en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何翰伟,男,1999年出生,硕士研究生。主要研究方向为高熵硅酸盐材料的制备及其性能表征。E-mail: hhw_0810@163.com

通讯作者:

郭星晔,男,1984年出生,博士,副研究员,硕士研究生导师。主要研究方向为材料表面防护涂层及激光增材制造。E-mail: xyguo@bjut.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230917001

参考文献 1
MENON M N,FANG H T,WU D C,et al.Creep and stress rupture behavior of an advanced silicon nitride:part II,creep rate behavior[J].Journal of the American Ceramic Society,2008,77(5):1228-1234.
参考文献 2
BOSE S,DEMASIMARCIN J.Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J].Journal of Thermal Spray Technology,1997,6(1):99-104.
参考文献 3
PADTURE N P.Advanced structural ceramics in aerospace propulsion[J].Nature Materials,2016,15(8):804-809.
参考文献 4
KATOH Y,SNEAD L L,HENAGER C H,et al.Current status and recent research achievements in SiC/SiC composites[J].Journal of Nuclear Materials,2014,455(1):387-397.
参考文献 5
谭僖,陈孝业,张小锋,等.硅基非氧化物陶瓷复合材料的环境障涂层系统的研究进展[J].材料研究与应用,2019,13(2):152-159.TAN Xi,CHEN Xiaoye,ZHANG Xiaofeng,et al.The process of environmental barrier coating system for silica-based non-oxide ceramic matrix composites[J].Materials Research and Application,2019,13(2):152-159.(in Chinese)
参考文献 6
马帅,李广荣,刘梅军,等.SiCf/SiC 表面环境障涂层的基体无损去除方法[J].中国表面工程,2019,32(4):123-132.MA Shuai,LI Guangrong,LIU Meijun,et al.Substrate-lossless removal approach of environmental barrier coatings on SiCf/SiC[J].China Surface Engineering,2019,32(4):123-132.(in Chinese)
参考文献 7
LEE K N.Current status of environmental barrier coatings for Si-based ceramics[J].Surface & Coatings Technology,2000,133-134:1-7.
参考文献 8
OPILA E J,SMIALEK J L,ROBINSON R C,et al.SiC recession caused by SiO2 scale volatility under combustion conditions:II,thermodynamics and gaseous-diffusion model[J].Journal of the American Ceramic Society,1999,82(7):1826-1834.
参考文献 9
TURCER L R,PADTURE N P.Towards multifunctional thermal environmental barrier coatings(TEBCs)based on rare-earth pyrosilicate solid-solution ceramics[J].Scripta Materialia,2018,154:111-117.
参考文献 10
LEE K N,ELDRIDGE J I,ROBINSON R C.Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics[J].Journal of the American Ceramic Society,2005,85(12):3483-3488.
参考文献 11
马壮,张学勤,刘玲.环境障涂层的发展瓶颈及应对措施[J].中国表面工程,2020,33(5):99-114.MA Zhuang,ZHANG Xueqin,LIU Ling.Restrictions and corresponging solutions of environmental barrier coatings[J].China Surface Engineering,2020,33(5):99-114.(in Chinese)
参考文献 12
OPILA E J,HANN R E.Paralinear oxidation of CVD SiC in water vapor[J].Journal of the American Ceramic Society,1997,80(1):197-205.
参考文献 13
LIU Jia,ZHANG Litong,LIU Qiaomu,et al.Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1 400 °C[J].Journal of the European Ceramic Society,2013,33(15):3419-3428.
参考文献 14
LEE K N.Key durability issues with mullite-based environmental barrier coatings for Si-based ceramics[J].Journal of Engineering for Gas Turbines & Power,2000,122(4):632-636.
参考文献 15
LEE K N.Contamination effects on interfacial porosity during cyclic oxidation of mullite-coated silicon carbide[J].Journal of the American Ceramic Society,1998,81(12):3329-3332.
参考文献 16
SUN Ziqi,LI Meishuan,ZHOU Yanchun.Thermal properties of single-phase Y2SiO5[J].Journal of the European Ceramic Society,2009,29(4):551-557.
参考文献 17
RICHARDS B T,BEGLEY M R,WADLEY H N G.Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor[J].Journal of the American Ceramic Society,2015,98(12):4066-4075.
参考文献 18
SUN Luchao,LUO Yixiu,REN Xiaomin,et al.A multicomponent γ-type(Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2 Si2O7 disilicate with outstanding thermal stability[J].Materials Research Letters,2020,8(11):424-430.
参考文献 19
SUN Luchao,LUO Yixiu,TIAN Zhilin,et al.High temperature corrosion of(Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate(CMAS)[J].Corrosion Science,2020,175(4):108881.
参考文献 20
LIU Debao,JIA Xinlei,SHI Baolu,et al.(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Si2O7:a novel high-entropy rare earth disilicate porous ceramics with high porosity and low thermal conductivity[J].Materials Chemistry and Physics,2022,286:126181.
参考文献 21
GUO Xiaotong,ZHANG Yulei,LI Tao,et al.High-entropy rare-earth disilicate(Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7:a potential environmental barrier coating material[J].Journal of the European Ceramic Society,2022,42(8):3570-3578.
参考文献 22
WANG Xu,CHENG Minghao,XIAO Guozheng,et al.Preparation and corrosion resistance of high-entropy disilicate(Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics[J].Corrosion Science,2021,192(201):109786.
参考文献 23
WANG Peng,HE Dingyong,GUO Xingye,et al.Preparation and characterization of(Yb0.25Lu0.25Sc0.25Tm0.25)2Si2O7 as a potential environmental barrier coating[J].International Journal of Applied Ceramic Technology,2024,21(2):972-980.
参考文献 24
LIU Debao,WANG Yiguang,ZHOU Feifei,et al.A novel high-entropy(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity[J].Ceramics International,2021,47(21):29960–29968.
参考文献 25
ZHONG Xin,NIU Yaran,LI Hong,et al.Comparative study on high-temperature performance and thermal shock behavior of plasma-sprayed Yb2SiO5 and Yb2Si2O7 coatings[J].Surface & Coatings Technology,2018,349:636-646.
参考文献 26
FERNANDEZCARRION A J,ALLIX M,BECERRO A I.Thermal expansion of rare-earth pyrosilicates[J].Journal of the American Ceramic Society,2013,96(7):2298-2305.
参考文献 27
LEE K N,FOX D S,BANSAL N P.Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics[J].Journal of the European Ceramic Society,2005,25(10):1705-1715.
参考文献 28
TSARENKO I,DU H H,LEE W Y.Effects of thin mullite coating on the environmental stability of sintered Si3N4[J].Journal of the American Ceramic Society,2004,87(3):417-420.
参考文献 29
GILD J,SAMIEE M,BRAUN J,et al.High-entropy fluorite oxides[J].Journal of the European Ceramic Society,2018,38(10):3578-3584.
参考文献 30
ZHAO Zifan,XIANG Huimin,CHEN Heng,et al.High-entropy(Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with good high temperature stability,low thermal conductivity,and anisotropic thermal expansivity[J].Journal of Advanced Ceramics,2020,9(5):595-605.
参考文献 31
TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897.
目录contents

