en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

邓婉蓉,女,1998年出生,硕士研究生。主要研究方向为钛合金表面改性。E-mail: dengwanrong913@163.com

通讯作者:

杨巍,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为金属表面改性与强化。E-mail: yangwei_smx@163.com

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230920002

参考文献 1
NAVARRO M,MICHIARDI A,CASTANO O,et al.Biomaterials in orthopaedics[J].Journal of the Royal Society Interface,2008,5(27):1137-1158.
参考文献 2
ZHANG L C,CHEN L Y.A review on biomedical titanium alloys:recent progress and prospect[J].Advanced Engineering Materials,2019,21(4):1801215.
参考文献 3
KAUR M,SINGH K.Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J].Materials Science and Engineering:C,2019,102:844-862.
参考文献 4
杨桂宇,李运刚.医用钛合金的研究及发展现状[J].铸造技术,2016,37(10):2062-2064.YANG Guiyu,LI Yungang.Research and development status of medical titanium alloys[J].Foundry technology,2016,37(10):2062-2064.(in Chinese)
参考文献 5
RONOH K,MWEMA F,DABEES S,et al.Advances in sustainable grinding of different types of the titanium biomaterials for medical applications:A review[J].Biomedical Engineering Advances,2022,4:100047.
参考文献 6
CVIJOVIC A I,CVIJOVIC Z,MITROVIC S,et al.Tribological behaviour of orthopaedic Ti-13Nb-13Zr and Ti-6Al-4 V alloys[J].Tribology Letters,2010,40(1):59-70.
参考文献 7
杨佳惠,张一凡,武俊霞,等.生物医用钛合金研究进展[J].稀有金属与硬质合金,2021,49(5):29-34.YANG Jiahui,ZHANG Yifan,WU Junxia,et al.Research progress of biomedical titanium alloys[J].Rare Metals and Cemented Carbides,2021,49(5):29-34.(in Chinese)
参考文献 8
MOGHADASI K,ISA M S M,ARIFFIN M A,et al.A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties[J].Journal of Materials Research and Technology,2022,17:1054-1121.
参考文献 9
范竞一,马迅,李伟,等.医用钛合金表面改性技术研究进展[J].功能材料,2022,53(7):7027-7039.FAN Jingyi,MA Xun,LI Wei,et al.Research progress of surface modification technology of medical titanium alloy[J].Journal of Functional Materials,2022,53(7):7027-7039.(in Chinese)
参考文献 10
HERNAN J P F,TORRES B,LOPEZ A J,et al.Sol-gel coatings doped with graphene nanoplatelets for improving the degradation rate and the cytocompatibility of AZ31 alloy for biomedical applications[J].Surface and Coatings Technology,2021,426(7):127745.
参考文献 11
TILLMANN W,HAGEN L,STANGIER D,et al.Lapping and polishing of additively manufactured 316L substrates and their effects on the microstructural evolution and adhesion of PVD CrAlN coatings[J].Surface and Coatings Technology,2021,428(5):127905.
参考文献 12
SEDELNIJOVA M B,KOMAROVA E G,SHARKEEV Y P,et al.Zn-,Cu-or Ag-incorporated micro-arc coatings on titanium alloys:Properties and behavior in synthetic biological media[J].Surface and Coatings Technology,2019,369(3):52-68.
参考文献 13
XU Y Y,ZHANG J Y,LIANG F B,et al.Investigation of magnetron sputtered nano-silver coating on titanium surface with micro-nanostructure[J].Surfaces and Interfaces,2023,38:102770.
参考文献 14
NI A,LIU D,WANG S,et al.Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti-6Al-4V alloy[J].Journal of Materials Science & Technology,2016,32(10):1071-1076.
参考文献 15
LI Y,WANG W,DUAN J,et al.A super-hydrophilic coating with a macro/micro/nano triple hierarchical structure on titanium by two-step micro-arc oxidation treatment for biomedical applications[J].Surface and Coatings Technology,2017,311:1-9.
参考文献 16
XIANG N,SONG R G,XIANG B,et al.A study on photocatalytic activity of micro-arc oxidation TiO2,films and Ag +/MAO-TiO2,composite films[J].Applied Surface Science,2015,347:454-460.
参考文献 17
HAN Y,SUN J,HUANG X.Formation mechanism of HA-based coatings by micro-arc oxidation[J].Electrochemistry Communications,2008,10(4):510-513.
参考文献 18
LIU S,LI B,LIANG C,et al.Formation mechanism and adhesive strength of a hydroxyapatite/TiO2,composite coating on a titanium surface prepared by micro-arc oxidation[J].Applied Surface Science,2016,362:109-114.
参考文献 19
AYSUN A.Coatings of Bioactive TiO2 Films on TI6AL4V alloy by micro arc oxidation[J].Acta Physica Polonica A,2018,134(1):412-414.
参考文献 20
