en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杜乃洲,男,1998年出生,硕士研究生。主要研究方向为碳基薄膜理论计算。E-mail: dnz1025@163.com

通讯作者:

李晓伟,男,1982年出生,博士,教授。主要研究方向为碳基薄膜及功能特性。E-mail: xwli@cumt.edu.cn

中图分类号:TG174;TG115

DOI:10.11933/j.issn.1007-9289.20220629002

参考文献 1
BRAND J,GADOW R,KILLINGER A.Application of diamond-like carbon coatings on steel tools in the production of precision glass components[J].Surface & Coatings Technology,2004,180:213-217.
参考文献 2
SMALLWOOD S A,EAPEN K C,PATTON S T,et al.Performance results of MEMS coated with a conformal DLC[J].Wear,2006,260(11-12):1179-1189.
参考文献 3
BEWILOGUA K,HOFMANN D.History of diamond-like carbon films-From first experiments to worldwide applications[J].Surface & Coatings Technology,2014,242:214-225.
参考文献 4
周琼,黄彪,张而耕,等.DLC 涂层的制备及内应力、热稳定性改善措施研究现状[J].陶瓷学报,2019,40(5):555-564.ZHOU Qiong,HUANG Biao,ZHANG Ergeng,et al.Research status of surface technology DLC coating preparation,internal stress and thermal stability improvement measures[J].Journal of Ceramics,2019,40(5):555-564.(in Chinese)
参考文献 5
FRANCESCHINI D F,ACHETE C A,FREIRE F L.Internal-stress reduction by nitrogen incorporation in hard amorphous-carbon thin-films[J].Applied Physics Letters,1992,60(26):3229-3231.
参考文献 6
LEE C S,LEE K R,EUN K Y,et al.Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process[J].Diamond and Related Materials,2002,11(2):198-203.
参考文献 7
孙德恩,董洪铭,ZHANG S,等.元素掺杂类金刚石碳膜降内应力研究综述[J].表面技术,2018,47(6):95-103.SUN Deen,DONG Hongming,ZHANG S,et al.Review on the research of reducing internal stress of element doped diamond-like carbon films[J].Journal of Surface technology,2002,11(2):198-203.(in Chinese)
参考文献 8
谈发堂,乔学亮,陈建国.功能梯度薄膜的研究进展[J].热加工工艺,2002(5):55-57.TAN Fatang,QIAO Xueliang,CHEN Jianguo.Research progress of functionally graded thin films[J].Journal of Hot working process,2002(5):55-57.(in Chinese)
参考文献 9
ABADIAS G,CHASON E,KECKES J,et al.Review article:Stress in thin films and coatings:Current status,challenges,and prospects[J].Journal of Vacuum Science & Technology A,2018,36(2):020801.
参考文献 10
张婷,何娟,任瑛,等.类金刚石薄膜残余应力的研究进展[J].材料导报,2016,30(1):84-87,95.ZHANG Ting,HE Juan,REN Ying,et al.Research progress of residual stress in diamond-like carbon films[J].Journal of Material guide,2016,30(1):84-87,95.(in Chinese)
参考文献 11
KAMETANI N,NAKAMURA M,YASHIRO K,et al.Investigating residual stress evolution in the deposition process of diamond-like carbon film through molecular dynamics[J].Computational Materials Science,2022,209:111420.
参考文献 12
WEI Chehung,YANG,Juifeng,TAI Fongcheng.The stress reduction effect by interlayer deposition or film thickness for diamond like carbon on rough surface[J].Diamond and Related Materials,2010,19(5-6):518-524.
参考文献 13
代伟.金属掺杂类金刚石纳米复合涂层的制备、结构与性能[J].新技术新工艺,2015(7):128-131.DAI Wei.Preparation,structure and properties of metal doped diamond-like carbon nanocomposite coatings[J].Journal of New technology and process,2015(7):128-131.(in Chinese)
参考文献 14
HOFMANN D,KUNKEL S,BEWILOGUA K,et al.From DLC to Si-DLC based layer systems with optimized properties for tribological applications[J].Surface & Coatings Technology,2013,215:357-363.
参考文献 15
LI Longqiu,SONG Wenping,LIU Jin,et al.Nanomechanical and nanotribological behavior of ultra-thin silicon-doped diamond-like carbon films[J].Tribology International,2016,94:616-623.
参考文献 16
HE Dongqing,SHANG Lunlin,LÜ Zhibin,et al.Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content[J].Surface & Coatings Technology,2017,329:11-18.
参考文献 17
AHMAD A A.Optical and electrical properties of synthesized reactive rf sputter deposited boron-rich and boron-doped diamond-like carbon thin films[J].Journal of Materials Science-Materials in Electronics,2017,28(2):1695-1705.
参考文献 18
SON M J,ZHANG Teng Fei,JO Y J,et al.Enhanced electrochemical properties of the DLC films with an arc interlayer,nitrogen doping and annealing[J].Surface & Coatings Technology,2017,329:77-85.
参考文献 19
POLAKI S R,GANESAN K,SRIVASTAVA S K,et al.The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films[J].Journal of Physics D-Applied Physics,2017,50(17):175601.
参考文献 20
WANG Junjun,MA Jianjun,HUANG Weijiu,et al.The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys[J].Surface & Coatings Technology,2017,316:22-29.
参考文献 21
DEY R,DOLAI S,HUSSAIN S,et al.Phosphorus doping of diamond-like carbon films by radio frequency CVD-cum-evaporation technique[J].Diamond and Related Materials,2018,82:70-78.
参考文献 22
YANG,Peng,SUNG C C,FUH Y K,et al.Ti-containing hydrogenated carbon films fabricated by high-power plasma magnetron sputtering[J].Transactions of Nonferrous Metals Society of China,2012,22(6):1381-1386.
参考文献 23
BOOTKUL D,SAENPHINIT N,SUPSERMPOL B,et al.Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc(FCVA)technique for tribological improvement[J].Applied Surface Science,2014,310:293-299.
参考文献 24
JELINEK M,KOCOUREK T,ZEMEK J,et al.Chromium-doped DLC for implants prepared by laser-magnetron deposition[J].Materials Science & Engineering C-Materials for Biological Applications,2015,46:381-386.
参考文献 25
KHADEM M,KIM D E.Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures[J].Surface & Coatings Technology,2021,412:127018.
参考文献 26
CAO Lei,LIU Jian,WAN Yong,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond and Related Materials,2020,109:108019.
参考文献 27
VITU T,ESCUDEIRO A,POLCAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation[J].Surface & Coatings Technology,2014,258:734-745.
参考文献 28
ESCUDEIRO A,FIGUEIREDO N M,POLCAR T,et al.Structural and mechanical properties of nanocrystalline Zr co-sputtered a-C(:H)amorphous films[J].Applied Surface Science,2015,325:64-72.
参考文献 29
GHASEMI M H,GHASEMI B,SEMNANI H R M.Wear performance of DLC coating on plasma nitrided Astaloy Mo[J].Diamond and Related Materials,2019,93:8-15.
参考文献 30
TANG Xueshan,WANG H J,FENG L,et al.Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties[J].Applied Surface Science,2014,311:758-762.
参考文献 31
ZHOU Han,HOU Qingyan,XIAO Tianqing,et al.The composition,microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition[J].Diamond and Related Materials,2017,75:96-104.
参考文献 32
MOHAMMADINIA E,ELAHI S M,SHAHIDI S.Structural and optical properties of Ni-embedded hydrogenated diamondlike carbon(Ni-DLC)prepared by co-deposition of RF-Sputtering and RF-PECVD method[J].Materials Science in Semiconductor Processing,2018,74:7-12.
参考文献 33
GOTO M.Preparations and tribological properties of soft-metal/DLC composite coatings by rf magnetron sputter using composite targets[C]//5th International Conference on Integrity-Reliability-Failure(IRF).Univ Porto,Fac Engn,Porto,PORTUGAL,2016:1281-1290.
参考文献 34
MANNINEN N K,RIBEIRO F,ESCUDEIRO A,et al.Influence of Ag content on mechanical and tribological behavior of DLC coatings[J].Surface & Coatings Technology,2013,232:440-446.
参考文献 35
ZHOU,Bing,XU,Bin,YU,Shengwang,et al.Selective bonding effect on microstructure and mechanical properties of(Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation[J].Applied Physics a-Materials Science & Processing,2019,125(1):34.
参考文献 36
LI Xiaowei,KE Peiling,WANG Aiying.Ab initio molecular dynamics simulation on stress reduction mechanism of Ti-doped diamond-like carbon films[J].Thin Solid Films,2015,584:204-207.
参考文献 37
LI Xiaowei,JOE M W,WANG Aiying,et al.Stress reduction of diamond-like carbon by Si incorporation:A molecular dynamics study[J].Surface & Coatings Technology,2013,228:S190-S193.
参考文献 38
KONKHUNTHOT N,PHOTONGKAM P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.
参考文献 39
LEI Yu,JIANG Jinlong,WANG Yubao,et al.Structure evolution and stress transition in diamond-like carbon films by glancing angle deposition[J].Applied Surface Science,2019,479:12-19.
参考文献 40
ZOU Changwu,WANG H J,FENG L,et al.Effects of Cr concentrations on the microstructure,hardness,and temperature-dependent tribological properties of Cr-DLC coatings[J].Applied Surface Science,2013,286:137-141.
参考文献 41
ZHANG P,TAY B K,SUN Changqing,et al.Microstructure and mechanical properties of nanocomposite amorphous carbon films[J].Journal of Vacuum Science & Technology A,2002,20(4):1390-1394.
参考文献 42
JING Peipei,MA,Dailusi,GONG Yanli,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface & Coatings Technology,2021,405:126542
参考文献 43
WANG Aiying,LEE K R,AHN J P,et al.Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique[J].Carbon,2006,44(9):1826-1832.
参考文献 44
ZHU Lina,LI Junchao,KANG Jiajie,et al.Different Cr contents on the microstructure and tribomechanical properties of multi-layered Diamond-Like Carbon films prepared by unbalanced magnetron sputtering[J].Journal of Materials Engineering and Performance,2020,29(11):7131-7140.
参考文献 45
LI Xiaowei,KE Peiling,WANG Aiying.Probing the stress reduction mechanism of Diamond-Like Carbon films by incorporating Ti,Cr,or W carbide-forming metals:Ab initio molecular dynamics simulation[J].Journal of Physical Chemistry C,2015,119(11):6086-6093.
参考文献 46
BOUABIBSA I,LAMRI S,ALHUSSEIN A,et al.Plasma investigations and deposition of Me-DLC(Me = Al,Ti or Nb)obtained by a magnetron sputtering-RFPECVD hybrid process[J].Surface & Coatings Technology,2018,354:351-359.
参考文献 47
CHOI J H,LEE S C,LEE K R.A first-principles study on the bond characteristics in carbon containing Mo,Ag,or Al impurity atoms[J].Carbon,2008,46(2):185-188.
参考文献 48
JING Peipei,MA Dailusi,GONG Yanli,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface & Coatings Technology,2021,405:126542.
参考文献 49
GUO Peng,LI Xiaowei,SUN Lili,et al.Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents[J].Thin Solid Films,2017,640:45-51.
参考文献 50
LI Xiaowei,LEE K R,WANG Aiying.Chemical bond structure of metal-incorporated carbon system[J].Journal of Computational and Theoretical Nanoscience,2013,10(8):1688-1692.
参考文献 51
LI Xiaowei,WANG Aiying,LEE K R.First principles investigation of interaction between impurity atom(Si,Ge,Sn)and carbon atom in diamond-like carbon system[J].Thin Solid Films,2012,520(19):6064-6067.
参考文献 52
LI Xiaowei,ZHANG Dong,LEE K R,et al.Effect of metal doping on structural characteristics of amorphous carbon system:A first-principles study[J].Thin Solid Films,2016,607:67-72.
参考文献 53
YETIM A F,KOVACI H,KASAPOGLU A E,et al.Influences of Ti,Al and V metal doping on the structural,mechanical and tribological properties of DLC films[J].Diamond and Related Materials,2021,120:108639.
参考文献 54
HAO Tianmei,DU Jin,SU Guosheng,et al.Mechanical and cutting performance of cemented carbide tools with Cr/x/DLC composite coatings[J].International Journal of Advanced Manufacturing Technology,2020,106(11-12):5241-5254.
参考文献 55
LIU Xiaoqiang,YANG Jun,HAO Junying,et al.A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J].Advanced Materials,2012,24(34):4614-4617.
参考文献 56
LI Xiaowei,GUO Peng,SUN Lili,et al.Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction[J].Acs Applied Materials & Interfaces,2015,7(50):27878-27884.
参考文献 57
SWIATEK L,OLEJNIK A,GRABARCZYK J,et al.Multi-doped diamond like-carbon coatings(DLC-Si/Ag)for biomedical applications fabricated using the modified chemical vapour deposition method[J].Diamond and Related Materials,2016,67:54-62.
参考文献 58
CONSTANTINOU M,NIKOLAOU P,KOUTSOKERAS L,et al.Metal(Ag/Ti)-Containing hydrogenated amorphous carbon nanocomposite films with enhanced nanoscratch resistance:hybrid PECVD/PVD system and microstructural characteristics[J].Nanomaterials,2018,8(4):209.
参考文献 59
GAO Kaixiong,ZHANG Lifang,WANG Jian,et al.Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating[J].Applied Surface Science,2015,353:522-529.
参考文献 60
ZHANG Yagang,SUN Wanchang,DONG Yaru,et al.Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon(Ni/B-DLC)films[J].Surface & Coatings Technology,2021,405:126713.
参考文献 61
姜金龙,黄浩,陈娣,等.钛硅多元掺杂类金刚石薄膜在不同气氛环境下的摩擦学性能研究[J].摩擦学学报,2013,33(5):456-462.JIANG Jinlong,HUANG Hao,CHEN Di,et al.Tribological properties of Ti Si multi doped DLC films in different atmospheres[J].Journal of Tribology,2013,33(5):456-462.(in Chinese)
参考文献 62
JIANG Jinlong,HAO Junying,PANG Xianjuan,et al.Structure and characteristics of amorphous(Ti,Si)-C:H films deposited by reactive magnetron sputtering[J].Diamond and Related Materials,2010,19(10):1172-1177.
参考文献 63
DAI Wei,GAO Xiang,LIU Jingmao,et al.Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering[J].Applied Surface Science,2017,425:855-861.
参考文献 64
DAI Wei,GAO Xiang,LIU Jingmao,et al.Microstructure,mechanical property and thermal stability of diamond-like carbon coatings with Al,Cr and Si multi-doping[J].Diamond and Related Materials,2016,70:98-104.
参考文献 65
LI Xiaowei,GUO Peng,SUN Lili,et al.Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction[J].Acs Applied Materials & Interfaces,2015,7(50):27878-27884.
参考文献 66
LI Xiaowei,SUN Lili,GUO Peng,et al.Structure and residual stress evolution of Ti/Al,Cr/Al or W/Al co-doped amorphous carbon nanocomposite films:Insights from ab initio calculations[J].Materials & Design,2016,89:1123-1129.
参考文献 67
LI Xiaowei,GUO Peng,SUN Lili,et al.Ti/Al co-doping induced residual stress reduction and bond structure evolution of amorphous carbon films:An experimental and ab initio study[J].Carbon,2017,111:467-475.
参考文献 68
XU Zhaoying,SUN Hong,LENG Yongxiang,et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J].Applied Surface Science,2015,328:319-324.
参考文献 69
LIU Hongxi,JIANG Yehua,ZHOU Rong,et al.Wear behaviour and rolling contact fatigue life of Ti/TiN/DLC multilayer films fabricated on bearing steel by PIIID[J].Vacuum,2012,86(7):848-853.
参考文献 70
CAO Hongshuai,QI Fugang,OUYANG Xiaoping,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC Coatings on Aluminum Alloys[J].Materials,2018,11(9):1742.
参考文献 71
DWIVEDI N,KUMAR S,ISHPAL,et al.Studies of nanostructured copper/hydrogenated amorphous carbon multilayer films[J].Journal of Alloys and Compounds,2011,509(4):1285-1293.
参考文献 72
周永,孔翠翠,李晓伟,等.Ti/Al 过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.ZHOU Yong,KONG Cuicui,LI Xiaowei,et al.Effect of Ti/Al transition layer on properties of Co doped DLC films[J].Journal of Surface technology,2019,48(1):268-275.(in Chinese)
参考文献 73
WANG Junjun,PU Jibin,ZHANG Guangan,et al.Interface architecture for superthick carbon-based films toward low internal stress and ultrahigh load-bearing capacity[J].Acs Applied Materials & Interfaces,2013,5(11):5015-5024.
参考文献 74
刘毅,林晓东,张磊,等.脉冲激光沉积制备类金刚石薄膜的结构和光学性质[J].材料科学与工程学报,2008(3):357-360.LIU Yi,LIN Xiaodong,ZHANG Lei,et al.Structure and optical properties of diamond-like carbon films prepared by pulsed laser deposition[J].Journal of materials science and Engineering,2008(3):357-360.(in Chinese)
参考文献 75
OKADA H,UEMATSU Y,TOKAJI K.Fatigue behaviour in AZ80A magnesium alloy with DLC/thermally splayed WC-12Co hybrid coating[J].Procedia Engineering,2010,2(1):283-290.
参考文献 76
谢红希,凌贵,朱正涛.RF-PECVD 工艺参数对DLC膜结构及性能的影响[J].材料科学与工程学报,2009,27(2):190-194.XIE Hongxi,LING Gui,ZHU Zhengtao.Effects of RF-PECVD process parameters on the structure and properties of DLC membranes[J].Journal of materials science and Engineering,2009,27(2):190-194.(in Chinese)
参考文献 77
李党娟,王娜,吴慎将,等.不同工艺参数下DLC薄膜的应力状态[J].真空科学与技术学报,2020,40(5):421-426.LI Dangjuan,WANG Na,WU Shenjiang,et al.Stress state of DLC films under different process parameters[J].Journal of Vacuum Science and Technology,2020,40(5):421-426.(in Chinese)
参考文献 78
GUO Chaoqian,PEI Zhiliang,FAN Da,et al.Microstructure and tribomechanical properties of(Cr,N)-DLC/DLC multilayer films deposited by a combination of filtered and direct cathodic vacuum arcs[J].Diamond and Related Materials,2015,60:66-74.
参考文献 79
ZHANG Silong,ZHOU Yefei,SHAO Wei,et al.Effects of substrate bias voltage on structure and internal stress of amorphous carbon films on γ-Fe substrate:Molecular dynamics simulation[J].Computational Materials Science,2021,188:110206.
参考文献 80
BERG G,FRIEDRICH C,BROSZEIT E,et al.Development of chromium nitride coatings substituting titanium nitride[J].Surface and Coatings Technology,1996,86-87:184-191.
参考文献 81
ROBERTSON J.Deposition mechanisms for promoting sp3 bonding in diamond-like carbon[J].Diamond and Related Materials,1993,2(5):984-989.
参考文献 82
DAI Wei,WANG Aiying.Synthesis,characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system[J].Surface & Coatings Technology,2011,205(8-9):2882-2886.
参考文献 83
SASAKI Y,OSANAI H,OHTANI Y,et al.Influence of hydrogen gas flow ratio on the properties of silicon-and nitrogen-doped diamond-like carbon films by plasma-enhanced chemical vapor deposition[J].Diamond and Related Materials,2022,123:108878.
参考文献 84
SUN Lili,ZUO Xiao,GUO Peng,et al.Role of deposition temperature on the mechanical and tribological properties of Cu and Cr co-dzoped diamond-like carbon films[J].Thin Solid Films,2019,678:16-25.
参考文献 85
ONG S,ZHANG Sam,DU Hejun,et al.Temperature effect on bonding structures of amorphous carbon containing more than 30 at.% silicon[J].Diamond and Related Materials,2007,16(10):1823-1827.
参考文献 86
WANG S,KOMVOPOULOS K.Molecular dynamics simulations of internal stress evolution in ultrathin amorphous carbon films subjected to thermal annealing[J].Thin Solid Films,2020,713:138247.
参考文献 87
DWIVEDI N,KUMAR S,MALIK H K,et al.Investigation of properties of Cu containing DLC films produced by PECVD process[J].Journal of Physics and Chemistry of Solids,2012,73(2):308-316.
参考文献 88
AHMED N,S.KHAN Z,ALI A.Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions[J].Applied Physics A,2022,128(11):967.
参考文献 89
GHADAI R K,DAS S,KALITA K,et al.Structural and Mechanical Analysis of APCVD Deposited Diamond-Like Carbon Thin Films[J].Silicon,2021,13(12):4453-4462.
参考文献 90
LI Xiaowei,KE Peiling,LEE K R,et al.Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films[J].Thin Solid Films,2014,552:136-140.
参考文献 91
JOE M,MOON M,OH J,et al.Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms[J].Carbon,2012,50(2):404-410.
目录contents

