-
0 前言
-
炼钢生产通常采用连铸工艺,以达到高效和节能的目的,实现“碳达峰、碳中和”目标。结晶器是连铸设备的核心部件,其质量直接关系到钢坯质量和生产效益。随着高速拉连铸技术成为发展主流,对结晶器性能提出了更高要求,磨损是结晶器铜板的主要失效形式之一。通过电镀、激光熔覆和热喷涂等技术,在结晶器铜板工作面制备涂层,是延长其使用寿命的主要途径[1-4]。电镀法是最成熟且应用最广泛的技术,具有操作简单、镀层厚度可控、内应力小等优点[5],目前电镀结晶器涂层市场占有率在 80 %左右。但是电镀层沉积周期长、硬度较低以及镀层易脱落[6],同时电镀技术对环境污染很严重,因此电镀技术的淘汰成为必然趋势。由于铜和合金涂层的热导率相差较大,激光熔覆所制备的涂层普遍存在内应力较高和开裂问题,此外,铜对激光的反射率很高,直接熔覆冶金结合涂层难以实现,仍未在工业生产中广泛应用[7-8]。超音速火焰喷涂 (Supersonic flame spraying,HVOF)作为应用最为广泛的热喷涂技术之一,因其火焰流速快、粉末动能大和低氧化等特点,可以制备高致密、均匀的涂层[9-10]。而且,HVOF 技术的材料选择非常广泛,且可针对结晶器不同尺寸和部位进行功能性设计,以适应连铸的工况要求。
-
Ni 基合金因具有良好的力学性能和耐蚀性能,已被应用于结晶器铜板 HVOF 涂层的工业化制备。与电镀涂层相比,HVOF Ni 基合金涂层通常具有更好的耐磨性[10-13]。ESKANDARI 等[14]研究喷涂工艺和热处理对通过 HVOF 和高压高速氧气燃料 (HP-HVOF)沉积的 NiCrBSi 涂层的微观结构、力学和摩擦学性能的影响;发现热处理可以减少涂层的孔隙体积和裂片边界,提高涂层的结合强度,从而增强涂层的耐磨性。KONG 等[15]研究激光重熔超音速火焰喷涂 NiCrBSi 合金涂层的摩擦磨损性能,涂层主要由 γ-Ni、Ni2Si、SiO2 和高温磨损后的 Cr7C3 和 CrB 硬质相组成,在 600℃时,涂层中的 Ni、 Fe、Si 被氧化,氧化物提高了此涂层的耐磨性。 XUAN 等[16]通过重熔降低 NiCrBSi 涂层的孔隙率,消除层状边界,促进涂层中冶金结合的形成,从而提高耐磨性。此外,在涂层中的硬质第二相也能增强涂层的耐磨性,如氧化物[17-18]、硼化物[19]及碳化物[20-21]等。然而,这些第二相在提升耐磨性的同时,却有损于涂层的耐蚀性能[22-23],不符合铜结晶器铜板的服役要求。
-
多主元合金是基于熵调控理念设计的结构有序而化学无序的多主元新型合金,展现出优异的耐蚀性能、力学性能和抗高温氧化性能等[24-27]。其中,具有面心立方结构的 NiCrCo 多主元合金具有巨大的应用潜力,成为近年来的研究热点之一。NiCrCo 合金具有良好的耐高温磨损性能,当温度超过 200℃时,NiCrCo 合金的磨损率低于 718 镍基合金[28]。这是由于 NiCrCo 合金具有较低的层错能,磨损表面形成了具有高密度位错胞、纳米级形变孪晶和大量堆垛层错的复合结构,从而降低了摩擦因数和磨损率。但是,NiCrCo 合金在 HVOF 过程中存在严重的氧化现象,影响涂层的性能。
-
本文借鉴 Ni 基自熔性合金和 NiCrCo 多主元合金的设计理念,开发了 NiCrCoBSi 自熔性合金。在 NiCrBSi 合金中的基础上,提高 Cr 含量,并添加 Co 元素作为主元素之一,可以改善涂层的组织稳定性和高温力学性能。采用 HVOF 技术在结晶器铜板表面制备了 NiCrCoBSi 涂层,在 HVOF 过程中,合金中强脱氧元素 Si 和 B 优先与氧反应,所形成的氧化物同时汽化,从而阻碍合金被氧化[29]。然后研究了 NiCrCoBSi 涂层在 450℃下的高温摩擦磨损性能,并与市场化占有率最高的电镀 NiCo 涂层进行对比。本文可以为长寿命结晶器铜板涂层的开发提供理论依据,同时为铜及铜合金的表面改性在其它领域的应用提供技术支撑,促进多主元合金在工业领域中的应用。
-
1 材料与方法
-
