en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张梓轩,女,1998年出生,硕士研究生。主要研究方向为材料表面技术与防护。E-mail: zhangzixua@licp.cas.cn

通讯作者:

侯国梁,男,1987年出生,博士,副研究员,硕士研究生导师。主要研究方向为抗空蚀及润滑耐磨涂层。E-mail: hgl@licp.cas.cn;

万宏启,男,1978年出生,博士,研究员,博士研究生导师。主要研究方向为粘接固体润滑涂层。E-mail: wanhq@licp.cas.cn

中图分类号:TQ317

DOI:10.11933/j.issn.1007-9289.20231113001

参考文献 1
RANADE N V,SARVOTHAMAN V,RANADE V V.Acoustic analysis of vortex-based cavitation devices:inception and extent of cavitation[J].Industrial & Engineering Chemistry Research,2021,60(22):8255-8268.
参考文献 2
LI W G,YU Z B,KADAM S.An improved cavitation model with thermodynamic effect and multiple cavitation regimes[J].International Journal of Heat and Mass Transfer,2023,205:123854.
参考文献 3
马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)
参考文献 4
TSUTSUMI K,WATANABE S,TSUDA S,et al.Cavitation simulation of automotive torque converter using a homogeneous cavitation model[J].European Journal of Mechanics-B/Fluids,2017,61:263-270.
参考文献 5
AKTAS B,ATLAR M,TURKMEN S,et al.Systematic cavitation tunnel tests of a propeller in uniform and inclined flow conditions as part of a round robin test campaign[J].Ocean Engineering,2016,120:136-151.
参考文献 6
张驰.浅谈A330飞机燃油泵气穴腐蚀问题和管控措施[J].中国科技纵横,2020,9:148-149.ZHANG Chi.Introduction to A330 aircraft fuel pump cavitation corrosion problems and control measures[J].China Science & Technology Overview,2020,9:148-149.(in Chinese)
参考文献 7
YANG F H,HUO L X,CHEN F,et al.High efficiency synthesis of temperature resistant polyamideimide resin with branched structure using microreactor[J].Reactive and Functional Polymers,2023,183:105502.
参考文献 8
LAO H J,MUSHTAQ N,CHEN G F,et al.Transparent polyamide-imide films with high Tg and low coefficient of thermal expansion:design and synthesis[J].Polymer,2020,206:122889.
参考文献 9
邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU Weiwei,MENG Xiangyu,WANG Fei,et al.Compatibility of polyimide self-lubricating material with WS2-Ag solid lubricating film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)
参考文献 10
LI G H,MA Y J,WAN H Q,et al.Flake aluminum reinforced polyamideimide-polytetrafluoroethylene bonded solid lubricating composite coating for wear resistance and corrosion protection[J].European Polymer Journal,2021,152:110485.
参考文献 11
JIA W C,SHANGGUAN J F,LANG F,et al.Study on the tribological properties of Si3N4/polyamide-imide composites[J].High Performance Polymers,2022,34:616-625.
参考文献 12
ZHU L,LI N,CHILDS P R N.Light-weighting in aerospace component and system design[J].Propulsion and Power Research,2018,7:103-119.
参考文献 13
SONSINO C M.Consideration of salt-corrosion fatigue for lightweight design and proof of aluminium safety components in vehicle applications[J].International Journal of Fatigue,2022,154:106406.
参考文献 14
ZHAN H Y,ZENG G,WANG Q G,et al.Unified casting(UniCast)aluminum alloy-a sustainable and low-carbon materials solution for vehicle lightweighting[J].Journal of Materials Science & Technology,2023,154:251-268.
参考文献 15
MOHAN J D,AHMAD L A,SYNTHESIS,et al.Study of thermal cycloimidization of novel poly(amide amic acid)to poly(amide imide)by thermogravimetric analysis[J].Journal of Macromolecular Science(Part B),2011,50(7):1388-1401.
参考文献 16
KUZNETSOV A A.One-pot polyimide synthesis in carboxylic acid medium[J].High Performance Polymers,2000(12):445-460.
参考文献 17
OBA M.Effect of curing accelerators on thermal imidization of polyamic acids at low temperature[J].Journal of Polymer Science Part A:Polymer Chemistry,1996,34:651-658.
参考文献 18
CHALYKH A E,ZHAVORONOK E S,KOCHNOVA Z A,et al.Structure formation in binary carboxyl-containing rubber-epoxide oligomer mixtures[J].Russian Journal of Physical Chemistry B,2009,3:507-511.
参考文献 19
LIU Y,WU W,CHEN Y,et al.The effects of polyamic acid on curing behavior,thermal stability,and mechanical properties of epoxy/DDS system[J].Journal of Applied Polymer Science,2013,127:3213-3220.