    摘要

    环境障涂层(EBCs)可以有效保护 SiC 陶瓷基复合材料(CMC-SiC)免受航空发动机高温水氧环境中的腐蚀。稀土焦硅酸盐(RE2Si2O7)因其与 SiC 基体匹配的热膨胀系数和良好的高温性能,成为理想的 EBC 候选材料之一,然而其耐高温水蒸气腐蚀性能尚无法满足其服役需求,有待进一步优化。取四种稀土元素设计并制备一种新型高熵焦硅酸盐硅陶瓷 (Yb0.25Lu0.25Tm0.25Y0.25)2Si2O7 ((4RE0.25)2Si2O7)。稀土元素 Yb 和 Lu 对应的焦硅酸具有单一的 β 相结构及优秀的抗高温水氧腐蚀性能,稀土元素 Tm 和 Y 的焦硅酸也具有 β 相结构及较低的热导率。试验结果表明,采用无压烧结成功制备出具有单斜 β 相的(4RE0.25)2Si2O7 块材,差示扫描量热法(DSC)曲线无明显的吸 / 放热峰,从室温到 1300 ℃保持平直,具有良好的相稳定性。(4RE0.25)2Si2O7具有较低的热膨胀系数(CTE,2.66×10-6 ~3.84×10-6−1 )和热扩散系数(0.41~0.92 mm2 / s)。在 1300 ℃,90%Air-10%H2O 的气氛中腐蚀 200 h,质量损失仅 0.625 mg / cm2 ,远低于 Yb2Si2O7 的失重,(4RE0.25)2Si2O7表现出了较好的抗高温水蒸气腐蚀能力。设计并制备的新型(Yb0.25Lu0.25Tm0.25Y0.25)2Si2O7 高熵硅酸盐陶瓷在热学性能和抗高温水氧腐蚀性能方面具有一定优势,有望成为一种潜在的高性能环境障涂层材料。

    Abstract

    Environmental barrier coatings (EBCs) can effectively protect SiC-based ceramic matrix composites (CMC-SiC) from high-temperature water vapor corrosion in aero-engines. Rare-earth pyrosilicates (RE2Si2O7) have become one of the most promising EBC materials owing to their coefficient of thermal expansion (CTE), which is similar to that of CMCs, and their excellent high-temperature performance. However, RE2Si2O7 is prone to cracking during thermal cycling, and its ability to resist high-temperature water vapor corrosion is insufficient. High-entropy silicate materials prepared by mixing multiple rare-earth elements tend to exhibit better thermo-physical properties and high-temperature water vapor corrosion resistance. A new type of high-entropy ceramics (Yb0.25Lu0.25Tm0.25Y0.25)2Si2O7 ((4RE0.25)2Si2O7) is synthesized using four rare-earth elements for a high-entropy design. In terms of element selection, pyrosilicates with the rare-earth elements Yb or Lu have stable single β crystal polymorphs and excellent resistance to high-temperature water vapor corrosion. In addition, pyrosilicates with rare-earth elements Tm or Y have β crystal polymorph at high temperatures, and β-Y2Si2O7 has lower thermal conductivity. Therefore, (4RE0.25)2Si2O7 is likely to crystallize in a single β crystal polymorph. The microstructure, phase composition, thermal properties, and resistance to water vapor corrosion are systematically investigated. The experimental results show that (4RE0.25)2Si2O7 bulks with monoclinic β-phase are successfully prepared by non-pressure sintering. The doped rare-earth elements are uniformly distributed in the matrix, and no obvious component segregation occurs. In addition, the atomic proportion of each element in (4RE0.25)2Si2O7 is close to the theoretical value. The thermal gravimetric (TG) curve remains horizontal without obvious weight changes from room temperature to 1300 °C. There are no obvious absorption / exothermic peaks in the differential scanning calorimetry (DSC) curve, indicating that no phase transition or decomposition occurs during heating. It has a low CTE (2.66×10-6 –3.84×10-61 ). The CTE of (4RE0.25)2Si2O7 increases with increasing temperature but is lower than that of Yb2Si2O7 at all temperatures. It can also be applied to substrates with a lower CTE, such as Si3N4 (3×10-6 –4×10-6 °C1 ). The thermal diffusion coefficient (0.41–0.92 mm2 / s) is lower than that of Yb2Si2O7. Below 500 °C, the thermal conductivity decreases as the temperature increases. When the temperature is higher than 500 °C, the thermal conductivity increases rapidly with the increase in temperature because of the increased effect of thermal radiation, which causes the thermal conductivity of (4RE0.25)2Si2O7 to exceed that of Yb2Si2O7 above 800 °C. To compare the performance of the synthesized (4RE0.25)2Si2O7 in a high-temperature water vapor environment, Yb2Si2O7, which has been proven to exhibit good water vapor corrosion resistance, is selected as the control group. In the atmosphere of 90%Air-10%H2O at 1300 °C for 200 h, the weight loss of (4RE0.25)2Si2O7 is significantly lower than that of Yb2Si2O7, with negligible weight loss from 180 to 200 h. The weight loss is only 0.625 mg / cm2 , which indicates that the (4RE0.25)2Si2O7 bulk is not liable to react with water vapor. After 200 h of water-vapor corrosion, (4RE0.25)2Si2O7 remains single and stable without any phase transition. It contains a small amount of Y2SiO5 impurities before corrosion, which disappear after water vapor corrosion. The slight reaction between Y2SiO5 and H2O, which generates gaseous Y(OH)3 and Si(OH)4, is the main reason for the weight loss in the high-entropy ceramic bulk. There is no significant difference between the EDS energy spectra before and after corrosion. After corrosion, it can be observed that Yb, Lu, and Tm are evenly distributed, whereas Y, Si, and O are concentrated in the areas without pores, which demonstrates that the formation of pores is related to Y2SiO5. Doping multiple rare-earth elements into the lattice of Yb2Si2O7 reduces the diffusion rate of atoms, resulting in better phase stability in high-entropy ceramics. These excellent properties demonstrate that high-entropy silicate ceramics prepared according to the properties of different rare-earth elements have promising potential in terms of their thermal properties, which lays the foundation for their practical application.