试验材料为以 CuCrZr 合金为基础,其化学成分(质量分数)为 98.8Cu-1.00Cr-0.20Zr。HVOF 采用气雾化法制备的球形 NiCrCoBSi 粉末,其粒度分布为 15~53 μm,其化学成分(质量分数)如表1 所示。对比试样为商业化电镀 NiCo 涂层,其化学成分(质量分数)为 85Ni-15Co。喷涂前,对基材表面进行喷砂和丙酮清洗。采用超音速火焰喷涂系统(Praxair JP8000)处理 NiCrCoBSi 涂层。工作原理示意图如图1 所示。HVOF 的主要工艺参数为:煤油流量 0.37 L / min,氧气流量 860 L / min,氮气流量 0.18 L / min,供粉量 75 g / min,喷涂距离 330 mm,线速度 500 mm / s,步距 5 mm,枪管长度 10.16 cm。采用管式炉将喷涂后的样品加热至 1 000℃,保温 4 h,然后用管式炉冷却。HVOF 工作原理示意图如图1 所示。
-
图1 HVOF 工作原理示意图
-
Fig.1 Schematic diagram of HVOF technological principle
-
喷涂结束后,将两种试样进行线切割,然后使用标准金相制样方法进行抛光腐蚀,最后利用 TESCAN MIRA3 扫描电镜和能谱仪(SEM+EDS) 分析两种涂层的微观组织及相成分。涂层的相组成使用 D / max2500pcX 型 X 射线衍射仪检测,设置扫描范围 20 °~120 °,扫描速度 10(°)/ min,扫描步长 0.02 °,扫描电压为 40 kV。采用带有 Cu Kα射线源的 X 射线光电子能谱(XPS,Thermo Scientific K-Alpha)对涂层磨损表面进行相分析。XPS 测试中用 C 的标准峰校准(C1s,284.8 eV),使用 Avantage 软件对 XPS 数据进行拟合和分析。借助日本岛津 HMV-2 型显微硬度测试仪对两种涂层截面进行显微硬度分布测试,测试载荷 0.1 N,保荷时间 15 s。为对比研究两种涂层的断裂韧性,采用 HST-200 型 3D 划痕仪进行微米划痕测试,试验参数为 80 N 恒载,划痕长度为 3 mm,行进速度为 0.1 mm / s,测试压头选用 Rockwell C,压头直径为 200 μm。
-
采用 MFT-5000 型高温摩擦磨损试验机,分别对 NiCrCoBSi 涂层和 NiCo 涂层在 450℃条件下的摩擦磨损行为进行测试,摩擦磨损示意图如图2 所示。摩擦试验过程中,摩擦副选择 WC 磨球,使用加载力 100 N,摩擦时间 2 h,摩擦速度 60 r / min。试验过程中的摩擦因数-时间曲线通过磨损设备连接的电脑自动记录获得。磨损测试后采用扫描电镜观察涂层磨损表面特征,并借助共聚焦显微镜测试涂层磨痕的三维轮廓,并根据式(1)和式(2)确定试样的磨损体积和磨损率。
-
式中,ΔV 是样品的体积损失,其中,L 是磨损环中心的周长,h 和 b 分别是磨损轮廓的深度和宽度。通过体积损失计算磨损率,磨损率可通过式(2) 所得。
-
式中,Wr 是磨损率,S 是磨损滑行过的总距离,P 是加载载荷。每个样品的轮廓信息都测量 9 条轮廓取平均值。
-
图2 摩擦磨损试验示意图
-
Fig.2 Schematic diagram of friction wear test
-
2 结果与讨论
-
2.1 涂层微观结构
-
图3 为 NiCo 和 NiCrCoBSi 涂层的 X 射线衍射图。NiCo 涂层为单相面心立方(FCC)固溶体结构,而 NiCrCoBSi 涂层的主要物相包括 FCC 固溶体、CrB 和 M23C6。两种试样的截面微观组织形貌及主要成分分布如图4 所示。可以看出,两种涂层致密性均较高,未发现裂纹。NiCo 涂层中各元素分布均匀,无明显成分偏析,涂层与铜合金基体之间有明显的分层,相互之间没有过渡区存在,为机械结合。而 NiCrCoBSi 涂层含有较多的析出相,导致 Ni、Cu 和 Fe 元素分布不均匀。由于喷涂之后采用扩散热处理,NiCrCoBSi 涂层与铜合金基体之间存在扩散层,形成冶金结合,这有利于提高涂层与基体的结合力[30]。NiCrCoBSi 涂层扩散层的厚度约为 40 μm;扩散层中主要包含 Cu 和 Ni 元素,这是因为 Ni 和 Cu 可以互溶形成固溶体。此外,扩散层中还有少量 Fe 和 Si 元素。
-
图3 NiCo 和 NiCrCoBSi 涂层的 XRD 图谱
-
Fig.3 XRD patterns of NiCo and NiCrCoBSi coating
-
结合 NiCrCoBSi 涂层不同位置的 EDS 分析(表2)和析出相的 TEM 衍射斑点(图5)结果,可知涂层中硼化物主要为块状,碳化物呈长条状和块状。图4b 中,1 点和 3 点为碳化物,含 Cr 和 C 元素含量较高。而 2 点的元素 Co,Cr,Ni 含量较高,为 FCC 固溶体。4 点的 Cr 和 B 元素含量高,可以确定为硼化物。此外,NiCrCoBSi 粉末为自熔性粉末,在喷涂过程中,含有的 B 和 Si 元素优先与氧反应,起到脱氧作用,可以防止涂层被氧化[31],因此涂层中未发现明显的氧化物。