YAO X H,ZHANG X Y,WU H B,et al.Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J].Applied Surface Science,2014,292:944-947.
参考文献 21
ZHANG X Y,WANG H Z,LI J F,et al.Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J].Ceramics International,2016 42(15):17095-17100.
参考文献 22
ZHANG Z Y,HUANG T Y,ZHAI D J,et al.Study on Zn-doped antibacterial bioactive coatings on Ti6Al4V titanium alloy surfaces by micro-arc oxidation[J].Surface and Coatings Technology,2023,467:129724.
参考文献 23
李玥锟,徐琳,杜青,等.Ti6AL4V 表面微弧氧化法制备含锌涂层的特征及抗菌性研究[J].口腔医学研究,2018,34(12):1347-1350.LI Yuekun,XU Lin,DU Qing,et al.Study on the characteristics and antibacterial activity of Zinccontaining coatings prepared by Ti6AL4V Surface micro-arc oxidation[J].Journal of Oral Science Research,2018,34(12):1347-1350.(in Chinese)
参考文献 24
PESODE P A,BARVE S B.Recent advances on the antibacterial coating on titanium implant by micro-arc oxidation process[J].Materials Today:Proceedings,2021,47:5652-5662.
参考文献 25
ZHAO W k,WANG J F,JIANG W Y,et al.A novel biodegradable Mg-1Zn-0.5Sn alloy:Mechanical properties,corrosion behavior,biocompatibility,and antibacterial activity[J].Journal of Magnesium and Alloys,2022,8(2):374-386.
参考文献 26
RADHA R,SREEKANTH D.Mechanical,in vitro corrosion and bioactivity performance of Mg based composite for orthopedic implant applications:Influence of Sn and HA addition[J].Biomedical Engineering Advances,2022,3:100033.
参考文献 27
ZHAO W K,WANG J F,JIANG W Y,et al.A novel biodegradable Mg-1Zn-0.5Sn alloy:Mechanical properties,corrosion behavior,biocompatibility,and antibacterial activity[J].Journal of Magnesium and Alloys,2020,8(2):374-386.
参考文献 28
JIANG W Y,WANG J F,ZHAO W K,et al.Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys[J].Journal of Magnesium and Alloys,2019,7(1):15-26.
参考文献 29
WANG J T,PAN Y K,FENG R.Effect of electrolyte composition on the microstructure and bio-corrosion behavior of micro-arc oxidized coatings on biomedical Ti6Al4V alloy[J].Journal of Materials Research and Technology,2020,9(2):1477-1490.
参考文献 30
陈永楠,郭紫薇,杨泽慧,等.氧化石墨烯调控GO/TiO2 陶瓷膜层自封孔效应研究[J].稀有金属材料与工程.2021,50(10):3621-3626.CHEN Yunnan,GUO Ziwei,YANG Zehui,et al.Study on the regulation of self-sealing pore effect of GO/TiO2 ceramic layer by graphene oxide[J].Rare Metal Materials and Engineering.2021,50(10):3621-3626.(in Chinese)
参考文献 31
KUZNETSOV M V,SAFONOV A V.Structural,optical,XPS,and magnetic properties of Sn–O nanoparticles[J].Materials Chemistry and Physics,2023,302:127739.
参考文献 32
MORKS M F,FAHIM N F,KOBAYASHI A.Structure,mechanical performance and electrochemical characterization of plasma sprayed SiO2/Ti-reinforced hydroxyapatite biomedical coatings[J].Applied Surface Science,2008,255(5):3426-3433.
参考文献 33
LU X P,BLAWERT C,HUANG Y D,et al.Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles[J].Electrochimica Acta,2016,187:20-33.
参考文献 34
REN Z Y,HU Y L,TONG Y G,et al.Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy[J].Tribology International,2023,182:108366.
参考文献 35
HUANG K,WANG G M,QING H W,et al.Effect of Cu content on electrical resistivity,mechanical properties and corrosion resistance of AlCuxNiTiZr0.75 high entropy alloy films[J].Vacuum,2022,195:110695.
参考文献 36
YOO B,SHIN K R,HWANG D Y,et al.Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation[J].Applied Surface Science,2010,256(22):6667-6672.
参考文献 37
LUO J M,WU X H,XU J L.The influence of electrolyte components on the corrosion resistance and wear resistance of TiCP/Ti6Al4V composite micro-arc oxide film[J].Journal of Inorganic Materials,2017,32:418−424.
参考文献 38
ROBINSON D A,GRIFFITH R W,SHECHTMAN D,et al.In vitro antibacterial properties of magnesium metal against Escherichia coli,Pseudomonas aeruginosa and Staphylococcus aureus[J].Acta Biomaterialia,2010,6(5):1869-1877.
参考文献 39
SANTOS G,TIBAYAN E,CASTILLON G,et al.Tin oxide-silver composite nanomaterial coating for UV protection and its bactericidal effect on escherichia coli(E.coli)[J].Coatings,2014,4(2):320-328.
目录contents