  • 0 前言

  • 随着航空发动机推重比的不断增大,航空发动机热端部件表面的温度将到达 1 400℃以上[1],传统高温镍基合金无法满足其使用条件[2]。为达到新型高推重比航空发动机热端部件服役要求,以碳化硅(SiC)或氮化硅(Si3N4)纤维增强的陶瓷基复合材料(Ceramic matrix composites,CMC)为代表的硅基陶瓷复合材料,因其优异的高温性能,被视为未来航空发动机热端部件的理想材料[3]。硅基陶瓷复合材料可以有效提高热端部件工作温度,降低结构重量,提高发动机的推重比[4]。但是,硅基非氧化物陶瓷容易受到氧化表面形成一层 SiO2 薄膜,常温时能够有效保护基体。但是热端部件在高温水蒸气的环境下,会与水蒸气发生反应,形成易挥发的 Si(OH)4,使得基体不断暴露在环境中,大大降低了材料的使用寿命[5-8]。为此在 CMC 基体表面覆盖一层耐腐蚀的环境障涂层(Environment barrier coatings,EBCs),成为 CMC 基复合材料应用的关键技术[9]。为了满足使用需求,研究人员研究开发了以稀土硅酸盐为代表的新一代 EBCs,既能有与硅基陶瓷基体匹配的热膨胀系数,优异的高温相稳定性,还能够有效保护硅基陶瓷免受环境的侵蚀[10-15]

  • 稀土单硅酸盐( RE2SiO5)和焦硅酸盐 ( RE2Si2O7)都具有良好的抗水氧腐蚀能力, RE2Si2O7(3.5×10-6~5.5×10-6−1)比 RE2SiO5 (5×10-6~9×10-6−1)有更低的热膨胀系数 (Coefficient of thermal expansion,CTE),与 SiC 基体(4.5×10-6~5.5×10-6−1)更加匹配[716-17]。除了 Sc2Si2O7、Yb2Si2O7和 Lu2Si2O7 外,其他 RE2Si2O7 均至少有两种多型结构,在高温下都可能发生相转变,因其涂层开裂。

  • 高熵陶瓷通常拥有优异的综合性能,如更低的热导率、更高的稳定性[18-19]等,大大拓展了 EBC 发展的灵活性和可能性。LIU 等[20]采用溶胶-凝胶 / 真空冷冻干燥法结合高温煅烧工艺合成了低热导率的(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.22Si2O7-多孔陶瓷。 GUO 等[21]用高温反应法制备了具有优异抗水蒸气腐蚀性能的 β-(Lu0.2Yb0.2Er0.2Tm0.2Sc0.22Si2O7。WANG Xu 等[22]采用溶胶-凝胶,以 Y-Si-Al-O 硅酸盐玻璃为助烧结剂,制备了低热导率抗熔融盐腐蚀性能优异的(Y0.25Yb0.25Er0.25Sc0.252Si2O7。WANG Peng 等[23]采用高温固相反应法制备了一种较理想的 β 相的高熵焦硅酸盐(Yb0.25Lu0.25Sc0.25Tm0.252Si2O7,展现出优异的抗高温水蒸气腐蚀性能。

  • 本文设计并制备了一种可用于环境障涂层的高熵稀土硅酸盐材料(Yb0.25Lu0.25Tm0.25Y0.252Si2O7。其中,Yb 和 Lu 对应的焦硅酸具有单一的 β 相结构、高温稳定性好,以及优秀的抗高温水氧腐蚀性能,因此在高熵材料设计中加入了这两种稀土元素。此外,稀土元素 Tm 和 Y 也具有 β 相结构,且 β-Y2Si2O7 具有更低的热导率,β-Y2Si2O7和 β-Tm2Si2O7 虽在室温到熔化温度之间会发生多态转变,但与 Yb 和 Lu 组合亦可能生成单一的 β 相的高熵稀土硅酸盐,且 β-Y2Si2O7 具有更低的热导率。采用 XRD、SEM 对(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 的相组成、微观形貌进行了表征。采用同步热分析仪、热膨胀仪、激光热扩散仪对其热稳定性、比热容、热膨胀系数、热扩散系数、热导率等热物理性能进行了研究。在 1 300℃下对其抗高温水氧腐蚀性能进行了测试,并与传统的环境障涂层材料 Yb2Si2O7 进行了比较。

  • 1 试验

  • 1.1 高熵稀土焦硅酸盐材料的制备

  • 基于高熵合金(High-entropy alloy,HEA)材料的设计概念,研究拟设计、开发出具有高熵效应的多元 RE 硅酸盐材料。根据所需性能选取适当的稀土元素,用四种市售纯度为 99.99%的稀土氧化物 RE2O3(RE=Yb、Lu、Tm、Y)与 SiO2 粉末作为原材料合成单相的(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 高熵硅酸盐。其中 RE2O3 粉末的粒径为 3~5 μm,SiO2 粉末的粒径≤5 μm。每种 RE2O3 以等摩尔比,RE2O3 与 SiO2 按照 1∶8 的摩尔比称重,放入质量为粉末重量 3 倍的氧化锆磨球,用无水乙醇作为球磨介质,使用 QM-3SP4 球磨机进行 24 h 的球磨。