-
图4 NiCo 涂层和 NiCrCoBSi 涂层的截面形貌及能谱分析结果图
-
Fig.4 Cross-section morphology and EDS analysis images of NiCo and NiCrCoBSi coating
-
图5 NiCrCoBSi 的 TEM 像和选区电子衍射图样
-
Fig.5 TEM image and SAED pattern in NiCrCoBSi coating
-
2.2 涂层高温摩擦磨损行为
-
图6 为两种涂层截面的显微硬度分布。可以看出,涂层的显微硬度分布呈现一定的差异, NiCrCoBSi 涂层的显微硬度较大,约为 410 HV0.1,而 NiCo 涂层的显微硬度随深度变化较小,约为 210 HV0.1。这主要是由于 NiCrCoBSi 涂层中含有较多合金元素起到固溶作用,而且含有形态各异的硬质相。
-
图6 两种涂层截面的硬度分布
-
Fig.6 Cross-section microhardness profiles of the coatings
-
由于涂层厚度只有几百微米,不能采用 GB / T21143 标准准确测定其断裂韧性。目前,国内外通常采用弯曲法、压痕法和划痕法等,对比分析涂层的断裂韧性[32]。本文中采用微米划痕法对比分析两种涂层的断裂韧性。由施加载荷 FZ、摩擦力 FT 和划痕深度 d 可以得出材料的断裂韧性,计算方法见式(3)和式(4)。划痕硬度和断裂韧性的具体计算方法见文献[33]。
-
式中,KC为断裂韧性,FT为摩擦力,2PA 为压头形状参数,d 为划痕深度,θ 为压头锥头角度。
-
图7 为 NiCo 和 NiCrCoBSi 涂层的微米划痕法测试结果。为了保证其结果的可靠性,选取划痕稳定阶段(1~2.5 mm)的平均值作为涂层的断裂韧性 (图7c、7d)。计算可得,NiCrCoBSi 和 NiCo 涂层的断裂韧性分别为 7.21 MPa · m 1 / 2 和 7.62 MPa·m 1 / 2。已有研究表明,压痕法测得等离子喷涂和激光熔覆 NiCrBSi 涂层的断裂韧性分别为 2.29 MPa·m 1 / 2 和 5.45 MPa·m 1 / 2,与通过划痕法得到的结果相近[34-35]。可知与 NiCo 涂层相比, NiCrCoBSi 涂层的硬度提高 95%,而断裂韧性只下降 5.4%,说明 NiCrCoBSi 涂层具有优异的综合力学性能。
-
图7 NiCo 和 NiCrCoBSi 涂层的微米划痕法试验结果
-
Fig.7 Results of the scratch test of NiCo 和 NiCrCoBSi coating
-
图8 为两种涂层的摩擦因数曲线。由图可以看出,两种涂层的摩擦因数曲线均呈现快速升高-下降-缓慢上升-平稳波动的四个阶段。此外,NiCrCoBSi 涂层在磨损过程中发生了黏滑现象。黏滑现象是指在摩擦过程中,相互接触的两个物体不是连续的、平滑的滑动,而是滑动和黏结交替发生的间歇运动,从而导致静摩擦因数大于滑动摩擦因数或是滑动摩擦因数发生剧变的现象[36]。因为摩擦副在黏结时摩擦因数较大,而滑动时摩擦因数较小,最终呈现出摩擦因数上下波动的情况。NiCo 涂层的摩擦因数波动较大,介于 0.4~1.0,最终在 0.6 附近波动。而与 NiCo 涂层相比(约 0.67),NiCrCoBSi 涂层的摩擦因数较低(约 0.51),且曲线表现出较好的稳定性,其值介于 0.4~0.6。NiCrCoBSi 涂层具有致密均匀的微观结构(图3)和高显微硬度(图6)以及良好的高温性能,导致摩擦磨损试验过程中摩擦因数相对稳定且较低。
-
图9 为两种涂层的磨损率及其磨损区域宽度与深度。从图9a 中可以看出 NiCo 涂层的磨痕宽度和深度分别为 2.7 mm 和 31.62 μm,而 NiCrCoBSi 涂层分别为 1.44 mm 和 11.47 μm,与 NiCo 涂层相比下降程度明显。此外,NiCo 涂层的耐磨性较差,其磨损率约为 7.91×10−5 mm·N−1 ·m−1,而 NiCrCoBSi 涂层的耐磨性更好,其磨损率约为 1.53×10−5 mm·N−1 ·m−1 (图9b),较前者降低了 81%。