    摘要

    TC4 钛合金植入人体后感染风险高,为提高 TC4 钛合金在模拟体液中的防护性能,通过改变电解液中 Na2SnO3浓度,在钛合金表面制备掺锡微弧氧化层。利用扫描电子显微镜(SEM+EDS)、X 射线衍射仪(XRD)和 X 射线光电子能谱(XPS) 对微弧氧化层的微观形貌、物相组成和成分进行表征,通过摩擦磨损试验,电化学及抗菌测试研究微弧氧化层在模拟体液 (SBF)中的耐磨性、耐蚀性和抗菌性。结果表明,添加 Na2SnO3 后微弧氧化层表面孔洞数量增多,随着 Na2SnO3 浓度增加,微弧氧化层表面微孔数量减少直至消失,出现了小颗粒物且膜层越来越致密均匀。Na2SnO3浓度为 10 g / L 时制备的掺锡微弧氧化层在模拟体液中表现出最佳的耐磨性和抗菌性,但该微弧氧化层没有改善基体的耐蚀性,这可能是 SnO2 比 TiO2的耐蚀性低所导致的。研究结果可为钛合金在生物医疗领域的应用提供一定的试验支撑。

    Abstract

    With the dramatic increase in the demand for medical implant materials, the TC4 titanium alloy can be used as a replacement material for bone tissue owing to its excellent biocompatibility and corrosion resistance. However, the TC4 titanium alloy has poor antibacterial properties, and there may be a higher risk of bacterial infection after implantation in the human body. Coatings prepared by micro-arc oxidation technology have excellent binding strength and can reduce the risk of bacterial infection of titanium alloys by doping with antimicrobial elements. To improve the protective properties of the TC4 titanium alloy in simulated body fluids (SBF), a constant-voltage mode was adopted, with a voltage of 450 V, frequency of 800 Hz, duty cycle of 6%, and time of 10 min. An Sn-doped micro-arc oxide coating was prepared on a titanium alloy by varying the concentration of Na2SnO3 in the electrolyte. The microscopic morphology and elemental content distribution of the micro-arc oxide coating were studied using a scanning electron microscope with an attached energy dispersive spectrometer, and the phase compositions and compositions of the micro-arc oxide coatings were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The wear resistance, corrosion resistance, and antibacterial properties of the micro-arc oxide coating in SBF were studied using friction and wear, electrochemical, and antibacterial tests. The results show that the number of pores on the micro-arc oxide coating surface increases after the addition of Na2SnO3. With an increase in the Na2SnO3 concentration, the number of micropores on the surface of the micro-arc oxide coating decreases until they disappear, small particles appear, and the film becomes increasingly dense and uniform. The main components of the micro-arc oxide coatings are TiO2, SiO2, and SnO2. The friction factor of the micro-arc oxide coating without Na2SnO3 is lower than that of TC4. The friction factor of the Sn-doped micro-arc oxide coating in SBF decreases with an increase in the Na2SnO3 concentration, and the width of the wear mark is narrowed. When the concentration of Na2SnO3 is 10 g / L, the Sn-doped micro-arc oxide coating has the smallest friction factor and the narrowest wear mark width of 198.85 μm, which exhibits the best wear resistance, which may be due to the enrichment of small particles and the lubricating effect. However, the micro-arc oxide coating does not improve the corrosion resistance of the TC4 titanium alloy, which may be caused by the presence of micropores and other defects on the surface of the coating and the lower corrosion resistance of SnO2 than that of TiO2. The antibacterial properties of the micro-arc oxide coating improve after the addition of Na2SnO3; the Sn-doped micro-arc oxide coating prepared at a concentration of Na2SnO3 of 10 g / L and the antibacterial properties of the Sn-doped micro-arc oxide coating are the best in SBF. The optical density value decreases from 0.289 to 0.136 in the Staphylococcus aureus solution and from 0.331 to 0.171 in the Escherichia coli solution, because SnO2 could inhibit the growth of bacteria. These results provide experimental support for the application of titanium alloys in the field of biomedicine.

  • 0 前言

  • 随着人口老龄化的加速,老年人关节炎和关节疼痛的问题也越来越突出,需要关节置换或假体植入治疗,因此对生物材料的需求急剧增加[1-3]。 Ti6Al4V 钛合金(TC4 钛合金)最早应用于航空航天领域,由于其出色的生物相容性和耐腐蚀性,低比密度和高强度,可在临床医学中作为骨组织的替换材料[4-6]。但是,TC4 钛合金植入人体后会释放 Al 和 V 等有害元素,引起阿尔茨海默病、神经疾病和骨质软化等疾病[7-8]。同时,TC4 钛合金的抗菌性差,细菌感染的高风险可能导致骨缺损修复或植入手术失败[9]

  • 目前,可以通过溶胶凝胶[10]、气相沉积[11]、微弧氧化[12]、磁控溅射[13]等来改善钛合金的生物性能。其中微弧氧化(MAO)技术制备的涂层结合强度优异[14-15],此外,可以向电解液中掺杂 Ag、Cu、 Zn 或一定比例的 Ca、P 等来改善基体的生物活性和抗菌性[16-18]。AYSUN[19]在 TC4 钛合金表面制备了 TiO2 涂层,结果表明 TiO2 涂层在模拟体液中拥有良好的生物活性沉积性能。YAO 等[20]在钛合金表面制备了 Cu 掺杂的抗菌 TiO2涂层。结果表明,Cu 掺杂的涂层对大肠杆菌和金黄色葡萄球菌都表现出了优异的抗菌活性。ZHANG X Y 等[21]和 ZHANG Z Y 等[22]均采用微弧氧化技术在钛合金表面制备了含 Zn 的涂层,结果都表现出优异的抗菌性能。李玥锟等[23]发现抗菌性能随涂层 Zn 浓度的升高而增强。

  • 众所周知,Ag、Cu 和 Zn 元素具有良好的抗菌特性[24],但也有其潜在的细胞毒性。Sn 是人体中一种必需的微量元素,具有温和的抗菌性[25],同时生物相容性好,有助于伤口愈合[26]。ZHAO 等[27]在 Mg-1Zn 合金中添加了少量 Sn,发现合金降低生物腐蚀速率的同时还具有显著的抗菌能力。JIANG 等[28]在 Mg-4Zn 合金中添加了 Sn 后,改善了合金的力学性能,控制了生物腐蚀速率且对成骨细胞无细胞毒性。因此,本文旨在向电解液中加入不同浓度的锡酸钠,以期同步改善 TC4 钛合金在模拟体液中的耐磨性、耐蚀性和抗菌性,为 TC4 钛合金在生物医疗领域的进一步应用提供一定的试验支撑。

  • 1 试验方法

  • 1.1 微弧氧化层的制备

  • 试验选用的基体材料TC4钛合金均由西安赛特思迈钛业有限公司生产,其成分见(质量分数)表1。将材料统一切割成 Φ20 mm×4 mm 的圆柱状薄片,并对基体进行预处理:除油污→砂纸打磨→酒精超声清洗→干燥。选取 10g / L Na2SiO3作为微弧氧化基础电解液,逐步添加 0、2、6、10 g / L 的 Na2SnO3。采取恒压模式,在电压 450 V、频率 800 Hz、占空比 6%的条件下微弧氧化 10 min。

  • 表1 TC4 钛合金的化学成分(质量分数/%)

  • Table1 Chemical composition of TC4 titanium alloy (wt.%)