  • 将球磨结束后的浆料放入 SG-HX 烘干箱,在 70℃下充分干燥 24 h 得到板结成块的混合粉,使用研钵对其进行机械破碎,并用 150 目筛网进行筛粉。过筛后的粉末倒入氧化铝坩埚,将坩埚置于高温箱式炉中(Nebertherm,Germany)以 1 550℃、保温 4 h 的参数进行高温固相合成。随炉冷却至室温,取出烧结完成的块体,研磨过筛后获得颗粒细微的粉体用作后续样品制备及性能研究

  • 采用无压烧结制备高熵硅酸盐块体,称取适量上述制备完成的高熵粉末,放入直径 20 mm 的不锈钢模具中,利用两个模具压头将粉末平整,然后用油压机对模具进行加压,调整其压力至 60 MPa,保压 10 min 后脱模即可得到压实的高熵硅酸盐坯体。将坯体放入高温箱式炉中 1 550℃、保温 4 h 进行烧结,得到致密的高熵硅酸盐块体。

  • 1.2 物相与显微组织分析

  • 烧结后得到的高熵粉末与块体的物相组成使用 D8 Advanced X 射线衍射仪(Bruker,Germany)进行分析,XRD 工作参数为工作电压 40 kV,工作电流 30 mA,扫描角度 2θ 为 10~80°,选择 Cu Kα 组射线波长为 1.54 Å。

  • 合成后的高熵硅酸盐块体的显微形貌则通过 Gemmi300 扫描电子显微镜(SEM)进行观察。使用能谱仪(EDS)对材料微区成分元素种类及含量进行分析。使用 SEM 观察前需对高熵硅酸盐块体喷金处理,喷金时长 90 s。

  • 采用阿基米德排水法测量无压烧结制备的高熵硅酸盐块体的密度,依据标准 ASTM B 328—94 执行。将充分烘干的块材放置在 Sartorius YDK03 高精度分析天平上测量块材的干重,然后将块材浸入水中,静置一段时间待数值稳定后记录块材湿重。通过式(1)计算块材的密度:

  • ρ=WaρflWa-Wfl
    (1)
  • 式中,Wa 是块材的干重;Wfl 是块材浸入水中的湿重;ρ 是高熵硅酸盐块材的密度;ρfl 是水的密度,数值为 1 g / cm3

  • 1.3 热学性能分析

  • 使用同步热分析仪(NETZSCH,STA-449C, Germany)抽真空净化后,在氩气(流量为 25 mL / min)保护气氛下进行试验,测量块材从室温到 1 300℃温度范围内的热重曲线和吸放热曲线,分析其高温稳定性。

  • 使用 DIL802 热膨胀分析仪(TA instrument,the USA)测试试样在空气中从 400℃到 1 250℃温度范围内长度随时间变化的曲线,以此得到高熵硅酸盐的热膨胀系数(CTE)曲线。

  • 将试样经石墨喷涂并干燥后置入 DLF-1600 激光热扩散仪(TA instrument,the USA)进行测试,抽真空净化后,在氮气保护气氛下测量室温到 1 300℃温度范围内的热扩散系数的,进而通过式 (2)计算出高熵硅酸盐的热导率。

  • κ=CpρDth
    (2)
  • 式中,Dth 是块材的热扩散系数;Cp是块材的比热容; ρ 是高熵硅酸盐块材的密度;κ 是块材的热导率(单位 W /(m·K))。

  • 对于制备的陶瓷材料,因无法烧结出 100%无气孔、完全致密的块材,因此为了降低孔隙率对热导率的影响,通过式(3)对热导率进行修正:

  • κκ0=1-43Φ
    (3)
  • 式中,k0 为无孔隙率材料的热导率,k 为制备材料测量的热导率,Φ 为孔隙率。

  • 1.4 高温水氧腐蚀

  • 高温水氧腐蚀性能测试是在自建的一种长时间可控流量高温水蒸气-空气耦合腐蚀试验装置中进行的。该装置包括空压机、调压阀、蠕动泵、水蒸气发生器、高温管式炉和管路伴热系统。高温水氧腐蚀试验装置示意图如图1 所示。

  • 图1 高温水蒸气-空气耦合腐蚀试验装置示意图

  • Fig.1 Schematic diagram of high-temperature water vapor-air coupling corrosion experimental device

  • 将高熵硅酸盐块材和Yb2Si2O7块材放入同一坩埚在管式炉中进行水氧腐蚀试验,高温水氧腐蚀的试验参数见表1。每隔 10 h 进行一次取样,待样品降至室温后,称量并记录重量变化,与 Yb2Si2O7块材进行对比,并通过对比腐蚀前后材料表面形貌的变化综合评定合成的高熵硅酸盐的抗水氧腐蚀性能。

  • 表1 高温水氧腐蚀试验参数

  • Table1 Parameters of water-vapor corrosion experiments

  • 2 结果与讨论

  • 2.1(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 高熵硅酸盐的微观结构形貌和高温相稳定性

  • 图2 为(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 高熵硅酸盐的 XRD 衍射图。将单斜 β 相的单稀土焦硅酸盐 (Yb2Si2O7、Lu2Si2O7、Tm2Si2O7、Y2Si2O7)的 PDF 标准卡片与在 1 550℃时所制备的多元稀土焦硅酸盐的 X 射线衍射图谱进行对照。从图中可以看到主要峰位基本重叠,满足不同原子半径的元素掺杂后造成的物相峰位偏移的一般规律[24],说明合成的四元稀土高熵硅酸盐(4RE0.252Si2O7 有着与 Yb2Si2O7 相似的单斜 β 相结构。

  • 图2(Yb0.25Lu0.25Tm0.25Y0.252Si2O7的 XRD 衍射图

  • Fig.2 XRD diffraction results of (Yb0.25Lu0.25Tm0.25Y0.25) 2Si2O7

  • 图3 为无压烧结制备的水氧腐蚀前(4RE0.252Si2O7 高熵硅酸盐块材的表面微观形貌及其横截面微观形貌图。从图3a 中可以看出,通过无压烧结得到的高熵硅酸盐样品是由许多大小不一的颗粒组合而成的。当颗粒彼此之间未紧密结合时,会出现深黑色区域,即微小孔洞。从整体来看,使用无压烧结制备的块材微孔较少,表面光滑致密,使用 Image J 测量其气孔率为 3.2%。图3b 为压制块体的截面微观形貌图,在垂直方向上块材较为紧实。因此,在压片机60 MPa压力下预成型,并在1 550℃ 保温 4 h 得到的无压烧结制备的高熵硅酸盐块材具有较高的致密度,可以用于后续的热物理性能及抗水氧腐蚀能力试验。采用阿基米德排水法测量高熵硅酸盐块材的密度,通过式(1)算出其密度为 5.12 g / cm2

