整体磨损区域进行观察,计算其接触面积;然后采用扫描电镜观察摩擦块表面和截面形貌,分析其接触特征。

  • 2 仿真结果

  • 2.1 接触特征

  • 为准确分析制动过程中摩擦块表面的接触特征,在仿真过程中考虑磨损对摩擦块表面接触行为的影响。通过将 Archard 磨损模型嵌入 UMESHMOTION 子程序,并结合 ALE 自适应网格技术对网格迭代更新[2]。详细仿真过程及参数设置见文献[2],此处不再赘述。获取 10 s 时四种摩擦块表面的接触应力和磨损深度云图,结果如图4 所示。四种摩擦块表面接触应力的分布特征基本一致,主要集中在切入端区域,并且接触应力大小从切入端到切出端呈现递减趋势。接触应力大的区域磨损也较深,因此磨损深度的变化趋势与接触应力一致。从接触应力云图可以看出,表面织构改变了接触应力的分布状态,表现为接触区域分布顺着微织构方向往后端延伸。表面织构数量越多,累积的延伸区域面积就越大,这增大了主要的接触应力承载区,实现更均匀的接触应力分布。

  • 图4 不同微织构摩擦块表面接触应力分布及磨损深度分布

  • Fig.4 The distribution of contact pressure and wear depth of friction blocks with different micro-grooved textures

  • 定义盘 / 块界面的接触面积与摩擦块名义面积 (摩擦块表面扣除织构部分的面积)的比值为界面贴合度[20]。提取仿真过程中摩擦块的接触面积并计算界面贴合度,结果如图5 所示。四种摩擦块的界面贴合度均呈现不同程度的波动,且接触面积均小于摩擦块的名义面积,即制动盘与摩擦块未完全接触。其中,原始摩擦块的界面贴合度波动幅值最大,表明摩擦块与制动盘间的接触稳定性较差。随着表面微织构数量的增加,界面贴合度逐渐增加且其波动幅值明显降低。由此可见,摩擦块表面的微织构设计可有效改善界面贴合度,从而提高盘 / 块界面接触稳定性。

  • 图5 不同微织构摩擦块的界面贴合度

  • Fig.5 Interface contact degree of friction blocks with different micro-grooved textures

  • 2.2 粘滑振动响应

  • 进一步,采用 ABAQUS / Explicit 分析模块模拟不同表面微织构摩擦块的振动特征。设置增量步为 0.000 2 s,分析时长为 1 s,稳定阶段不同摩擦块切向速度的时域信号如图6 所示。原始摩擦块的振动强度最为剧烈,随着表面微织构数量的增加,摩擦块的振动强度逐渐减弱,其中,T-7 摩擦块的振动强度最低。图7 为四种摩擦块位移-速度相平面图。可以看出,四种摩擦块的振动形式均为粘滑运动。原始摩擦块系统在粘着阶段的位移和滑动阶段的速度幅值均最大,且运动轨迹极为混乱。随着表面微织构数量的增加,摩擦块的位移和速度幅值逐渐减小,振动形式也由复杂运动变为较为规则的运动。

  • 结合界面接触和粘滑振动分析结果,可以发现,表面微织构显著改善了摩擦块的界面接触状态。增大界面贴合度的同时也提高了界面接触稳定性,从而有效抑制了摩擦块的粘滑振动。但有限元仿真分析中忽略了磨屑产生与流动、磨损表面形貌变化、系统振动等因素的影响,导致有限元仿真结果未能完整反映摩擦块表面微织构的界面调控作用。因此,为验证所设计的摩擦块表面微织构在抑制粘滑振动方面的效果,需进一步对不同微织构数量的摩擦块开展粘滑振动试验。

  • 图6 不同微织构摩擦块的切向速度仿真结果

  • Fig.6 Tangential velocity simulation results of friction blocks with different micro-grooved textures

  • 图7 不同微织构摩擦块的位移-速度相图

  • Fig.7 Displacement-velocity phase diagram of friction blocks with different micro-grooved textures