  • 1.2 涂层表征

  • 用 VEGA3-SBH 扫描电子显微镜(SEM)及附带的能谱仪(EDS)观察涂层表面形貌及元素含量分布;用 D2 PHASER 的 X 射线衍射仪(XRD)分析涂层物相,扫描范围设置为 20°~80°,步长设置为 0.02°;用 Escalab Xi+的 X 射线光电子能谱 (XPS)分析元素价键结构,利用 Avantage 软件进行分峰拟合;用 HT-1000 型摩擦磨损试验机在模拟体液(SBF)中进行摩擦磨损性能测试,以 Φ6 mm 的 GCr15 轴承钢球为摩擦副在膜层表面作往复圆周运动,磨损试验载荷为 2 N,转速 280 r / min,半径 2 mm,时间 10 min,用 SEM 及 EDS 观察磨痕的磨损形貌;用 CHI 600 电化学工作站在 SBF 中进行耐蚀性测试,饱和甘汞作为参比电极,样品暴露面积为 1 cm2,利用系统软件 CView2 对数据进行拟合分析;使用常见的金黄色葡萄球菌和大肠杆菌进行抗菌测试,将菌种接种在 LB 液体培养基中在恒温摇床上 37℃活化 24 h,将菌液离心后倒掉上清液,将细菌分散在 SBF 中,将试样置于 12 孔板中,向孔板中倒入含菌 SBF 后在恒温摇床上 37℃培养 3 d,用酶标仪测量光密度(OD)值用于评估抗菌性。

  • 2 结果与讨论

  • 2.1 微弧氧化层的微观形貌及元素含量

  • 图1 为添加不同浓度 Na2SnO3微弧氧化层的微观形貌图。从图中可以看出,Na2SnO3 为 0 g / L 的微弧氧化层表面较光滑且含有较多孔洞, Na2SnO3 为 2 g / L 的微弧氧化层表面粗糙且孔洞数量增多, Na2SnO3 为 6 g / L 的微弧氧化层孔洞几乎消失,出现了一些“火山口”型微孔和小颗粒物,膜层变得致密,Na2SnO3 为 10 g / L 的微弧氧化层微孔消失,颗粒更加均匀,膜层更致密。微弧氧化层的孔洞和 “火山口”微孔是由于火花放电造成的,它们是放电通道[29]。当添加少量 Na2SnO3 时溶液电导率增加,作用在膜层的能量升高,所以放电通道增多,但添加量过高时会降低反应电压,使得膜层能量减小,少量熔融氧化物从放电通道中喷出后快速凝固在放电通道的顶部,形成自封孔[30]。表2 为膜层表面元素含量分布,膜层表面主要元素为 O、Si、Ti,其中氧元素含量最高,钛元素次之,这是由于各元素在TC4表面微弧氧化层中主要是以氧化物形式存在的,而膜层主要成分是氧化钛,随着 Na2SnO3浓度的增加,Sn 元素在膜层中的含量逐渐增加。

  • 图1 不同浓度 Na2SnO3 微弧氧化层 SEM 图

  • Fig.1 SEM plot of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 表2 不同浓度 Na2SnO3 微弧氧化层 EDS 结果(at.%)

  • Table2 EDS results of micro-arc oxide coatings with different concentrations of Na2SnO3 (at.%)

  • 2.2 微弧氧化层的相组成与成分

  • 图2 为添加不同浓度 Na2SnO3 微弧氧化层的 XRD 图,从图中可以看出,膜层主要成分为 Ti、TiO2 和 SiO2,SiO2 是电解液中的硅酸根离子在阳极放电形成的。未添加 Na2SnO3 制备的微弧氧化层,Ti 的衍射峰最强,而电解液中加入Na2SnO3后Ti 峰减弱,但随着微弧氧化层中 Sn 含量增加,XRD 并没有检测出氧化锡的存在,这可能是膜层较薄,X 射线的穿透深度比较大,XRD 呈现的是基体的峰所导致的。

  • 图2 不同浓度 Na2SnO3 微弧氧化层的 XRD 图

  • Fig.2 XRD plot of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 为进一步分析膜层成分,对添加 10g / L Na2SnO3 微弧氧化层进行 XPS 分析,结果如图3 所示,O 1s 的结合能为 531.66 eV 对应 SiO2,Ti2p 的结合能为 458.93、464.75 eV 对应 TiO2,Si2p 的结合能为 102.17eV 对应 SiO2,由于自旋轨道分裂, Sn 3d 峰具有特征双峰,一个峰结合能为 487.13 eV,另一个峰以 495.51 eV 为中心的强峰延伸到 496.25 eV 这分别属于 Sn 3d 5 / 2 和 Sn 3d 3 / 2,Sn 3d 对应 SnO2 [31]

  • 图3 10 g / L Na2SnO3 微弧氧化层的 XPS 图

  • Fig.3 XPS plot of micro-arc oxide coatings with 10 g / L Na2SnO3

  • 2.3 微弧氧化层的耐磨性能

  • 图4 为添加不同浓度 Na2SnO3 制备掺锡微弧氧化层在 SBF 中的摩擦因数曲线图,从图中可以看出,TC4 基体在 SBF 中的摩擦因数波动较大,变化范围在 0.2~0.6。这是因为钛合金黏性大,在进行摩擦磨损过程中,磨损接触面积增大,摩擦力增大,因此摩擦因数不断波动最终稳定在 0.35 左右。未添加 Na2SnO3 的微弧氧化层摩擦因数低于 TC4,最终稳定在 0.25 左右,通过前面的形貌与成分分析,可以看出膜层中存在微小的 SiO2 粒子,SiO2 是溶质离子 SiO3 2-在微弧放电过程中受到高温高压作用而形成的,SiO2 具有自润滑特性,可以降低摩擦因数,对磨损性能起到改善作用[32]。先前的报道也指出在涂层中添加硅酸盐氧化物可以提高耐磨性[33]。掺入 Sn 的微弧氧化层摩擦因数低于 TC4 基体和未掺入 Sn 的微弧氧化层,究其原因,随着 Na2SnO3 浓度增加,微孔数量减少且出现小颗粒富集,一方面小颗粒具有润滑作用,另一方面凹凸表面形成类似于织构结构,有助于磨损过程中储纳模拟体液,在界面处形成液膜,从而减小摩擦因数。

