en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

谢晓明,男,1999年出生,硕士研究生。主要研究方向为表面工程与摩擦学、激光加工。E-mail: 2282170004@qq.com

通讯作者:

刘秀波,男,1968年出生,博士,教授,博士研究生导师。主要研究方向为表面工程与摩擦学、激光加工。E-mail: liuxiubosz@163.com

中图分类号:TG669;V261

DOI:10.11933/j.issn.1007-9289.20231103003

参考文献 1
陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)
参考文献 2
TORTELLO M,PASTERNAK I,ZERANSKA C K,et al.Chemical-vapor-deposited graphene as a thermally conducting coating[J].ACS Applied Nano Materials,2019,2(5):2621-2633.
参考文献 3
王权,刘秀波,刘庆帅,等.45#钢激光熔覆 Ni60/Cu 自润滑复合涂层组织演变及摩擦学性能[J].中国表面工程,2022,35(6):232-243,256.WANG Quan,LIU Xiubo,LIU Qingshuai,et al.Microstructure evolution and tribological properties of laser cladding Ni60/Cu self-lubricating composite coatings on 45# steel[J].China Surface Engineering,2022,35(6):232-243,256.(in Chinese)
参考文献 4
ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138:106915.
参考文献 5
LIU Y N,DING Y,YANG L J,et al.Research and progress of laser cladding on engineering alloys:A review[J].Journal of Manufacturing Processes,2021,66:341-363.
参考文献 6
朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings prepared by laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)
参考文献 7
XUE K N,LU H F,LUO K Y,et al.Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J].Surface & Coatings Technology,2020,402:126488.
参考文献 8
WANG C L,GAO Y,WANG R,et al.Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys[J].Journal of Alloys and Compounds[J].Journal of Alloys and Compounds,2018,740:1099-1107.
参考文献 9
SHI B W,LI T,WANG D,et al.Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding[J].Journal of Materials Science,2021,56(23):13323-13336.
参考文献 10
QI K,YANG Y,SUN R,et al.Effect of magnetic field on crack control of Co-based alloy laser cladding[J].Optics &Laser Technology,2021,141:107129.
参考文献 11
LIU W W,SALEHEEN K M,Al-HAMMADI G,et al.Effect of different laser scanning sequences on temperature field and deformation of laser cladding[J].Optical Engineering,2022,61(4):046107-046107.
参考文献 12
赵海玲.激光熔覆熔池温度场和流场的数值模拟[D].秦皇岛:燕山大学,2013.ZHAO Hailin.Numerical simulation of temperature field and flow field during of laser cladding in molten pool[D].Qinhuangdao:Yanshan University,2013.(in Chinese)
参考文献 13
ZHANG Q,XU P,ZHA G Q,et al.Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J].Optik,2021,242:167079.
参考文献 14
YANG G F,WANG A N,SU C W,et al.Numerical simulation and surface morphology of laser cladding of Nickel-based C276 alloy coatings on AerMet100 steel surface[J].Journal of Materials Research and Technology,2023.
参考文献 15
苏远乐.汽轮机叶片激光熔覆热力耦合数值模拟与实验研究[D].阜新:辽宁工程技术大学,2022.SU Yuanle.Numerical simulation and experimental research on thermal-mechanical coupling of laser cladding of steam turbine blades[D].Fuxin:Liaoning Technical University,2022.(in Chinese)
参考文献 16
WU S,LIU Z,GONG Y,et al.Analysis of the sequentially coupled thermal-mechanical and cladding geometry of a Ni60A-25% WC laser cladding composite coating[J].Optics & Laser Technology,2023,167:109595.
参考文献 17
罗心磊,刘美红,黎振华,等.不同热源模型对选区激光熔化18Ni300温度场计算结果的影响[J].中国激光,2021,48(14):52-62.LUO Xinlei,LIU Meihong,LI Zhenhua.et al.Effect of different heat-source on calculated temperature field of selective laser melted 18Ni300[J].Chinese Journal of Lasers,2021,48(14):52-62.(in Chinese)
参考文献 18
LI B,DU J,SUN Y,et al.On the importance of heat source model determination for numerical modeling of selective laser melting of IN625[J].Optics & Laser Technology,2023,158:108806.
参考文献 19
XIA Z X,CHEN L,HUANG S H,et al.Effect of solid and annular laser heat sources on thermal cycle and solid phase transformation in rail steel manufactured by laser directed energy deposition[J].Journal of Laser Applications,2021,33(1):012049.
参考文献 20
HAO M,SUN Y.A FEM model for simulating temperature field in coaxial laser cladding of Ti6Al4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64:352-360.
参考文献 21
谢林圯,吴腾,龚美美,等.单道激光熔覆温度场仿真及实验研究[J].激光技术,2022,46(2):226-232.XIE Linyi,WU Teng,GONG Meimei,et al.Numerical simulation and experimental study on temperature field of single channel laser cladding[J].Laser Technology,2022,46(2):226-232.(in Chinese)
参考文献 22
郭鹏伟,文喜星,周龙,等.激光熔凝过程中三维温度场的数值模拟[J].材料导报,2012,26(18):148-152.GUO Pengwei,WEN Xingxing,ZHOU Long,et al.Numerical simulation of three-dimensional temperature field in laser melting process[J].Materials Reports,2012,26(18):148-152.(in Chinese)
参考文献 23
CHAI Q,FANG C,HU J,et al.Cellular automaton model for the simulation of laser cladding profile of metal alloys[J].Materials & Design,2020,195:109033.
参考文献 24
李昌,于志斌,高敬翔,等.物性参数温度变化下激光熔覆多场耦合模拟与实验[J].兵工学报,2019,40(6):1258-1270.LI Chang,YU Zhibin,GAO Jingxiang,et al.Multi-field coupling simulation and experiment of laser cladding under thermal dependent physical properties[J].Acta Armamentarii,2019,40(6):1258-1270.(in Chinese)
参考文献 25
TAMANNA N,CROUCH R,KABIR I R,et al.An analytical model to predict and minimize the residual stress of laser cladding process[J].Applied Physics A,2018,124:1-5.
参考文献 26
MENG G,ZHANG J,Li J,et al.Impact of pore defects on laser additive manufacturing of Inconel 718 alloy based on a novel finite element model:Thermal and stress evaluation[J].Optics & Laser Technology,2023,167:109782.
参考文献 27
CHEW Y X,PANG J H L,BI G J,et al.Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads[J].Journal of Materials Processing Technology,2015,224:89-101.
参考文献 28
FARAHMAND P,KOVACEVIC R.An experimentalnumerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J].Optics & Laser Technology,2014,63:154-168.
参考文献 29
PAN G,CAI R.Thermal stress coupling analysis of ventilated disc brake based on moving heat source[J].Advances in Materials Science and Engineering,2018:1-11.
参考文献 30
罗明贤.316L 不锈钢粉末激光熔覆工艺热-力耦合数值模拟[D].秦皇岛:燕山大学,2011.LUO Mingxian.Numerical simulation of thermalmechanical behavior during laser cladding 316L stainless steel powder[D].Qinhuangdao:Yanshan University,2011.(in Chinese)
参考文献 31
舒林森,王家胜.铣刀盘激光熔覆修复过程的温度场与应力场有限元仿真[J].中国机械工程,2019,30(1):79-84.SHU Linsen,WANG Jiasheng.Finite element simulations of temperature fields and stress fields in laser cladding repair processes of milling cutter disks[J].China Mechanical Engineering,2019,30(1):79-84.(in Chinese)
参考文献 32
方金祥,董世运,徐滨士,等.考虑固态相变的激光熔覆成形应力场有限元分析[J].中国激光,2015,42(5):139-146.FANG Jinxaing,DONG Shiyun,XU Binshi,et al.Study of stresses of laser metal deposition using FEM considering phase transformation effects[J].Chinese Journal of Lasers,2015,42(5):139-146.(in Chinese)
参考文献 33
WANG H,ZHANG M,SUN R,et al.Residual stress prediction for a coated tunnel boring machine cutter considering the effects of heat treatment and laser cladding[J].Journal of Materials Processing Technology,2023,319:118078.
参考文献 34
JIANG Y C,CHENG Y H,ZHANG X C,et al.Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process[J].Optik,2020,203:164044.
参考文献 35
YA W,PATHIRAJ B,LIU S J,2D modelling of clad geometry and resulting thermal cycles during laser cladding[J].Journal of Materials Processing Technology,2016,230:217-232.
参考文献 36
LI C,YU Z B,GAO J X,et al.Numerical simulation and experimental study on the evolution of multi-field coupling in laser cladding process by disk lasers[J].Welding in the World,2019,63(4):925-945.
参考文献 37
KHAMIDULLIN B A,TSIVILSKIY I V,GORUNOV A I,et al.Modeling of the effect of powder parameters on laser cladding using coaxial nozzle[J].Surface & Coatings Technology,2019,364:430-443.
参考文献 38
许彦,李昌,贾腾辉,等.QT600 球墨铸铁激光熔覆数值模拟与实验研究[J].表面技术,2022,51(7):377-387.XU Yan,LI Chang,JIA Tenghui,et al.Numerical simulation and experimental research on the laser cladding process of QT600 nodular iron[J].Surface Technology,2022,51(7):377-387.(in Chinese)
参考文献 39
JIA T H,LI C,JIA S L,et al.Influence mechanism of active elements on multi-field coupling in laser cladding Fe60 process[J].The International Journal of Advanced Manufacturing Technology,2022,124(1-2):411-428.
参考文献 40
周春辉.激光熔覆粉末流-熔池温度场与流场数值模拟 [D].福州:福建工程学院,2021.ZHOU Chunhui.Numerical simulation of temperature field and flow field of laser cladding powder flow pool[D].Fuzhou:Fujian University of Technology,2021.(in Chinese)
参考文献 41
LANGE D F D,HOFMAN J T,MRIJER J,et al.Influence of intensity distribution on the melt pool and clad shape for laser cladding[J].International Journal of Human Resources Development and Management,2005,53:1-5.
参考文献 42
HUANG Y J,ZENG X Y,HU Q W,et al.Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating[J].Applied Surface Science,2009,255(7):3940-3945.
参考文献 43
LOURENçO J M,SUN Shi-Da,SHARP K,et al.Fatigue and fracture behavior of laser clad repair of AerMet 100 ultra-high strength steel[J].International Journal of Fatigue,2016,85:18-30.
参考文献 44
毛怀东.激光熔覆层裂纹控制方法与实践[D].天津:天津大学,2009.MAO Huaidong.Thy study of controlling cracks in laser clad layer[D].Tianjin:Tianjin University,2009.(in Chinese)
参考文献 45
NARAYANAN A,MOSTAFAVI M,PIRLING T,et al.Residual stress in laser cladded rail[J].Tribology International,2019,140:105844.
参考文献 46
刘富荣,高谦,高登攀,等.激光熔覆WC增强复合涂层开裂行为分析[J].材料工程,2003(5):37-39.LIU Furong,GAO Qian,GAO Dengpan,et al.Cracking analysis of WC reinforced composites coating by laser cladding[J].Journal of Materials Engineering,2003(5):37.(in Chinese)
参考文献 47
WANG D Z,HU Q W,ZENG X Y,Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding[J].Surface & Coatings Technology,2015,274:51-59.
参考文献 48
张蕾涛,张红星,刘德鑫,等.激光熔覆复合涂层裂纹产生原因及控制研究进展[J].金属热处理,2020,45(8):233-239.ZHANG Leitao,ZHANG Hongxing,LIU Dexin,et al.Research progress on causes and control of cracks in laser clad composite coatings[J].Heat Treatment of Metals,2020,45(8):233-239.(in Chinese)
参考文献 49
WANG Q,SHI J M,ZHANG L X,Impacts of laser cladding residual stress and material properties of functionally graded layers on titanium alloy sheet[J].Additive Manufacturing,2020,35:101303.
参考文献 50
任呈祥.Co 基WC激光熔覆层的制备与性能研究[D].唐山:华北理工大学,2022 REN Chenxiang.Preparation and properties of laser cladding WC based on Co[D].Tangshan:North China University of Science and Technology,2022.(in Chinese)
参考文献 51
刘海青,葛超,王志文,等.激光熔覆复合涂层裂纹控制研究进展[J].金属热处理,2018,43(8):228-232.LIU Haiqin,GE Chao,WANG Zhiwen,et al.Research progress on crack control of laser clad composite coating[J].Heat Treatment of Metals,2018,43(8):228-232.(in Chinese)
参考文献 52
FENG Y L,PANG X T,FENG K,et al.Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C,B)[J].Journal of Materials Research and Technology,2021,15:5597-5607.
参考文献 53
邹小斌,尹登科,谷建军.关于激光熔覆裂纹问题的研究[J].激光杂志,2010,31(5):44-45.ZOU Xiaobin,YIN Dengke,GU J J.Research on cracking of laser cladding[J].Laser Journal,2010,31(5):44-45.(in Chinese)
参考文献 54
QI K,YANG Y,HU G F,Thermal expansion control of composite coatings on 42CrMo by laser cladding[J].Surface & Coatings Technology,2020,397:125983.
参考文献 55
LI Y T,WANG K M,FU H G,et al.Prediction for Dilution rate of AlCoCrFeNi coatings by laser cladding based on a BP neural network[J].Coatings,2021,11(11):1402.
参考文献 56
RAMAKRISHNAN A,DINDA G P,Direct laser metal deposition of inconel 738[J].Materials Science & Engineering A,2019,740:1-13.
参考文献 57
SUN S T,FU H G,CHEN S Y,et al.A numerical-experimental investigation of heat distribution,stress field and crack susceptibility in Ni60A coatings[J].Optics & Laser Technology,2019,117:175-185.
参考文献 58
BRAUNER N,SHACHAM M,Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants[J].Chemicat Engineering and Processing 1997,36:243-249.
参考文献 59
GENG X M,Study on laser cladding process parameters of Fe-based alloy based on numerical simulation[J].Journal of Physics:Conference Series,2021,1948(1):012231.
参考文献 60
吴俣,马朋召,白文倩,等.不同扫描策略下 316L/AISI304 激光熔覆过程中温度场-应力场的数值模拟[J].中国激光,2021,48(22):18-29.WU Yu,MA Pengzhao,BAI Wenqian,et al.Numerical simulation of temperature field and stress field in 316L/AISI304 laser cladding with different scanning strategies[J].Chinese Journal of Lasers,2021,48(22):18-29.(in Chinese)
参考文献 61
GAO Z N,WANG L L,WANG Y N,et al.Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding[J].Journal of Alloys and Compounds,2022,903:163905.
参考文献 62
DU C C,HU L,REN X D,et al.Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding[J].Surface and Coatings Technology,2021,424:127617.
参考文献 63
LI C,HAN X,ZHANG D C,et al.Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding[J].Journal of Adhesion Science and Technology,2021,36(17):1894-1920.
参考文献 64
WANG L P,ZHANG D C,CHEN C Z,et al.Multi-physics field coupling and microstructure numerical simulation of laser cladding for engine crankshaft based on CA-FE method and experimental study[J].Surface & Coatings Technology,2022,438:128396.
参考文献 65
HUANG Y Z,KHAMESEE M B,TOYSERKANI E,A comprehensive analytical model for laser powder-fed additive manufacturing[J].Additive Manufacturing,2016,12:90-99.
参考文献 66
SONG B X,YU T B,JIANG X Y,et al.Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding[J].Numerical Heat Transfer,Part A:Applications,2019,75(12):855-873.
参考文献 67
PATIL N,PAL D,KHALID R H,et al.A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering-part Ⅰ:formulation and algorithm development[J].Journal of Manufacturing Science and Engineering,2015,137(4):041001.
参考文献 68
ZENG K,PAL D,GONG H J,et al.Comparison of 3DSIM thermal modelling of selective laser melting using new dynamic meshing method to ANSYS[J].Materials Science and Technology,2015,31(8):945-956.
参考文献 69
唐晗,郑冠男,黄程德.基于重叠网格的唇口移动变几何进气道数值模拟研究[J].推进技术,2022,43(8):125-143.TANG Han,ZHENG Guannan,HUANG Chende.Numerical investigation of variable geometry inlet with translating cowl based on overset grid[J].Journal of propulsion Technology,2022,43(8):125-143.(in Chinese)
参考文献 70
张天,吴家鸣,张强.混合网格方法在水下潜器回转运动数值模拟中的应用[J].中国造船,2020,61(S2):312-322.ZHANG Tian,WU Jiaming,ZHANG Qiang.Application of hybrid grid method in numerical simulation of underwater vehicle turning motion[J].Shipbuilding of China,2020,61(S2):312-322.(in Chinese)
参考文献 71
TAISEI I,MASAYUKI A.Numerical simulation of the 3D propeller repair process by laser cladding of SUS316L on SUS304[J].Journal of Manufacturing Processes,2023,98:234-253.
参考文献 72
李海洋,宋建丽,唐彬,等.H13 钢表面激光熔覆Stellite6合金的温度场数值模拟[J].应用激光,2020,40(4):571-578.LI Haiyang,SONG Jianli,TANG Bin,et al.Numerical simulation of the laser cladding temperature field of stellite6 alloy on the surface of H13 steel[J].Applied Laser,2020,40(4):571-578.(in Chinese)
参考文献 73
GAN Z,YU G,HE X,et al.Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J].International Journal of Heat and Mass Transfer,2017,104:28-38.
参考文献 74
XU K K,GONG Y D,ZHANG Q.Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition[J].The International Journal of Advanced Manufacturing Technology,2022,124:7-8.
参考文献 75
XIAO X,XIE L W,TANG R Y,et al.Improved compressive properties of lattice structure based on an implicit surface hybrid optimization design method via selective laser melting[J].Metals,2022,12:1477.
参考文献 76
LI G S,WANG Z Y,YAO L G,et al.Concentration mixing and melt pool solidification behavior during the magnetic field assisted laser cladding of Fe-Cr-based alloy on 45 steel surface[J].Surface & Coatings Technology,2022,445:128732.
参考文献 77
郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元应力场分析[J].中国表面工程,2005,18(1):20-23.HAO Nanhai,LU Wei,ZUO Tiechuan.Thermalmechanical coupling finite element analysis of stress field in laser cladding process[J].China Surface Engineering,2005,18(1):20-23.(in Chinese)
参考文献 78
TIAN H C,CHEN X D,YAN Z H,et al.Finite-element simulation of melt pool geometry and dilution ratio during laser cladding[J].Applied Physics A,2019,125(7):485.
参考文献 79
TANG B T,YUAN Z J,CHENG G,et al.Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state[J].Materials Science & Engineering A,2013,58:304-318.
参考文献 80
SEPPALA J E,HAN S H,HILLGARTNER K E,et al.Weld formation during material extrusion additive manufacturing.[J].Soft Matter,2017,13(38):6761-6769.
参考文献 81
孙蓟泉,尹衍军.金属材料流变学理论及应用[M].北京:科学出版社,2019.SUN Jiquan YIN Yanjun.Theory and application of rheology of metal materials[M].Beijing:Science Press,2019.(in Chinese)
目录contents