  • 3 试验结果

  • 3.1 粘滑振动分析

  • 图8 为稳定阶段 0.3 s 内的速度信号。速度幅值和粘着时间可以有效评估粘滑振动的强度。速度幅值越小,粘着时间越短,粘滑振动强度越低。因此,原始摩擦块表现出较为剧烈的粘滑振动现象,而具有表面微织构的摩擦块粘滑振动强度有所减弱,并且其振动强度随着微织构数量的增加逐渐降低。两个表面相互摩擦时会出现五种不同的滑动模式:① 平滑滑动;② 粘滑;③ 近简谐振荡;④ 负粘滑;⑤ 不规则粘滑[21]。进一步分析发现,原始摩擦块和 T-3 摩擦块的振动形式为不规则的粘滑振动;T-5 摩擦块为粘滑振动;而T-7 摩擦块主要表现为近简谐振荡。不同摩擦系统产生的粘滑振动强度变化趋势与有限元仿真结果较为吻合。因此,摩擦块表面微织构在调控不规则粘滑振动和有效抑制振动强度方面表现出一定的潜力。

  • 对速度信号进行时频分析,结果如图9 所示。四种摩擦系统均表现出 14.6 Hz 的低频振动。此外,原始摩擦块系统还出现了 372 Hz、648 Hz 等具有较高能量的频率;T-3 摩擦系统具有类似现象,产生 275 Hz、549 Hz 的频率,但是其能量幅值略微降低。相比之下,T-5 和 T-7 摩擦系统只产生 14.6 Hz 左右的主频,且主频的能量幅值进一步降低。结合速度时域信号结果(图8)可以看出,摩擦块表面的微织构抑制了摩擦过程中不规则的较高频率的振动,并有效降低了粘滑振动幅值,从而提高了系统稳定性。

  • 图8 不同微织构摩擦块的切向速度时域信号

  • Fig.8 Tangential velocity signal of friction blocks with different micro-grooved textures

  • 图9 速度信号 FFT 分析

  • Fig.9 FFT analysis of velocity signal

  • 3.2 接触行为分析

  • 进一步,观察摩擦块接触区域的宏观形貌和微观形貌,以揭示表面微织构对粘滑振动的调控机制。试验结束后,首先对摩擦块表面磨损形貌进行观察,然后采用图像识别方法对磨损形貌进行识别和分割处理,并采用图像分析软件 Image-Pro Plus 计算出其总磨损面积。图10 展示了试验结束后不同摩擦块的接触面积。表面微织构降低了摩擦块的名义接触面积,但在摩擦过程中,有效改善了摩擦块与制动盘的接触状态,表现出更好的界面贴合。四种摩擦块的界面贴合度分别为 65.3%、69.7%、74.2%和 79.3%。随着微织构数量的增加,界面贴合度逐渐增大。界面接触面积的增加在一定程度上起到了减磨或者分散界面接触压力的作用[22-23]。这意味着在相同的摩擦时间内,表面织构能够使摩擦块更快达到良好的界面接触,从而更快进入稳定磨损状态。

  • 图11a、11b 为原始摩擦块的表面磨损形貌。其表面有大量的划痕和剥落坑,且存在大面积的接触平台。这些严重的犁沟、剥落等现象会引起锤击效应,导致摩擦力产生不规则波动,表现出断续和脉冲特性,使得原始摩擦块表现出较出较为剧烈的粘滑振动。图11c、11d 为原始摩擦块切入端的表面横截面形貌,其磨屑堆积层与基体之间连接较为紧实,以大面积的磨屑堆积层为主。结合仿真结果(图4) 可知,原始摩擦块切入端的应力较为集中,其摩擦较为剧烈,磨损量较大。因此,在切入端观察到较为严重的磨损形貌和较为紧实的磨屑堆积层。

  • 图10 不同微织构摩擦块的接触面积计算

  • Fig.10 Calculation of contact area of friction blocks

  • 进一步选取 T-7 摩擦块分析其表面和截面形貌,如图12 所示。图12a、12b 为 T-7 摩擦块表面磨损形貌,其表面磨损较为轻微,无大的剥落坑出现。同时在部分区域观察到磨屑堆积层的结构较为松散。图12c、12d 为 T-7 摩擦块切入端的横截面形貌。其磨屑堆积层厚度较薄,与基体之间的连接并不紧密,更容易剥落、排出。因此,表面织构有助于改善界面磨屑流动行为,从而改善界面接触状态。