  • 图4 为(4RE0.252Si2O7块材表面的 EDS 能谱图,从图中可以看到,各项元素分布十分均匀,未出现明显的成分偏析现象,说明掺杂后的稀土元素均匀分布在 Yb2Si2O7晶格中。表2 为 EDS 计算出的各元素原子摩尔分数,从表中可以看到 RE:Si 摩尔比近似为 1∶1。结合前文(4RE0.252Si2O7的 XRD 衍射图谱、EDS 图像元素分布和原子摩尔比,使用无压烧结制备出了较好的(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 高熵硅酸盐块材。

  • 图3 腐蚀前(4RE0.252Si2O7块材的显微组织形貌

  • Fig.3 Microstructure of (4RE0.25) 2Si2O7 bulk sample before the water-vapor corrosion

  • 图4(4RE0.252Si2O7 块材表面元素分布图

  • Fig.4 Surface element distribution of (4RE0.25) 2Si2O7 sample

  • 表2(4RE0.252Si2O7块材表面元素分析结果(at.%)

  • Table2 Element contents on (4RE0.25) 2Si2O7 bulk surface (at.%)

  • 取少量无压烧结制备得到的高熵硅酸盐块材,采用同步热分析仪对其高温相稳定性进行测试。测量了(4RE0.252Si2O7 从室温到 1 300℃温度范围内热流和质量随温度变化的情况,以此来评估合成的高熵材料是否在此温度区间发生了相变。图5 为(4RE0.252Si2O7 从室温到 1 300℃温度范围内的热重曲线和吸放热曲线图。从图中观察可知,从室温到 1 300℃的温度范围内,TG(Thermal gravimetric) 曲线几乎保持水平,在 1 300℃值仅为 2.5%,没有明显的重量变化。并且 DSC(Differential scanning calorimetry)曲线也没有出现明显的放热或吸热峰,说明在测试温度范围内(4RE0.252Si2O7 没有分解或相变,表现出了优异的高温性能。

  • 图5(4RE0.252Si2O7 从室温到 1 300℃的 TG / DSC 曲线

  • Fig.5 TG / DSC curve of (4RE0.25) 2Si2O7 from room temperature to 1 300 °C

  • 2.2(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 高熵硅酸盐块材的热物理性能

  • (4RE0.252Si2O7 从 300℃到 1 250℃测量的热膨胀系数曲线如图6 所示。(4RE0.252Si2O7的热膨胀系数变化规律是随着温度升高,热膨胀系数随之增大,在 1 000℃后趋于稳定。(4RE0.252Si2O7的 CTE 约为 2.66×10-6~3.84×10-6−1。如图7 所示,(4RE0.252Si2O7 的 CTE 在各个温度阶段都小于 Yb2Si2O7。表3 列出了常见硅基非氧化物陶瓷、单稀土焦硅酸盐和高熵硅酸盐材料的热膨胀系数[25]。合成的高熵稀土硅酸盐的 CTE 与 SiC 基体的匹配性不如单稀土元素的焦硅酸盐,但也可以用作 SiC 面层材料的 EBC 使用[27-28]。(4RE0.252Si2O7 也可以应用于 CTE 较低的基底,如 Si3N4(3×10-6~4× 10-6−1)。

  • 图6(4RE0.252Si2O7 热膨胀系数随温度变化曲线

  • Fig.6 (4RE0.25) 2Si2O7 coefficient of thermal expansion as a function of temperature

  • 图7(4RE0.252Si2O7 和 Yb2Si2O7 的热膨胀系数对比曲线

  • Fig.7 Thermal expansion coefficient comparison curve between (4RE0.25) 2Si2O7 and Yb2Si2O7

  • 表3 常见硅基非氧化物陶瓷、单稀土焦硅酸盐和高熵硅酸盐材料的热膨胀系数[25-26]

  • Table3 Data on the coefficient of thermal expansion of common silicon-based non-oxide ceramics, one-component RE-disilicates and the high-entropy silicate[25-26]

  • 图8 是(4RE0.252Si2O7从 100℃到 1300℃温度范围内,随温度变化的热扩散系数曲线。可以看到(4RE0.252Si2O7 比 Yb2Si2O7有更低的热扩散系数。高熵硅酸盐的热扩散系数 Dth、比热 Cp 以及密度 ρ 已经通过测量和计算得知,由式(2)可以计算其热导率。由于无压烧结制备的块材不是完全致密的,存在一些孔洞,通过式(3)对其热导率进行校正,如图9 所示。在 500℃以下时,随着温度升高,热扩散系数和热导率降低,这是由于掺杂的多元稀土元素会导致晶格严重畸变,使声子散射作用增强,声子的平均自由程降低,从而会降低高熵硅酸盐的热导率[29-30]。当温度高于 500℃时,热辐射效应逐渐增强,热导率会随着温度的增加迅速升高[22]