    摘要

    类金刚石薄膜(Diamond-like carbon,DLC)由于其优异的性能而在诸多领域显示出广阔的应用前景。然而,DLC 薄膜中存在的高残余应力,削弱了膜基结合力,导致薄膜开裂或剥落,严重限制了其使用寿命和可靠性,成为 DLC 薄膜研究领域中亟需解决的关键问题之一,也是基于实际应用的紧迫需求。介绍了 DLC 薄膜应力产生的来源,并结合国内外研究现状从元素掺杂、过渡层和工艺调控 3 个方面分别综述了应力调控方面的试验和理论研究进展。结果表明,元素掺杂主要是通过降低薄膜中扭曲的 C-C 键长和 C-C-C 键角的百分比含量以及缓和键长、键角的扭曲程度来降低薄膜残余应力;添加过渡层主要通过缓解 DLC 薄膜与基体间因热膨胀系数不匹配而引起的内应力,从而达到降低 DLC 薄膜残余应力的目的;不同工艺参数对残余应力的影响较为复杂,且参数的不同组合可能会导致不同的残余应力状态。以上 DLC 薄膜应力来源、调控方法和机理的研究将为高质量 DLC 薄膜的设计和制备提供理论依据。

    Abstract

    Diamond-like carbon (DLC) films are widely recognized for their outstanding properties and exhibit significant potential in various fields. Nevertheless, the presence of high residual stresses in DLC films weakens their adhesion to the substrate, thus resulting in film cracking or spalling. This limitation severely affects their durability and reliability, which is a significant challenge in DLC film research. Moreover, this issue must be addressed to enable the practical application of DLC films. In this paper, stress-generation sources in DLC films are discussed and research progress pertaining to stress modulation is summarized. In particular, elemental doping, transition layers, and process adjustments are elucidated in addition to the current global research landscape. Elemental doping is classified into single- and multi-element doping, which can be further categorized as strong and weak / non-carbide-forming elements, depending on their bonding strength with carbon atoms. The primary objective is to mitigate residual stress by reducing the proportion of distorted C-C bond lengths and C-C-C bond angles in the film, as well as moderating the extent of distortion in the bond lengths and angles. Notably, weak / non-carbide-forming elements, despite significantly reducing internal stresses, deteriorate the mechanical properties owing to their weaker bonding energies. Multi-element doping leverages the complementary properties of diverse elements, thereby reducing the stresses in DLC films significantly while maintaining robust mechanical properties and satisfying the demands of complex operating conditions more comprehensively. Metal doping primarily reduces residual stresses within the structure of DLC films. Nonetheless, owing to the dissimilar thermal-expansion coefficients between the substrate and film, high stresses can persist at the interface. Hence, a transition layer (monolayer, multilayer, gradient, etc.) is introduced between the DLC film and substrate to effectively mitigate residual stresses by alleviating internal stresses caused by mismatches in thermal-expansion coefficients. Furthermore, various deposition parameters, such as the substrate bias pressure, gas-source flux ratio, deposition temperature, deposition pressure, and carbon-source incidence angle, exert different effects on the intrinsic structure of the film. Different parameter combinations result in distinct residual-stress states. More importantly, these process parameters function synergistically, and their effects on the residual stress of the film varies under different conditions. Consequently, a comprehensive consideration of these parameters and their optimization based on specific application requirements is essential during DLC film deposition. Notably, the relationship between microstructural evolution and stress in the same elemental doping system under different preparation methods or in different elemental systems under the same preparation method varies. Hence, a refined computer-simulation technique at the atomic scale is proposed to investigate the effects of various preparation methods on the intrinsic structures of DLC films and to elucidate their stress-evolution patterns. In the future, the integration of advanced materials science and technology, such as machine learning and artificial intelligence, can be considered to further investigate DLC film preparation and stress-control challenges.