  • 图4 不同浓度 Na2SnO3 微弧氧化层的摩擦因数曲线

  • Fig.4 Friction factor curves of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 对磨痕处的形貌进行观察,如图5 所示,摩擦磨损后的TC4钛合金表面呈现较宽且较深的犁沟形貌,此时磨痕宽度为 496.99 μm,且在犁沟上还附着少量磨屑,这是在挤压应力和切向应力的协同作用下材料被剪切破坏,形成了磨料颗粒,因此,TC4 的磨损机理主要是磨料磨损和黏着磨损[34]。而微弧氧化层表面没有明显的犁沟形貌,磨痕宽度均小于 TC4 基体,未添加 Na2SnO3 的膜层磨痕宽度为 208.65 μm 且磨痕深,掺锡微弧氧化层的磨痕宽度和磨痕深度逐渐减小,Na2SnO3 为 10 g / L 的膜层磨痕宽度最小为 198.85μm 且磨痕最浅,这可能是添加较少的 Na2SnO3 时膜层表面较粗糙,导致磨痕宽度较大且磨痕较深,随着 Na2SnO3 浓度的增大,膜层表面变得光滑,使得磨痕宽度和磨痕深度逐渐减小。

  • 图6 为添加不同浓度 Na2SnO3微弧氧化层磨痕EDS 图,从图中可以看出,对磨球中的 Fe 元素少量聚集在磨痕处,其他元素在膜层表面分布较为均匀,由此说明微弧氧化层的磨损机理为黏着磨损。膜层并未被磨穿,微弧氧化层具有较好的耐磨性。

  • 图5 不同浓度 Na2SnO3微弧氧化层的磨痕形貌图

  • Fig.5 Morphology of wear of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 图6 不同浓度 Na2SnO3微弧氧化层的磨痕 EDS 图(a)0g / L(b)2g / L(c)6g / L(d)10g / L

  • Fig.6 EDS map of wear of micro-arc oxide coatings with different concentrations of Na2SnO3: (a) 0g / L; (b) 2g / L; (c) 6g / L; (d) 10g / L

  • 2.4 微弧氧化层的耐蚀性能

  • 图7 为 TC4 和不同浓度 Na2SnO3 微弧氧化层在 SBF 中的极化曲线图,对其进行 Tafel 拟合得到的腐蚀电位和腐蚀电流密度见表3。一般情况下,膜层良好的耐蚀性展现出的是高的腐蚀电位和低的腐蚀电流密度[35]。由表3 可知,TC4 在 SBF 中的 Icorr比微弧氧化层低了一个数量级,说明 TC4 在 SBF 中具有良好的耐蚀性,加入 Na2SnO3 后耐蚀性反而降低,这一方面可能是涂层中存在的微孔等缺陷会运输侵蚀性离子,降低膜层抗腐蚀介质的能力[36-37],另一方面可能是 SnO2 比 TiO2 的耐蚀性低,随着 SnO2 含量的不断增加,膜层耐蚀性降低。

  • 图7 不同浓度 Na2SnO3微弧氧化层的极化曲线

  • Fig.7 Polarization curves of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 表3 不同浓度 Na2SnO3 微弧氧化层的腐蚀电位与腐蚀电流密度

  • Table3 Ecorr and Icorr of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 2.5 微弧氧化层的抗菌性能

  • 图8 为金黄色葡萄球菌和大肠杆菌在不同浓度 Na2SnO3 微弧氧化层表面培养 3 d 的 OD 值,OD 值的大小与细菌的浓度呈正相关。由图可以看出,微弧氧化层的 OD 值都比 TC4 低,说明在 SBF 中微弧氧化层提升了钛合金的抗菌性,其中 Na2SnO3 为 6 g / L 制备掺锡微弧氧化层抗金黄色葡萄球菌性最好,Na2SnO3为10 g / L制备掺锡微弧氧化层抗大肠杆菌性最好。这是因为 SnO2 对细菌的生长有良好的抑制作用[38-39]

  • 图8 不同浓度 Na2SnO3 微弧氧化层的 OD 值

  • Fig.8 OD values of micro-arc oxide coatings with different concentrations of Na2SnO3

  • 3 结论

  • (1)在 TC4 表面制备不同 Sn 含量的微弧氧化层,随着 Na2SnO3 浓度的增加,膜层表面微孔消失,小颗粒物数量增加且越来越致密,膜层主要由 TiO2, SiO2 和 SnO2组成。

  • (2)随着 Na2SnO3 浓度的增加,微弧氧化层在模拟体液中的摩擦因数减小,磨痕宽度变窄,当 Na2SnO3 浓度为 10 g / L 时耐磨性最好。但该微弧氧化层没有改善 TC4 的耐蚀性。

  • (3)根据综合抗菌性来看,Na2SnO3为 10 g / L 的微弧氧化层的抗菌性最好。

  • 参考文献

    • [1] NAVARRO M,MICHIARDI A,CASTANO O,et al.Biomaterials in orthopaedics[J].Journal of the Royal Society Interface,2008,5(27):1137-1158.

    • [2] ZHANG L C,CHEN L Y.A review on biomedical titanium alloys:recent progress and prospect[J].Advanced Engineering Materials,2019,21(4):1801215.

    • [3] KAUR M,SINGH K.Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J].Materials Science and Engineering:C,2019,102:844-862.

    • [4] 杨桂宇,李运刚.医用钛合金的研究及发展现状[J].铸造技术,2016,37(10):2062-2064.YANG Guiyu,LI Yungang.Research and development status of medical titanium alloys[J].Foundry technology,2016,37(10):2062-2064.(in Chinese)

    • [5] RONOH K,MWEMA F,DABEES S,et al.Advances in sustainable grinding of different types of the titanium biomaterials for medical applications:A review[J].Biomedical Engineering Advances,2022,4:100047.