    摘要

    激光熔覆作为一种先进的表面技术广泛应用于航空航天和军工等领域,然而激光熔覆在短时间内历经多种复杂的物化过程,其中涉及的传热传质和熔池对流行为与涂层质量密切相关,目前仅依靠试验方法难以直观准确地观测到熔覆过程的瞬态演化对涂层质量的影响,且受限于成本高和周期长等问题。而数值模拟为深入分析熔覆过程中的温度变化,应力分布和熔池流动提供了有效途径,为改善涂层质量提供了理论依据,但针对该方面的综述仍然有限。从熔覆过程中热-力-流多场动态演化出发,系统综述多物理场数值模拟方面的相关研究现状。同时针对裂纹调控问题,归纳总结导致裂纹产生的影响因素,并概述多物理场耦合动态演化-工艺优化-裂纹调控之间的内在关联。准确的模拟结果是有效指导实践的必要条件,但目前的数值模拟研究仍难以精准反映实际熔覆情况。最后指出影响模拟准确性的难点,并对其进行展望。利用数值模拟指导激光熔覆是有效提高涂层质量的可靠手段,对该方面的研究进行系统综述可为后续相关研究和实际应用提供有益参考。

    Abstract

    Laser cladding is a three-way dynamic laser–powder–substrate interaction process in which the complex heat and mass transfer and convective behavior of the molten pool are closely related to the coating quality. Presently, it is difficult to visually and accurately observe the effect of the transient evolution of the laser cladding process on the coating quality by relying only on experimental methods, and it is limited by the high requirements of specialized equipment, high experimental costs, long cycle time, and other problems, which make it difficult to track the dynamic changes of multi-physical fields in the laser cladding process in real time. With the remarkable development of computer technology, numerical simulation provides an effective method for the in-depth analysis of the temperature change law, residual stress distribution, and melt pool flow behavior in the cladding process and provides a theoretical basis for process optimization and improvement of the coating quality. However, only a few reviews have addressed this aspect. Based on this, this paper reviews the current research status of the numerical simulation of multi-physical fields of the “temperature field–stress field–flow field” from the heat source models, thermal properties of materials, mechanical models and thermal-force coupling methods, as well as the flow behavior of the molten pool. The temperature and flow field evolution affect heat transfer, convection, and solidification in the molten pool, which directly affects the coating quality. Owing to the strong transient nature of laser cladding, stress is easily generated inside the coating, which affects its morphology, dimensions, and performance. However, current research on the numerical simulation of the laser cladding process is still limited in the accurate reflection of the actual cladding situation. In the future, it will be necessary to comprehensively consider the details of multiple physicochemical changes in the laser cladding process, such as phase transition, heat conduction, and heat convection, and build more reliable and accurate models to predict the properties of the cladding layer by considering heat source models and boundary conditions that are more compatible with laser cladding and by reducing model simplification. For the crack regulation problem, the influencing factors causing cracks are summarized. Cracks are mainly caused by residual stress exceeding the tensile strength of the material, while differences in the material properties, dilution rate, and elemental segregation also have an impact. The intrinsic correlation between multi-physics field-coupled dynamic evolution, process optimization, and crack regulation is also outlined. Numerous influencing factors lead to crack generation, and accurate simulation results are necessary to effectively guide practice. Therefore, the difficulties affecting the accuracy of the simulation are summarized, and an outlook is provided. In the future, we can improve the simulation methods, optimize the process and material systems, and combine them with nondestructive testing technology. Comprehensive simulation, experiments, monitoring, and other measures are used to establish a systematic and comprehensive crack quantitative index. Starting from the dynamic evolution level of multiscale multi-physical field coupling, realizing the integrated regulation of cracks will be the focus of future research. With continuous development and improvement at the industrial level, the realization of industrial intelligence and automation is an inevitable trend for future development, and the use of numerical simulation technology to guide the actual laser cladding process is a reliable method for effectively improving the coating quality. Therefore, a systematic review of the intrinsic connection between the dynamic evolution of multi-physics fields in laser cladding and crack regulation is necessary to provide references for subsequent research or practical work on numerical simulation and crack regulation of the laser cladding process.

  • 0 前言

  • 我国工业的不断发展对机械装备重要零部件的服役性能要求愈发苛刻。由传统金属材料所制备的机械运动部件在复杂环境与恶劣工况下服役时易出现磨损、腐蚀和断裂等失效问题,直接影响到零部件的力学性能与使用寿命,降低了装备的可靠性与安全性。大部分零部件的失效主要发生在材料表面,因此亟需探索一种绿色高效的表面技术对机械装备关键部件进行强化延寿和失效装备的修复再制造。常见的表面强化技术有热喷涂[1](Thermal spraying,TS)、化学气相沉积[2](Chemical vapor deposition,CVD)和激光熔覆[3](Laser cladding,LC)等,其中激光熔覆以材料选择范围广泛、效率高和组织性能可控性强等优点引起了广泛关注[4]。激光熔覆技术通过在基材表面以不同的给粉方式(同轴送粉、预置粉末等)添加所需要的熔覆粉末,再采用高功率激光束(104~106 W / cm2)为热源,快速使基材表面薄层和粉末同时熔融,并在快速冷却后在基材表面形成具有良好冶金结合的高性能涂层[5]。经过激光熔覆处理后能够显著提高基材表面的耐磨耐蚀性和抗氧化性等性能[6],从而实现延长其使用寿命、降低成本、提高效益的目标,符合国家提倡绿色制造和可持续发展战略理念。

  • 然而,LC 过程由高能激光束冲击、粉末输送、粉末与基材薄层熔化、熔池流动、凝固结晶和熔覆层成型等多个复杂环节组成,受到热源特性、激光工艺参数和材料性质等因素影响。同时整个过程温度变化剧烈,熔池冷却收缩速率较大,且持续时间极短,极易在涂层内部萌生裂纹等缺陷。这些微观裂纹在工作载荷下会逐渐扩展为宏观裂纹,甚至导致构件断裂失效,严重影响了涂层性能及可靠性。因此,如何减少或消除裂纹一直是激光熔覆领域内的研究热点。目前大量研究通过添加过渡层[7]与稀土元素[8]、基材预热[9]、施加辅助场[10]等方法达到了减少或消除裂纹的目标,但研究过程主要集中在以试验为主的单一调控方法上,从某一个层面上出发探究对裂纹的影响机制,如预热主要通过降低温度梯度来抑制裂纹产生。且当前试验方法仍存在局限性,如对专业设备要求高、试错成本大、周期长等。此外,由于激光束-粉末-熔池之间的动态交互作用,对 LC 过程中的热循环、热演化和应力水平的原位测量和控制非常困难。而随着计算机技术的显著发展,数值模拟技术为定量揭示熔覆过程中的温度变化分布规律、残余应力分布情况与熔体流动规律提供了有效途径。通过数值模拟可以更加深入地了解 LC 过程中复杂的热-力-流多物理场动态演化行为,从而达到优化工艺参数和降低热应力的目的,对改善涂层质量具有重要意义。激光熔覆工艺-多物理场耦合动态演化-涂层裂纹之间的内在关联如图1 所示。