  • 0 前言

  • 类金刚石(Diamond-like Carbon,DLC)薄膜是一类非晶态碳膜材料的统称,主要由含一定量的金刚石相 sp 3 杂化键和石墨相 sp 2 键的三维交叉网络混合构成,具有高硬度、低摩擦因数、宽透光范围、良好化学惰性和生物相容性、表面光滑等诸多优异特性,作为一种表面强化改性新材料在机械制造、信息、生物医学、MEMS、航空航天等高技术领域显示广阔应用前景[1-2]。特别因其在极端工况下表现出的极低的摩擦因数和良好的耐磨损性,作为空间飞行器、运载工具等航空航天机械部件用的一种新型固体自润滑涂层,已成为摩擦材料领域的一个研究热点和重要分支[3]。另外,DLC 薄膜可在多种物理气相沉积(Physical vapor deposition,PVD)、化学气相沉积(Chemical vapor deposition,CVD)技术下顺利制备,且薄膜性能调控范围大(类石墨-金刚石),因此,也由于其被认为是目前最具工程化应用前景的一种新型碳基功能薄膜材料而备受关注。

  • 然而,目前 DLC 薄膜研究中还存在几个主要问题,分别为高残余压应力(高达 12 GPa)、摩擦性能不稳定(对湿度、气氛等环境敏感)、抗氧化性差 (<600°)及与基体结合力差,严重制约了其广泛应用,且以高残余应力的影响最为显著[4]。这是由于 DLC 薄膜沉积过程中,决定其优异力学性能的 sp 3 键结构的形成必须借助于能量粒子对生长表面的持续轰击,这不仅促进薄膜局域结构的致密化,同时也使键角和键长畸变度增加,导致薄膜中不可避免地积聚高残余应力。高残余应力的存在,一方面容易引起薄膜开裂,无法沉积厚膜,难以满足苛刻工况中的应用需求;另一方面,易导致膜基结合力下降,引发薄膜局部剥落和失效,降低长期服役寿命与可靠性。通过结构设计和工艺调控降低薄膜残余应力是 DLC 薄膜实现工程化应用中亟需解决的关键问题。因此,本文围绕元素掺杂[5-7]、过渡层[8]、工艺调控[9]三个方面,系统探讨国内外学者在试验和理论研究方面的进展,重点归纳不同调控方法降低薄膜残余应力的内在机理。

  • 1 DLC 薄膜残余应力的来源

  • DLC 薄膜的残余应力包括本征应力和热应力。本征应力是由薄膜本身的结构和缺陷造成的,本征应力又分为界面应力和生长应力[10]。本征应力的产生源自两个方面,一方面是由于入射原子的轰击导致原子排列发生严重畸变,沉积的离子与相邻原子产生键合,形成极为复杂且高度交联的碳基网络,其中 C 原子之间键长和键角的扭曲是导致较大残余应力的主要原因。另一方面是与薄膜生长过程中产生的结构缺陷有关,例如空位、晶粒边界、层错等。如 KAMETANI 等 [11] 利用分子动力学模拟 (Molecular dynamics simulation,MD)从原子尺度研究 DLC 薄膜的生长行为,揭示薄膜生长过程中的残余应力来源,发现在薄膜表面 sp 2 占主导地位,sp 3 团簇在薄膜表面附近形核,而 sp 3 的生长是通过围绕在 sp 3 团簇周围的 sp 2 键转化而来的(图1a),但 sp 3 的键长大约比 sp 2 的键长大 8.5%(图1b),因此, sp 2 向 sp 3 转化过程中引起了压应力,并且压应力随着 sp 3 团簇的增大而增大。

  • 图1 DLC 薄膜的生长行为[11](a)t=500 ps 时,薄膜表面(z=5Å)的 560 个 sp2 键原子的时间变化(b)不同杂化键的键长对比

  • Fig.1 Growth behavior of DLC films[11] (a) Temporal change of the 560 atoms of sp2-bond located on the film surface (z = 5 Å) at t = 500 ps (b) Comparison of bond lengths of different hybridized bonds

  • 除了本征应力,由于 DLC 薄膜与基体的热膨胀系数不同,从而在薄膜内部产生热应力。由于 DLC 薄膜的热膨胀系数很低(2.3×10−6−1),基体在降温过程中产生的收缩大于 DLC 薄膜,导致较高的热应力。WEI 等[12]提出为了最小化热应力,中间层的热膨胀系数必须介于薄膜与基底的热膨胀系数之间。

  • 2 元素掺杂

  • 为降低 DLC 薄膜生长过程中的残余应力,元素掺杂因操作简单、效果明显而被广泛应用,且其能协同改善薄膜的硬度、摩擦因数、磨损率等其它理化性能[13]。因此,自 20 世纪 80 年代以来,元素掺杂类金刚石薄膜已成为重要的研究热点,美国阿贡国家实验室、韩国科学技术研究院、日本东北大学、中国科学院兰州化学物理研究所、中国科学院宁波材料技术与工程研究所、清华大学、西南交通大学等在此方面开展深入研究,并取得显著成果。目前,应用于 DLC 薄膜的掺杂元素,根据元素类型分为 Si[14-15]、B[16-17]、N[18-19]、F[20]、P[21]等非金属元素和 Ti[22-23]、Cr[24-25]、W[26]、Zr[27-28]、Mo[29-30]、Ni[31-32]、 Cu[33]、Ag[34]、Al[35]等金属元素;根据种类分为单元素掺杂和多元素掺杂。下面将根据掺杂元素的种类数量,分别概括 DLC 薄膜应力调控的试验和理论方面研究进展。

  • 2.1 单元素掺杂

  • 一般来说,掺杂元素可与薄膜中非晶态碳发生不同程度的键合,掺杂原子在薄膜中的溶解度以及与薄膜中 C 原子的键合强度是影响薄膜性能的重要因素。根据掺杂元素与 C 的成键强度,可分为强碳化物相形成元素和弱 / 非碳化物相形成元素。

  • 2.1.1 强碳化物相形成元素

  • 一般 Ti、Si、Cr、W、Mo 等强碳化物相形成元素,与掺杂点周围碳原子形成的化学键强度和各向异性降低,导致畸变能减小,从而改善薄膜内部结构无序,释放 DLC 薄膜内部的残余应力[36]。但随着碳化物形成元素浓度的增加,所形成的硬质碳化物相可能对薄膜的内应力造成消极影响[37]

  • 试验方面,KONKHUNTHOT 等[38]通过脉冲过滤阴极真空电弧沉积得到 Ti 掺杂 DLC(Ti-DLC) 薄膜,其中 Ti-DLC1、Ti-DLC2 中的 Ti 含量分别为 0.8 at.%、2.1 at.%。图2a 分别展示了纯 DLC、 Ti-DLC1 和 Ti-DLC2 的拉曼光谱,结果表明:随着 Ti 含量的增加,DLC 薄膜的 G 峰位置向高波数方向移动,ID / IG比例增加,伴随薄膜的残余应力降低。这种现象来源于 3 个方面:①Ti 掺杂导致 sp 3 杂化含量减小;②Ti 离子轰击引起的吸附原子迁移率增加,并且随新自由度的增加,sp 3 位置上的局部密度和应力得到松弛;③Ti 原子的掺杂改善了薄膜的内部结构无序度,从而导致残余应力显著降低。

  • 此外,前期大量试验还表明,薄膜中 sp 3 / sp2 杂化键比例是影响 DLC 薄膜应力的关键[39-40]。元素掺杂情况下,随薄膜残余应力的降低,通常会观察到 sp 2 杂化键含量的增加,使类石墨特征增强。这是由于 sp 2 位点的原子体积大于 sp 3 位点,但由于其键长较短、平面尺寸较小,σ 面与压缩面对齐时, sp 2 位点的形成将缓解双轴压应力 [41],这与 KAMETANI 等[11]的研究结果一致。并且掺入的碳化物形成元素可能会取代 sp 3 关键位点中的 C,使得畸变的键长、键角得到弛豫,而因为键角偏离 sp 3 键的平衡角所引起的高能量体系同时得到改善,最终导致残余应力降低[42]

  • 图2 单元素掺杂对 DLC 内在结构的影响[3843-45](a)纯 DLC、Ti-DLC1 和 Ti-DLC2 的拉曼光谱[38];(b)掺钨类金刚石薄膜的残余应力与钨浓度的关系[43];(c)薄膜的残余压应力和断裂韧性[44];(d)单一金属 Ti、Cr、W 掺杂种类和含量对碳膜体系键结构畸变的影响[45]

  • Fig.2 Effect of single element doping on internal structure of DLC films [38, 43-45] (a) Raman spectra of pure DLC, Ti-DLC1, and Ti-DLC2[38] (b) Residual compressive stress of W incorporated DLC films as a function of W concentration[43] (c) Compressive residual stress and fracture toughness of films[44] (d) Effect of doping type and content of single metal Ti, Cr and W on bond structure distortion of carbon film system[45]

  • 然而,有些报道中并未发现元素掺杂对 sp 3 / sp2 杂化比率造成影响。WANG 等[43]利用碳氢化合物离子束和钨直流磁控溅射组成的混合沉积系统制备了不同 W 浓度的 DLC 薄膜,如图2b 所示。溶解在非晶碳基质中的 W 原子通过降低键角的畸变能使得残余应力显著下降,但是 sp 2 和 sp 3 的杂化键比率始终是 0.55±0.1,并且在降低应力的同时使薄膜依然保持良好的力学性能。元素掺杂虽然能够降低残余应力,但是过量掺杂的情况下则会对薄膜力学性能造成严重影响。ZHU 等[44]通过非平衡磁控溅射沉积方法得到厚度为 1.3~1.5 μm 的 Cr-DLC 薄膜,如图2c 所示:随着 Cr 掺杂量的增加,残余应力逐渐减小,这归因于 Cr 的掺杂减少了 C-C 共价键变形所产生的应力,并且当 Cr 含量为 22 at.%时,薄膜残余应力降低 80%以上,但 Cr 作为一种塑性金属,在大量掺杂的情况下,强塑性使得薄膜的硬度和弹性模量显著降低。

  • 理论研究方面,LI 等[45]采用第一性原理分子动力学模拟,通过高温淬火得到不同金属(Ti、Cr、 W)掺杂的类金刚石薄膜结构,从原子尺度分析掺杂元素所引起的内在结构演化,如图2d 所示。结果发现:Ti、Cr 和 W 掺入导致的压应力降低归因于扭曲键结构的松弛,但是结构变化有所不同,其中 Ti-DLC 或 W-DLC 薄膜中扭曲的键长和键角都得到弛豫,进而使应力降低,而在 Cr-DLC 薄膜中,掺杂的 Cr 原子仅松弛了扭曲键长而释放应力。

  • 2.1.2 弱 / 非碳化物相形成元素

  • 对于一些弱 / 非碳化物相形成元素,如 Ni、Cu、 Ag、Al 等,通常认为它们在非晶碳基质网络中以团簇的形式存在,而金属团簇与非晶碳网络之间容易产生滑移,这在一定程度上促进薄膜残余应力的释放,但这样的金属团簇通常会降低薄膜优异的力学性能[46-47]

  • JING 等[48]采用大功率脉冲磁控溅射与大功率脉冲等离子体增强化学气相沉积(HPP-PECVD)相结合的混合沉积技术制备掺银类金刚石(Ag-DLC) 薄膜,并且观察到随着 Ag 浓度的增加,薄膜中的应力不断减小(图3a)。残余应力的释放与原子键畸变产生的应变能密切相关。作为一种具有填充 d 轨道能力的贵金属,Ag 表现出典型的反键合特性,大大降低键合的强度和方向性,从而降低应变能和残余应力。

  • Cu 与 C 成键特征也是反键,但是随着 Cu 原子浓度的增加,残余应力先减小后逐渐增大(图3b),这是弱 Cu-C 键以及扭曲的键长、键角的减少,导致少量掺杂 Cu 的情况下残余应力显著下降,但是较高的 Cu 浓度导致扭曲的 C-Cu 结构的存在,因此残余应力略微上升。此外,薄膜的力学性能随着 Cu 掺杂浓度的增加表现出严重的恶化,这是因为 C-C 键的强度远大于 Cu-C 键,而体系中软铜团簇的存在打破了硬碳网络的连续性,导致薄膜硬度严重下降[49]