-
图8 NiCo 和 NiCrCoBSi 涂层的摩擦因数曲线
-
Fig.8 Friction Factor of NiCo and NiCrCoBSi coating
-
图9 NiCo and NiCrCoBSi 涂层磨痕深宽与耐磨性能
-
Fig.9 Width / depth of wear tracks and wear resistance of NiCo and NiCrCoBSi coating
-
图10 为 NiCo and NiCrCoBSi 涂层磨痕内部 SEM 形貌,由图10 可以看出,NiCo 涂层经磨损后表面呈现出大块的剥落,并伴随着深灰色黏着痕迹以及裂纹和磨屑。NiCrCoBSi 涂层的磨损表面出现了碎屑、剥落、犁沟和黏着磨损的迹象,且存在很多细小的剥落坑。由于摩擦试验过程中,材料表面受到的载荷作用是周期性的,这会减弱涂层片层之间的结合力,从而造成微裂纹在破损涂层的边界产生,逐渐扩大后形成碎屑剥落。碎屑在外力作用下,会划伤涂层表面形成犁沟。因此 NiCrCoBSi 涂层的磨损机理以黏着磨损、疲劳磨损为主,伴随着少量磨料磨损。在磨损试验中,磨损轨道受到周期性滚动作用的影响,碳化物硬质相和润滑颗粒剥落。一部分剥落的硬质相从摩擦副表面抛出,形成磨损碎片。另一部分镶嵌在形成磨粒磨损的摩擦副中,被刮擦的接触面出现沟槽。剥落的颗粒在磨损表面形成一层润滑转移膜,有利于提高涂层的耐磨性[37]。
-
图10 NiCo and NiCrCoBSi 涂层的表面磨损形貌
-
Fig.10 Morphology of worn surface of NiCo and NiCrCoBSi coating
-
结合 NiCo 涂层和 NiCrCoBSi 涂层磨痕表面的 XRD(图11)和 XPS(图12 和图13)分析结果可知,NiCo 涂层磨损后表面呈现 NiO、CoO 和 Co3O4 等氧化物(图11)。NiCrCoBSi 涂层表面除了 NiO、 NiFe2O4、CoO、Co3O4、Cr2O3、和 NiCr2O4 等氧化物外,还存在一些硼化物(图11),如 CrB。这些硼化物本来存在于涂层,在磨损过程中,涂层发生剥落,从而导致其暴露在材料表面。涂层剥落后的磨屑中,被发现的尖晶石氧化物(NiFe2O4、NiCr2O4 等)则是由磨损过程中的氧化作用生成。通常磨损表面上的氧化物形成对磨损进程起着至关重要的作用。尖晶石氧化物(FeCr2O4)在磨损过程中可以当固体润滑剂,有利于减少材料黏附,从而降低摩擦因数[37]。研究表明 Cr2O3 氧化物具有较弱的黏合强度,在滑动过程中提供较低的剪切阻力,从而导致较低的摩擦因数[38]。
-
图11 两种涂层磨痕表面的 XRD 图谱
-
Fig.11 XPS patterns of the wear tracks surface of coatings
-
图12 NiCo 涂层磨痕表面的 XPS 图谱
-
Fig.12 XPS patterns of the wear tracks surface of NiCo coating
-
图13 NiCrCoBSi 涂层磨痕表面的 XPS 图谱
-
Fig.13 XPS patterns of the wear tracks surface of NiCrCoBSi coating
-
为了进一步探究涂层的磨损机理,测试了磨损表层的硬度分布,两种涂层磨损次表面硬度分布曲线如图14 所示。可以发现 NiCrCoBSi 涂层磨损表层的硬度随着距表面深度呈梯度变化,越靠近磨损表面硬度越高,而 NiCo 涂层的磨损截面硬度则无明显变化。这表明 NiCrCoBSi 涂层在外界循环载荷作用下,发生加工硬化,而硬度被认为是影响材料耐磨性的主要因素之一[39],从而使得涂层的耐磨性进一步提升。为了分析硬度变化的原因,采用 SEM 观察了 NiCrCoBSi 涂层磨损表层截面形貌(图15),可以看出涂层表面在循环载荷作用下,磨损表层组织较基体发生明显变化,即在磨损近表层(Ⅰ区),涂层内部的硼化物或者碳化物呈现明显的球状,并且发生一定程度的细化。而靠近基体的区域中(Ⅱ、Ⅲ区),涂层的硼化物或者碳化物无明显变化(图15b 和 15c)。
-
图14 两种涂层磨损次表面硬度分布曲线
-
Fig.14 Wear subsurface hardness distribution of NiCo and NiCrCoBSi coating
-