  • 图1 激光熔覆工艺-多物理场耦合动态演化-涂层裂纹间的关联机制[3]

  • Fig.1 Correlation between laser cladding process, coupled dynamic evolution of multi-physics fields and coating cracks[3]

  • 本文首先从温度场-应力场-流场模拟出发综述了 LC 过程数值模拟的研究现状,并针对裂纹问题,概述了裂纹产生的影响因素以及数值模拟在裂纹工艺调控方面的相关研究。随后总结了影响 LC 过程数值模拟结果准确性的若干难点,并对未来发展进行了总结和展望,以期为后续相关研究或实际应用提供一定的参考借鉴作用。

  • 1 激光熔覆数值模拟研究现状

  • 激光熔覆涉及激光-粉末-基材的三方交互作用,过程中复杂的热-弹-塑-流多物理场演化直接影响熔覆层质量。如温度场和流场演化会影响熔池内的传热、对流和凝固,直接影响熔覆效果。同时激光熔覆的瞬时性强,在涂层内部易产生应力,影响涂层形貌、尺寸和性能。由于试验方法受制于熔池尺寸小、热梯度大和熔覆过程瞬时等因素,难以实时追踪 LC 过程中多物理场的动态变化。基于此,部分研究通过建立模拟仿真还原不同工艺条件下的 LC 过程,通过定量分析过程中的温度分布变化规律-应力分布情况-熔体流动规律-组织演变行为来揭示工艺-材料-熔池动态演化-涂层质量间的内在关联。因此,利用数值模拟方法从热源模型、材料热物性质、应力应变、热力耦合和熔池流动行为出发探究熔池的温度场、应力场和流场的演化规律对涂层的影响,对于改善涂层宏观形貌、微观组织和使用性能具有重要意义。

  • 1.1 温度场研究现状

  • 在实际 LC 过程中常因热源特性、材料物性和工艺参数等各种因素的匹配协调不到位而致使裂纹产生,通常认为在熔覆过程中均匀的温度场可以得到质量较好的涂层[11-12],影响温度场分布的主要因素有热源模型和材料热物性参数等。

  • 1.1.1 热源模型

  • 在高能激光热源的辐照下,材料历经熔化-冷却-凝固等过程,瞬时的集中热能输入是引起残余应力和开裂的根源。因此在 LC 过程数值模拟中,热源模型的建立直接影响温度分布和应力计算准确性。符合激光熔覆实际情况的热源模型按空间维度可分为点热源、面热源和体热源模型,由于点热源无法准确描述激光能量分布规律,对热影响区和熔合区的计算误差大,故实际应用较少[13]。而面热源能量分布相比点热源更贴合实际,常用的面热源有高斯面热源(图2a)等,其热流密度方程如下:

  • q(r)=3Pρπr0'2exp-3r2r0'2
    (1)
  • 式中, qr)为表面热流密度;P 为激光功率; ρ 为功率占比; r0 为有效半径; r 为到热源中心的径向距离。

  • 针对面热源模型的研究,YANG 等[14]使用高斯面热源模型对固液界面的温度场和对流换热进行模拟,发现在熔池形成及熔覆层凝固成型过程中始终受到材料内部多重对流的驱动,熔覆区以激光热源扫描方向为对称轴,在熔池内形成从下到上逐渐细化的冶金组织。同时随着激光功率和扫描速度的增加,稀释率分别增加 36.3%和 9.8%。由于面热源忽略了熔池深度方向上的能量分布而难以穿透到熔池内部,仅适用于熔池较浅的工况[15]。而体热源考虑了激光对粉末的穿透作用和基材对热量传递的作用,提高了数值模拟的准确度。WU 等[16]基于双椭球体热源模型研究了多道 LC 过程的温度场和熔池演变过程,发现熔覆过程中的温度分布云图均呈“彗星尾”状。由于热源的不对称性,熔覆层两侧的激光能量吸收率不同,热能在未熔粉末中扩散范围较大,从而导致熔覆层宽度方向不对称。双椭球热源 (图2b)热源分布如下式:

  • q1(x,y,z)=63f1Qa1bcππexp-3x2a12-3y2b2-3z2c2
    (2)
  • q2(x,y,z)=63f2Qa2bcππexp-3x2a22-3y2b2-3z2c2
    (3)
  • 式中,q1q2 为前后半椭球体内的热流分布;a1a2 为前后半椭球的半轴;bc 为前后半椭球的另外两个半轴;f1f2 为前后半椭球体内的能量分配系数,满足 f1 + f2 =1。

  • 考虑到不同热源模型的适用范围差异,为探索不同热源模型对模拟过程的影响规律。有研究[17]对比了高斯面热源和双椭球体热源模型对选区激光熔化 18Ni300 温度场和熔池尺寸的影响,研究表明,相较于体热源模型,采用高斯面热源模拟下的计算温度更高,熔池尺寸更小,并通过试验发现双椭圆球热源更符合实际情况。同样 LI 等[18]通过模拟和试验对比分析了不同工艺参数下面热源、体热源和复合热源模型对温度分布和熔池尺寸的影响,得到了类似的结论。如图3 所示,面热源模型的计算温度与实际差距较大。而在预测熔池尺寸方面,根据图4 可以发现复合热源模型明显优于面热源与体热源模型。在实际应用中不同热源模型各有优势,研究者应根据实际情况选择合适的热源模型,常见的热源模型特征及适用环境可根据表1 用作参考。

  • 图2 常见热源模型[14-16]

  • Fig.2 Common heat source models[14-16]

  • 图3 不同热源模型模拟峰值温度的对比[18]

  • Fig.3 Comparison of simulated peak temperature[18]

  • 图4 不同热源模型模拟熔池尺寸的对比[18]

  • Fig.4 Comparison of molten pool dimensions simulated by different heat source models[18]

  • 热源模型是实现 LC 过程模拟的前提[19],未来应全面考虑实际激光能量分布、材料表面的吸收率和反射率、激光瞬态加热过程的时间与空间分辨率以及传热机制等,以建立更切合实际更具针对性的热源模型。合理的热源模型不仅能更好的反映熔池内的热动力学行为和动态演化过程,更能在保证多物理场模拟准确性的同时减少工作量。

  • 1.1.2 材料热物性参数

  • LC 过程温度变化范围从室温到金属熔点再经快速冷却后形成性能优异的涂层,熔覆层中通常包含粘结相(如 Fe 基、Ni 基和 Co 基自熔性合金等)、耐磨硬质相(如 WC、TiC 等)和润滑相(如 CaF2、 Ti3SiC2 等),材料组分相当复杂。在大范围温度变化历程中,熔覆区的材料都会经历复杂的固-液-固多相转变过程,材料的导热系数、热膨胀系数和比热容等热物性参数也会随着温度和物相的改变而产生非线性的变化(图5)。

  • 表1 常见热源模型特征及适用工况

  • Table1 Common heat source models and applicable conditions

  • 材料热物参数的输入是温度场模拟过程中的重要环节,在温度变化范围较小的情况下可选取热物参数的均值进行求解[20],而在温度变化剧烈的 LC 过程中,通常采用 JMatPro 软件进行计算插值或者采用 CALPHAD 计算相图法通过计算和模拟材料的相平衡和相变行为,来获得温度相关的热物性参数。谢林圯等[21]利用 JMatPro 软件计算得到 F60 粉末和 T9A 基材随温度影响下的热物性参数,研究了单道 LC 过程的温度场分布,并采用热成像仪验证了模拟结果,峰值温度最大误差为 8.31%。由于材料特性建模的复杂性,部分研究为提高计算效率往往会忽略材料热物参数随温度的变化,从而导致模拟结果不够理想,这在郭鹏伟等[22]和 CHAI 等[23]的研究中得到证实。同时,为比较考虑与未考虑材料热物性参数随温度变化对温度场的影响,李昌等[24]通过 CALPHAD 法计算了基材与粉末随温度变化下的热物性参数,并与忽略温变影响下的模拟结果进行对比。结果表明未考虑热物性参数随温度变化影响下的计算温度比考虑热物性参数随温度变化影响下的计算温度偏高,但整体变化趋势一致。

  • 材料的热物性质直接影响 LC 过程中的温度-应力分布情况,准确地模拟材料热物性参数随温度的变化可以使计算结果更加接近实际。然而,目前较先进的测试环境及仪器设备(如高温导热系数测定仪和高温比热容测试仪等)仍难以准确测量不同温度下带有复杂相的各项材料热物性参数,尤其是高温环境下的数据(超过 1 500℃),只能通过热动力学模型得到近似数据,难以完全避免数值模拟结果与实际的偏差。

  • 图5 温度变化影响下的材料热物性参数[16]

  • Fig.5 Thermo-physical parameters of materials under the influence of temperature change[16]

  • 1.2 应力场研究现状

  • 由于 LC 过程瞬态的热量加载与快速冷却以及不同材料之间物理性质差异等因素,在样品内部会产生残余应力。从而增加涂层的开裂倾向,严重影响涂层性能,因此对应力场的模拟分析是 LC 过程数值模拟的一个重要方面。

  • 1.2.1 力学本构模型

  • 由于 LC 过程温度变化范围大,材料热物性质也会随温度变化。同时熔池区域的材料历经固态材料受热熔化-液态金属固化成型等瞬态变化过程,不同状态下的材料之间的力学行为存在较大差异。目前用于应力场模拟的力学模型主要有纯弹性模型、弹塑性模型和热弹塑性模型等。其中热弹塑性模型的计算精度较高。因此,当前的研究大都基于热弹塑性模型,在模拟初期考虑弹塑性应变和热应变。如TAMANNA等[25]为研究LC过程中的残余应力分布,建立了考虑弹性和热应变的一维简化模型分析了 H13 钢表面激光熔覆不同材料(Al2O3、TiC、TiO2、 ZrO2)和基体预热温度(300~1 200 K)对残余应力的影响。结果表明,热应变和杨氏模量是导致残余应力产生的关键因素,减小热应变失配可以减小熔覆层内的残余应力。MENG 等[26]通过建立三维瞬态耦合热弹塑性模型分析了激光熔覆 Inconel718 过程的应力场,研究发现,在扫描方向上存在较大的拉应力,在熔合界面易产生裂纹,并以试验验证了该研究可有效预测熔覆件的应力分布与裂纹位置。通常,熔覆过程中总应变和塑性应变的大小对裂纹扩展起着重要作用。例如在钢基体中,超过 2%的塑性应变就会导致裂纹[27]。假设在激光熔覆之前基材内部没有应力,则总应变可由下式表示:

  • ε=εth+εe+εp+εΔV+εTip
    (4)
  • 式中,εthεeεpεΔVεTrp 分别为热应变、弹性应变、塑性应变、体积应变和相变应变增量,应变取决于材料的物理性质。

  • 为了更好地分析和更准确预测残余应力,在模拟后期考虑相变与体积应变的影响,如 FARANMANND 等[28]考虑 LC 过程体积变化与相变潜热的影响,采用热弹塑性模型分析了单道和多道激光熔覆的应力演化过程。研究发现,基材与粉末之间的热物性质差异会导致在热源附近温度分布不均匀,同时熔合区界面和相邻多道熔覆层的重叠区域存在较高的应力集中。应变随熔覆时间的变化如图6 所示,最后通过试验验证了模拟的有效性,最大误差仅为 3.5%。

  • 图6 P1 点热历史引起的应变随熔覆时间的变化[28]

  • Fig.6 Variation of strain caused by P1 point heat history with melting time[28]

  • 在 LC 过程中,应力应变、材料物性参数和温度等多个变量相互影响,呈现出很强的非线性。从严格定义来说,热弹塑性本构模型并不能完整准确地描述 LC 过程中不同阶段和区域内的材料力学行为。其中最符合的区域为基材区和热影响区,与液相区以及固液耦合交互的力学行为仍存在差别。因此,未来还须探索能够适配 LC 过程中不同材料在不同阶段和区域内的力学行为差别的本构模型并配合试验验证,从而更好地指导实践。