    • [6] CVIJOVIC A I,CVIJOVIC Z,MITROVIC S,et al.Tribological behaviour of orthopaedic Ti-13Nb-13Zr and Ti-6Al-4 V alloys[J].Tribology Letters,2010,40(1):59-70.

    • [7] 杨佳惠,张一凡,武俊霞,等.生物医用钛合金研究进展[J].稀有金属与硬质合金,2021,49(5):29-34.YANG Jiahui,ZHANG Yifan,WU Junxia,et al.Research progress of biomedical titanium alloys[J].Rare Metals and Cemented Carbides,2021,49(5):29-34.(in Chinese)

    • [8] MOGHADASI K,ISA M S M,ARIFFIN M A,et al.A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties[J].Journal of Materials Research and Technology,2022,17:1054-1121.

    • [9] 范竞一,马迅,李伟,等.医用钛合金表面改性技术研究进展[J].功能材料,2022,53(7):7027-7039.FAN Jingyi,MA Xun,LI Wei,et al.Research progress of surface modification technology of medical titanium alloy[J].Journal of Functional Materials,2022,53(7):7027-7039.(in Chinese)

    • [10] HERNAN J P F,TORRES B,LOPEZ A J,et al.Sol-gel coatings doped with graphene nanoplatelets for improving the degradation rate and the cytocompatibility of AZ31 alloy for biomedical applications[J].Surface and Coatings Technology,2021,426(7):127745.

    • [11] TILLMANN W,HAGEN L,STANGIER D,et al.Lapping and polishing of additively manufactured 316L substrates and their effects on the microstructural evolution and adhesion of PVD CrAlN coatings[J].Surface and Coatings Technology,2021,428(5):127905.

    • [12] SEDELNIJOVA M B,KOMAROVA E G,SHARKEEV Y P,et al.Zn-,Cu-or Ag-incorporated micro-arc coatings on titanium alloys:Properties and behavior in synthetic biological media[J].Surface and Coatings Technology,2019,369(3):52-68.

    • [13] XU Y Y,ZHANG J Y,LIANG F B,et al.Investigation of magnetron sputtered nano-silver coating on titanium surface with micro-nanostructure[J].Surfaces and Interfaces,2023,38:102770.

    • [14] NI A,LIU D,WANG S,et al.Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti-6Al-4V alloy[J].Journal of Materials Science & Technology,2016,32(10):1071-1076.

    • [15] LI Y,WANG W,DUAN J,et al.A super-hydrophilic coating with a macro/micro/nano triple hierarchical structure on titanium by two-step micro-arc oxidation treatment for biomedical applications[J].Surface and Coatings Technology,2017,311:1-9.

    • [16] XIANG N,SONG R G,XIANG B,et al.A study on photocatalytic activity of micro-arc oxidation TiO2,films and Ag +/MAO-TiO2,composite films[J].Applied Surface Science,2015,347:454-460.

    • [17] HAN Y,SUN J,HUANG X.Formation mechanism of HA-based coatings by micro-arc oxidation[J].Electrochemistry Communications,2008,10(4):510-513.

    • [18] LIU S,LI B,LIANG C,et al.Formation mechanism and adhesive strength of a hydroxyapatite/TiO2,composite coating on a titanium surface prepared by micro-arc oxidation[J].Applied Surface Science,2016,362:109-114.

    • [19] AYSUN A.Coatings of Bioactive TiO2 Films on TI6AL4V alloy by micro arc oxidation[J].Acta Physica Polonica A,2018,134(1):412-414.

    • [20] YAO X H,ZHANG X Y,WU H B,et al.Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J].Applied Surface Science,2014,292:944-947.

    • [21] ZHANG X Y,WANG H Z,LI J F,et al.Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J].Ceramics International,2016 42(15):17095-17100.

    • [22] ZHANG Z Y,HUANG T Y,ZHAI D J,et al.Study on Zn-doped antibacterial bioactive coatings on Ti6Al4V titanium alloy surfaces by micro-arc oxidation[J].Surface and Coatings Technology,2023,467:129724.

    • [23] 李玥锟,徐琳,杜青,等.Ti6AL4V 表面微弧氧化法制备含锌涂层的特征及抗菌性研究[J].口腔医学研究,2018,34(12):1347-1350.LI Yuekun,XU Lin,DU Qing,et al.Study on the characteristics and antibacterial activity of Zinccontaining coatings prepared by Ti6AL4V Surface micro-arc oxidation[J].Journal of Oral Science Research,2018,34(12):1347-1350.(in Chinese)

    • [24] PESODE P A,BARVE S B.Recent advances on the antibacterial coating on titanium implant by micro-arc oxidation process[J].Materials Today:Proceedings,2021,47:5652-5662.

    • [25] ZHAO W k,WANG J F,JIANG W Y,et al.A novel biodegradable Mg-1Zn-0.5Sn alloy:Mechanical properties,corrosion behavior,biocompatibility,and antibacterial activity[J].Journal of Magnesium and Alloys,2022,8(2):374-386.

    • [26] RADHA R,SREEKANTH D.Mechanical,in vitro corrosion and bioactivity performance of Mg based composite for orthopedic implant applications:Influence of Sn and HA addition[J].Biomedical Engineering Advances,2022,3:100033.

    • [27] ZHAO W K,WANG J F,JIANG W Y,et al.A novel biodegradable Mg-1Zn-0.5Sn alloy:Mechanical properties,corrosion behavior,biocompatibility,and antibacterial activity[J].Journal of Magnesium and Alloys,2020,8(2):374-386.

    • [28] JIANG W Y,WANG J F,ZHAO W K,et al.Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys[J].Journal of Magnesium and Alloys,2019,7(1):15-26.

    • [29] WANG J T,PAN Y K,FENG R.Effect of electrolyte composition on the microstructure and bio-corrosion behavior of micro-arc oxidized coatings on biomedical Ti6Al4V alloy[J].Journal of Materials Research and Technology,2020,9(2):1477-1490.