参考文献 20
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.振动空蚀试验方法:GB/T 6383— 2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.The method of vibration cavitation erosion test:GB/T 6383—2009[S].Beijing:Standards Press of China,2009.(in Chinese)
参考文献 21
LIU Y,WU W,CHEN Y,et al.The effects of polyamic acid on curing behavior,thermal stability,and mechanical properties of epoxy/DDS system[J].Journal of Applied Polymer Science,2013,127:3213-3220.
参考文献 22
LIU X Q,YANG J,HAO J Y,et al.A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J].Advanced Materials,2012,24:4614-4617.
参考文献 23
欧宝立,汪雨微,段俊,等.BTA@SPANI-POSS 环氧涂层的制备及防腐性能[J].中国表面工程,2022,35(4):161-171.OU Baoli,WANG Yuwei,DUAN Jun,et al.Preparation and anticorrosive performance of BTA@SPANI-POSS epoxy coating[J].China Surface Engineering,2022,35(4):161-171.(in Chinese)
参考文献 24
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T 528—2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Rubber,vulcanized or thermoplasticdetermination of tensile stress-strain properties:GB/T 528—2009[S].Beijing:Standards Press of China,2009.(in Chinese)
参考文献 25
PARK S J,HEO G Y,JIN F L.Cure behaviors and thermal stabilities of tetrafunctional epoxy resin toughened by polyamideimide[J].Macromolecular Research,2015,23:320-324.
参考文献 26
HEFLIN D G,MANSSON J A E.Mechanisms for combining polyamide and epoxy and their effects on mechanical performance:A review[J].Polymers and Polymer Composites,2022,30:1-19.
参考文献 27
ZHANG L L,ZHANG X H,WEI X H,et al.Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J].Composites Science and Technology,2022,230:109787.
参考文献 28
CAO B S,WU C L,WANG L,et al.Effect of residual stress and phase constituents on corrosion-cavitation erosion behavior of 304 stainless steel by iso-material manufacturing of laser surface melting[J].Journal of Materials Research and Technology,2023,26:6532-6551.
参考文献 29
MA J K,HOU G L,CAO H B,et al.Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze?[J].Corrosion Science,2022,209:110700.
参考文献 30
李豪,吴凤和,赵夙,等.超声波冲击技术对 AA6061-T6 空蚀行为的影响[J].中国表面工程,2021,34(3):83-89.LI Hao,WU Fenghe,ZHAO Su,et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J].China Surafce Engineering,2021,34(3):83-89.(in Chinese)
参考文献 31
LI P H,GUO W G,YUAN K B,et al.Effects of processing defects on the dynamic tensile mechanical behavior of laser-solid-formed Ti-6Al-4 V[J].Materials Characterization,2018,140:15-29.
参考文献 32
WANG Y J,AN Y L,HOU G L,et al.Effect of cooling rate during annealing on microstructure and ultrasonic cavitation behaviors of Ti6Al4V alloy[J].Wear,2023,512-513(15):204529.
参考文献 33
LIANG H L,TSAI C W,GUO S.Design of corrosion-resistant high-entropy alloys through valence electron concentration and new phacomp[J].Journal of Alloys and Compounds,2021,883:160787.
参考文献 34
KUMAGAI S,HOSAKA S,HOSAKA T,et al.Steam pyrolysis of polyimides:effects of steam on raw material recovery[J].Environmental Science & Technology,2015,49:13558-13565.
参考文献 35
KUMAGAI S,HOSAKA T,KAMEDA T,et al.Pyrolysis and hydrolysis behaviors during steam pyrolysis of polyimide[J].Journal of Analytical and Applied Pyrolysis,2016,120:75-81.
参考文献 36
XU Y,ZEHNDER A T.Moisture degradation effects on the mechanical properties of HFPE-II-52 polyimide:experiments and modeling[J].Experimental Mechanics,2017,57:857-869.
参考文献 37
RYU C H,KIM Y H,BAE Y C.Phase transition behaviors of polyimide blends[J].European Polymer Journal,2000,36:495-501.
参考文献 38
THRONE J L.Study of the compaction and sintering of two high-performance thermoplastic polyimides[J].Advances in Polymer Technology,1989,9:281-191.
参考文献 39
HE L,CHEN T,ZHANG Y,et al.Imide-DOPO derivative endows epoxy resin with excellent flame retardancy and fluorescence without losing glass transition temperature[J].Composites Part B:Engineering,2022,230:109553.
目录contents