  • 1.2.2 热-力耦合分析

  • 激光熔覆涉及复杂的热-力交互作用过程,由于高能集中的激光束对熔覆区的作用时间极短,热梯度大,同时熔池冷却凝固速率较大,在样品内部极易产生热应力,对涂层质量产生恶性影响。热应力问题涉及热与力两个物理领域之间的相互作用,因此通常被认为是一种热-力学耦合分析过程,目前对应力场的分析方法主要有顺序热-力耦合和完全热-力耦合方法。顺序热力耦合通过对瞬态或稳态变化下的温度场进行分析,再将所得节点温度分布作为初始条件进行应力场分析,其模拟流程如图7 所示。而完全热力耦合则是直接利用耦合单元的温度自由度和位移自由度来获得热分析和应力分析结果,然而,完全热-力耦合方法在模型复杂时存在不收敛和计算耗时长的问题。如 PAN 等[29]基于旋转热源对盘式制动器热应力耦合进行分析,发现完全热-力耦合分析方法的计算时间是顺序热-力耦合方法的 38 倍。

  • 图7 顺序热-力耦合模拟流程图[31]

  • Fig.7 Sequential Heat-Force Coupling Simulation Flowchart[31]

  • 同时有研究指出,严格意义上温度场与应力场是相互耦合的[30]。但通常认为应力场对温度场影响较小,因此目前对激光熔覆的数值模拟大多以顺序单向热力耦合分析为主。为了保证效率和收敛性,舒林森等[31]基于顺序热力耦合建立了激光熔覆修复铣刀盘过程的分析模型,模拟表明热应力随着粉末的沉积而变化,在熔覆层和基材的结合区易应力集中,应力最大值为 384 MPa,与实测值相差约 10.5%,涂层无裂纹产生,但该研究忽略了相变对应力场的影响。当材料在 LC 过程中发生相变时,晶体结构和原子排列会发生变化,导致局部应力的改变。在相变界面或相变区域附近,由相变引起的体积变化和晶格重排可能导致应力集中。如果忽略相变对应力场的影响,将会对模拟结果产生影响。为此方金祥等[32]通过建立顺序热力耦合有限元模型,研究了考虑与不考虑相变对 LC 过程应力场演化的影响。结果表明相较于不考虑相变效应,考虑相变下的残余应力水平较低,且分布规律差距明显,计算结果也更接近实际。由于目前激光熔覆数值模拟研究大多基于小尺寸样品,热-力耦合方法在预测大尺寸复杂件的应力时仍存在精度较低的问题。 WANG 等[33]为准确预测圆形齿环刀具激光熔覆后的残余应力,开发了一种基于相变动力学的热-冶金-机械耦合模型,分析了热处理对 LC 过程的应力演变的影响。研究发现考虑相变和热处理影响下的应力场模拟结果与试验结果吻合较好,为预测刀具在服役时的变形和断裂行为提供了理论指导。

  • 1.3 流场研究现状

  • 涂层质量与熔池内液态金属的传热、对流和凝固密切相关,熔池具有时间短、体积小、温度梯度大等特点。且熔池内的液态金属流动非常复杂,有重力和浮力引起的自然对流和表面张力引起的马兰戈尼对流。这些因素共同影响熔池内的液态金属流动和温度分布,进而影响熔池的生长,使涂层内部产生残余应力,甚至导致涂层开裂[34]。其中马兰戈尼对流涉及激光热源穿透、材料熔凝和多相流等多个物理现象,对熔池内的热传导和液态金属流动起着决定性影响[35],马兰戈尼数(Marangoni number) 可由下式表示:

  • Ma=|γ|LΔTrurα1=γΔTr/ρrLγΔTr/ρrLv/L×α1/L
    (5)
  • 式中, ΔTr 为熔池的最大温差; ur 为熔池的动态黏度;v 为运动黏度;γΔTr/ρrL为热毛细速度;v/ L为分子扩散速度;α1/ L 为热扩散系数。

  • 在 LC 过程中,当马兰戈尼数较高时,马兰戈尼力显著,从而引起复杂的马兰戈尼对流现象。马兰戈尼效应如图8 所示[36]

  • 图8 熔池内马兰戈尼效应示意图[36]

  • Fig.8 Schematic diagram of Marangoni effect in molten pool[36]

  • KHAMIDULLIN 等[37]模拟了送粉过程和熔池流动,由图9a 所示,液态金属在熔池内的流动模式有由于温度梯度过高,吸收的激光能量引起表面张力驱动的马兰戈尼对流,在熔池对流和浮力作用下液态金属沿上游的流动,以及由激光能量导致的体积膨胀所引起的液态金属在熔池顶部到底部的下游流动。同时,在 LC 过程中气粉射流与熔池顶部的碰撞也会增加液态金属沿熔池表面的流动速度。这些流动模式最终决定了涂层的微观形貌,这在视觉上与试验结果很好地吻合(图9b),微裂纹的方向与液态金属的流动方向一致。但该模型仅在低送粉速度下对液态金属流动具有较好的可预测性。因此,该模型还可进一步优化,应综合考虑流体流动、传热、表面张力和熔池自由表面运动。

  • 图9 熔池流动模式及熔池截面[37]

  • Fig.9 Molten pool flow pattern and cross-section[37]

  • 同时有研究[38]指出,当熔覆粉末中的活性元素含量较高时,将影响熔池中的液态金属流动规律,从而影响熔池形态。JIA 等[39]为研究硫元素对温度场、应力场和流场的影响,建立了圆盘激光熔覆 Fe60 过程的数值模型,通过设置不同工艺参数进行了数值模拟。结果表明,硫元素对温度场和应力场影响不大,但对流场影响明显。如图10 所示,硫元素的加入使得熔覆温度降低,马兰戈尼对流发生转变,并通过加快熔池流动速度使元素分布更加均匀。

  • 图10 活性元素对流场的影响[39]

  • Fig.10 Effect of active elements on flow field[39]

  • 此外在 LC 过程中熔覆粉末与载粉气相互作用会形成粉末流,随后在与激光束相互作用后进入熔池,粉末流对熔池的冲击力与熔池重力以及内部压力形成力平衡,进而影响熔池生长与自由表面形状。力平衡表达式为[40]

  • pliq-ppg+pG=2μliq×uliqn+γK
    (6)
  • 式中, pliq 为液态金属对自由表面的压力; ppg 为粉末流对熔池的冲击力; pG 为熔池重力; μliq 为熔池黏度; uliq 为液态金属流动速度;n 为法向矢量;γK 为表面张力。

  • 有研究[41]指出,在气粉进料速率较大的情况下,粉末流对熔池表面的冲击力甚至比马兰戈尼诱导力更显著。目前在 LC 过程中对于流场的模拟主要是对单一熔池流动或粉末流动的模拟,缺少对粉末流与熔池流动的耦合模拟,且对于流场分析的有限元模型所施加的边界条件还不够完善。在模拟熔池流场时对气体压力以及熔池气液自由表面的研究较少,对熔池中液态金属的流动仅考虑了表面张力和温度系数等单方面的因素,影响了计算结果的准确性。

  • 2 裂纹的调控

  • 激光熔覆层裂纹的形成机制复杂,受多种因素交互作用。裂纹的主要表现形式见表2,其扩展方式多种多样,与基体的应力状态、熔覆层的微观结构与加工工艺等诸多因素密切相关。

  • 表2 裂纹的表现形式、产生原因及控制方法[42-44]

  • Table2 Manifestation, causes, and control methods of crack[42-44]

  • 2.1 裂纹产生的影响因素

  • 大量研究表明,涂层内部的残余应力是导致涂层开裂的主要诱因[45-47],当残余应力超过涂层的抗拉强度时便会导致裂纹产生[48]。残余应力是在无外力、位移或其他因素作用时,以平衡状态残留在涂层内部的应力,通常由高的温度梯度以及不同材料之间的物理性质和冷却收缩速率差异(热应力),短时非平衡固态相变(组织应力)和强约束下熔池的快速凝固收缩(约束应力)所导致[49]。热应力、组织应力和约束应力的作用原理如图11 所示[50]

  • 图11 残余应力作用原理[50]

  • Fig.11 Principle of residual stress[50]

  • 其中,热应力对熔覆层开裂敏感性的影响最为明显,由热应力引起的裂纹也是 LC 过程中最常见的裂纹类型。热应力公式[51]可表示为:

  • σ=Eα1-α2ΔT1-μ
    (7)
  • 式中,σ 为热应力;E 为弹性模量;α1为熔覆材料热膨胀系数;α2 为基材热膨胀系数; ΔT 为加工温度与室温的差; μ 为泊松比。

  • 由式(7)可知,当α1α2 时,σ > 0,此时热应力表现为拉应力,当拉应力超过熔覆层所能承受的最大极限时便会萌生裂纹。当 α1α2 时, σ < 0,热应力表现为压应力,压应力可以降低熔覆层的开裂倾向[52]。因此在选择熔覆材料时,应在满足涂层使用性能的基础上,尽可能控制基材与熔覆材料之间热膨胀系数的差也是抑制裂纹产生的有效方法之一,两者之间热膨胀系数的匹配原则如下式[53]

  • -σ2(1-μ)EΔT<Δα<-σ1(1-μ)EtΔT
    (8)
  • 式中,σ1σ2 为涂层与基体的抗拉强度;μ 为泊松比;EEt 为涂层与基材的弹性模量; ΔT 为加工温度与室温的差; Δα 为涂层与基材热膨胀系数的差。

  • QI 等[54]为解决熔覆层裂纹问题,通过在 42CrMo 基体上激光熔覆 NiCrBSi / ZrW2O8 低膨胀复合材料,发现在 30~500℃的测试温度下的熔覆层的热膨胀系数低于基体,涂层未产生裂纹。而当基材与熔覆材料的热膨胀系数相差不大时,熔池稀释率对于涂层开裂倾向影响明显。过高的稀释率会增大热应力,从而导致裂纹,过低的稀释率会导致基材与熔覆层的结合很差[55]。此外有研究表明,熔覆层的裂纹敏感性不仅与残余应力有关,还与元素偏析有关[56]。SUN 等[57]通过建立三维有限元模型,分析了激光制备 Ni60A 涂层的温度场和应力场,并通过试验验证了模型的有效性。研究发现,在热源附近易产生残余应力,且 Cr、Ni、Fe 元素的微偏析同样会增加涂层的开裂倾向。元素的微偏析与熔池内液态金属的扩散系数直接相关,可由下式表示[58]

  • k=Aexp(-E/RT)
    (9)
  • 式中,k 为速率系数;A 为频率因子;E 为活化能; R 为理想气体定律常数;T 为绝对温度。随着冷却速率的增加,元素的扩散系数减小,元素的微偏析减少。

  • 2.2 工艺优化

  • 根据上述裂纹产生的影响因素可知,裂纹主要由残余应力超过材料的塑性应变极限所导致,同时材料物性差异、稀释率和元素偏析等同样对其产生影响。目前裂纹的工艺调控方法主要从减小应力和材料特性两个角度考虑,集中于探讨工艺参数与裂纹之间的内在交互影响机制。与裂纹相关的工艺参数主要有激光功率、扫描速度、光斑直径等,三者共同决定了LC过程中涂层单位区域接收到的能量,即热输入,过高或过低的热输入均可能导致裂纹。而采用试验方法进行相关研究,存在无法深入研究激光熔覆的传热-传质-对流过程以及试错成本大等问题。为更好地揭示裂纹成形机理和简化工艺验证过程,推动激光熔覆朝智能化和自动化发展,采用数值模拟成为工艺优化和裂纹调控的“更优解”。

  • 目前利用数值模拟针对裂纹工艺调控方面的研究,一方面以探究单一工艺参数或不同工艺参数协同作用下温度-应力变化分布对涂层质量的影响规律,从而寻求无裂纹的最优工艺参数。例如,GENG等[59]通过模拟 45 钢基体激光熔覆 Fe 基合金过程的传热和温度场,分析了不同工艺参数组合下的熔池温度分布规律,根据冶金结合程度和稀释率发现当激光功率为 1.4 kW、扫描速度为 8 mm / s、光斑直径为 3 mm 时是得到无裂纹涂层的最佳工艺参数。除上述因素外,影响涂层开裂倾向的另一个重要因素是激光扫描路径,其通过影响热输入分布来影响工件的残余应力和开裂,常用的扫描路径有单向扫描和往复扫描等。吴俣等[60]通过研究不同扫描路径下多道多层 LC 过程的温度-应力分布,发现相比于往复扫描,单向扫描下的熔覆层有更均匀细小的组织和更低的热积累。同时由图12 所示,不同路径下的应力分布基本一致,但往复扫描下的应力明显更大,这可归因于高的热积累导致更大的塑性变形。此外,值得指出的是,在多道 LC 过程中,由于冷却速度快,每一道熔覆层的残余应力水平是不同的,最大拉应力位于最后一道熔覆层中。而在先前形成的熔覆层中,由于热应力松弛,最大拉应力减小,裂纹形成的阻力增大。