  • 图3 弱 / 非碳化物相形成元素对 DLC 薄膜残余应力的影响 [48-49](a)不同银掺杂浓度的类金刚石薄膜的应力[48](b)Cu-DLC 薄膜的残余应力与 Cu 浓度的关系[49]

  • Fig.3 Effect of weak / non-carbide phase forming elements on residual stress of DLC films [48-49] (a) Stress distribution of DLC films with different Ag concentrations[48] (b) Relationship between residual stress and Cu concentration in Cu-DLC films[49]

  • 综上,掺杂元素与碳的键合方式对于 DLC 薄膜残余应力的调控和掺杂元素的选择起到了极其重要的作用。LI 等[50-52]采用第一性原理计算,基于简单的四面体成键模型,系统研究了元素周期表中所有金属(Me) 元素与 C 原子之间的成键特征,建立了如图4 所示的掺杂元素与碳的“成键特征周期表”,发现金属掺杂元素与碳原子分别形成成键、非键、反键、离子键四大类不同的成键特征,这四类不同成键特征是元素掺杂导致 DLC 薄膜应力降低差异的本质原因。另外,对同族金属元素,其成键特征相同,但随电子层数增加,金属与碳原子间电负性差增大,应力降低更显著;对同周期金属元素,随外层电子数增加,成键特征变化大,以 3d 过渡金属(Sc~Zn)元素为例,Me-C 成键特征由成键(Sc、Ti)→非键(V、Cr、Mn、Fe)→ 反键(Co、Ni、Cu)→离子键(Zn)。“成键特征周期表”的建立为掺杂金属元素的选择和设计提供了很好的理论依据,如降低 DLC 薄膜应力而不损伤硬度,应选择成键特征的金属元素,若仅想极大降低薄膜中的残余应力,应选择非键或反键特征的金属元素,这与试验结果相吻合[53-54]

  • 图4 DLC 薄膜中金属掺杂元素与碳“成键特征元素周期表”[50-52]

  • Fig.4 “Periodic table of bonding characteristics” between doped metal element and carbon in DLC film [50-52]

  • 2.2 多元素掺杂

  • 掺杂元素的特性很大程度上决定了 DLC 薄膜的结构和性能。当引入 Ti、Cr、W 等碳化物相形成元素时,少量掺杂使得杂质原子溶于非晶碳基质网络中,畸变的键长、键角得到弛豫,从而改善薄膜残余应力,但随着掺杂浓度的增加,在碳基质中通常会形成硬质碳化物相来提高薄膜的硬度和磨损率,高残余压应力和脆性的问题却被忽略。对于 DLC 薄膜中的非碳化物相形成元素,如 Ag、Cu、 Al 等,由于这些元素与碳原子形成的键非常弱或几乎不成键,并且韧性好,所以倾向于在碳基质中形成韧性金属相,从而提高薄膜的韧性,薄膜的残余应力也得到缓解,但同时牺牲了薄膜的硬度和杨氏模量等优异力学性能。针对单一元素掺杂后的薄膜往往只能满足单一性能的要求,为了满足实际应用中复杂、多变、苛刻工况条件下对 DLC 薄膜的低应力、高硬度、耐磨等综合性能要求,借助不同掺杂元素间的特性互补,进行多元协同掺杂,使得 DLC 薄膜应力大幅度降低的同时保持良好的力学特性而引起广泛关注。

  • 在两种元素共掺杂 DLC 薄膜中,碳化物形成相元素和非碳化物形成相元素的搭配具有很好的协同效应,能够在降低薄膜残余应力的同时保持良好的力学性能,如 Ti-Al-C[55]、Cr-Cu-C[56]、Si-Ag-C[57] 等。CONSTANTINOU 等[58]通过 PECVD 和 PVD 技术的组合制备了 Ag / Ti 共掺杂 DLC 薄膜。通过曲率测量和 Stoney 公式计算的残余压应力结果表明:金属元素的引入使得残余应力得到缓解,这是由于引入金属后的石墨化趋势以及畸变的键结构的改变释放了体系能量。

  • 在 DLC 薄膜中的两种掺杂原子可以分别对碳基网络造成不同影响,硬质的碳化物相和软质的团簇之间的浓度比例决定了双元素掺杂 DLC 薄膜的性能,他们之间的竞争关系是薄膜兼具低内应力和高硬度的关键。

  • 共掺杂元素均为碳化物形成相也有相关报道。如 GAO 等[59]以 Ar 和 CH4 为工作气体,在 Si 衬底上制备 W / Ti 共掺杂 DLC 薄膜,并重点探究 W 含量对薄膜残余应力的影响。结果表明,随着 W 含量的增加,薄膜残余应力随之增加,一方面 W 的加入引起 sp 3 含量的增加,导致应力增大;另一方面 W-C 键长度大于 C-C 键长度,也导致残余应力的增大。但是在 W 少量掺杂的情况下,薄膜的残余应力和硬度以及弹性模量都得到明显的改善。对于双碳化物相形成元素共掺杂的 DLC 薄膜而言,更倾向于提高薄膜的摩擦学性能[60-62]

  • 除了二元掺杂,目前也存在三元掺杂 DLC 薄膜的相关研究,例如 Ti / Al / Si-C[63]、Cr / Al / Si-C[64]等。DAI 等[64]对 Cr / Al / Si 共掺杂的 DLC 薄膜进行了研究,应力变化如图5 所示,分析表明:Cr 优先与 C 形成碳化物相,而 Al 的加入是薄膜残余应力降低的主要原因,Si 则倾向于与 sp 2-C 键合形成 sp 3 C-Si,从而提高薄膜的热稳定性。掺杂元素各自对薄膜的内在结构产生了不同的影响,综合提高了薄膜的各项性能。但是,需要强调的是,多元素掺杂在精确控制各自浓度的同时,需要把控好整体的掺杂量,当掺杂浓度较高时极有可能对薄膜的综合性能起到消极的作用。

  • 图5 多元素掺杂对薄膜残余应力的影响[64](a)Cr / AlSi 掺杂 DLC 薄膜中 Al、Cr、Si 和 C 成分含量(b)残余应力对混合气体中 Ar 含量的函数关系

  • Fig.5 Effect of multi-element doping on residual stress of thin films[64] (a) Functional relationship between Al, Cr, Si and C content; (b) Ar content in mixed gas and the change of residual stress of Al / Cr / Si DLC film with Ar content

  • 金属共掺杂的理论研究方面,LI 等[65-67]也开展了大量的工作,并取得积极进展。首先,通过第一性原理和分子动力学计算方法,优先选择具有成键、非键、反键、离子键的 Ti、Cr、W、Cu、Al 等作为双元协同的掺杂元素对象,筛选得到了 Ti / Al、 Cr / Al、W / Al 和 Cu / Cr 的四种双元复合材料体系。相对于单一金属掺杂,这四种复合体系不仅可大幅降低应力,且能更好保持薄膜优异力学性能;同时与纯 DLC 薄膜相比,Ti / Al、Cr / Al、W / Al 和 Cu / Cr 协同掺杂显著降低应力达 83%、78.9%、90.6%、 93.6%。结构分析表明:双元金属掺杂可协同弛豫薄膜中高度畸变键长的含量,同时因掺杂金属与 C 原子之间弱成键特征的形成,极大释放了薄膜高残余应力。有关结果不仅为深入理解其他研究者已报道的 Ti / Al、Cr / Al 优异特性试验结果提供了帮助,而且首次提出了 Cu / Cr 共掺杂碳膜的新体系,这为未来设计、发展强韧耐磨防污的高性能 DLC 薄膜材料提供了新思路和调控依据。

  • 3 过渡层

  • 金属掺杂降低 DLC 薄膜残余应力主要是通过降低薄膜中扭曲的 C-C 键长和 C-C-C 键角的百分比含量以及缓和键长、键角的扭曲程度来实现的,但需要对掺杂元素进行仔细筛选和研究,否则,尽管可在一定程度上降低薄膜中的残余应力,但同时也会影响薄膜的结构和损伤硬度、摩擦因数等其它性能。此外,金属掺杂主要是降低了 DLC 薄膜本征结构中的残余应力,由于基体 / 薄膜热膨胀系数不同,界面处仍存在高应力。因此,在实际应用中通过在 DLC 薄膜与基底之间添加过渡层(单层、多层、梯度等)来克服膜 / 基界面高的残余应力,实现在不同基体上的有效结合,同时使薄膜结构保持连续性,是另一种常用的降低薄膜残余应力的有效途径[68-69]

  • 3.1 单元素过渡层

  • 强碳化物金属作为过渡层在实际应用中比较广泛。CAO 等[70]采用过滤阴极真空电弧(Filter cathode vacuum arc,FCVA)技术制备了 Ti 掺杂 DLC (Ti-DLC)多层膜,研究了不同 Ti 过渡层厚度对结构与性能的影响,如图6a 所示。结果表明:随着过渡层厚度的增加,残余应力先下降后略微上升,其中 Ti 过渡层的缓冲作用是残余应力改善的主要原因,而残余应力的缓慢上升则是薄膜热应力增加的结果。

  • 然而,将弱碳化物金属作为过渡层的研究相对较少。DWIVEDI 等[71]报道了 Cu 作为过渡层与 DLC 薄膜形成软硬交替的结构,其中的软铜层作为 DLC 层的金属基底,可以防止多层结构的分层,研究发现:残余应力随着双层膜数量的增加而先增大后减小(图6b),即便如此,总体应力值均低于 1 GPa,这是由于铜作为一种软质材料,在界面层促进了键的松弛。

  • 图6 过渡层对薄膜残余应力的影响[70-7173](a)不同 Ti 过渡层厚度对 Ti-DLC 薄膜的残余应力、硬度和弹性模量的影响[70](b)Cu / DLC 双层膜残余应力随层数的变化[71](c)单层和交替设计的薄膜残余应力随厚度的变化以及应力机理图[73](d)薄膜的残余应力随厚度的变化[73]

  • Fig.6 Effect of transition layer on residual stress of thin films[70-71, 73] (a) Residual stress, hardness and elastic modulus of Ti-DLC films with various Ti transition layer thicknesses[70] (b) Variation of residual stress versus number of Cu / a-C:H bilayers for multilayer structure[71] (c) Variation of residual stress with thickness and stress mechanism diagram of single-layer and alternating design films[73] (d) Variation of residual stress with film thickness[73]

  • 3.2 多元素过渡层

  • 与金属掺杂类似,除了单一金属元素作为过渡层,含有不同元素的复合过渡层也能够协同改善 DLC 薄膜的残余应力。例如:周永等[72]研究了 Ti / Al 过渡层对类金刚石薄膜的影响,发现 Ti / Al 过渡层的存在缓解了薄膜与基体之间的热膨胀系数差异,相对于未添加过渡层的薄膜而言,应力降幅最大到达 80%,并且提高了膜基结合力。

  • 3.3 周期多层过渡层

  • 另外,通过设计具有不同性能的周期交替多层 DLC 薄膜也可降低薄膜残余应力。例如:WANG 等 [73] 采用 PHC-PECVD 方法,沉积了结构为 Si /(SiX-DLC / SiY-DLC)n / DLC 的超厚 DLC 薄膜,其厚度可达 50 µm 以上。其中(SiX-DLC / SiY-DLC)n 为不同 Si 掺杂含量的 DLC 薄膜周期交替过渡层,具有不同的应力状态,分别为张应力和压应力,这种周期交替的张应力 / 压应力多层结构(如图6c),有效的降低了薄膜的残余应力(其值低至 0.05 GPa,如图6d)。此外,这种具有周期多层过渡层超厚 DLC 薄膜的膜 / 基结合力高达 57 N,承载能力可达 3.2 GPa,并且在空气、水、油等介质下展现出优异的摩擦稳定性和可靠性。综上,在 DLC 薄膜与基底界面引入过渡层,能够充分改善其热膨胀系数与机械性能不匹配问题,从而达到降低 DLC 薄膜残余应力的目的。

  • 4 优化工艺参数

  • 在 DLC 薄膜沉积过程中,工艺参数的调控也起到关键性的作用[74-77]。常用的 DLC 薄膜制备方法主要有 PVD[74-75]和 CVD[76]。对于金属掺杂来说,不同的工艺参数,如基体电压[78-81]沉积气氛的气源流量比[82-83]、沉积温度[84-86]、通入气体压力[87-89]和溅射电流[90-91]等,都会影响掺杂元素的含量,进一步影响掺杂元素与非晶碳的结合方式和存在形式,从而影响 DLC 薄膜中的残余应力;对于添加过渡层来说,不同的工艺参数会影响到过渡层厚度和结构,导致 DLC 薄膜中残余应力的不同。由此可见,调控工艺参数也是降低 DLC 薄膜中残余应力的一个重要影响因素[77]