结合上述结果来看,HVOF 制备的 NiCrCoBSi 涂层比电沉积 NiCo 涂层具有更高的硬度以及更好的耐磨性。这是因为前者涂层中的块状硼化物以及长条状 / 块状碳化物等硬质相能显著提高涂层的硬度和耐磨性。此外,在磨损过程中,涂层表面受到循环载荷作用,累积的应变能被引入涂层合金的内部,当应变积累到一定程度,产生塑性变形后,涂层合金中会激发位错活动。相交的高密度位错壁将涂层各相细分为更细的块(或位错胞)[40]。随着应变积累,位错的形成和积累也越来越多。涂层的硬质相在塑性变形过程中被切割,旋转。碳化物及硼化物被细化[41]和球化[42],进一步提高磨损表层的硬度,从而导致涂层的耐磨性上升。因此,NiCrCoBSi 涂层具有优异耐磨性的主要原因是其自身的高硬度、耐磨的硬质相以及加工硬化的能力。
-
图15 NiCrCoBSi 涂层的磨损截面形貌
-
Fig.15 Wear section morphology of NiCrCoBSi coating
-
3 结论
-
开发了一种 NiCrCoBSi 自熔性多主元合金,采用 HVOF 技术在结晶器铜板表面制备 NiCrCoBSi涂层,研究其在 450℃下的高温摩擦磨损性能,并与市场化占有率最高的电镀 NiCo 涂层进行对比,得到结论如下:
-
(1)NiCo 涂层为单相面心立方(FCC)固溶体结构;而 NiCrCoBSi 涂层的主要物相包括 FCC 固溶体、CrB 和 M23C6。
-
(2)与 NiCo 涂层相比,NiCrCoBSi 涂层的硬度提高 95%,而断裂韧性只下降 5.4%。NiCrCoBSi 涂层表现出优异的耐磨性和较低的摩擦因数,其磨损率较 NiCo 涂层降低 81%。
-
(3)两种涂层的磨损机制均以黏着磨损、疲劳磨损为主,伴随着少量磨料磨损。NiCrCoBSi 涂层的耐磨性较高的主要原因是其较高的硬度、内部的各种硬质耐磨相以及磨损表层的加工硬化。
-
参考文献
-
[1] WANG H,SUN Y,QIAO Y,et al.Effect of Ni-coated WC reinforced particles on microstructure and mechanical properties of laser cladding Fe-Co duplex coating[J].Optics & Laser Technology,2021,142:107209.
-
[2] BIN HUMAM S,GYAWALI G,AMANOV A,et al.Microstructure,interface,and nanostructured surface modifications to improve mechanical and tribological performance of electrodeposited Ni-W-TaC composite coating[J].Surface and Coatings Technology,2021,419:127293.
-
[3] KE P,CAI F,CHEN W L,et al.Influence of bond coat on HVOF-Sprayed gradient cermet coating on copper alloy[J].Journal of Thermal Spray Technology,2017,26(5):857-867.
-
[4] 吕镖,胡振峰,汪笑鹤,等.电流密度对镍镀层结构和性能的影响[J].中国表面工程,2013,26(4):66-71.LÜ Biao,HU Zhenfeng,WANG Xiaohe,et al.Effect of current density on the microstructure and properties of plated nickel coating[J].China Surface Engineering,2013,26(4):66-71.(in Chinese)
-
[5] ALIOFKHAZRAEI M,WALSH F C,ZANGARI G,et al.Development of electrodeposited multilayer coatings:A review of fabrication,microstructure,properties and applications[J].Applied Surface Science Advances,2021,6:100141.