  • 图12 不同扫描路径下的应力云图[60]

  • Fig.12 Stress clouds under different scanning paths[60]

  • 另一方面则是通过模拟从 LC 过程中的热动力学行为和冶金现象出发,探索裂纹的形成机理。例如,GAO 等[61]基于模拟和试验讨论了工艺参数对裂纹敏感性的影响,发现裂纹率随着热输入的增加先下降再上升。如图13 所示,当热输入较低时,粉末熔化不充分,未熔化材料在对流作用下沿一定方向聚集并形成裂纹。当热输入较大时,熔池内的温度分布与流动越不均匀,相邻对流之间的区域组织差异大,易在结合区形成裂纹。DU 等[62]通过分析 C45 基体激光熔覆 FeCoNiCrAl 涂层过程中的温度场和应力场,发现 C45 基体在 LC 过程中发生马氏体相变,使得热影响区体积膨胀,硬度增加。限制了基体在界面附近的塑性变形,导致拉应力难以通过基体的塑性变形得到缓解,在下一次熔覆过程中,在拉应力的影响下裂纹从界面到表面扩展产生宏观裂纹。

  • 图13 热输入对裂纹的影响[61]

  • Fig.13 Effect of heat input on crack[61]

  • 然而,当前的模拟研究大多集中于从温度-应力变化分布情况等单方面出发考虑对裂纹敏感性的影响,局限于单个或两个物理场进行建模,难以实现对裂纹的综合调控。裂纹的产生与热-力-流多场耦合动态演化密切相关,对温度-应力分布、熔池流动和组织演变进行综合评估,是提高涂层质量的关键。为此 LI 等[63]通过建立热-弹塑性-流多物理场耦合模型,考虑光粉相互作用和熔池瞬态演化,定量揭示了不同工艺参数对温度-应力分布、熔池流动和凝固演变规律的影响机制,为降低残余应力和避免裂纹产生提供了理论指导。WANG 等[64]在不同激光功率下分析了 LC 过程的温度-应力分布、熔池尺寸与流速,发现随着激光功率的增加,熔覆温度越高,热影响区越大,应力分布越宽,温度场和熔池流场分别在 200 和 500 ms 时达到稳态。同时结合元胞自动机法(Cellular automation)得到了熔覆层中晶粒的尺寸与形貌,并通过试验证明了模型的有效性。

  • 裂纹作为常见缺陷,严重影响了涂层的可靠性。为更好地抑制裂纹形成和扩展,可从以下方面加深研究:①改进模拟方法—考虑更多与裂纹相关的物理因素,探索更符合实际的模型,提高模拟结果的准确性。②材料-工艺优化—基于模拟结果,进一步改进工艺参数,以耐裂纹扩展材料替代易产生裂纹的材料。③配合无损检测技术:结合声发射等无损检测技术实时监测 LC 过程中裂纹的形成和扩展情况,提前预警并采取措施。通过综合模拟+试验+ 监测等手段,建立全面的裂纹量化性指标,从多尺度多物理场耦合动态演化层面出发,实现对裂纹的综合调控是未来的研究重点。

  • 3 影响模拟准确性的难点

  • LC 过程的数值模拟是优化工艺参数,降低应力并减小涂层开裂倾向的有效方法,但首先要保证数值模拟结果的准确性。然而,目前仍存在一些难点导致数值模拟结果与实际有一定偏差,对于实际生产只有部分参考作用。

  • 3.1 多尺度跨度大

  • 由于 LC 过程所涉及的物理尺度跨度大,从晶相组织和裂纹到热影响区和熔池再到基材,跨越了微观、介观、宏观多个尺度。现今主流的 LC 过程数值模拟方法大多须要对计算区域进行网格划分,质量优良的网格单元是得到准确计算结果的必要条件,然而多尺度跨度大对网格划分带来了挑战。大尺度跨度下的物理过程细节须要采用不同尺度大小的网格单元来描述,尤其是尺度跨度大的网格单元之间的过渡区域极易出现质量非常差的网格单元,如网格畸变、网格单元体积近似为零或负值等,直接影响计算结果的准确性。目前 LC 过程数值模拟通常采用一定的模型简化和限定计算区域来回避尺度跨度大的难点[65-66],不同尺度下的模拟研究重点与模型简化见表3。

  • 为了准确描述多尺度现象,PATIL 等[67]采用动态自适应网格结合刚度矩阵配置,实现了对温度场模拟的快速求解,计算效率得到极大提升。ZENG 等[68]通过 3DSIM 软件,采用动态网格划分技术对选区激光熔化的传热过程进行研究,并对比了通过ANSYS 软件得到的模拟结果,研究表明动态网格划分的载荷迭代收敛步效率较 ANSYS 软件提高 10 倍不止。在其他领域已经出现采用重叠网格等方法处理尺度跨度大和计算区域网格布局复杂的难题,如唐晗等[69]基于“Coller”型重叠网格技术对吸气式冲压发动机的气动特性和流动机理开展模拟研究,解决了多体相交时重叠区域的计算难题。同时部分研究尝试将不同网格划分方法结合应用在数值模拟中,力求得到更加稳定的计算条件。如张天等[70]对不同计算区域采用滑移+重叠网格的混合网格方法模拟了水下潜器的回转过程,并与全重叠网格方法进行对比,结果表明混合网格可在节省计算资源的情况下达到与重叠网格方法一致的模拟结果。

  • 表3 不同尺度的模拟研究重点与模型简化

  • Table3 Simulation research focus and model simplification in different scales

  • 重叠网格或混合网格方法允许不同尺度的网格单元重叠在一起,小尺度熔池子区域与大尺度基材区域分别划分网格,减少因尺度差别大而引起的网格单元质量超差问题,未来可尝试在激光熔覆数值模拟中应用。但此方法也会引入新问题,如多区域重叠网格的边界匹配与插值问题,边界物理量的守恒问题等。

  • 3.2 计算区域变化大

  • LC 过程是动态变化的,比如在多道多层 LC 过程中,已经凝固的熔覆层与新熔覆层的重叠区域会被再次加热熔化并再次凝固,熔覆层形状会发生改变。计算区域的持续动态变化是激光熔覆数值模拟中的难点,涉及到计算区域的动态网格划分,以及网格单元的激活问题。对于整个工件的 LC 过程数值模拟,由于与熔覆层的尺度跨度较大,通常会忽略熔覆粉末的堆叠过程,计算区域近似为不发生变化[71]。而对于板材试样上的 LC 过程模拟,李海洋等[72]采用生死单元法(Birth and death)模拟了多道 LC 过程的温度场分布,研究表明,前一道熔覆层对后一道熔覆层存在明显的预热作用,垂直于扫描方向上的温度梯度最大。通过试验发现,使用数值模拟优化后的工艺参数制备的涂层未出现裂纹、气孔等缺陷。生死单元法需预先设置好熔覆区域非激活状态的网格单元,忽略了网格单元激活时与实际熔覆层形状的差异,并假设重新熔化的熔覆层区域不发生形状改变。GAN 等[73]基于动网格技术的任意拉格朗日-欧拉方法( ALE,Arbitrary Lagrangian-Eulerian)研究了熔池表面的动态变化,计算得到的熔池几何形状和元素成分分布与试验结果非常吻合。

  • 除此之外,还可以选择采用流体体积模型[74] (VOF,Volume of fluid)或隐式曲面[75](Implicit surface)等方法描述熔覆层粉末堆叠过程的计算区域变化。这两种方法须在固定的背景网格中计算新增粉末和重熔熔覆层的熔化流动,计算量较大。此外计算区域前沿界面的变化与金属液体流动、传热以及应力相互耦合,进一步加剧计算的难度,计算发散和求解失败的概率大增,不同数值方法的优缺点见表4。目前在软件方面,主要以 ANSYS、ABAQUS 和 FLUENT 等有限元软件为主,计算受限且在模拟计算大型复杂件的熔覆过程时耗时过长。目前,专门用于增材制造的计算软件(如 ANSYS Additive、AMProSim-DED 等) 以集成化程度高、计算速度快、专业性高在不断被开发出来,未来可尝试采用这些软件对 LC 过程进行数值模拟。

  • 表4 不同数值方法的优缺点

  • Table4 Advantages and disadvantages of different simulation methods

  • 3.3 温度变化范围大

  • 在LC 过程中熔覆粉末经激光束辐照后从固态熔化成液态,局部区域还有可能变成汽态,形成金属蒸汽,温度变化范围从室温到金属沸点。不同状态的材料力学行为通常采用不同的力学本构模型描述,可压缩流体描述气相,不可压缩流体描述液相,弹塑性固体描述固相等。同一区域的材料因为温度变化要切换多种力学本构模型给 LC 过程数值模拟带来了不小的挑战,这是模拟结果与实际偏离的原因之一。

  • 目前通常采用将计算区域统一按照流体或固体近似处理的方法来解决大温度变化范围下材料力学本构模型变化的难点。例如:LI 等[76]通过引入多孔介质阻力模型,将半固态和固态区域分别近似为流动缓慢和几乎不流动的流体,分析了电磁辅助对激光熔覆熔池凝固行为的影响机理。结果表明磁场通过影响熔池对流和冷却速率改变熔覆层元素分布与晶粒形貌,随磁场强度的增强,元素分布更均匀且晶粒更细小。郝南海等[77]采用弹塑性模型,忽略熔池流体流动,将流体近似成形变抵抗很小的固体。模拟了碳素钢表面激光熔覆不锈钢的过程,研究表明熔覆材料沿熔覆方向发生的塑性拉伸变形是导致裂纹的主要原因。或是在网格划分阶段确定流体区域和固体区域,流体和固体区域分别按照流体本构和固体本构计算,流体和固体之间的界面交互根据 ALE 方法进行处理,以实现流固多场耦合[78]。但实际 LC 过程中熔池与基体之间的界面为固液混合糊状区,与 ALE 方法中固定的边界仍有差别,而且流固多场耦合的计算复杂且耗时长。在焊接和铸造等领域有文献[79-81]提到可以采用流变学本构模型来统一描述液相区的流体流动、液-固两相共存区的凝固和固相区的变形及应力行为,未来可尝试在激光熔覆数值模拟中应用。

  • 4 结论与展望

  • 激光熔覆技术自问世以来,在众多研究人员的不断探索中得到了长足的发展。而随着计算机技术的显著发展,LC 过程的数值模拟研究同样取得了一定进展。本文综述了激光熔覆数值模拟方面的研究现状,并针对裂纹问题,概述了裂纹产生的影响因素以及多物理场耦合动态演化-工艺优化-裂纹调控之间的内在关联,最后指出了影响模拟准确性的难点。现对相关研究工作总结如下:

  • (1)目前对温度场的模拟主要以研究温度随熔覆时间的变化分布规律为主,熔覆过程温度历史、熔池边界凝固速率与温度梯度的变化和分布对研究裂纹产生更具有价值。同时建模均有一定程度的简化,且大都采用了假设条件,忽视某些物化过程来提高计算效率,如相变潜热对温度场的影响,使得模拟结果仍与实际存在偏差。

  • (2)对于应力场的模拟研究主要以优化工艺参数和减少应力为主,且大多基于顺序热力耦合,以温度场计算结果为基础再计算应力场。考虑温度场对应力场的影响,忽略应力场对温度场的影响。同时研究多以基于水平基板的单道或少数多道多层熔覆的小体积样品为主,且主要集中于实验室研究,开展系列小型模拟。对于实际应用的工件和大型复杂件的熔覆过程模拟不多,未来应以产业化为目标开展数值模拟研究。

  • (3)由于流场耦合对于整体的热应力变化较小,因此在研究熔覆层裂纹时常常被忽略。且目前在模拟熔池流场时对气体压力以及熔池自由表面的研究较少,边界条件也不够完善,仅考虑了表面张力和温度系数等因素,影响了计算结果的准确性。

  • (4)LC 过程是动态变化,逐步增长的,所涉及的物理尺度跨度大,给 LC 过程的数值模拟带来了巨大挑战。目前通常采用限定计算区域和一定的模型简化来回避计算区域变化大和尺度跨度大的问题。

  • (5)导致裂纹产生的影响因素众多,当前模拟研究大都从熔覆过程中的传热、应力和熔体流动出发,研究不同工艺参数对涂层开裂倾向的影响趋势,难以完整考虑所有影响裂纹产生的因素。因此目前数值模拟的主要作用在于根据模拟结果趋势找出比较合理的工艺窗口,给裂纹的减少和避免提供一定的理论依据和参考。

  • 综上,目前的数值模拟研究仍难以精准反映激光熔覆实际情况。模型的准确性对于预测涂层质量至关重要,未来可从以下方面进一步探索:

  • (1)综合考虑材料物理性质、热传导、相变和流变力学等多个因素。通过建立准确完善的材料热物性参数库、考虑与实际更加相符的热源模型与边界条件和建立热-弹-塑-流多物理场耦合模拟可以使模拟更接近实际。

  • (2)加深对粉末流与熔池流的耦合模拟研究,同时可尝试结合离散相模型和熔池受力分析建立多相流传热传质模型对动态变化下的熔池形貌变化和熔体流动行为以及熔覆层的形成过程作出合理解释。

  • (3)多尺度多物理场耦合模拟仍是当前的研究重点和难点,未来可尝试在 LC 过程数值模拟中应用重叠网格和混合网格方法、流变学本构模型以及更先进的数值模拟软件,通过减少对模型的简化和更加稳定的计算条件使模拟结果更加准确。

  • (4)裂纹作为常见缺陷,严重影响了涂层的可靠性,未来可通过改进模拟方法,优化工艺和材料体系并结合无损检测技术。综合模拟+试验+监测等手段,建立系统全面的裂纹量化性指标,从多尺度多物理场耦合动态演化层面出发,以实现对裂纹的综合调控。

  • 参考文献

    • [1] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)

    • [2] TORTELLO M,PASTERNAK I,ZERANSKA C K,et al.Chemical-vapor-deposited graphene as a thermally conducting coating[J].ACS Applied Nano Materials,2019,2(5):2621-2633.