  • 图11 原始摩擦块磨损形貌

  • Fig.11 Wear morphology of the Original friction block

  • 图12 T-7 摩擦块磨损形貌

  • Fig.12 Wear morphology of the T-7 friction block

  • 3.3 讨论

  • 在制动盘与摩擦块的相互接触摩擦过程中,具有表面微织构的摩擦块改变了盘 / 块接触行为、磨损特征,从而弱化了粘滑振动强度。表面织构使接触区域分布呈现出顺着微织构方向往切出端延伸的趋势(图4),增大了接触面积(图5 和图10),实现更均匀的接触应力分布和更稳定的界面贴合,从而减轻表面磨损(图11 和图12)。表面磨损状态的改变,使得磨屑更容易剥落、排出,从而使摩擦过程中的摩擦力波动更为平稳,这有利于降低系统的粘滑振动(图8)。因此,摩擦界面接触状态的改善是粘滑振动强度降低的主要因素,良好的界面贴合度、轻微的磨损特征等有助于改善界面接触状态,实现粘滑振动的有效抑制。需要说明的是,尽管具有一定深度的表面微织构在服役过程中会逐渐被磨损直至消失,但在初期的制动盘 / 块磨合阶段,微织构存在的时间内足以让界面达到稳定磨损状态,并顺利避免了磨合初期最容易产生的粘滑振动现象。因此,表面微织构用于改善高速列车新闸片磨合阶段出现的摩擦诱导粘滑振动问题,具有一定的可行性。

  • 4 结论

  • 本文通过摩擦块表面设计一系列不同数量的平行微织构,以期改善界面接触状态实现粘滑振动抑制。首先基于有限元仿真分析,讨论了摩擦块表面微织构数量的增加对界面接触行为及粘滑振动行为的影响;然后在高速列车制动性能模拟试验装置上开展不同摩擦块粘滑振动试验,验证了表面织构抑制粘滑振动的可行性和有效性。主要得到以下结论:

  • (1)表面织构有助于改善界面接触状态,在一定程度上增加了实际接触面积,实现更加均匀的接触压力分布和更稳定的界面贴合,从而改善表面磨损状态及磨屑流动行为。

  • (2)在一定范围内,表面微织构数量的增加显著降低粘滑振动强度,并抑制摩擦过程中较高的振动频率,使振动形式由不规则粘滑振动转为规则的振动。

  • (3)摩擦界面接触状态的改善是粘滑振动强度降低的主要因素,良好的界面贴合度、轻微的磨损特征等有助于改善界面接触状态,实现粘滑振动的有效抑制。

  • 摩擦块表面织构设计为高速列车制动系统粘滑振动的抑制提供了新的思路。后续工作可在本研究成果的基础上进一步根据真实制动环境及条件展开,从而提出更具普适性的界面摩擦学行为调控方法并指导制动闸片设计。

  • 参考文献

    • [1] WANG Zhiqiang,LEI Zhenyu.Cause analysis of rail corrugation based on stick-slip characteristics[J].Periodica Polytechnica Mechanical Engineering,2023,67(1):70-80.

    • [2] LU Chun,YIN Jiabao,MO Jiliang,et al.Accumulated wear degradation prediction of railway friction block considering the evolution of contact status[J].Wear,2022,494:204251.

    • [3] PREZELJ J,MUROVEC J,HUEMER-KALS S,et al.Identification of different manifestations of nonlinear stick-slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing map[J].Mechanical Systems and Signal Processing,2022,166:108349.

    • [4] ZHAO Xingwei,GRÄBNER N,VON WAGNER U.Avoiding creep groan:Investigation on active suppression of stick-slip limit cycle vibrations in an automotive disk brake via piezoceramic actuators[J].Journal of Sound and Vibration,2019,441:174-186.

    • [5] XIANG Zaiyu,ZHANG Jiakun,XIE Songlan,et al.Friction-induced vibration and noise characteristics,and interface tribological behavior during high-speed train braking:The effect of the residual height of the brake pad friction block[J].Wear,2023,516:204619.