  • 4.1 基底偏压

  • 偏置电压是沉积过程中加在基底上的直流电压,它可以控制薄膜中的离子动能,从而影响所沉积材料的结构和性能。GUO 等[78]采用 FCVA 结合 DCVA 技术在 YG8(WC-Co)衬底上制备了交替多层类金刚石薄膜(Cr / N-DLC),研究了偏置电压对薄膜应力的影响,发现:随着偏置电压增大,薄膜残余应力逐渐降低(图7a),归结于高偏置电压下 sp 3 含量的减少,其中 Cr 和 N 的共掺杂也是应力降低的一个重要原因。

  • 图7 工艺参数对薄膜残余应力的影响 [7882848790](a)不同偏压下 DLC 薄膜的残余应力[78](b)不同气体流量比下 Cr-DLC 薄膜的残余应力[82](c)不同沉积温度下 Cu / Cr-DLC 薄膜的残余应力[84](d)Cu-DLC 薄膜的残余应力随 C2H2 气体压力的变化[87](mtorr=0.133 Pa)(e)θ=0°、15°、30°、45°、60°入射角下的 DLC 形貌[90]

  • Fig.7 Effect of process parameters on residual stress of thin films [78, 82, 84, 87, 90] (a) Residual stress for DLC monolayer deposited under different bias voltages[78]; (b) Residual stress of the Cr-DLC films deposited at different gas flux ratio ratios[82]; (c) Residual stress curve of Cu / Cr-DLC films deposited at different deposition temperatures[84]; (d) Variation of residual stress with C2H2 gas pressure for Cu-DLC film (1 mtorr=0.133 Pa) [87] (e) Morphologies of the films at the incident angles of θ = 0°, 15°, 30°, 45°, and 60° [90]

  • 一般在偏置电压较高的情况下,轰击效应导致附着力较差的原子被去除。此外,高能粒子的轰击使基底温度升高,导致形核速率升高[80]。根据 ROBERTSON 等[81]提出的 subplantation 模型,低能量的碳离子不能穿透顶部原子,从而沉积在薄膜表面。当基底的偏置电压升高时,高能量的碳离子可能到达亚表面,这将在一定程度上增加邻近微区的密度和内应力,而高密度引起相对原子化学键的调整,产生更多的 sp 3 键。但碳离子的能量有一个阈值,高于碳离子阈值的剩余能量可能导致原子密度的热传递和弛豫,导致 sp 3 含量降低。

  • 4.2 气源流量比

  • 不同的进程气体和前驱体气体的离化难易程度以及离化率差异较大,因此,气体流量比能够显著改变沉积过程中的等离子体状态,从而影响薄膜的残余应力。DAI 等[82]采用直流磁控溅射和线性离子源混合沉积系统,在硅片上沉积了 Cr-DLC 薄膜,研究发现:随着 Ar / CH4 的气体流量比的增加,薄膜中的 Cr 含量呈现出轻微增加的趋势,对应的薄膜残余应力值也随之增加(0.45~0.50 GPa)(图7b)。表明薄膜残余应力的改变对于 Cr 含量展现出较强的依赖性。此外,Cr 掺杂导致 DLC 薄膜的残余应力出现大幅的降低,这与 Cr 掺杂导致的键长、键角的畸变弛豫有关。SASAKI[83]等通过改变 H2 流量比 [H2 /(H2 + Ar)]考察了氢含量对硅、氮共掺杂类金刚石(Si-N-DLC)薄膜结构的影响,研究发现:当 H2 流量比从 0%增加到 100%时,薄膜内应力从 0.94 GPa 降低到 0.70 GPa,归因于薄膜氢含量增加引起的刚性三维网络的松弛。综上,气体流量比改变主要影响 DLC 薄膜中的元素掺杂含量,从而间接对薄膜内应力产生影响。

  • 4.3 沉积温度

  • 沉积温度能够直接影响 DLC 薄膜沉积过程中目标粒子的动能和化学活性状态,然后对于其内应力产生影响。SUN 等[84]利用混合离子束沉积系统制备了 Cu 和 Cr 共掺杂类金刚石薄膜(Cu / Cr-DLC),研究了沉积温度对其结构性能的影响,结果表明:随着沉积温度从 60℃上升到 250℃,薄膜中 Cu 和 Cr 含量逐渐降低,然而其残余应力呈现相反的变化趋势(图7c),这与铬碳化物的形成有关。在高温沉积过程中,粒子具有更高的动能和更强的反应活性,能够促进硬质碳化物相的形成[85]。此外,高的处理温度提供的多余能量抑制了 sp 3-C 的形成,使薄膜结构更为有序,从而使得内应力降低[86]

  • 4.4 沉积压强

  • 通过改变沉积压强可以调控沉积过程中单位体积内进程气体和前驱体气体的分子数量,影响其有效碰撞的效率,这将进一步改变腔室内的等离子体密度与能量状态。DWIVEDI 等[87]采用直流溅射和射频等离子体增强化学气相沉积(RF-PECVD)技术相结合的混合沉积系统,制备了 Cu-DLC 薄膜,研究了沉积压强对于薄膜性能的影响。结果显示:所沉积的薄膜残余应力均低于 1 GPa(图7d),这与软铜团簇在界面的滑移有关;另外,随着沉积压强 (增加 C2H2 气体分压)的增加,残余应力呈现上升趋势,这与高沉积压强下 C 原子浓度的增加以及靶中毒所导致 Cu 浓度的减小有关。另外,气体压力的影响还与沉积方法和条件有关。例如,在磁控溅射沉积方法中,沉积压强的升高可以降低离子能量和束流密度,从而降低薄膜中的应力[88],而在化学气相沉积方法中,沉积压强增加会促进反应物种的扩散和反应,从而增加薄膜中的残余应力[89]

  • 4.5 碳源入射角

  • LI 等[90]利用分子动力学方法研究了 C 源不同入射角对于薄膜内在结构及性能的影响(图7e),发现当 C 源入射角为 45°时,DLC 薄膜中的残余压应力降低了 12%,而数密度仅略微降低了 1.2%,表明通过控制 C 源入射角可以显著降低残余应力,而不损伤其力学性能;对键长、键角的进一步分析发现,入射角的改变显著降低了非晶碳骨架中扭曲键长的比例,从而导致残余应力的下降。此外,当入射角增加时,DLC 薄膜的表面粗糙度也随之增加[91]

  • 综上,基底偏压、气源流量比、沉积温度、沉积压强、碳源入射角等工艺参数,是影响 DLC 薄膜残余应力状态的关键因素,单一因素或者多因素耦合均会导致不同的残余应力状态。最重要的是,多因素共同作用的情况并不是各个单一因素对薄膜残余应力影响的简单复合。因此在实际的 DLC 薄膜沉积过程中,需要对这些参数进行综合考虑,并根据具体的应用要求进行优化。

  • 5 结论与展望

  • 元素掺杂、过渡层、工艺调控对于降低 DLC 薄膜的残余应力都有着显著效果。其中元素掺杂降低薄膜残余应力主要是通过降低薄膜中扭曲的 C-C 键长和 C-C-C 键角的百分比含量以及缓和键长、键角的扭曲程度来实现的;而引入过渡层则倾向于改善 DLC 薄膜与基底间因热膨胀系数和机械性能不匹配而引起的残余应力;工艺调控则通过改变薄膜沉积过程中的变量因素,如掺杂元素含量和键合状态、碳源粒子能量等,从而影响 DLC 薄膜残余应力状态。

  • 根据对国内外研究现状的总结,可以发现虽然元素掺杂、过渡层添加和工艺参数优化等方法能够降低 DLC 薄膜的残余应力,但是对于 DLC 薄膜内在结构演变和应力相关性的研究还没有得到一致的定论。不同制备方法下的同一元素掺杂体系或相同制备方法下的不同元素掺杂体系,所述的微结构演变与应力相关性的研究结果互不相同,这表明 DLC 薄膜结构的复杂性和多样性以及试验表征的限制等给残余应力降低的内在机理研究带来了挑战。

  • 为了解决这些问题,需要从原子尺度出发,引入更加精细的计算机模拟技术,探究不同制备方法对 DLC 薄膜内在结构的影响,从而揭示其应力演变规律。此外,结合沉积过程中等离子体诊断分析技术,可以更加准确地研究等离子特性与 DLC 薄膜结构、应力的相关性,为制备低应力、高可靠 DLC 薄膜材料提供理论与技术指导。

  • 对于未来的发展,可以考虑引入更加先进的材料科学技术,如机器学习和人工智能等,对 DLC 薄膜制备和应力控制等问题进行研究。总之,随着实际应用工况更为复杂与严苛,不仅对 DLC 薄膜的综合性能提出更高要求,还需要引入新的测试分析技术对薄膜性能变化背后的机理进行深入研究,以发展出适合不同领域运用的综合性能更优异的 DLC 薄膜材料技术。

  • 参考文献

    • [1] BRAND J,GADOW R,KILLINGER A.Application of diamond-like carbon coatings on steel tools in the production of precision glass components[J].Surface & Coatings Technology,2004,180:213-217.

    • [2] SMALLWOOD S A,EAPEN K C,PATTON S T,et al.Performance results of MEMS coated with a conformal DLC[J].Wear,2006,260(11-12):1179-1189.

    • [3] BEWILOGUA K,HOFMANN D.History of diamond-like carbon films-From first experiments to worldwide applications[J].Surface & Coatings Technology,2014,242:214-225.

    • [4] 周琼,黄彪,张而耕,等.DLC 涂层的制备及内应力、热稳定性改善措施研究现状[J].陶瓷学报,2019,40(5):555-564.ZHOU Qiong,HUANG Biao,ZHANG Ergeng,et al.Research status of surface technology DLC coating preparation,internal stress and thermal stability improvement measures[J].Journal of Ceramics,2019,40(5):555-564.(in Chinese)

    • [5] FRANCESCHINI D F,ACHETE C A,FREIRE F L.Internal-stress reduction by nitrogen incorporation in hard amorphous-carbon thin-films[J].Applied Physics Letters,1992,60(26):3229-3231.

    • [6] LEE C S,LEE K R,EUN K Y,et al.Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process[J].Diamond and Related Materials,2002,11(2):198-203.

    • [7] 孙德恩,董洪铭,ZHANG S,等.元素掺杂类金刚石碳膜降内应力研究综述[J].表面技术,2018,47(6):95-103.SUN Deen,DONG Hongming,ZHANG S,et al.Review on the research of reducing internal stress of element doped diamond-like carbon films[J].Journal of Surface technology,2002,11(2):198-203.(in Chinese)

    • [8] 谈发堂,乔学亮,陈建国.功能梯度薄膜的研究进展[J].热加工工艺,2002(5):55-57.TAN Fatang,QIAO Xueliang,CHEN Jianguo.Research progress of functionally graded thin films[J].Journal of Hot working process,2002(5):55-57.(in Chinese)

    • [9] ABADIAS G,CHASON E,KECKES J,et al.Review article:Stress in thin films and coatings:Current status,challenges,and prospects[J].Journal of Vacuum Science & Technology A,2018,36(2):020801.

    • [10] 张婷,何娟,任瑛,等.类金刚石薄膜残余应力的研究进展[J].材料导报,2016,30(1):84-87,95.ZHANG Ting,HE Juan,REN Ying,et al.Research progress of residual stress in diamond-like carbon films[J].Journal of Material guide,2016,30(1):84-87,95.(in Chinese)

    • [11] KAMETANI N,NAKAMURA M,YASHIRO K,et al.Investigating residual stress evolution in the deposition process of diamond-like carbon film through molecular dynamics[J].Computational Materials Science,2022,209:111420.

    • [12] WEI Chehung,YANG,Juifeng,TAI Fongcheng.The stress reduction effect by interlayer deposition or film thickness for diamond like carbon on rough surface[J].Diamond and Related Materials,2010,19(5-6):518-524.

    • [13] 代伟.金属掺杂类金刚石纳米复合涂层的制备、结构与性能[J].新技术新工艺,2015(7):128-131.DAI Wei.Preparation,structure and properties of metal doped diamond-like carbon nanocomposite coatings[J].Journal of New technology and process,2015(7):128-131.(in Chinese)

    • [14] HOFMANN D,KUNKEL S,BEWILOGUA K,et al.From DLC to Si-DLC based layer systems with optimized properties for tribological applications[J].Surface & Coatings Technology,2013,215:357-363.