    • [3] 王权,刘秀波,刘庆帅,等.45#钢激光熔覆 Ni60/Cu 自润滑复合涂层组织演变及摩擦学性能[J].中国表面工程,2022,35(6):232-243,256.WANG Quan,LIU Xiubo,LIU Qingshuai,et al.Microstructure evolution and tribological properties of laser cladding Ni60/Cu self-lubricating composite coatings on 45# steel[J].China Surface Engineering,2022,35(6):232-243,256.(in Chinese)

    • [4] ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138:106915.

    • [5] LIU Y N,DING Y,YANG L J,et al.Research and progress of laser cladding on engineering alloys:A review[J].Journal of Manufacturing Processes,2021,66:341-363.

    • [6] 朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings prepared by laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [7] XUE K N,LU H F,LUO K Y,et al.Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J].Surface & Coatings Technology,2020,402:126488.

    • [8] WANG C L,GAO Y,WANG R,et al.Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys[J].Journal of Alloys and Compounds[J].Journal of Alloys and Compounds,2018,740:1099-1107.

    • [9] SHI B W,LI T,WANG D,et al.Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding[J].Journal of Materials Science,2021,56(23):13323-13336.

    • [10] QI K,YANG Y,SUN R,et al.Effect of magnetic field on crack control of Co-based alloy laser cladding[J].Optics &Laser Technology,2021,141:107129.

    • [11] LIU W W,SALEHEEN K M,Al-HAMMADI G,et al.Effect of different laser scanning sequences on temperature field and deformation of laser cladding[J].Optical Engineering,2022,61(4):046107-046107.

    • [12] 赵海玲.激光熔覆熔池温度场和流场的数值模拟[D].秦皇岛:燕山大学,2013.ZHAO Hailin.Numerical simulation of temperature field and flow field during of laser cladding in molten pool[D].Qinhuangdao:Yanshan University,2013.(in Chinese)

    • [13] ZHANG Q,XU P,ZHA G Q,et al.Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J].Optik,2021,242:167079.

    • [14] YANG G F,WANG A N,SU C W,et al.Numerical simulation and surface morphology of laser cladding of Nickel-based C276 alloy coatings on AerMet100 steel surface[J].Journal of Materials Research and Technology,2023.

    • [15] 苏远乐.汽轮机叶片激光熔覆热力耦合数值模拟与实验研究[D].阜新:辽宁工程技术大学,2022.SU Yuanle.Numerical simulation and experimental research on thermal-mechanical coupling of laser cladding of steam turbine blades[D].Fuxin:Liaoning Technical University,2022.(in Chinese)

    • [16] WU S,LIU Z,GONG Y,et al.Analysis of the sequentially coupled thermal-mechanical and cladding geometry of a Ni60A-25% WC laser cladding composite coating[J].Optics & Laser Technology,2023,167:109595.

    • [17] 罗心磊,刘美红,黎振华,等.不同热源模型对选区激光熔化18Ni300温度场计算结果的影响[J].中国激光,2021,48(14):52-62.LUO Xinlei,LIU Meihong,LI Zhenhua.et al.Effect of different heat-source on calculated temperature field of selective laser melted 18Ni300[J].Chinese Journal of Lasers,2021,48(14):52-62.(in Chinese)

    • [18] LI B,DU J,SUN Y,et al.On the importance of heat source model determination for numerical modeling of selective laser melting of IN625[J].Optics & Laser Technology,2023,158:108806.

    • [19] XIA Z X,CHEN L,HUANG S H,et al.Effect of solid and annular laser heat sources on thermal cycle and solid phase transformation in rail steel manufactured by laser directed energy deposition[J].Journal of Laser Applications,2021,33(1):012049.

    • [20] HAO M,SUN Y.A FEM model for simulating temperature field in coaxial laser cladding of Ti6Al4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64:352-360.

    • [21] 谢林圯,吴腾,龚美美,等.单道激光熔覆温度场仿真及实验研究[J].激光技术,2022,46(2):226-232.XIE Linyi,WU Teng,GONG Meimei,et al.Numerical simulation and experimental study on temperature field of single channel laser cladding[J].Laser Technology,2022,46(2):226-232.(in Chinese)

    • [22] 郭鹏伟,文喜星,周龙,等.激光熔凝过程中三维温度场的数值模拟[J].材料导报,2012,26(18):148-152.GUO Pengwei,WEN Xingxing,ZHOU Long,et al.Numerical simulation of three-dimensional temperature field in laser melting process[J].Materials Reports,2012,26(18):148-152.(in Chinese)

    • [23] CHAI Q,FANG C,HU J,et al.Cellular automaton model for the simulation of laser cladding profile of metal alloys[J].Materials & Design,2020,195:109033.

    • [24] 李昌,于志斌,高敬翔,等.物性参数温度变化下激光熔覆多场耦合模拟与实验[J].兵工学报,2019,40(6):1258-1270.LI Chang,YU Zhibin,GAO Jingxiang,et al.Multi-field coupling simulation and experiment of laser cladding under thermal dependent physical properties[J].Acta Armamentarii,2019,40(6):1258-1270.(in Chinese)

    • [25] TAMANNA N,CROUCH R,KABIR I R,et al.An analytical model to predict and minimize the residual stress of laser cladding process[J].Applied Physics A,2018,124:1-5.

    • [26] MENG G,ZHANG J,Li J,et al.Impact of pore defects on laser additive manufacturing of Inconel 718 alloy based on a novel finite element model:Thermal and stress evaluation[J].Optics & Laser Technology,2023,167:109782.

    • [27] CHEW Y X,PANG J H L,BI G J,et al.Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads[J].Journal of Materials Processing Technology,2015,224:89-101.

    • [28] FARAHMAND P,KOVACEVIC R.An experimentalnumerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J].Optics & Laser Technology,2014,63:154-168.

    • [29] PAN G,CAI R.Thermal stress coupling analysis of ventilated disc brake based on moving heat source[J].Advances in Materials Science and Engineering,2018:1-11.

    • [30] 罗明贤.316L 不锈钢粉末激光熔覆工艺热-力耦合数值模拟[D].秦皇岛:燕山大学,2011.LUO Mingxian.Numerical simulation of thermalmechanical behavior during laser cladding 316L stainless steel powder[D].Qinhuangdao:Yanshan University,2011.(in Chinese)

    • [31] 舒林森,王家胜.铣刀盘激光熔覆修复过程的温度场与应力场有限元仿真[J].中国机械工程,2019,30(1):79-84.SHU Linsen,WANG Jiasheng.Finite element simulations of temperature fields and stress fields in laser cladding repair processes of milling cutter disks[J].China Mechanical Engineering,2019,30(1):79-84.(in Chinese)

    • [32] 方金祥,董世运,徐滨士,等.考虑固态相变的激光熔覆成形应力场有限元分析[J].中国激光,2015,42(5):139-146.FANG Jinxaing,DONG Shiyun,XU Binshi,et al.Study of stresses of laser metal deposition using FEM considering phase transformation effects[J].Chinese Journal of Lasers,2015,42(5):139-146.(in Chinese)

    • [33] WANG H,ZHANG M,SUN R,et al.Residual stress prediction for a coated tunnel boring machine cutter considering the effects of heat treatment and laser cladding[J].Journal of Materials Processing Technology,2023,319:118078.

    • [34] JIANG Y C,CHENG Y H,ZHANG X C,et al.Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process[J].Optik,2020,203:164044.

    • [35] YA W,PATHIRAJ B,LIU S J,2D modelling of clad geometry and resulting thermal cycles during laser cladding[J].Journal of Materials Processing Technology,2016,230:217-232.

    • [36] LI C,YU Z B,GAO J X,et al.Numerical simulation and experimental study on the evolution of multi-field coupling in laser cladding process by disk lasers[J].Welding in the World,2019,63(4):925-945.

    • [37] KHAMIDULLIN B A,TSIVILSKIY I V,GORUNOV A I,et al.Modeling of the effect of powder parameters on laser cladding using coaxial nozzle[J].Surface & Coatings Technology,2019,364:430-443.

    • [38] 许彦,李昌,贾腾辉,等.QT600 球墨铸铁激光熔覆数值模拟与实验研究[J].表面技术,2022,51(7):377-387.XU Yan,LI Chang,JIA Tenghui,et al.Numerical simulation and experimental research on the laser cladding process of QT600 nodular iron[J].Surface Technology,2022,51(7):377-387.(in Chinese)

    • [39] JIA T H,LI C,JIA S L,et al.Influence mechanism of active elements on multi-field coupling in laser cladding Fe60 process[J].The International Journal of Advanced Manufacturing Technology,2022,124(1-2):411-428.

    • [40] 周春辉.激光熔覆粉末流-熔池温度场与流场数值模拟 [D].福州:福建工程学院,2021.ZHOU Chunhui.Numerical simulation of temperature field and flow field of laser cladding powder flow pool[D].Fuzhou:Fujian University of Technology,2021.(in Chinese)

    • [41] LANGE D F D,HOFMAN J T,MRIJER J,et al.Influence of intensity distribution on the melt pool and clad shape for laser cladding[J].International Journal of Human Resources Development and Management,2005,53:1-5.

    • [42] HUANG Y J,ZENG X Y,HU Q W,et al.Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating[J].Applied Surface Science,2009,255(7):3940-3945.

    • [43] LOURENçO J M,SUN Shi-Da,SHARP K,et al.Fatigue and fracture behavior of laser clad repair of AerMet 100 ultra-high strength steel[J].International Journal of Fatigue,2016,85:18-30.

    • [44] 毛怀东.激光熔覆层裂纹控制方法与实践[D].天津:天津大学,2009.MAO Huaidong.Thy study of controlling cracks in laser clad layer[D].Tianjin:Tianjin University,2009.(in Chinese)

    • [45] NARAYANAN A,MOSTAFAVI M,PIRLING T,et al.Residual stress in laser cladded rail[J].Tribology International,2019,140:105844.

    • [46] 刘富荣,高谦,高登攀,等.激光熔覆WC增强复合涂层开裂行为分析[J].材料工程,2003(5):37-39.LIU Furong,GAO Qian,GAO Dengpan,et al.Cracking analysis of WC reinforced composites coating by laser cladding[J].Journal of Materials Engineering,2003(5):37.(in Chinese)

    • [47] WANG D Z,HU Q W,ZENG X Y,Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding[J].Surface & Coatings Technology,2015,274:51-59.

    • [48] 张蕾涛,张红星,刘德鑫,等.激光熔覆复合涂层裂纹产生原因及控制研究进展[J].金属热处理,2020,45(8):233-239.ZHANG Leitao,ZHANG Hongxing,LIU Dexin,et al.Research progress on causes and control of cracks in laser clad composite coatings[J].Heat Treatment of Metals,2020,45(8):233-239.(in Chinese)

    • [49] WANG Q,SHI J M,ZHANG L X,Impacts of laser cladding residual stress and material properties of functionally graded layers on titanium alloy sheet[J].Additive Manufacturing,2020,35:101303.