-
[6] SRNEC NOVAK J,LANZUTTI A,BENASCIUTTI D,et al.On the damage mechanisms in a continuous casting mold:After-service material characterization and finite element simulation[J].Engineering Failure Analysis,2018,94:480-492.
-
[7] LIU Y,XU T,LIU Y,et al.Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser[J].Journal of Materials Research and Technology,2020,9(4):8283-8288.
-
[8] LIU F,LIU C,TAO X,et al.Laser cladding of Ni-based alloy on copper substrate[J].Journal of University of Science and Technology Beijing,Mineral,Metallurgy,Material,2006,13(4):329-332.
-
[9] HONG S,QIN J,LIN J,et al.Influences of sand concentration and flow velocity on hydro-abrasive erosion behaviors of HVOF sprayed Cr3C2-NiCr and WC-Cr3C2-Ni coatings[J].Journal of Materials Research and Technology,2022,21:1507-1518.
-
[10] SATYAVATHI YEDIDA V V,VASUDEV H.A review on the development of thermal barrier coatings by using thermal spray techniques[J].Materials Today:Proceedings,2022,50:1458-1464.
-
[11] WANG Y,HAO E,AN Y,et al.Effects of microstructure and mechanical properties on cavitation erosion resistance of NiCrWMoCuCBFe coatings[J].Applied Surface Science,2021,547:149125.
-
[12] GOVANDE A R,CHANDAK A,SUNIL B R,et al.Carbide-based thermal spray coatings:A review on performance characteristics and post-treatment[J].International Journal of Refractory Metals and Hard Materials,2022,103:105772.
-
[13] 刘杰,刘侠,胡凯,等.煤油流量对HVOF喷涂 WC-12Co/NiCrBSi 复合涂层显微组织与性能的影响 [J].中国表面工程,2020,33(3):119-128.LIU Jie,LIU Xia,HU Kai,et al.Effects of kerosene flow rate on microstructure and properties of HVOF sprayed WC-12Co/NiCrBSi composite coatings[J].China Surface Engineering,2020,33(3):119-128.(in Chinese)
-
[14] ESKANDARI A,SHAFYEI A,SAYYEDAN F,et al.Investigating the microstructural,mechanical,and tribological properties of NiCrBSiHigh-Velocity Oxygen Fuel and High-Pressure High-Velocity Oxygen Fuel Coatings[J].Journal of Materials Engineering and Performance,2023,32(4):1-12.
-
[15] KONG D,ZHAO B.Effects of loads on friction-wear properties of HVOF sprayed NiCrBSi alloy coatings by laser remelting[J].Journal of Alloys and Compounds,2017,705:700-707.
-
[16] XUAN H N,CHEN L Y,LI N,et al.Temperature profile,microstructural evolution,and wear resistance of plasma-sprayed NiCrBSi coatings under different powers in a vertical remelting way[J].Materials Chemistry and Physics,2022,292:126773.
-
[17] KUMAR R,KUMAR S,MUDGAL D.Silt erosion performance of high velocity oxy fuel-(HVOF)sprayed Al2O3-Cr2O3 composite coatings on turbine steel[J].Industrial Lubrication and Tribology,2022,74(5):572-579.
-
[18] PRAVEEN A S,ARJUNAN A.Effect of nano-Al2O3 addition on the microstructure and erosion wear of HVOF sprayed NiCrSiB coatings[J].MATERIALS RESEARCH EXPRESS,2019,7(1):015006.
-
[19] CHEN X,WANG H T,JI G C,et al.Microstructure and properties of TiB2-Ni coatings with different binder phase contents deposited by HVOF spray process[J].Rare Metals,2022,41(4):1385-1393.
-
[20] FU W,CHEN Q Y,YANG C,et al.Microstructure and properties of high velocity oxygen fuel sprayed(WC-Co)-Ni coatings[J].Ceramics International,2020,46(10):14940-14948.
-
[21] HONG S,MEI D C,WU J H,et al.Hydro-abrasive erosion and cavitation-silt erosion characteristics of HVOF sprayed WC-Ni cermet coatings under different flow velocities and sand concentrations[J].Ceramics International,2023,49(1):74-83.
-
[22] PAN C G,GONG M C,FENG S Q,et al.Corrosion and thermal fatigue behaviors of induction-clad Ni-coated TiC particle-reinforced Ni60 coating in molten aluminum alloy[J].Surface & Coatings Technology,2021,419:127278.
-
[23] YANG X T,ZENG R,FU X Y,et al.Influence of the Cu content on the electrochemical corrosion performances of Ni60 coating[J].Corrosion Science,2022,205:110408.