    • [15] LI Longqiu,SONG Wenping,LIU Jin,et al.Nanomechanical and nanotribological behavior of ultra-thin silicon-doped diamond-like carbon films[J].Tribology International,2016,94:616-623.

    • [16] HE Dongqing,SHANG Lunlin,LÜ Zhibin,et al.Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content[J].Surface & Coatings Technology,2017,329:11-18.

    • [17] AHMAD A A.Optical and electrical properties of synthesized reactive rf sputter deposited boron-rich and boron-doped diamond-like carbon thin films[J].Journal of Materials Science-Materials in Electronics,2017,28(2):1695-1705.

    • [18] SON M J,ZHANG Teng Fei,JO Y J,et al.Enhanced electrochemical properties of the DLC films with an arc interlayer,nitrogen doping and annealing[J].Surface & Coatings Technology,2017,329:77-85.

    • [19] POLAKI S R,GANESAN K,SRIVASTAVA S K,et al.The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films[J].Journal of Physics D-Applied Physics,2017,50(17):175601.

    • [20] WANG Junjun,MA Jianjun,HUANG Weijiu,et al.The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys[J].Surface & Coatings Technology,2017,316:22-29.

    • [21] DEY R,DOLAI S,HUSSAIN S,et al.Phosphorus doping of diamond-like carbon films by radio frequency CVD-cum-evaporation technique[J].Diamond and Related Materials,2018,82:70-78.

    • [22] YANG,Peng,SUNG C C,FUH Y K,et al.Ti-containing hydrogenated carbon films fabricated by high-power plasma magnetron sputtering[J].Transactions of Nonferrous Metals Society of China,2012,22(6):1381-1386.

    • [23] BOOTKUL D,SAENPHINIT N,SUPSERMPOL B,et al.Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc(FCVA)technique for tribological improvement[J].Applied Surface Science,2014,310:293-299.

    • [24] JELINEK M,KOCOUREK T,ZEMEK J,et al.Chromium-doped DLC for implants prepared by laser-magnetron deposition[J].Materials Science & Engineering C-Materials for Biological Applications,2015,46:381-386.

    • [25] KHADEM M,KIM D E.Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures[J].Surface & Coatings Technology,2021,412:127018.

    • [26] CAO Lei,LIU Jian,WAN Yong,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond and Related Materials,2020,109:108019.

    • [27] VITU T,ESCUDEIRO A,POLCAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation[J].Surface & Coatings Technology,2014,258:734-745.

    • [28] ESCUDEIRO A,FIGUEIREDO N M,POLCAR T,et al.Structural and mechanical properties of nanocrystalline Zr co-sputtered a-C(:H)amorphous films[J].Applied Surface Science,2015,325:64-72.

    • [29] GHASEMI M H,GHASEMI B,SEMNANI H R M.Wear performance of DLC coating on plasma nitrided Astaloy Mo[J].Diamond and Related Materials,2019,93:8-15.

    • [30] TANG Xueshan,WANG H J,FENG L,et al.Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties[J].Applied Surface Science,2014,311:758-762.

    • [31] ZHOU Han,HOU Qingyan,XIAO Tianqing,et al.The composition,microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition[J].Diamond and Related Materials,2017,75:96-104.

    • [32] MOHAMMADINIA E,ELAHI S M,SHAHIDI S.Structural and optical properties of Ni-embedded hydrogenated diamondlike carbon(Ni-DLC)prepared by co-deposition of RF-Sputtering and RF-PECVD method[J].Materials Science in Semiconductor Processing,2018,74:7-12.

    • [33] GOTO M.Preparations and tribological properties of soft-metal/DLC composite coatings by rf magnetron sputter using composite targets[C]//5th International Conference on Integrity-Reliability-Failure(IRF).Univ Porto,Fac Engn,Porto,PORTUGAL,2016:1281-1290.

    • [34] MANNINEN N K,RIBEIRO F,ESCUDEIRO A,et al.Influence of Ag content on mechanical and tribological behavior of DLC coatings[J].Surface & Coatings Technology,2013,232:440-446.

    • [35] ZHOU,Bing,XU,Bin,YU,Shengwang,et al.Selective bonding effect on microstructure and mechanical properties of(Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation[J].Applied Physics a-Materials Science & Processing,2019,125(1):34.

    • [36] LI Xiaowei,KE Peiling,WANG Aiying.Ab initio molecular dynamics simulation on stress reduction mechanism of Ti-doped diamond-like carbon films[J].Thin Solid Films,2015,584:204-207.

    • [37] LI Xiaowei,JOE M W,WANG Aiying,et al.Stress reduction of diamond-like carbon by Si incorporation:A molecular dynamics study[J].Surface & Coatings Technology,2013,228:S190-S193.

    • [38] KONKHUNTHOT N,PHOTONGKAM P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.

    • [39] LEI Yu,JIANG Jinlong,WANG Yubao,et al.Structure evolution and stress transition in diamond-like carbon films by glancing angle deposition[J].Applied Surface Science,2019,479:12-19.

    • [40] ZOU Changwu,WANG H J,FENG L,et al.Effects of Cr concentrations on the microstructure,hardness,and temperature-dependent tribological properties of Cr-DLC coatings[J].Applied Surface Science,2013,286:137-141.

    • [41] ZHANG P,TAY B K,SUN Changqing,et al.Microstructure and mechanical properties of nanocomposite amorphous carbon films[J].Journal of Vacuum Science & Technology A,2002,20(4):1390-1394.

    • [42] JING Peipei,MA,Dailusi,GONG Yanli,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface & Coatings Technology,2021,405:126542

    • [43] WANG Aiying,LEE K R,AHN J P,et al.Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique[J].Carbon,2006,44(9):1826-1832.

    • [44] ZHU Lina,LI Junchao,KANG Jiajie,et al.Different Cr contents on the microstructure and tribomechanical properties of multi-layered Diamond-Like Carbon films prepared by unbalanced magnetron sputtering[J].Journal of Materials Engineering and Performance,2020,29(11):7131-7140.

    • [45] LI Xiaowei,KE Peiling,WANG Aiying.Probing the stress reduction mechanism of Diamond-Like Carbon films by incorporating Ti,Cr,or W carbide-forming metals:Ab initio molecular dynamics simulation[J].Journal of Physical Chemistry C,2015,119(11):6086-6093.

    • [46] BOUABIBSA I,LAMRI S,ALHUSSEIN A,et al.Plasma investigations and deposition of Me-DLC(Me = Al,Ti or Nb)obtained by a magnetron sputtering-RFPECVD hybrid process[J].Surface & Coatings Technology,2018,354:351-359.

    • [47] CHOI J H,LEE S C,LEE K R.A first-principles study on the bond characteristics in carbon containing Mo,Ag,or Al impurity atoms[J].Carbon,2008,46(2):185-188.

    • [48] JING Peipei,MA Dailusi,GONG Yanli,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface & Coatings Technology,2021,405:126542.

    • [49] GUO Peng,LI Xiaowei,SUN Lili,et al.Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents[J].Thin Solid Films,2017,640:45-51.

    • [50] LI Xiaowei,LEE K R,WANG Aiying.Chemical bond structure of metal-incorporated carbon system[J].Journal of Computational and Theoretical Nanoscience,2013,10(8):1688-1692.

    • [51] LI Xiaowei,WANG Aiying,LEE K R.First principles investigation of interaction between impurity atom(Si,Ge,Sn)and carbon atom in diamond-like carbon system[J].Thin Solid Films,2012,520(19):6064-6067.

    • [52] LI Xiaowei,ZHANG Dong,LEE K R,et al.Effect of metal doping on structural characteristics of amorphous carbon system:A first-principles study[J].Thin Solid Films,2016,607:67-72.

    • [53] YETIM A F,KOVACI H,KASAPOGLU A E,et al.Influences of Ti,Al and V metal doping on the structural,mechanical and tribological properties of DLC films[J].Diamond and Related Materials,2021,120:108639.

    • [54] HAO Tianmei,DU Jin,SU Guosheng,et al.Mechanical and cutting performance of cemented carbide tools with Cr/x/DLC composite coatings[J].International Journal of Advanced Manufacturing Technology,2020,106(11-12):5241-5254.

    • [55] LIU Xiaoqiang,YANG Jun,HAO Junying,et al.A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J].Advanced Materials,2012,24(34):4614-4617.

    • [56] LI Xiaowei,GUO Peng,SUN Lili,et al.Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction[J].Acs Applied Materials & Interfaces,2015,7(50):27878-27884.

    • [57] SWIATEK L,OLEJNIK A,GRABARCZYK J,et al.Multi-doped diamond like-carbon coatings(DLC-Si/Ag)for biomedical applications fabricated using the modified chemical vapour deposition method[J].Diamond and Related Materials,2016,67:54-62.

    • [58] CONSTANTINOU M,NIKOLAOU P,KOUTSOKERAS L,et al.Metal(Ag/Ti)-Containing hydrogenated amorphous carbon nanocomposite films with enhanced nanoscratch resistance:hybrid PECVD/PVD system and microstructural characteristics[J].Nanomaterials,2018,8(4):209.

    • [59] GAO Kaixiong,ZHANG Lifang,WANG Jian,et al.Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating[J].Applied Surface Science,2015,353:522-529.

    • [60] ZHANG Yagang,SUN Wanchang,DONG Yaru,et al.Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon(Ni/B-DLC)films[J].Surface & Coatings Technology,2021,405:126713.

    • [61] 姜金龙,黄浩,陈娣,等.钛硅多元掺杂类金刚石薄膜在不同气氛环境下的摩擦学性能研究[J].摩擦学学报,2013,33(5):456-462.JIANG Jinlong,HUANG Hao,CHEN Di,et al.Tribological properties of Ti Si multi doped DLC films in different atmospheres[J].Journal of Tribology,2013,33(5):456-462.(in Chinese)

    • [62] JIANG Jinlong,HAO Junying,PANG Xianjuan,et al.Structure and characteristics of amorphous(Ti,Si)-C:H films deposited by reactive magnetron sputtering[J].Diamond and Related Materials,2010,19(10):1172-1177.

    • [63] DAI Wei,GAO Xiang,LIU Jingmao,et al.Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering[J].Applied Surface Science,2017,425:855-861.

    • [64] DAI Wei,GAO Xiang,LIU Jingmao,et al.Microstructure,mechanical property and thermal stability of diamond-like carbon coatings with Al,Cr and Si multi-doping[J].Diamond and Related Materials,2016,70:98-104.

    • [65] LI Xiaowei,GUO Peng,SUN Lili,et al.Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction[J].Acs Applied Materials & Interfaces,2015,7(50):27878-27884.

    • [66] LI Xiaowei,SUN Lili,GUO Peng,et al.Structure and residual stress evolution of Ti/Al,Cr/Al or W/Al co-doped amorphous carbon nanocomposite films:Insights from ab initio calculations[J].Materials & Design,2016,89:1123-1129.

    • [67] LI Xiaowei,GUO Peng,SUN Lili,et al.Ti/Al co-doping induced residual stress reduction and bond structure evolution of amorphous carbon films:An experimental and ab initio study[J].Carbon,2017,111:467-475.

    • [68] XU Zhaoying,SUN Hong,LENG Yongxiang,et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J].Applied Surface Science,2015,328:319-324.

    • [69] LIU Hongxi,JIANG Yehua,ZHOU Rong,et al.Wear behaviour and rolling contact fatigue life of Ti/TiN/DLC multilayer films fabricated on bearing steel by PIIID[J].Vacuum,2012,86(7):848-853.

    • [70] CAO Hongshuai,QI Fugang,OUYANG Xiaoping,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC Coatings on Aluminum Alloys[J].Materials,2018,11(9):1742.

    • [71] DWIVEDI N,KUMAR S,ISHPAL,et al.Studies of nanostructured copper/hydrogenated amorphous carbon multilayer films[J].Journal of Alloys and Compounds,2011,509(4):1285-1293.