    • [6] 王晓翠.低相对速度下摩擦诱发振动-试验和理论研究及抑制方法[D].成都:西南交通大学,2020.WANG Xiaocui.A combined experimental and theoretical study of friction-induced-vibration at low relative velocities and its suppression[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)

    • [7] GWEON J H,JOO B S,JANG H.The effect of short glass fiber dispersion on the friction and vibration of brake friction materials[J].Wear,2016,362:61-67.

    • [8] LEE S M,SHIN M W,JANG H.Friction-induced intermittent motion affected by surface roughness of brake friction materials[J].Wear,2013,308(1-2):29-34.

    • [9] LEE S M,SHIN M W,LEE W K,et al.The correlation between contact stiffness and stick-slip of brake friction materials[J].Wear,2013,302(1-2):1414-1420.

    • [10] PARK C W,SHIN M W,JANG H.Friction-induced stick-slip intensified by corrosion of gray iron brake disc[J].Wear,2014,309(1-2):89-95.

    • [11] WANG Xiaocui,MO Jiliang,OUYANG Huajiang,et al.The effects of grooved rubber blocks on stick-slip and wear behaviours[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2019,233(11):2939-2954.

    • [12] LU Xiaodong,ZHAO Jing,MO Jiliang,et al.Suppression of friction-induced stick-slip behavior and improvement of tribological characteristics of sliding systems by introducing damping materials[J].Tribology Transactions,2020,63(2):222-234.

    • [13] NEIS P D,DE BAETS P,OST W,et al.Investigation of the dynamic response in a dry friction process using a rotating stick-slip tester[J].Wear,2011,271(9-10):2640-2650.

    • [14] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [15] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [16] NSILANI KOUEDIATOUKA A,MA Qiang,LIU Qi,et al.Design methodology and application of surface texture:A review[J].Coatings,2022,12(7):1015.

    • [17] WANG Hao,XIE Xuan,HUA Xijun,et al.The effect of laser surface texturing to inhibit stick-slip phenomenon in sliding contact[J].Advances in Mechanical Engineering,2019,11(9):1687814019874635.

    • [18] HE Yuyang,YANG Jie,WANG Hao,et al.Micro-dimple and micro-bulge textures:Influence of surface topography types on stick-slip behavior under starved lubrication[J].Applied Surface Science,2022,585:152501.

    • [19] 唐鹏,袁琼.摩擦离合器黏滑振动特性的显式动力学分析[J].现代制造工程,2021(3):138-145.TANG Peng,YUAN Qiong.Explicit dynamics analysis of stick-slip vibration characteristics of friction clutch[J].Modern Manufacturing Engineering,2021(3):138-145.(in Chinese)

    • [20] 王权,王安宇,吴元科,等.基于界面调控的摩擦系统减振降噪方法[J].振动与冲击,2022,41(15):146-152.WANG Quan,WANG Anyu,WU Yuanke,et al.Vibration and noise reduction method of friction system based on interface regulation [J].Journal of Vibration and Shock,2022,41(15):146-152.(in Chinese)

    • [21] GAO C,KUHLMANN-WILSDORF D,MAKEL D D.The dynamic analysis of stick-slip motion[J].Wear,1994,173(1-2):1-12.

    • [22] SHAMSUL BAHARIN A F,GHAZALI M J,A WAHAB J.Laser surface texturing and its contribution to friction and wear reduction:A brief review[J].Industrial Lubrication and Tribology,2016,68(1):57-66.

    • [23] ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear-a review[J].Tribology International,2021,155:106792.

  • 参考文献

    • [1] WANG Zhiqiang,LEI Zhenyu.Cause analysis of rail corrugation based on stick-slip characteristics[J].Periodica Polytechnica Mechanical Engineering,2023,67(1):70-80.

    • [2] LU Chun,YIN Jiabao,MO Jiliang,et al.Accumulated wear degradation prediction of railway friction block considering the evolution of contact status[J].Wear,2022,494:204251.

    • [3] PREZELJ J,MUROVEC J,HUEMER-KALS S,et al.Identification of different manifestations of nonlinear stick-slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing map[J].Mechanical Systems and Signal Processing,2022,166:108349.