-
[24] 周永宽,康嘉杰,岳文,等.不同载荷对HVOF喷涂AlCoCrFeNi高熵合金涂层摩擦学性能的影响[J].表面技术,2022,51(10):185-191,327.ZHOU Yongkuan,KANG Jiajie,YUE Wen,et al.Effect of loads on tribological properties of HVOF sprayed AlCoCrFeNi high entropy alloy coating[J].Surface Technology,2022,51(10):185-191,327.(in Chinese)
-
[25] LAPLANCHE G,KOSTKA A,REINHART C,et al.Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J].Acta Materialia,2017,128:292-303.
-
[26] PAN Q,ZHANG L,FENG R,et al.Gradient cell-structured high-entropy alloy with exceptional strength and ductility[J].Science,2021,374(6570):984-989.
-
[27] GLUDOVATZ B,HOHENWARTER A,THURSTON K V S,et al.Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J].Nature Communications,2016,7(1):10602.
-
[28] PAN S,ZHAO C,WEI P,et al.Sliding wear of CoCrNi medium-entropy alloy at elevated temperatures:Wear mechanism transition and subsurface microstructure evolution[J].Wear,2019,440-441:203108.
-
[29] ZENG Z,KURODA S,ERA H.Comparison of oxidation behavior of Ni-20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying[J].Surface & Coatings Technology,2009,204(1):69-77.
-
[30] MENG G H,ZHANG B Y,LIU H,et al.Vacuum heat treatment mechanisms promoting the adhesion strength of thermally sprayed metallic coatings[J].Surface and Coatings Technology,2018,344:102-110.
-
[31] ZIMOGLIADOVA T A,BATAEV A A,LAZURENKO D V,et al.Structural characterization of layers fabricated by non-vacuum electron beam cladding of Ni-Cr-Si-B self-fluxing alloy with additions of niobium and boron[J].Materials Today Communications,2022,33:104363.
-
[32] LIU M,HOU D,WANG Y,et al.Micromechanical properties of Dy3+ ion-doped(LuxY1-x)3Al5O12(x = 0,1/3,1/2)single crystals by indentation and scratch tests[J].Ceramics International,2023,49(3):4482-4504.
-
[33] 刘明,李烁,高诚辉.利用圆锥压头微米划痕测试材料断裂韧性[J].摩擦学学报,2019,39(5):556-564.LIU Ming,LI Shuo,GAO Chenghui.Fracture toughness measurement by micro-scratch tests with conical indenter[J].Tribology,2019,39(5):556-564.(in Chinese)
-
[34] LI Y L,DONG T S,LI G L,et al.Microstructure evolution and properties of NiCrBSi thick coating remelted by gas tungsten arc[J].Surface and Coatings Technology,2018,349:260-271.
-
[35] LI W,LI J,XU Y.Optimization of corrosion wear resistance of the NiCrBSi laser-clad coatings fabricated on Ti6Al4V[J].Coatings,2021,11(8):960.
-
[36] GKINIS T,RAHMANI R,RAHNEJAT H.Effect of clutch lining frictional characteristics on take-up judder[J].Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics,2017,231(3):493-503.
-
[37] DILAWARY S A,MOTALLEBZADEH A,ATAR E,et al.Influence of Mo on the high temperature wear performance of NiCrBSi hardfacings[J].Tribology International,2018,127:288-295.
-
[38] DAS C R,KUMAR N,DASH S,et al.Evolution of tribological properties of reactor-grade NiCr-B coating[J].Tribology Letters,2011,44(2):229-235.
-
[39] LIU Q,BAI Y,WANG H D,et al.Microstructural evolution of carbides and its effect on tribological properties of SAPS or HVOF sprayed NiCr-Cr3C2 coatings[J].Journal of Alloys and Compounds,2019,803:730-741.
-
[40] LU K L.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering,2004,375-377:38-45.
-
[41] LIU W B,ZHANG C,XIA Z X,et al.Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attrition treatment[J].Materials Science & Engineering A,2013,568(15):176-183.