    • [30] 陈永楠,郭紫薇,杨泽慧,等.氧化石墨烯调控GO/TiO2 陶瓷膜层自封孔效应研究[J].稀有金属材料与工程.2021,50(10):3621-3626.CHEN Yunnan,GUO Ziwei,YANG Zehui,et al.Study on the regulation of self-sealing pore effect of GO/TiO2 ceramic layer by graphene oxide[J].Rare Metal Materials and Engineering.2021,50(10):3621-3626.(in Chinese)

    • [31] KUZNETSOV M V,SAFONOV A V.Structural,optical,XPS,and magnetic properties of Sn–O nanoparticles[J].Materials Chemistry and Physics,2023,302:127739.

    • [32] MORKS M F,FAHIM N F,KOBAYASHI A.Structure,mechanical performance and electrochemical characterization of plasma sprayed SiO2/Ti-reinforced hydroxyapatite biomedical coatings[J].Applied Surface Science,2008,255(5):3426-3433.

    • [33] LU X P,BLAWERT C,HUANG Y D,et al.Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles[J].Electrochimica Acta,2016,187:20-33.

    • [34] REN Z Y,HU Y L,TONG Y G,et al.Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy[J].Tribology International,2023,182:108366.

    • [35] HUANG K,WANG G M,QING H W,et al.Effect of Cu content on electrical resistivity,mechanical properties and corrosion resistance of AlCuxNiTiZr0.75 high entropy alloy films[J].Vacuum,2022,195:110695.

    • [36] YOO B,SHIN K R,HWANG D Y,et al.Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation[J].Applied Surface Science,2010,256(22):6667-6672.

    • [37] LUO J M,WU X H,XU J L.The influence of electrolyte components on the corrosion resistance and wear resistance of TiCP/Ti6Al4V composite micro-arc oxide film[J].Journal of Inorganic Materials,2017,32:418−424.

    • [38] ROBINSON D A,GRIFFITH R W,SHECHTMAN D,et al.In vitro antibacterial properties of magnesium metal against Escherichia coli,Pseudomonas aeruginosa and Staphylococcus aureus[J].Acta Biomaterialia,2010,6(5):1869-1877.

    • [39] SANTOS G,TIBAYAN E,CASTILLON G,et al.Tin oxide-silver composite nanomaterial coating for UV protection and its bactericidal effect on escherichia coli(E.coli)[J].Coatings,2014,4(2):320-328.

  • 参考文献

    • [1] NAVARRO M,MICHIARDI A,CASTANO O,et al.Biomaterials in orthopaedics[J].Journal of the Royal Society Interface,2008,5(27):1137-1158.

    • [2] ZHANG L C,CHEN L Y.A review on biomedical titanium alloys:recent progress and prospect[J].Advanced Engineering Materials,2019,21(4):1801215.

    • [3] KAUR M,SINGH K.Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J].Materials Science and Engineering:C,2019,102:844-862.

    • [4] 杨桂宇,李运刚.医用钛合金的研究及发展现状[J].铸造技术,2016,37(10):2062-2064.YANG Guiyu,LI Yungang.Research and development status of medical titanium alloys[J].Foundry technology,2016,37(10):2062-2064.(in Chinese)

    • [5] RONOH K,MWEMA F,DABEES S,et al.Advances in sustainable grinding of different types of the titanium biomaterials for medical applications:A review[J].Biomedical Engineering Advances,2022,4:100047.

    • [6] CVIJOVIC A I,CVIJOVIC Z,MITROVIC S,et al.Tribological behaviour of orthopaedic Ti-13Nb-13Zr and Ti-6Al-4 V alloys[J].Tribology Letters,2010,40(1):59-70.

    • [7] 杨佳惠,张一凡,武俊霞,等.生物医用钛合金研究进展[J].稀有金属与硬质合金,2021,49(5):29-34.YANG Jiahui,ZHANG Yifan,WU Junxia,et al.Research progress of biomedical titanium alloys[J].Rare Metals and Cemented Carbides,2021,49(5):29-34.(in Chinese)

    • [8] MOGHADASI K,ISA M S M,ARIFFIN M A,et al.A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties[J].Journal of Materials Research and Technology,2022,17:1054-1121.

    • [9] 范竞一,马迅,李伟,等.医用钛合金表面改性技术研究进展[J].功能材料,2022,53(7):7027-7039.FAN Jingyi,MA Xun,LI Wei,et al.Research progress of surface modification technology of medical titanium alloy[J].Journal of Functional Materials,2022,53(7):7027-7039.(in Chinese)

    • [10] HERNAN J P F,TORRES B,LOPEZ A J,et al.Sol-gel coatings doped with graphene nanoplatelets for improving the degradation rate and the cytocompatibility of AZ31 alloy for biomedical applications[J].Surface and Coatings Technology,2021,426(7):127745.

    • [11] TILLMANN W,HAGEN L,STANGIER D,et al.Lapping and polishing of additively manufactured 316L substrates and their effects on the microstructural evolution and adhesion of PVD CrAlN coatings[J].Surface and Coatings Technology,2021,428(5):127905.

    • [12] SEDELNIJOVA M B,KOMAROVA E G,SHARKEEV Y P,et al.Zn-,Cu-or Ag-incorporated micro-arc coatings on titanium alloys:Properties and behavior in synthetic biological media[J].Surface and Coatings Technology,2019,369(3):52-68.

    • [13] XU Y Y,ZHANG J Y,LIANG F B,et al.Investigation of magnetron sputtered nano-silver coating on titanium surface with micro-nanostructure[J].Surfaces and Interfaces,2023,38:102770.

    • [14] NI A,LIU D,WANG S,et al.Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti-6Al-4V alloy[J].Journal of Materials Science & Technology,2016,32(10):1071-1076.