    • [50] 任呈祥.Co 基WC激光熔覆层的制备与性能研究[D].唐山:华北理工大学,2022 REN Chenxiang.Preparation and properties of laser cladding WC based on Co[D].Tangshan:North China University of Science and Technology,2022.(in Chinese)

    • [51] 刘海青,葛超,王志文,等.激光熔覆复合涂层裂纹控制研究进展[J].金属热处理,2018,43(8):228-232.LIU Haiqin,GE Chao,WANG Zhiwen,et al.Research progress on crack control of laser clad composite coating[J].Heat Treatment of Metals,2018,43(8):228-232.(in Chinese)

    • [52] FENG Y L,PANG X T,FENG K,et al.Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C,B)[J].Journal of Materials Research and Technology,2021,15:5597-5607.

    • [53] 邹小斌,尹登科,谷建军.关于激光熔覆裂纹问题的研究[J].激光杂志,2010,31(5):44-45.ZOU Xiaobin,YIN Dengke,GU J J.Research on cracking of laser cladding[J].Laser Journal,2010,31(5):44-45.(in Chinese)

    • [54] QI K,YANG Y,HU G F,Thermal expansion control of composite coatings on 42CrMo by laser cladding[J].Surface & Coatings Technology,2020,397:125983.

    • [55] LI Y T,WANG K M,FU H G,et al.Prediction for Dilution rate of AlCoCrFeNi coatings by laser cladding based on a BP neural network[J].Coatings,2021,11(11):1402.

    • [56] RAMAKRISHNAN A,DINDA G P,Direct laser metal deposition of inconel 738[J].Materials Science & Engineering A,2019,740:1-13.

    • [57] SUN S T,FU H G,CHEN S Y,et al.A numerical-experimental investigation of heat distribution,stress field and crack susceptibility in Ni60A coatings[J].Optics & Laser Technology,2019,117:175-185.

    • [58] BRAUNER N,SHACHAM M,Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants[J].Chemicat Engineering and Processing 1997,36:243-249.

    • [59] GENG X M,Study on laser cladding process parameters of Fe-based alloy based on numerical simulation[J].Journal of Physics:Conference Series,2021,1948(1):012231.

    • [60] 吴俣,马朋召,白文倩,等.不同扫描策略下 316L/AISI304 激光熔覆过程中温度场-应力场的数值模拟[J].中国激光,2021,48(22):18-29.WU Yu,MA Pengzhao,BAI Wenqian,et al.Numerical simulation of temperature field and stress field in 316L/AISI304 laser cladding with different scanning strategies[J].Chinese Journal of Lasers,2021,48(22):18-29.(in Chinese)

    • [61] GAO Z N,WANG L L,WANG Y N,et al.Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding[J].Journal of Alloys and Compounds,2022,903:163905.

    • [62] DU C C,HU L,REN X D,et al.Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding[J].Surface and Coatings Technology,2021,424:127617.

    • [63] LI C,HAN X,ZHANG D C,et al.Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding[J].Journal of Adhesion Science and Technology,2021,36(17):1894-1920.

    • [64] WANG L P,ZHANG D C,CHEN C Z,et al.Multi-physics field coupling and microstructure numerical simulation of laser cladding for engine crankshaft based on CA-FE method and experimental study[J].Surface & Coatings Technology,2022,438:128396.

    • [65] HUANG Y Z,KHAMESEE M B,TOYSERKANI E,A comprehensive analytical model for laser powder-fed additive manufacturing[J].Additive Manufacturing,2016,12:90-99.

    • [66] SONG B X,YU T B,JIANG X Y,et al.Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding[J].Numerical Heat Transfer,Part A:Applications,2019,75(12):855-873.

    • [67] PATIL N,PAL D,KHALID R H,et al.A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering-part Ⅰ:formulation and algorithm development[J].Journal of Manufacturing Science and Engineering,2015,137(4):041001.

    • [68] ZENG K,PAL D,GONG H J,et al.Comparison of 3DSIM thermal modelling of selective laser melting using new dynamic meshing method to ANSYS[J].Materials Science and Technology,2015,31(8):945-956.

    • [69] 唐晗,郑冠男,黄程德.基于重叠网格的唇口移动变几何进气道数值模拟研究[J].推进技术,2022,43(8):125-143.TANG Han,ZHENG Guannan,HUANG Chende.Numerical investigation of variable geometry inlet with translating cowl based on overset grid[J].Journal of propulsion Technology,2022,43(8):125-143.(in Chinese)

    • [70] 张天,吴家鸣,张强.混合网格方法在水下潜器回转运动数值模拟中的应用[J].中国造船,2020,61(S2):312-322.ZHANG Tian,WU Jiaming,ZHANG Qiang.Application of hybrid grid method in numerical simulation of underwater vehicle turning motion[J].Shipbuilding of China,2020,61(S2):312-322.(in Chinese)

    • [71] TAISEI I,MASAYUKI A.Numerical simulation of the 3D propeller repair process by laser cladding of SUS316L on SUS304[J].Journal of Manufacturing Processes,2023,98:234-253.

    • [72] 李海洋,宋建丽,唐彬,等.H13 钢表面激光熔覆Stellite6合金的温度场数值模拟[J].应用激光,2020,40(4):571-578.LI Haiyang,SONG Jianli,TANG Bin,et al.Numerical simulation of the laser cladding temperature field of stellite6 alloy on the surface of H13 steel[J].Applied Laser,2020,40(4):571-578.(in Chinese)

    • [73] GAN Z,YU G,HE X,et al.Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J].International Journal of Heat and Mass Transfer,2017,104:28-38.

    • [74] XU K K,GONG Y D,ZHANG Q.Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition[J].The International Journal of Advanced Manufacturing Technology,2022,124:7-8.

    • [75] XIAO X,XIE L W,TANG R Y,et al.Improved compressive properties of lattice structure based on an implicit surface hybrid optimization design method via selective laser melting[J].Metals,2022,12:1477.

    • [76] LI G S,WANG Z Y,YAO L G,et al.Concentration mixing and melt pool solidification behavior during the magnetic field assisted laser cladding of Fe-Cr-based alloy on 45 steel surface[J].Surface & Coatings Technology,2022,445:128732.

    • [77] 郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元应力场分析[J].中国表面工程,2005,18(1):20-23.HAO Nanhai,LU Wei,ZUO Tiechuan.Thermalmechanical coupling finite element analysis of stress field in laser cladding process[J].China Surface Engineering,2005,18(1):20-23.(in Chinese)

    • [78] TIAN H C,CHEN X D,YAN Z H,et al.Finite-element simulation of melt pool geometry and dilution ratio during laser cladding[J].Applied Physics A,2019,125(7):485.

    • [79] TANG B T,YUAN Z J,CHENG G,et al.Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state[J].Materials Science & Engineering A,2013,58:304-318.

    • [80] SEPPALA J E,HAN S H,HILLGARTNER K E,et al.Weld formation during material extrusion additive manufacturing.[J].Soft Matter,2017,13(38):6761-6769.

    • [81] 孙蓟泉,尹衍军.金属材料流变学理论及应用[M].北京:科学出版社,2019.SUN Jiquan YIN Yanjun.Theory and application of rheology of metal materials[M].Beijing:Science Press,2019.(in Chinese)

  • 参考文献

    • [1] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)

    • [2] TORTELLO M,PASTERNAK I,ZERANSKA C K,et al.Chemical-vapor-deposited graphene as a thermally conducting coating[J].ACS Applied Nano Materials,2019,2(5):2621-2633.

    • [3] 王权,刘秀波,刘庆帅,等.45#钢激光熔覆 Ni60/Cu 自润滑复合涂层组织演变及摩擦学性能[J].中国表面工程,2022,35(6):232-243,256.WANG Quan,LIU Xiubo,LIU Qingshuai,et al.Microstructure evolution and tribological properties of laser cladding Ni60/Cu self-lubricating composite coatings on 45# steel[J].China Surface Engineering,2022,35(6):232-243,256.(in Chinese)

    • [4] ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138:106915.

    • [5] LIU Y N,DING Y,YANG L J,et al.Research and progress of laser cladding on engineering alloys:A review[J].Journal of Manufacturing Processes,2021,66:341-363.

    • [6] 朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings prepared by laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [7] XUE K N,LU H F,LUO K Y,et al.Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J].Surface & Coatings Technology,2020,402:126488.

    • [8] WANG C L,GAO Y,WANG R,et al.Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys[J].Journal of Alloys and Compounds[J].Journal of Alloys and Compounds,2018,740:1099-1107.

    • [9] SHI B W,LI T,WANG D,et al.Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding[J].Journal of Materials Science,2021,56(23):13323-13336.

    • [10] QI K,YANG Y,SUN R,et al.Effect of magnetic field on crack control of Co-based alloy laser cladding[J].Optics &Laser Technology,2021,141:107129.

    • [11] LIU W W,SALEHEEN K M,Al-HAMMADI G,et al.Effect of different laser scanning sequences on temperature field and deformation of laser cladding[J].Optical Engineering,2022,61(4):046107-046107.

    • [12] 赵海玲.激光熔覆熔池温度场和流场的数值模拟[D].秦皇岛:燕山大学,2013.ZHAO Hailin.Numerical simulation of temperature field and flow field during of laser cladding in molten pool[D].Qinhuangdao:Yanshan University,2013.(in Chinese)

    • [13] ZHANG Q,XU P,ZHA G Q,et al.Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J].Optik,2021,242:167079.

    • [14] YANG G F,WANG A N,SU C W,et al.Numerical simulation and surface morphology of laser cladding of Nickel-based C276 alloy coatings on AerMet100 steel surface[J].Journal of Materials Research and Technology,2023.

    • [15] 苏远乐.汽轮机叶片激光熔覆热力耦合数值模拟与实验研究[D].阜新:辽宁工程技术大学,2022.SU Yuanle.Numerical simulation and experimental research on thermal-mechanical coupling of laser cladding of steam turbine blades[D].Fuxin:Liaoning Technical University,2022.(in Chinese)

    • [16] WU S,LIU Z,GONG Y,et al.Analysis of the sequentially coupled thermal-mechanical and cladding geometry of a Ni60A-25% WC laser cladding composite coating[J].Optics & Laser Technology,2023,167:109595.

    • [17] 罗心磊,刘美红,黎振华,等.不同热源模型对选区激光熔化18Ni300温度场计算结果的影响[J].中国激光,2021,48(14):52-62.LUO Xinlei,LIU Meihong,LI Zhenhua.et al.Effect of different heat-source on calculated temperature field of selective laser melted 18Ni300[J].Chinese Journal of Lasers,2021,48(14):52-62.(in Chinese)

    • [18] LI B,DU J,SUN Y,et al.On the importance of heat source model determination for numerical modeling of selective laser melting of IN625[J].Optics & Laser Technology,2023,158:108806.

    • [19] XIA Z X,CHEN L,HUANG S H,et al.Effect of solid and annular laser heat sources on thermal cycle and solid phase transformation in rail steel manufactured by laser directed energy deposition[J].Journal of Laser Applications,2021,33(1):012049.

    • [20] HAO M,SUN Y.A FEM model for simulating temperature field in coaxial laser cladding of Ti6Al4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64:352-360.

    • [21] 谢林圯,吴腾,龚美美,等.单道激光熔覆温度场仿真及实验研究[J].激光技术,2022,46(2):226-232.XIE Linyi,WU Teng,GONG Meimei,et al.Numerical simulation and experimental study on temperature field of single channel laser cladding[J].Laser Technology,2022,46(2):226-232.(in Chinese)

    • [22] 郭鹏伟,文喜星,周龙,等.激光熔凝过程中三维温度场的数值模拟[J].材料导报,2012,26(18):148-152.GUO Pengwei,WEN Xingxing,ZHOU Long,et al.Numerical simulation of three-dimensional temperature field in laser melting process[J].Materials Reports,2012,26(18):148-152.(in Chinese)

    • [23] CHAI Q,FANG C,HU J,et al.Cellular automaton model for the simulation of laser cladding profile of metal alloys[J].Materials & Design,2020,195:109033.

    • [24] 李昌,于志斌,高敬翔,等.物性参数温度变化下激光熔覆多场耦合模拟与实验[J].兵工学报,2019,40(6):1258-1270.LI Chang,YU Zhibin,GAO Jingxiang,et al.Multi-field coupling simulation and experiment of laser cladding under thermal dependent physical properties[J].Acta Armamentarii,2019,40(6):1258-1270.(in Chinese)

    • [25] TAMANNA N,CROUCH R,KABIR I R,et al.An analytical model to predict and minimize the residual stress of laser cladding process[J].Applied Physics A,2018,124:1-5.

    • [26] MENG G,ZHANG J,Li J,et al.Impact of pore defects on laser additive manufacturing of Inconel 718 alloy based on a novel finite element model:Thermal and stress evaluation[J].Optics & Laser Technology,2023,167:109782.