-
[42] 吴海利,张长春,孙林根,等.617 镍基合金蠕变-疲劳交互力学行为与微观组织演变[J].机械工程学报,2022,58(8):170-180.WU Haili,ZHANG Changchun,SUN Lingen,et al.Creep-fatigue interaction behaviors and microstructure evolution of Ni-based superalloy 617[J].Journal of Mechanical Engineering,2022,58(8):170-80.(in Chinese)
-
摘要
针对连铸结晶器铜板在服役过程中的磨损失效问题,采用超音速火焰喷涂(HVOF)技术在结晶器铜板表面制备了 NiCrCoBSi 自熔性多主元合金涂层,以提高铜板的耐磨性能。利用 XRD、SEM、TEM 等方法研究了 NiCrCoBSi 涂层的微观结构;借助摩擦磨损设备对其耐磨性进行评价,并与市场化占有率最高的电镀 NiCo 涂层进行对比。结果表明:NiCo 涂层为单相面心立方(FCC)固溶体结构,而 NiCrCoBSi 涂层的主要物相包括 FCC 固溶体、CrB 和 M23C6。与 NiCo 涂层相比,NiCrCoBSi 涂层的硬度提高了 95%,而断裂韧性只下降了 5.4%。磨损测试后发现两种涂层的磨损机制均以黏着磨损、疲劳磨损为主,伴随着少量磨料磨损。NiCrCoBSi 涂层表现出优异的耐磨性和较低的摩擦因数,其磨损率较 NiCo 涂层降低了 81%。NiCrCoBSi 涂层耐磨性较高的主要原因是其较高的硬度、内部的各种硬质耐磨相以及磨损表层的加工硬化。这是因为在循环载荷作用下,涂层产生塑性变形,涂层的硬质相在塑性变形过程中被切割、旋转,导致碳化物及硼化物被细化和球化,从而提升了磨损表层的硬度。制备了具有优异高温耐磨性能的 NiCrCoBSi 自熔性多主元合金涂层,为长寿命铜及其合金涂层的开发提供了理论依据和技术参考。
Abstract
Crystallizers are the core components of continuous casting equipment, and their quality directly impacts billet quality and production efficiency. With the advancement of high-drawing-speed continuous casting technology, higher performance requirements for crystallizers have been proposed, particularly concerning wear, a major cause of crystallizer copper plate failure. Currently,electroplated crystallizer coatings hold approximately 80% of the market share. However, the long deposition cycle, low hardness, tendency for coating peeling, and environmental pollution caused by electroplating technology make it inevitable for this technology to be phased out. Supersonic flame spraying (HVOF) is one of the most widely used thermal spraying technologies, capable of producing highly dense and uniform coatings due to its fast flame flow rate, high powder kinetic energy, and low oxidation levels. In addition, the HVOF technology offers a wide range of material options and can be functionally designed to accommodate different sizes and parts of the crystallizer, meeting continuous casting requirements. A NiCrCoBSi multiple principal element alloy coating has been applied to the surface of crystallizer copper plates using HVOF technology to improve their high-temperature wear performance of copper plates. The microstructure of the NiCrCoBSi coating was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The wear resistance of the coatings was evaluated using frictional wear equipment and compared with that of the commonly marketed electroplated NiCo coating. Additionally, the wear mechanisms of the coatings were analyzed. The results showed that the NiCo coating had a single-phase face-centered cubic solid solution structure, whereas the NiCrCoBSi coating exhibited an FCC solid solution, with CrB and M23C6 as the main phases. Both coatings had high densities with no observed cracks. A clear delamination was found between the NiCo coating and the copper alloy substrate, with no transition zone, indicating a mechanical bond. In contrast, a diffusion layer between the NiCrCoBSi coating and the copper alloy substrate due to diffusion heat treatment after spraying, resulting in the formation of a metallurgical bond. Compared to NiCo coating, NiCrCoBSi coating exhibited a 95% increase in hardness, whereas the fracture toughness decreased by only 5.4%. The friction factor of the NiCo coating fluctuated significantly, ranging from 0.4 to 1.0, and eventually stabilizing around 0.6. Compared with the NiCo coating (0.67), the friction factor of NiCrCoBSi coating is lower (0.51), with the curve showing good stability, ranging from 0.4 to 0.6, and ultimately stabilizing at around 0.52. After wear, the surface of the NiCo coating exhibited large flakes accompanied by dark gray adhesive marks, cracks, and debris. The worn surface of the NiCrCoBSi coating showed signs of debris, peeling, furrowing, and adhesive wear, with many small peeling pits. The wear mechanisms of both coatings were adhesive and fatigue wear, accompanied by a small amount of abrasive wear. The wear rate of NiCrCoBSi coating was 1.53×10−5 mm·N−1 ·m−1 , which is about five times higher than that of NiCo coating (7.91×10−5 mm·N−1 ·m−1 ). The main reasons for the higher wear resistance of the NiCrCoBSi coating are the better hardness, various wear-resistant phases, and the work hardening of the wear surface layer. This hardening occurs due to the plastic deformation of the coating under cyclic loading, during which the hard phases of the coating were cut and rotated. The carbides and borides are refined and spheroidized, enhancing the hardness of the wear surface layer. This research paves the way for developing coatings with excellent wear resistance for copper and their alloys.
Keywords
high-velocity oxygen fuel ; multiple principal elements alloys ; copper plate ; coating ; wear