    • [15] LI Y,WANG W,DUAN J,et al.A super-hydrophilic coating with a macro/micro/nano triple hierarchical structure on titanium by two-step micro-arc oxidation treatment for biomedical applications[J].Surface and Coatings Technology,2017,311:1-9.

    • [16] XIANG N,SONG R G,XIANG B,et al.A study on photocatalytic activity of micro-arc oxidation TiO2,films and Ag +/MAO-TiO2,composite films[J].Applied Surface Science,2015,347:454-460.

    • [17] HAN Y,SUN J,HUANG X.Formation mechanism of HA-based coatings by micro-arc oxidation[J].Electrochemistry Communications,2008,10(4):510-513.

    • [18] LIU S,LI B,LIANG C,et al.Formation mechanism and adhesive strength of a hydroxyapatite/TiO2,composite coating on a titanium surface prepared by micro-arc oxidation[J].Applied Surface Science,2016,362:109-114.

    • [19] AYSUN A.Coatings of Bioactive TiO2 Films on TI6AL4V alloy by micro arc oxidation[J].Acta Physica Polonica A,2018,134(1):412-414.

    • [20] YAO X H,ZHANG X Y,WU H B,et al.Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J].Applied Surface Science,2014,292:944-947.

    • [21] ZHANG X Y,WANG H Z,LI J F,et al.Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J].Ceramics International,2016 42(15):17095-17100.

    • [22] ZHANG Z Y,HUANG T Y,ZHAI D J,et al.Study on Zn-doped antibacterial bioactive coatings on Ti6Al4V titanium alloy surfaces by micro-arc oxidation[J].Surface and Coatings Technology,2023,467:129724.

    • [23] 李玥锟,徐琳,杜青,等.Ti6AL4V 表面微弧氧化法制备含锌涂层的特征及抗菌性研究[J].口腔医学研究,2018,34(12):1347-1350.LI Yuekun,XU Lin,DU Qing,et al.Study on the characteristics and antibacterial activity of Zinccontaining coatings prepared by Ti6AL4V Surface micro-arc oxidation[J].Journal of Oral Science Research,2018,34(12):1347-1350.(in Chinese)

    • [24] PESODE P A,BARVE S B.Recent advances on the antibacterial coating on titanium implant by micro-arc oxidation process[J].Materials Today:Proceedings,2021,47:5652-5662.

    • [25] ZHAO W k,WANG J F,JIANG W Y,et al.A novel biodegradable Mg-1Zn-0.5Sn alloy:Mechanical properties,corrosion behavior,biocompatibility,and antibacterial activity[J].Journal of Magnesium and Alloys,2022,8(2):374-386.

    • [26] RADHA R,SREEKANTH D.Mechanical,in vitro corrosion and bioactivity performance of Mg based composite for orthopedic implant applications:Influence of Sn and HA addition[J].Biomedical Engineering Advances,2022,3:100033.

    • [27] ZHAO W K,WANG J F,JIANG W Y,et al.A novel biodegradable Mg-1Zn-0.5Sn alloy:Mechanical properties,corrosion behavior,biocompatibility,and antibacterial activity[J].Journal of Magnesium and Alloys,2020,8(2):374-386.

    • [28] JIANG W Y,WANG J F,ZHAO W K,et al.Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys[J].Journal of Magnesium and Alloys,2019,7(1):15-26.

    • [29] WANG J T,PAN Y K,FENG R.Effect of electrolyte composition on the microstructure and bio-corrosion behavior of micro-arc oxidized coatings on biomedical Ti6Al4V alloy[J].Journal of Materials Research and Technology,2020,9(2):1477-1490.

    • [30] 陈永楠,郭紫薇,杨泽慧,等.氧化石墨烯调控GO/TiO2 陶瓷膜层自封孔效应研究[J].稀有金属材料与工程.2021,50(10):3621-3626.CHEN Yunnan,GUO Ziwei,YANG Zehui,et al.Study on the regulation of self-sealing pore effect of GO/TiO2 ceramic layer by graphene oxide[J].Rare Metal Materials and Engineering.2021,50(10):3621-3626.(in Chinese)

    • [31] KUZNETSOV M V,SAFONOV A V.Structural,optical,XPS,and magnetic properties of Sn–O nanoparticles[J].Materials Chemistry and Physics,2023,302:127739.

    • [32] MORKS M F,FAHIM N F,KOBAYASHI A.Structure,mechanical performance and electrochemical characterization of plasma sprayed SiO2/Ti-reinforced hydroxyapatite biomedical coatings[J].Applied Surface Science,2008,255(5):3426-3433.

    • [33] LU X P,BLAWERT C,HUANG Y D,et al.Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles[J].Electrochimica Acta,2016,187:20-33.

    • [34] REN Z Y,HU Y L,TONG Y G,et al.Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy[J].Tribology International,2023,182:108366.

    • [35] HUANG K,WANG G M,QING H W,et al.Effect of Cu content on electrical resistivity,mechanical properties and corrosion resistance of AlCuxNiTiZr0.75 high entropy alloy films[J].Vacuum,2022,195:110695.

    • [36] YOO B,SHIN K R,HWANG D Y,et al.Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation[J].Applied Surface Science,2010,256(22):6667-6672.

    • [37] LUO J M,WU X H,XU J L.The influence of electrolyte components on the corrosion resistance and wear resistance of TiCP/Ti6Al4V composite micro-arc oxide film[J].Journal of Inorganic Materials,2017,32:418−424.

    • [38] ROBINSON D A,GRIFFITH R W,SHECHTMAN D,et al.In vitro antibacterial properties of magnesium metal against Escherichia coli,Pseudomonas aeruginosa and Staphylococcus aureus[J].Acta Biomaterialia,2010,6(5):1869-1877.

    • [39] SANTOS G,TIBAYAN E,CASTILLON G,et al.Tin oxide-silver composite nanomaterial coating for UV protection and its bactericidal effect on escherichia coli(E.coli)[J].Coatings,2014,4(2):320-328.

  • 手机扫一扫看