    • [27] CHEW Y X,PANG J H L,BI G J,et al.Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads[J].Journal of Materials Processing Technology,2015,224:89-101.

    • [28] FARAHMAND P,KOVACEVIC R.An experimentalnumerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J].Optics & Laser Technology,2014,63:154-168.

    • [29] PAN G,CAI R.Thermal stress coupling analysis of ventilated disc brake based on moving heat source[J].Advances in Materials Science and Engineering,2018:1-11.

    • [30] 罗明贤.316L 不锈钢粉末激光熔覆工艺热-力耦合数值模拟[D].秦皇岛:燕山大学,2011.LUO Mingxian.Numerical simulation of thermalmechanical behavior during laser cladding 316L stainless steel powder[D].Qinhuangdao:Yanshan University,2011.(in Chinese)

    • [31] 舒林森,王家胜.铣刀盘激光熔覆修复过程的温度场与应力场有限元仿真[J].中国机械工程,2019,30(1):79-84.SHU Linsen,WANG Jiasheng.Finite element simulations of temperature fields and stress fields in laser cladding repair processes of milling cutter disks[J].China Mechanical Engineering,2019,30(1):79-84.(in Chinese)

    • [32] 方金祥,董世运,徐滨士,等.考虑固态相变的激光熔覆成形应力场有限元分析[J].中国激光,2015,42(5):139-146.FANG Jinxaing,DONG Shiyun,XU Binshi,et al.Study of stresses of laser metal deposition using FEM considering phase transformation effects[J].Chinese Journal of Lasers,2015,42(5):139-146.(in Chinese)

    • [33] WANG H,ZHANG M,SUN R,et al.Residual stress prediction for a coated tunnel boring machine cutter considering the effects of heat treatment and laser cladding[J].Journal of Materials Processing Technology,2023,319:118078.

    • [34] JIANG Y C,CHENG Y H,ZHANG X C,et al.Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process[J].Optik,2020,203:164044.

    • [35] YA W,PATHIRAJ B,LIU S J,2D modelling of clad geometry and resulting thermal cycles during laser cladding[J].Journal of Materials Processing Technology,2016,230:217-232.

    • [36] LI C,YU Z B,GAO J X,et al.Numerical simulation and experimental study on the evolution of multi-field coupling in laser cladding process by disk lasers[J].Welding in the World,2019,63(4):925-945.

    • [37] KHAMIDULLIN B A,TSIVILSKIY I V,GORUNOV A I,et al.Modeling of the effect of powder parameters on laser cladding using coaxial nozzle[J].Surface & Coatings Technology,2019,364:430-443.

    • [38] 许彦,李昌,贾腾辉,等.QT600 球墨铸铁激光熔覆数值模拟与实验研究[J].表面技术,2022,51(7):377-387.XU Yan,LI Chang,JIA Tenghui,et al.Numerical simulation and experimental research on the laser cladding process of QT600 nodular iron[J].Surface Technology,2022,51(7):377-387.(in Chinese)

    • [39] JIA T H,LI C,JIA S L,et al.Influence mechanism of active elements on multi-field coupling in laser cladding Fe60 process[J].The International Journal of Advanced Manufacturing Technology,2022,124(1-2):411-428.

    • [40] 周春辉.激光熔覆粉末流-熔池温度场与流场数值模拟 [D].福州:福建工程学院,2021.ZHOU Chunhui.Numerical simulation of temperature field and flow field of laser cladding powder flow pool[D].Fuzhou:Fujian University of Technology,2021.(in Chinese)

    • [41] LANGE D F D,HOFMAN J T,MRIJER J,et al.Influence of intensity distribution on the melt pool and clad shape for laser cladding[J].International Journal of Human Resources Development and Management,2005,53:1-5.

    • [42] HUANG Y J,ZENG X Y,HU Q W,et al.Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating[J].Applied Surface Science,2009,255(7):3940-3945.

    • [43] LOURENçO J M,SUN Shi-Da,SHARP K,et al.Fatigue and fracture behavior of laser clad repair of AerMet 100 ultra-high strength steel[J].International Journal of Fatigue,2016,85:18-30.

    • [44] 毛怀东.激光熔覆层裂纹控制方法与实践[D].天津:天津大学,2009.MAO Huaidong.Thy study of controlling cracks in laser clad layer[D].Tianjin:Tianjin University,2009.(in Chinese)

    • [45] NARAYANAN A,MOSTAFAVI M,PIRLING T,et al.Residual stress in laser cladded rail[J].Tribology International,2019,140:105844.

    • [46] 刘富荣,高谦,高登攀,等.激光熔覆WC增强复合涂层开裂行为分析[J].材料工程,2003(5):37-39.LIU Furong,GAO Qian,GAO Dengpan,et al.Cracking analysis of WC reinforced composites coating by laser cladding[J].Journal of Materials Engineering,2003(5):37.(in Chinese)

    • [47] WANG D Z,HU Q W,ZENG X Y,Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding[J].Surface & Coatings Technology,2015,274:51-59.

    • [48] 张蕾涛,张红星,刘德鑫,等.激光熔覆复合涂层裂纹产生原因及控制研究进展[J].金属热处理,2020,45(8):233-239.ZHANG Leitao,ZHANG Hongxing,LIU Dexin,et al.Research progress on causes and control of cracks in laser clad composite coatings[J].Heat Treatment of Metals,2020,45(8):233-239.(in Chinese)

    • [49] WANG Q,SHI J M,ZHANG L X,Impacts of laser cladding residual stress and material properties of functionally graded layers on titanium alloy sheet[J].Additive Manufacturing,2020,35:101303.

    • [50] 任呈祥.Co 基WC激光熔覆层的制备与性能研究[D].唐山:华北理工大学,2022 REN Chenxiang.Preparation and properties of laser cladding WC based on Co[D].Tangshan:North China University of Science and Technology,2022.(in Chinese)

    • [51] 刘海青,葛超,王志文,等.激光熔覆复合涂层裂纹控制研究进展[J].金属热处理,2018,43(8):228-232.LIU Haiqin,GE Chao,WANG Zhiwen,et al.Research progress on crack control of laser clad composite coating[J].Heat Treatment of Metals,2018,43(8):228-232.(in Chinese)

    • [52] FENG Y L,PANG X T,FENG K,et al.Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C,B)[J].Journal of Materials Research and Technology,2021,15:5597-5607.

    • [53] 邹小斌,尹登科,谷建军.关于激光熔覆裂纹问题的研究[J].激光杂志,2010,31(5):44-45.ZOU Xiaobin,YIN Dengke,GU J J.Research on cracking of laser cladding[J].Laser Journal,2010,31(5):44-45.(in Chinese)

    • [54] QI K,YANG Y,HU G F,Thermal expansion control of composite coatings on 42CrMo by laser cladding[J].Surface & Coatings Technology,2020,397:125983.

    • [55] LI Y T,WANG K M,FU H G,et al.Prediction for Dilution rate of AlCoCrFeNi coatings by laser cladding based on a BP neural network[J].Coatings,2021,11(11):1402.

    • [56] RAMAKRISHNAN A,DINDA G P,Direct laser metal deposition of inconel 738[J].Materials Science & Engineering A,2019,740:1-13.

    • [57] SUN S T,FU H G,CHEN S Y,et al.A numerical-experimental investigation of heat distribution,stress field and crack susceptibility in Ni60A coatings[J].Optics & Laser Technology,2019,117:175-185.

    • [58] BRAUNER N,SHACHAM M,Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants[J].Chemicat Engineering and Processing 1997,36:243-249.

    • [59] GENG X M,Study on laser cladding process parameters of Fe-based alloy based on numerical simulation[J].Journal of Physics:Conference Series,2021,1948(1):012231.

    • [60] 吴俣,马朋召,白文倩,等.不同扫描策略下 316L/AISI304 激光熔覆过程中温度场-应力场的数值模拟[J].中国激光,2021,48(22):18-29.WU Yu,MA Pengzhao,BAI Wenqian,et al.Numerical simulation of temperature field and stress field in 316L/AISI304 laser cladding with different scanning strategies[J].Chinese Journal of Lasers,2021,48(22):18-29.(in Chinese)

    • [61] GAO Z N,WANG L L,WANG Y N,et al.Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding[J].Journal of Alloys and Compounds,2022,903:163905.

    • [62] DU C C,HU L,REN X D,et al.Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding[J].Surface and Coatings Technology,2021,424:127617.

    • [63] LI C,HAN X,ZHANG D C,et al.Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding[J].Journal of Adhesion Science and Technology,2021,36(17):1894-1920.

    • [64] WANG L P,ZHANG D C,CHEN C Z,et al.Multi-physics field coupling and microstructure numerical simulation of laser cladding for engine crankshaft based on CA-FE method and experimental study[J].Surface & Coatings Technology,2022,438:128396.

    • [65] HUANG Y Z,KHAMESEE M B,TOYSERKANI E,A comprehensive analytical model for laser powder-fed additive manufacturing[J].Additive Manufacturing,2016,12:90-99.

    • [66] SONG B X,YU T B,JIANG X Y,et al.Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding[J].Numerical Heat Transfer,Part A:Applications,2019,75(12):855-873.

    • [67] PATIL N,PAL D,KHALID R H,et al.A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering-part Ⅰ:formulation and algorithm development[J].Journal of Manufacturing Science and Engineering,2015,137(4):041001.

    • [68] ZENG K,PAL D,GONG H J,et al.Comparison of 3DSIM thermal modelling of selective laser melting using new dynamic meshing method to ANSYS[J].Materials Science and Technology,2015,31(8):945-956.

    • [69] 唐晗,郑冠男,黄程德.基于重叠网格的唇口移动变几何进气道数值模拟研究[J].推进技术,2022,43(8):125-143.TANG Han,ZHENG Guannan,HUANG Chende.Numerical investigation of variable geometry inlet with translating cowl based on overset grid[J].Journal of propulsion Technology,2022,43(8):125-143.(in Chinese)

    • [70] 张天,吴家鸣,张强.混合网格方法在水下潜器回转运动数值模拟中的应用[J].中国造船,2020,61(S2):312-322.ZHANG Tian,WU Jiaming,ZHANG Qiang.Application of hybrid grid method in numerical simulation of underwater vehicle turning motion[J].Shipbuilding of China,2020,61(S2):312-322.(in Chinese)

    • [71] TAISEI I,MASAYUKI A.Numerical simulation of the 3D propeller repair process by laser cladding of SUS316L on SUS304[J].Journal of Manufacturing Processes,2023,98:234-253.

    • [72] 李海洋,宋建丽,唐彬,等.H13 钢表面激光熔覆Stellite6合金的温度场数值模拟[J].应用激光,2020,40(4):571-578.LI Haiyang,SONG Jianli,TANG Bin,et al.Numerical simulation of the laser cladding temperature field of stellite6 alloy on the surface of H13 steel[J].Applied Laser,2020,40(4):571-578.(in Chinese)

    • [73] GAN Z,YU G,HE X,et al.Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J].International Journal of Heat and Mass Transfer,2017,104:28-38.

    • [74] XU K K,GONG Y D,ZHANG Q.Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition[J].The International Journal of Advanced Manufacturing Technology,2022,124:7-8.

    • [75] XIAO X,XIE L W,TANG R Y,et al.Improved compressive properties of lattice structure based on an implicit surface hybrid optimization design method via selective laser melting[J].Metals,2022,12:1477.

    • [76] LI G S,WANG Z Y,YAO L G,et al.Concentration mixing and melt pool solidification behavior during the magnetic field assisted laser cladding of Fe-Cr-based alloy on 45 steel surface[J].Surface & Coatings Technology,2022,445:128732.

    • [77] 郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元应力场分析[J].中国表面工程,2005,18(1):20-23.HAO Nanhai,LU Wei,ZUO Tiechuan.Thermalmechanical coupling finite element analysis of stress field in laser cladding process[J].China Surface Engineering,2005,18(1):20-23.(in Chinese)

    • [78] TIAN H C,CHEN X D,YAN Z H,et al.Finite-element simulation of melt pool geometry and dilution ratio during laser cladding[J].Applied Physics A,2019,125(7):485.

    • [79] TANG B T,YUAN Z J,CHENG G,et al.Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state[J].Materials Science & Engineering A,2013,58:304-318.

    • [80] SEPPALA J E,HAN S H,HILLGARTNER K E,et al.Weld formation during material extrusion additive manufacturing.[J].Soft Matter,2017,13(38):6761-6769.

    • [81] 孙蓟泉,尹衍军.金属材料流变学理论及应用[M].北京:科学出版社,2019.SUN Jiquan YIN Yanjun.Theory and application of rheology of metal materials[M].Beijing:Science Press,2019.(in Chinese)

  • 手机扫一扫看