    • [4] ZHAO Xingwei,GRÄBNER N,VON WAGNER U.Avoiding creep groan:Investigation on active suppression of stick-slip limit cycle vibrations in an automotive disk brake via piezoceramic actuators[J].Journal of Sound and Vibration,2019,441:174-186.

    • [5] XIANG Zaiyu,ZHANG Jiakun,XIE Songlan,et al.Friction-induced vibration and noise characteristics,and interface tribological behavior during high-speed train braking:The effect of the residual height of the brake pad friction block[J].Wear,2023,516:204619.

    • [6] 王晓翠.低相对速度下摩擦诱发振动-试验和理论研究及抑制方法[D].成都:西南交通大学,2020.WANG Xiaocui.A combined experimental and theoretical study of friction-induced-vibration at low relative velocities and its suppression[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)

    • [7] GWEON J H,JOO B S,JANG H.The effect of short glass fiber dispersion on the friction and vibration of brake friction materials[J].Wear,2016,362:61-67.

    • [8] LEE S M,SHIN M W,JANG H.Friction-induced intermittent motion affected by surface roughness of brake friction materials[J].Wear,2013,308(1-2):29-34.

    • [9] LEE S M,SHIN M W,LEE W K,et al.The correlation between contact stiffness and stick-slip of brake friction materials[J].Wear,2013,302(1-2):1414-1420.

    • [10] PARK C W,SHIN M W,JANG H.Friction-induced stick-slip intensified by corrosion of gray iron brake disc[J].Wear,2014,309(1-2):89-95.

    • [11] WANG Xiaocui,MO Jiliang,OUYANG Huajiang,et al.The effects of grooved rubber blocks on stick-slip and wear behaviours[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2019,233(11):2939-2954.

    • [12] LU Xiaodong,ZHAO Jing,MO Jiliang,et al.Suppression of friction-induced stick-slip behavior and improvement of tribological characteristics of sliding systems by introducing damping materials[J].Tribology Transactions,2020,63(2):222-234.

    • [13] NEIS P D,DE BAETS P,OST W,et al.Investigation of the dynamic response in a dry friction process using a rotating stick-slip tester[J].Wear,2011,271(9-10):2640-2650.

    • [14] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [15] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [16] NSILANI KOUEDIATOUKA A,MA Qiang,LIU Qi,et al.Design methodology and application of surface texture:A review[J].Coatings,2022,12(7):1015.

    • [17] WANG Hao,XIE Xuan,HUA Xijun,et al.The effect of laser surface texturing to inhibit stick-slip phenomenon in sliding contact[J].Advances in Mechanical Engineering,2019,11(9):1687814019874635.

    • [18] HE Yuyang,YANG Jie,WANG Hao,et al.Micro-dimple and micro-bulge textures:Influence of surface topography types on stick-slip behavior under starved lubrication[J].Applied Surface Science,2022,585:152501.

    • [19] 唐鹏,袁琼.摩擦离合器黏滑振动特性的显式动力学分析[J].现代制造工程,2021(3):138-145.TANG Peng,YUAN Qiong.Explicit dynamics analysis of stick-slip vibration characteristics of friction clutch[J].Modern Manufacturing Engineering,2021(3):138-145.(in Chinese)

    • [20] 王权,王安宇,吴元科,等.基于界面调控的摩擦系统减振降噪方法[J].振动与冲击,2022,41(15):146-152.WANG Quan,WANG Anyu,WU Yuanke,et al.Vibration and noise reduction method of friction system based on interface regulation [J].Journal of Vibration and Shock,2022,41(15):146-152.(in Chinese)

    • [21] GAO C,KUHLMANN-WILSDORF D,MAKEL D D.The dynamic analysis of stick-slip motion[J].Wear,1994,173(1-2):1-12.

    • [22] SHAMSUL BAHARIN A F,GHAZALI M J,A WAHAB J.Laser surface texturing and its contribution to friction and wear reduction:A brief review[J].Industrial Lubrication and Tribology,2016,68(1):57-66.

    • [23] ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear-a review[J].Tribology International,2021,155:106792.

  • 手机扫一扫看