    • [72] 周永,孔翠翠,李晓伟,等.Ti/Al 过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.ZHOU Yong,KONG Cuicui,LI Xiaowei,et al.Effect of Ti/Al transition layer on properties of Co doped DLC films[J].Journal of Surface technology,2019,48(1):268-275.(in Chinese)

    • [73] WANG Junjun,PU Jibin,ZHANG Guangan,et al.Interface architecture for superthick carbon-based films toward low internal stress and ultrahigh load-bearing capacity[J].Acs Applied Materials & Interfaces,2013,5(11):5015-5024.

    • [74] 刘毅,林晓东,张磊,等.脉冲激光沉积制备类金刚石薄膜的结构和光学性质[J].材料科学与工程学报,2008(3):357-360.LIU Yi,LIN Xiaodong,ZHANG Lei,et al.Structure and optical properties of diamond-like carbon films prepared by pulsed laser deposition[J].Journal of materials science and Engineering,2008(3):357-360.(in Chinese)

    • [75] OKADA H,UEMATSU Y,TOKAJI K.Fatigue behaviour in AZ80A magnesium alloy with DLC/thermally splayed WC-12Co hybrid coating[J].Procedia Engineering,2010,2(1):283-290.

    • [76] 谢红希,凌贵,朱正涛.RF-PECVD 工艺参数对DLC膜结构及性能的影响[J].材料科学与工程学报,2009,27(2):190-194.XIE Hongxi,LING Gui,ZHU Zhengtao.Effects of RF-PECVD process parameters on the structure and properties of DLC membranes[J].Journal of materials science and Engineering,2009,27(2):190-194.(in Chinese)

    • [77] 李党娟,王娜,吴慎将,等.不同工艺参数下DLC薄膜的应力状态[J].真空科学与技术学报,2020,40(5):421-426.LI Dangjuan,WANG Na,WU Shenjiang,et al.Stress state of DLC films under different process parameters[J].Journal of Vacuum Science and Technology,2020,40(5):421-426.(in Chinese)

    • [78] GUO Chaoqian,PEI Zhiliang,FAN Da,et al.Microstructure and tribomechanical properties of(Cr,N)-DLC/DLC multilayer films deposited by a combination of filtered and direct cathodic vacuum arcs[J].Diamond and Related Materials,2015,60:66-74.

    • [79] ZHANG Silong,ZHOU Yefei,SHAO Wei,et al.Effects of substrate bias voltage on structure and internal stress of amorphous carbon films on γ-Fe substrate:Molecular dynamics simulation[J].Computational Materials Science,2021,188:110206.

    • [80] BERG G,FRIEDRICH C,BROSZEIT E,et al.Development of chromium nitride coatings substituting titanium nitride[J].Surface and Coatings Technology,1996,86-87:184-191.

    • [81] ROBERTSON J.Deposition mechanisms for promoting sp3 bonding in diamond-like carbon[J].Diamond and Related Materials,1993,2(5):984-989.

    • [82] DAI Wei,WANG Aiying.Synthesis,characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system[J].Surface & Coatings Technology,2011,205(8-9):2882-2886.

    • [83] SASAKI Y,OSANAI H,OHTANI Y,et al.Influence of hydrogen gas flow ratio on the properties of silicon-and nitrogen-doped diamond-like carbon films by plasma-enhanced chemical vapor deposition[J].Diamond and Related Materials,2022,123:108878.

    • [84] SUN Lili,ZUO Xiao,GUO Peng,et al.Role of deposition temperature on the mechanical and tribological properties of Cu and Cr co-dzoped diamond-like carbon films[J].Thin Solid Films,2019,678:16-25.

    • [85] ONG S,ZHANG Sam,DU Hejun,et al.Temperature effect on bonding structures of amorphous carbon containing more than 30 at.% silicon[J].Diamond and Related Materials,2007,16(10):1823-1827.

    • [86] WANG S,KOMVOPOULOS K.Molecular dynamics simulations of internal stress evolution in ultrathin amorphous carbon films subjected to thermal annealing[J].Thin Solid Films,2020,713:138247.

    • [87] DWIVEDI N,KUMAR S,MALIK H K,et al.Investigation of properties of Cu containing DLC films produced by PECVD process[J].Journal of Physics and Chemistry of Solids,2012,73(2):308-316.

    • [88] AHMED N,S.KHAN Z,ALI A.Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions[J].Applied Physics A,2022,128(11):967.

    • [89] GHADAI R K,DAS S,KALITA K,et al.Structural and Mechanical Analysis of APCVD Deposited Diamond-Like Carbon Thin Films[J].Silicon,2021,13(12):4453-4462.

    • [90] LI Xiaowei,KE Peiling,LEE K R,et al.Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films[J].Thin Solid Films,2014,552:136-140.

    • [91] JOE M,MOON M,OH J,et al.Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms[J].Carbon,2012,50(2):404-410.

  • 参考文献

    • [1] BRAND J,GADOW R,KILLINGER A.Application of diamond-like carbon coatings on steel tools in the production of precision glass components[J].Surface & Coatings Technology,2004,180:213-217.

    • [2] SMALLWOOD S A,EAPEN K C,PATTON S T,et al.Performance results of MEMS coated with a conformal DLC[J].Wear,2006,260(11-12):1179-1189.

    • [3] BEWILOGUA K,HOFMANN D.History of diamond-like carbon films-From first experiments to worldwide applications[J].Surface & Coatings Technology,2014,242:214-225.

    • [4] 周琼,黄彪,张而耕,等.DLC 涂层的制备及内应力、热稳定性改善措施研究现状[J].陶瓷学报,2019,40(5):555-564.ZHOU Qiong,HUANG Biao,ZHANG Ergeng,et al.Research status of surface technology DLC coating preparation,internal stress and thermal stability improvement measures[J].Journal of Ceramics,2019,40(5):555-564.(in Chinese)

    • [5] FRANCESCHINI D F,ACHETE C A,FREIRE F L.Internal-stress reduction by nitrogen incorporation in hard amorphous-carbon thin-films[J].Applied Physics Letters,1992,60(26):3229-3231.

    • [6] LEE C S,LEE K R,EUN K Y,et al.Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process[J].Diamond and Related Materials,2002,11(2):198-203.

    • [7] 孙德恩,董洪铭,ZHANG S,等.元素掺杂类金刚石碳膜降内应力研究综述[J].表面技术,2018,47(6):95-103.SUN Deen,DONG Hongming,ZHANG S,et al.Review on the research of reducing internal stress of element doped diamond-like carbon films[J].Journal of Surface technology,2002,11(2):198-203.(in Chinese)

    • [8] 谈发堂,乔学亮,陈建国.功能梯度薄膜的研究进展[J].热加工工艺,2002(5):55-57.TAN Fatang,QIAO Xueliang,CHEN Jianguo.Research progress of functionally graded thin films[J].Journal of Hot working process,2002(5):55-57.(in Chinese)

    • [9] ABADIAS G,CHASON E,KECKES J,et al.Review article:Stress in thin films and coatings:Current status,challenges,and prospects[J].Journal of Vacuum Science & Technology A,2018,36(2):020801.

    • [10] 张婷,何娟,任瑛,等.类金刚石薄膜残余应力的研究进展[J].材料导报,2016,30(1):84-87,95.ZHANG Ting,HE Juan,REN Ying,et al.Research progress of residual stress in diamond-like carbon films[J].Journal of Material guide,2016,30(1):84-87,95.(in Chinese)

    • [11] KAMETANI N,NAKAMURA M,YASHIRO K,et al.Investigating residual stress evolution in the deposition process of diamond-like carbon film through molecular dynamics[J].Computational Materials Science,2022,209:111420.

    • [12] WEI Chehung,YANG,Juifeng,TAI Fongcheng.The stress reduction effect by interlayer deposition or film thickness for diamond like carbon on rough surface[J].Diamond and Related Materials,2010,19(5-6):518-524.

    • [13] 代伟.金属掺杂类金刚石纳米复合涂层的制备、结构与性能[J].新技术新工艺,2015(7):128-131.DAI Wei.Preparation,structure and properties of metal doped diamond-like carbon nanocomposite coatings[J].Journal of New technology and process,2015(7):128-131.(in Chinese)

    • [14] HOFMANN D,KUNKEL S,BEWILOGUA K,et al.From DLC to Si-DLC based layer systems with optimized properties for tribological applications[J].Surface & Coatings Technology,2013,215:357-363.

    • [15] LI Longqiu,SONG Wenping,LIU Jin,et al.Nanomechanical and nanotribological behavior of ultra-thin silicon-doped diamond-like carbon films[J].Tribology International,2016,94:616-623.

    • [16] HE Dongqing,SHANG Lunlin,LÜ Zhibin,et al.Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content[J].Surface & Coatings Technology,2017,329:11-18.

    • [17] AHMAD A A.Optical and electrical properties of synthesized reactive rf sputter deposited boron-rich and boron-doped diamond-like carbon thin films[J].Journal of Materials Science-Materials in Electronics,2017,28(2):1695-1705.

    • [18] SON M J,ZHANG Teng Fei,JO Y J,et al.Enhanced electrochemical properties of the DLC films with an arc interlayer,nitrogen doping and annealing[J].Surface & Coatings Technology,2017,329:77-85.

    • [19] POLAKI S R,GANESAN K,SRIVASTAVA S K,et al.The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films[J].Journal of Physics D-Applied Physics,2017,50(17):175601.

    • [20] WANG Junjun,MA Jianjun,HUANG Weijiu,et al.The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys[J].Surface & Coatings Technology,2017,316:22-29.

    • [21] DEY R,DOLAI S,HUSSAIN S,et al.Phosphorus doping of diamond-like carbon films by radio frequency CVD-cum-evaporation technique[J].Diamond and Related Materials,2018,82:70-78.

    • [22] YANG,Peng,SUNG C C,FUH Y K,et al.Ti-containing hydrogenated carbon films fabricated by high-power plasma magnetron sputtering[J].Transactions of Nonferrous Metals Society of China,2012,22(6):1381-1386.

    • [23] BOOTKUL D,SAENPHINIT N,SUPSERMPOL B,et al.Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc(FCVA)technique for tribological improvement[J].Applied Surface Science,2014,310:293-299.

    • [24] JELINEK M,KOCOUREK T,ZEMEK J,et al.Chromium-doped DLC for implants prepared by laser-magnetron deposition[J].Materials Science & Engineering C-Materials for Biological Applications,2015,46:381-386.

    • [25] KHADEM M,KIM D E.Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures[J].Surface & Coatings Technology,2021,412:127018.

    • [26] CAO Lei,LIU Jian,WAN Yong,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond and Related Materials,2020,109:108019.

    • [27] VITU T,ESCUDEIRO A,POLCAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation[J].Surface & Coatings Technology,2014,258:734-745.

    • [28] ESCUDEIRO A,FIGUEIREDO N M,POLCAR T,et al.Structural and mechanical properties of nanocrystalline Zr co-sputtered a-C(:H)amorphous films[J].Applied Surface Science,2015,325:64-72.

    • [29] GHASEMI M H,GHASEMI B,SEMNANI H R M.Wear performance of DLC coating on plasma nitrided Astaloy Mo[J].Diamond and Related Materials,2019,93:8-15.

    • [30] TANG Xueshan,WANG H J,FENG L,et al.Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties[J].Applied Surface Science,2014,311:758-762.

    • [31] ZHOU Han,HOU Qingyan,XIAO Tianqing,et al.The composition,microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition[J].Diamond and Related Materials,2017,75:96-104.

    • [32] MOHAMMADINIA E,ELAHI S M,SHAHIDI S.Structural and optical properties of Ni-embedded hydrogenated diamondlike carbon(Ni-DLC)prepared by co-deposition of RF-Sputtering and RF-PECVD method[J].Materials Science in Semiconductor Processing,2018,74:7-12.

    • [33] GOTO M.Preparations and tribological properties of soft-metal/DLC composite coatings by rf magnetron sputter using composite targets[C]//5th International Conference on Integrity-Reliability-Failure(IRF).Univ Porto,Fac Engn,Porto,PORTUGAL,2016:1281-1290.

    • [34] MANNINEN N K,RIBEIRO F,ESCUDEIRO A,et al.Influence of Ag content on mechanical and tribological behavior of DLC coatings[J].Surface & Coatings Technology,2013,232:440-446.

    • [35] ZHOU,Bing,XU,Bin,YU,Shengwang,et al.Selective bonding effect on microstructure and mechanical properties of(Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation[J].Applied Physics a-Materials Science & Processing,2019,125(1):34.

    • [36] LI Xiaowei,KE Peiling,WANG Aiying.Ab initio molecular dynamics simulation on stress reduction mechanism of Ti-doped diamond-like carbon films[J].Thin Solid Films,2015,584:204-207.