  • 图8(4RE0.252Si2O7 和 Yb2Si2O7 的热扩散系数

  • Fig.8 Thermal diffusivity of (4RE0.25) 2Si2O7 and Yb2Si2O7

  • 图9(4RE0.252Si2O7和 Yb2Si2O7的热导率

  • Fig.9 Thermal conductivity of (4RE0.25) 2Si2O7 and Yb2Si2O7

  • 2.3(Yb0.25Lu0.25Tm0.25Y0.252Si2O7 高熵硅酸盐块材的高温水氧腐蚀性

  • 用作环境障涂层的高熵硅酸盐材料须要保护硅基陶瓷基体免受高温水蒸气的侵蚀,提高热端部件的耐久性,因此高熵硅酸盐材料的抗水氧腐蚀性能是其重要的性能指标。为了研究高熵硅酸盐的抗水氧腐蚀性能,将无压烧结制备的(4RE0.252Si2O7块材和用作对照的 Yb2Si2O7块材一同放入搭建的水氧腐蚀装置中。在 1 300℃,90%Air-10%H2O 的水蒸气气氛中腐蚀 200 h,每 10 h 取样称量重量,记录其失重情况。图10 为(4RE0.252Si2O7 块材和 Yb2Si2O7 块材在 1 300℃,90Air-10%H2O 的水蒸气气氛中腐蚀 200 h 的失重曲线。从图中可以看到,(4RE0.252Si2O7 块材和 Yb2Si2O7 块材都随着腐蚀时间的增加而不断失重。在腐蚀 180 h 后,高温水蒸气环境下的(4RE0.252Si2O7 块材的失重曲线趋于平稳,不再减重,并且(4RE0.252Si2O7 块材的失重率远小于 Yb2Si2O7 块材,最终(4RE0.252Si2O7 块材的失重为 0.625 mg / cm2, Yb2Si2O7 块材的失重为 2.712 mg / cm2。这意味着(4RE0.252Si2O7的耐高温水氧腐蚀性能优于 Yb2Si2O7,不易与水蒸气发生反应。其优异的抗水氧腐蚀性能的主要原因可能是, Yb2Si2O7 晶格中进行多组元掺杂,高熵效应使原子的扩散速率降低,导致高熵材料具有更好的相稳定性[31],从而使得高熵硅酸盐材料拥有比 Yb2Si2O7 更优异的抗水氧腐蚀性能。

  • 图10(4RE0.252Si2O7和 Yb2Si2O7块体在腐蚀过程中的质量变化曲线

  • Fig.10 Mass change curve of (4RE0.25) 2Si2O7 and Yb2Si2O7 bulk samples during the water-vapor corrosion

  • 图11 为(4RE0.252Si2O7 块材在高温水蒸气腐蚀 200 h 前后 XRD 对比图。从图中可以看到,在 1300℃,90%Air-10%H2O 的气氛中腐蚀 200 h 后,高熵硅酸盐的 XRD 图谱与腐蚀之前的图谱一致,峰位未发生偏移。腐蚀前(4RE0.252Si2O7 的 XRD 谱图中含有少量 Y2SiO5杂质,经过 200 h 腐蚀后则消失了,且未发现新相。其原因可能为在高温水蒸气环境中, Y2SiO5 与水蒸气发生反应,以气态的 Si(OH)4 和 Y(OH)3 形式进行挥发。反应式如式(4)所示。

  • Y2SiO5(s)+5H2O(g)=2Y(OH)3(g)+Si(OH)4(g)
    (4)
  • 图11 腐蚀前后(4RE0.252Si2O7 的 XRD 图谱对比图

  • Fig.11 XRD comparison of (4RE0.25) 2Si2O7 before and after the water-vapor corrosion

  • 为继续探究高熵硅酸盐材料的失重机制,使用 SEM 观察了腐蚀后的高熵硅酸盐块材的表面微观形貌。图12 为腐蚀后的(4RE0.252Si2O7块材的表面及截面微观形貌对照图。图12a 是(4RE0.252Si2O7 在 1 300℃下水蒸气 200 h 腐蚀后的表面形貌。与图3 相比,水蒸气腐蚀后的颗粒表面有明显的侵蚀过的痕迹,表面更加粗糙,并且出现了较多的气孔。

  • 图12 高温水气腐蚀后的(4RE0.252Si2O7 块材的显微组织

  • Fig.12 Microstructure of (4RE0.25) 2Si2O7 bulk after the high-temperature water-vapor corrosion

  • 通过 EDS 对其块材表面微区元素分布情况进行研究。图13 为(4RE0.252Si2O7 块材经高温水氧腐蚀 200 h 后的表面元素分布图。观察其表面元素分布,可以发现 Y、Si、O 元素有所缺失,其他元素仍然分布得均匀弥散。结合腐蚀后的 XRD 图谱,孔隙的形成是腐蚀过程中微量 Y2SiO5 与水蒸气反应挥发的原因。总之,(4RE0.252Si2O7在 1 300℃, 90%Air-10%H2O 的高温水蒸气环境中展现了良好的相稳定性,未发生明显的相变。

  • 图13(4RE0.252Si2O7 块材腐蚀后表面元素分布图

  • Fig.13 Element distribution on the surface of (4RE0.25) 2Si2O7 bulk after the water-vapor corrosion

  • 3 结论

  • (1)使用无压烧结成功制备 Yb、Lu、Tm、Y 四种稀土元素掺杂的具有单一 β 相的新型高熵硅酸盐。

  • (2)(4RE0.252Si2O7具有优良的热学性能,其热膨胀系数(2.66×10-6~3.84×10-6−1)和热扩散系数(0.41~0.92 mm2 / s),均小于 Yb2Si2O7,且与硅基陶瓷复合材料的 CMC 基体较为接近。温度超过 800℃后,(4RE0.252Si2O7 的热导率会显著增加并大于 Yb2Si2O7

  • (3)(4RE0.252Si2O7块材具有优异的抗高温水氧腐蚀能力,不易与高温水蒸气发生反应,且不会发生相变,有望成为一种极具潜力的环障涂层材料。

  • (4)研究成果可以为这类新型的高熵陶瓷在环境障涂层上的应用提供参考。

  • 参考文献

    • [1] MENON M N,FANG H T,WU D C,et al.Creep and stress rupture behavior of an advanced silicon nitride:part II,creep rate behavior[J].Journal of the American Ceramic Society,2008,77(5):1228-1234.

    • [2] BOSE S,DEMASIMARCIN J.Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J].Journal of Thermal Spray Technology,1997,6(1):99-104.

    • [3] PADTURE N P.Advanced structural ceramics in aerospace propulsion[J].Nature Materials,2016,15(8):804-809.

    • [4] KATOH Y,SNEAD L L,HENAGER C H,et al.Current status and recent research achievements in SiC/SiC composites[J].Journal of Nuclear Materials,2014,455(1):387-397.