    • [37] LI Xiaowei,JOE M W,WANG Aiying,et al.Stress reduction of diamond-like carbon by Si incorporation:A molecular dynamics study[J].Surface & Coatings Technology,2013,228:S190-S193.

    • [38] KONKHUNTHOT N,PHOTONGKAM P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.

    • [39] LEI Yu,JIANG Jinlong,WANG Yubao,et al.Structure evolution and stress transition in diamond-like carbon films by glancing angle deposition[J].Applied Surface Science,2019,479:12-19.

    • [40] ZOU Changwu,WANG H J,FENG L,et al.Effects of Cr concentrations on the microstructure,hardness,and temperature-dependent tribological properties of Cr-DLC coatings[J].Applied Surface Science,2013,286:137-141.

    • [41] ZHANG P,TAY B K,SUN Changqing,et al.Microstructure and mechanical properties of nanocomposite amorphous carbon films[J].Journal of Vacuum Science & Technology A,2002,20(4):1390-1394.

    • [42] JING Peipei,MA,Dailusi,GONG Yanli,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface & Coatings Technology,2021,405:126542

    • [43] WANG Aiying,LEE K R,AHN J P,et al.Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique[J].Carbon,2006,44(9):1826-1832.

    • [44] ZHU Lina,LI Junchao,KANG Jiajie,et al.Different Cr contents on the microstructure and tribomechanical properties of multi-layered Diamond-Like Carbon films prepared by unbalanced magnetron sputtering[J].Journal of Materials Engineering and Performance,2020,29(11):7131-7140.

    • [45] LI Xiaowei,KE Peiling,WANG Aiying.Probing the stress reduction mechanism of Diamond-Like Carbon films by incorporating Ti,Cr,or W carbide-forming metals:Ab initio molecular dynamics simulation[J].Journal of Physical Chemistry C,2015,119(11):6086-6093.

    • [46] BOUABIBSA I,LAMRI S,ALHUSSEIN A,et al.Plasma investigations and deposition of Me-DLC(Me = Al,Ti or Nb)obtained by a magnetron sputtering-RFPECVD hybrid process[J].Surface & Coatings Technology,2018,354:351-359.

    • [47] CHOI J H,LEE S C,LEE K R.A first-principles study on the bond characteristics in carbon containing Mo,Ag,or Al impurity atoms[J].Carbon,2008,46(2):185-188.

    • [48] JING Peipei,MA Dailusi,GONG Yanli,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface & Coatings Technology,2021,405:126542.

    • [49] GUO Peng,LI Xiaowei,SUN Lili,et al.Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents[J].Thin Solid Films,2017,640:45-51.

    • [50] LI Xiaowei,LEE K R,WANG Aiying.Chemical bond structure of metal-incorporated carbon system[J].Journal of Computational and Theoretical Nanoscience,2013,10(8):1688-1692.

    • [51] LI Xiaowei,WANG Aiying,LEE K R.First principles investigation of interaction between impurity atom(Si,Ge,Sn)and carbon atom in diamond-like carbon system[J].Thin Solid Films,2012,520(19):6064-6067.

    • [52] LI Xiaowei,ZHANG Dong,LEE K R,et al.Effect of metal doping on structural characteristics of amorphous carbon system:A first-principles study[J].Thin Solid Films,2016,607:67-72.

    • [53] YETIM A F,KOVACI H,KASAPOGLU A E,et al.Influences of Ti,Al and V metal doping on the structural,mechanical and tribological properties of DLC films[J].Diamond and Related Materials,2021,120:108639.

    • [54] HAO Tianmei,DU Jin,SU Guosheng,et al.Mechanical and cutting performance of cemented carbide tools with Cr/x/DLC composite coatings[J].International Journal of Advanced Manufacturing Technology,2020,106(11-12):5241-5254.

    • [55] LIU Xiaoqiang,YANG Jun,HAO Junying,et al.A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J].Advanced Materials,2012,24(34):4614-4617.

    • [56] LI Xiaowei,GUO Peng,SUN Lili,et al.Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction[J].Acs Applied Materials & Interfaces,2015,7(50):27878-27884.

    • [57] SWIATEK L,OLEJNIK A,GRABARCZYK J,et al.Multi-doped diamond like-carbon coatings(DLC-Si/Ag)for biomedical applications fabricated using the modified chemical vapour deposition method[J].Diamond and Related Materials,2016,67:54-62.

    • [58] CONSTANTINOU M,NIKOLAOU P,KOUTSOKERAS L,et al.Metal(Ag/Ti)-Containing hydrogenated amorphous carbon nanocomposite films with enhanced nanoscratch resistance:hybrid PECVD/PVD system and microstructural characteristics[J].Nanomaterials,2018,8(4):209.

    • [59] GAO Kaixiong,ZHANG Lifang,WANG Jian,et al.Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating[J].Applied Surface Science,2015,353:522-529.

    • [60] ZHANG Yagang,SUN Wanchang,DONG Yaru,et al.Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon(Ni/B-DLC)films[J].Surface & Coatings Technology,2021,405:126713.

    • [61] 姜金龙,黄浩,陈娣,等.钛硅多元掺杂类金刚石薄膜在不同气氛环境下的摩擦学性能研究[J].摩擦学学报,2013,33(5):456-462.JIANG Jinlong,HUANG Hao,CHEN Di,et al.Tribological properties of Ti Si multi doped DLC films in different atmospheres[J].Journal of Tribology,2013,33(5):456-462.(in Chinese)

    • [62] JIANG Jinlong,HAO Junying,PANG Xianjuan,et al.Structure and characteristics of amorphous(Ti,Si)-C:H films deposited by reactive magnetron sputtering[J].Diamond and Related Materials,2010,19(10):1172-1177.

    • [63] DAI Wei,GAO Xiang,LIU Jingmao,et al.Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering[J].Applied Surface Science,2017,425:855-861.

    • [64] DAI Wei,GAO Xiang,LIU Jingmao,et al.Microstructure,mechanical property and thermal stability of diamond-like carbon coatings with Al,Cr and Si multi-doping[J].Diamond and Related Materials,2016,70:98-104.

    • [65] LI Xiaowei,GUO Peng,SUN Lili,et al.Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction[J].Acs Applied Materials & Interfaces,2015,7(50):27878-27884.

    • [66] LI Xiaowei,SUN Lili,GUO Peng,et al.Structure and residual stress evolution of Ti/Al,Cr/Al or W/Al co-doped amorphous carbon nanocomposite films:Insights from ab initio calculations[J].Materials & Design,2016,89:1123-1129.

    • [67] LI Xiaowei,GUO Peng,SUN Lili,et al.Ti/Al co-doping induced residual stress reduction and bond structure evolution of amorphous carbon films:An experimental and ab initio study[J].Carbon,2017,111:467-475.

    • [68] XU Zhaoying,SUN Hong,LENG Yongxiang,et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J].Applied Surface Science,2015,328:319-324.

    • [69] LIU Hongxi,JIANG Yehua,ZHOU Rong,et al.Wear behaviour and rolling contact fatigue life of Ti/TiN/DLC multilayer films fabricated on bearing steel by PIIID[J].Vacuum,2012,86(7):848-853.

    • [70] CAO Hongshuai,QI Fugang,OUYANG Xiaoping,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC Coatings on Aluminum Alloys[J].Materials,2018,11(9):1742.

    • [71] DWIVEDI N,KUMAR S,ISHPAL,et al.Studies of nanostructured copper/hydrogenated amorphous carbon multilayer films[J].Journal of Alloys and Compounds,2011,509(4):1285-1293.

    • [72] 周永,孔翠翠,李晓伟,等.Ti/Al 过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.ZHOU Yong,KONG Cuicui,LI Xiaowei,et al.Effect of Ti/Al transition layer on properties of Co doped DLC films[J].Journal of Surface technology,2019,48(1):268-275.(in Chinese)

    • [73] WANG Junjun,PU Jibin,ZHANG Guangan,et al.Interface architecture for superthick carbon-based films toward low internal stress and ultrahigh load-bearing capacity[J].Acs Applied Materials & Interfaces,2013,5(11):5015-5024.

    • [74] 刘毅,林晓东,张磊,等.脉冲激光沉积制备类金刚石薄膜的结构和光学性质[J].材料科学与工程学报,2008(3):357-360.LIU Yi,LIN Xiaodong,ZHANG Lei,et al.Structure and optical properties of diamond-like carbon films prepared by pulsed laser deposition[J].Journal of materials science and Engineering,2008(3):357-360.(in Chinese)

    • [75] OKADA H,UEMATSU Y,TOKAJI K.Fatigue behaviour in AZ80A magnesium alloy with DLC/thermally splayed WC-12Co hybrid coating[J].Procedia Engineering,2010,2(1):283-290.

    • [76] 谢红希,凌贵,朱正涛.RF-PECVD 工艺参数对DLC膜结构及性能的影响[J].材料科学与工程学报,2009,27(2):190-194.XIE Hongxi,LING Gui,ZHU Zhengtao.Effects of RF-PECVD process parameters on the structure and properties of DLC membranes[J].Journal of materials science and Engineering,2009,27(2):190-194.(in Chinese)

    • [77] 李党娟,王娜,吴慎将,等.不同工艺参数下DLC薄膜的应力状态[J].真空科学与技术学报,2020,40(5):421-426.LI Dangjuan,WANG Na,WU Shenjiang,et al.Stress state of DLC films under different process parameters[J].Journal of Vacuum Science and Technology,2020,40(5):421-426.(in Chinese)

    • [78] GUO Chaoqian,PEI Zhiliang,FAN Da,et al.Microstructure and tribomechanical properties of(Cr,N)-DLC/DLC multilayer films deposited by a combination of filtered and direct cathodic vacuum arcs[J].Diamond and Related Materials,2015,60:66-74.

    • [79] ZHANG Silong,ZHOU Yefei,SHAO Wei,et al.Effects of substrate bias voltage on structure and internal stress of amorphous carbon films on γ-Fe substrate:Molecular dynamics simulation[J].Computational Materials Science,2021,188:110206.

    • [80] BERG G,FRIEDRICH C,BROSZEIT E,et al.Development of chromium nitride coatings substituting titanium nitride[J].Surface and Coatings Technology,1996,86-87:184-191.

    • [81] ROBERTSON J.Deposition mechanisms for promoting sp3 bonding in diamond-like carbon[J].Diamond and Related Materials,1993,2(5):984-989.

    • [82] DAI Wei,WANG Aiying.Synthesis,characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system[J].Surface & Coatings Technology,2011,205(8-9):2882-2886.

    • [83] SASAKI Y,OSANAI H,OHTANI Y,et al.Influence of hydrogen gas flow ratio on the properties of silicon-and nitrogen-doped diamond-like carbon films by plasma-enhanced chemical vapor deposition[J].Diamond and Related Materials,2022,123:108878.

    • [84] SUN Lili,ZUO Xiao,GUO Peng,et al.Role of deposition temperature on the mechanical and tribological properties of Cu and Cr co-dzoped diamond-like carbon films[J].Thin Solid Films,2019,678:16-25.

    • [85] ONG S,ZHANG Sam,DU Hejun,et al.Temperature effect on bonding structures of amorphous carbon containing more than 30 at.% silicon[J].Diamond and Related Materials,2007,16(10):1823-1827.

    • [86] WANG S,KOMVOPOULOS K.Molecular dynamics simulations of internal stress evolution in ultrathin amorphous carbon films subjected to thermal annealing[J].Thin Solid Films,2020,713:138247.

    • [87] DWIVEDI N,KUMAR S,MALIK H K,et al.Investigation of properties of Cu containing DLC films produced by PECVD process[J].Journal of Physics and Chemistry of Solids,2012,73(2):308-316.

    • [88] AHMED N,S.KHAN Z,ALI A.Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions[J].Applied Physics A,2022,128(11):967.

    • [89] GHADAI R K,DAS S,KALITA K,et al.Structural and Mechanical Analysis of APCVD Deposited Diamond-Like Carbon Thin Films[J].Silicon,2021,13(12):4453-4462.

    • [90] LI Xiaowei,KE Peiling,LEE K R,et al.Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films[J].Thin Solid Films,2014,552:136-140.

    • [91] JOE M,MOON M,OH J,et al.Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms[J].Carbon,2012,50(2):404-410.

  • 手机扫一扫看