    • [5] 谭僖,陈孝业,张小锋,等.硅基非氧化物陶瓷复合材料的环境障涂层系统的研究进展[J].材料研究与应用,2019,13(2):152-159.TAN Xi,CHEN Xiaoye,ZHANG Xiaofeng,et al.The process of environmental barrier coating system for silica-based non-oxide ceramic matrix composites[J].Materials Research and Application,2019,13(2):152-159.(in Chinese)

    • [6] 马帅,李广荣,刘梅军,等.SiCf/SiC 表面环境障涂层的基体无损去除方法[J].中国表面工程,2019,32(4):123-132.MA Shuai,LI Guangrong,LIU Meijun,et al.Substrate-lossless removal approach of environmental barrier coatings on SiCf/SiC[J].China Surface Engineering,2019,32(4):123-132.(in Chinese)

    • [7] LEE K N.Current status of environmental barrier coatings for Si-based ceramics[J].Surface & Coatings Technology,2000,133-134:1-7.

    • [8] OPILA E J,SMIALEK J L,ROBINSON R C,et al.SiC recession caused by SiO2 scale volatility under combustion conditions:II,thermodynamics and gaseous-diffusion model[J].Journal of the American Ceramic Society,1999,82(7):1826-1834.

    • [9] TURCER L R,PADTURE N P.Towards multifunctional thermal environmental barrier coatings(TEBCs)based on rare-earth pyrosilicate solid-solution ceramics[J].Scripta Materialia,2018,154:111-117.

    • [10] LEE K N,ELDRIDGE J I,ROBINSON R C.Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics[J].Journal of the American Ceramic Society,2005,85(12):3483-3488.

    • [11] 马壮,张学勤,刘玲.环境障涂层的发展瓶颈及应对措施[J].中国表面工程,2020,33(5):99-114.MA Zhuang,ZHANG Xueqin,LIU Ling.Restrictions and corresponging solutions of environmental barrier coatings[J].China Surface Engineering,2020,33(5):99-114.(in Chinese)

    • [12] OPILA E J,HANN R E.Paralinear oxidation of CVD SiC in water vapor[J].Journal of the American Ceramic Society,1997,80(1):197-205.

    • [13] LIU Jia,ZHANG Litong,LIU Qiaomu,et al.Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1 400 °C[J].Journal of the European Ceramic Society,2013,33(15):3419-3428.

    • [14] LEE K N.Key durability issues with mullite-based environmental barrier coatings for Si-based ceramics[J].Journal of Engineering for Gas Turbines & Power,2000,122(4):632-636.

    • [15] LEE K N.Contamination effects on interfacial porosity during cyclic oxidation of mullite-coated silicon carbide[J].Journal of the American Ceramic Society,1998,81(12):3329-3332.

    • [16] SUN Ziqi,LI Meishuan,ZHOU Yanchun.Thermal properties of single-phase Y2SiO5[J].Journal of the European Ceramic Society,2009,29(4):551-557.

    • [17] RICHARDS B T,BEGLEY M R,WADLEY H N G.Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor[J].Journal of the American Ceramic Society,2015,98(12):4066-4075.

    • [18] SUN Luchao,LUO Yixiu,REN Xiaomin,et al.A multicomponent γ-type(Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2 Si2O7 disilicate with outstanding thermal stability[J].Materials Research Letters,2020,8(11):424-430.

    • [19] SUN Luchao,LUO Yixiu,TIAN Zhilin,et al.High temperature corrosion of(Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate(CMAS)[J].Corrosion Science,2020,175(4):108881.

    • [20] LIU Debao,JIA Xinlei,SHI Baolu,et al.(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Si2O7:a novel high-entropy rare earth disilicate porous ceramics with high porosity and low thermal conductivity[J].Materials Chemistry and Physics,2022,286:126181.

    • [21] GUO Xiaotong,ZHANG Yulei,LI Tao,et al.High-entropy rare-earth disilicate(Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7:a potential environmental barrier coating material[J].Journal of the European Ceramic Society,2022,42(8):3570-3578.

    • [22] WANG Xu,CHENG Minghao,XIAO Guozheng,et al.Preparation and corrosion resistance of high-entropy disilicate(Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics[J].Corrosion Science,2021,192(201):109786.

    • [23] WANG Peng,HE Dingyong,GUO Xingye,et al.Preparation and characterization of(Yb0.25Lu0.25Sc0.25Tm0.25)2Si2O7 as a potential environmental barrier coating[J].International Journal of Applied Ceramic Technology,2024,21(2):972-980.

    • [24] LIU Debao,WANG Yiguang,ZHOU Feifei,et al.A novel high-entropy(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity[J].Ceramics International,2021,47(21):29960–29968.

    • [25] ZHONG Xin,NIU Yaran,LI Hong,et al.Comparative study on high-temperature performance and thermal shock behavior of plasma-sprayed Yb2SiO5 and Yb2Si2O7 coatings[J].Surface & Coatings Technology,2018,349:636-646.

    • [26] FERNANDEZCARRION A J,ALLIX M,BECERRO A I.Thermal expansion of rare-earth pyrosilicates[J].Journal of the American Ceramic Society,2013,96(7):2298-2305.

    • [27] LEE K N,FOX D S,BANSAL N P.Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics[J].Journal of the European Ceramic Society,2005,25(10):1705-1715.

    • [28] TSARENKO I,DU H H,LEE W Y.Effects of thin mullite coating on the environmental stability of sintered Si3N4[J].Journal of the American Ceramic Society,2004,87(3):417-420.

    • [29] GILD J,SAMIEE M,BRAUN J,et al.High-entropy fluorite oxides[J].Journal of the European Ceramic Society,2018,38(10):3578-3584.

    • [30] ZHAO Zifan,XIANG Huimin,CHEN Heng,et al.High-entropy(Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with good high temperature stability,low thermal conductivity,and anisotropic thermal expansivity[J].Journal of Advanced Ceramics,2020,9(5):595-605.

    • [31] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897.

  • 参考文献

    • [1] MENON M N,FANG H T,WU D C,et al.Creep and stress rupture behavior of an advanced silicon nitride:part II,creep rate behavior[J].Journal of the American Ceramic Society,2008,77(5):1228-1234.

    • [2] BOSE S,DEMASIMARCIN J.Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J].Journal of Thermal Spray Technology,1997,6(1):99-104.

    • [3] PADTURE N P.Advanced structural ceramics in aerospace propulsion[J].Nature Materials,2016,15(8):804-809.

    • [4] KATOH Y,SNEAD L L,HENAGER C H,et al.Current status and recent research achievements in SiC/SiC composites[J].Journal of Nuclear Materials,2014,455(1):387-397.

    • [5] 谭僖,陈孝业,张小锋,等.硅基非氧化物陶瓷复合材料的环境障涂层系统的研究进展[J].材料研究与应用,2019,13(2):152-159.TAN Xi,CHEN Xiaoye,ZHANG Xiaofeng,et al.The process of environmental barrier coating system for silica-based non-oxide ceramic matrix composites[J].Materials Research and Application,2019,13(2):152-159.(in Chinese)

    • [6] 马帅,李广荣,刘梅军,等.SiCf/SiC 表面环境障涂层的基体无损去除方法[J].中国表面工程,2019,32(4):123-132.MA Shuai,LI Guangrong,LIU Meijun,et al.Substrate-lossless removal approach of environmental barrier coatings on SiCf/SiC[J].China Surface Engineering,2019,32(4):123-132.(in Chinese)

    • [7] LEE K N.Current status of environmental barrier coatings for Si-based ceramics[J].Surface & Coatings Technology,2000,133-134:1-7.

    • [8] OPILA E J,SMIALEK J L,ROBINSON R C,et al.SiC recession caused by SiO2 scale volatility under combustion conditions:II,thermodynamics and gaseous-diffusion model[J].Journal of the American Ceramic Society,1999,82(7):1826-1834.

    • [9] TURCER L R,PADTURE N P.Towards multifunctional thermal environmental barrier coatings(TEBCs)based on rare-earth pyrosilicate solid-solution ceramics[J].Scripta Materialia,2018,154:111-117.

    • [10] LEE K N,ELDRIDGE J I,ROBINSON R C.Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics[J].Journal of the American Ceramic Society,2005,85(12):3483-3488.

    • [11] 马壮,张学勤,刘玲.环境障涂层的发展瓶颈及应对措施[J].中国表面工程,2020,33(5):99-114.MA Zhuang,ZHANG Xueqin,LIU Ling.Restrictions and corresponging solutions of environmental barrier coatings[J].China Surface Engineering,2020,33(5):99-114.(in Chinese)

    • [12] OPILA E J,HANN R E.Paralinear oxidation of CVD SiC in water vapor[J].Journal of the American Ceramic Society,1997,80(1):197-205.

    • [13] LIU Jia,ZHANG Litong,LIU Qiaomu,et al.Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1 400 °C[J].Journal of the European Ceramic Society,2013,33(15):3419-3428.

    • [14] LEE K N.Key durability issues with mullite-based environmental barrier coatings for Si-based ceramics[J].Journal of Engineering for Gas Turbines & Power,2000,122(4):632-636.

    • [15] LEE K N.Contamination effects on interfacial porosity during cyclic oxidation of mullite-coated silicon carbide[J].Journal of the American Ceramic Society,1998,81(12):3329-3332.

    • [16] SUN Ziqi,LI Meishuan,ZHOU Yanchun.Thermal properties of single-phase Y2SiO5[J].Journal of the European Ceramic Society,2009,29(4):551-557.

    • [17] RICHARDS B T,BEGLEY M R,WADLEY H N G.Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor[J].Journal of the American Ceramic Society,2015,98(12):4066-4075.

    • [18] SUN Luchao,LUO Yixiu,REN Xiaomin,et al.A multicomponent γ-type(Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2 Si2O7 disilicate with outstanding thermal stability[J].Materials Research Letters,2020,8(11):424-430.

    • [19] SUN Luchao,LUO Yixiu,TIAN Zhilin,et al.High temperature corrosion of(Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate(CMAS)[J].Corrosion Science,2020,175(4):108881.

    • [20] LIU Debao,JIA Xinlei,SHI Baolu,et al.(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Si2O7:a novel high-entropy rare earth disilicate porous ceramics with high porosity and low thermal conductivity[J].Materials Chemistry and Physics,2022,286:126181.

    • [21] GUO Xiaotong,ZHANG Yulei,LI Tao,et al.High-entropy rare-earth disilicate(Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7:a potential environmental barrier coating material[J].Journal of the European Ceramic Society,2022,42(8):3570-3578.

    • [22] WANG Xu,CHENG Minghao,XIAO Guozheng,et al.Preparation and corrosion resistance of high-entropy disilicate(Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics[J].Corrosion Science,2021,192(201):109786.

    • [23] WANG Peng,HE Dingyong,GUO Xingye,et al.Preparation and characterization of(Yb0.25Lu0.25Sc0.25Tm0.25)2Si2O7 as a potential environmental barrier coating[J].International Journal of Applied Ceramic Technology,2024,21(2):972-980.

    • [24] LIU Debao,WANG Yiguang,ZHOU Feifei,et al.A novel high-entropy(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity[J].Ceramics International,2021,47(21):29960–29968.

    • [25] ZHONG Xin,NIU Yaran,LI Hong,et al.Comparative study on high-temperature performance and thermal shock behavior of plasma-sprayed Yb2SiO5 and Yb2Si2O7 coatings[J].Surface & Coatings Technology,2018,349:636-646.

    • [26] FERNANDEZCARRION A J,ALLIX M,BECERRO A I.Thermal expansion of rare-earth pyrosilicates[J].Journal of the American Ceramic Society,2013,96(7):2298-2305.

    • [27] LEE K N,FOX D S,BANSAL N P.Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics[J].Journal of the European Ceramic Society,2005,25(10):1705-1715.

    • [28] TSARENKO I,DU H H,LEE W Y.Effects of thin mullite coating on the environmental stability of sintered Si3N4[J].Journal of the American Ceramic Society,2004,87(3):417-420.

    • [29] GILD J,SAMIEE M,BRAUN J,et al.High-entropy fluorite oxides[J].Journal of the European Ceramic Society,2018,38(10):3578-3584.

    • [30] ZHAO Zifan,XIANG Huimin,CHEN Heng,et al.High-entropy(Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with good high temperature stability,low thermal conductivity,and anisotropic thermal expansivity[J].Journal of Advanced Ceramics,2020,9(5):595-605.

    • [31] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897.

  • 手机扫一扫看