    摘要

    空蚀是局部高压和热引起的一种极端条件下的材料损伤现象,广泛存在于泵等过流部件中,严重制约着零部件服役寿命。由于航空航天轻量化要求涉及的轻合金耐受温度较低,常在解决空蚀损伤的聚酰胺酰亚胺(PAI)中添加环氧树脂(EP) 以降低固化温度,然而这对空蚀性能的影响尚不清楚。针对该问题,分别制备纯 PAI 涂层(P-280)和不同含量 EP 改性的 PAI 涂层(P-200 和 P-170),通过加速空蚀试验对比研究样品的空蚀性能,采用 XPS、TGA、纳米压痕、SEM 等表征分析了样品的力学和热学性能以及空蚀作用下的力 / 热响应行为和涂层空蚀前后的形貌,剖析损坏机理。结果表明,添加 EP 可使 PAI 的固化温度显著下降 80~110 ℃,但韧性由 P-280 的 8.21 mJ·m−3逐渐降低到 P-170 的 3.18 mJ·m−3 ,造成涂层在空化载荷冲击下更易发生疲劳开裂。同时,添加 EP 后的 PAI 的热稳定性也明显劣化,空蚀 30 min 后,P-170、P-200 和 P-280 样品材料失重 5%所对应的温度下降幅度约为 15.24%、14.82%和 9.05%,进一步加速涂层表面力学性能劣化及空蚀损坏。因此,P-200 和 P-170 在加速空蚀 30 min 后的质量损失分别为 1.7 和 3.6 mg,是 P-280 的 2.1 和 4.5 倍。综合考虑涂层的固化温度和耐空蚀性能, P-200 更适合在轻合金部件表面应用。探究不同涂层的综合性能与空蚀性能之间的关系为 PAI 涂层的研发提供了新思路。

    Abstract

    Cavitation is a phenomenon of material damage under extreme conditions of localized high pressure and heat. It commonly occurs in pumps and other flow-through components and can severely limit the service life of these parts. Polyamideimide (PAI) coatings were originally developed to prevent cavitation erosion damage in steel components. However, because of their lightweight requirements in aerospace, they are now being used as light alloys that can withstand low temperatures. Notably, PAI coatings have high curing temperatures that exceed the withstanding temperatures of most lightweight alloys. Although the addition of epoxy resin (EP) is expected to significantly reduce the curing temperature of PAI, it may also alter its overall properties. The corresponding effect on cavitation erosion performance is currently unknown. To address this issue, we prepared pure PAI coatings (P-280) and EP-modified PAI coatings (P-200 and P-170) with varying PAI contents. Using an ultrasonic vibration-accelerated cavitation erosion test, we then compared the cavitation erosion performances of the samples. Through characterization using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and nanoindentation, we also analyzed the mechanical and thermal properties of the samples and their force / heat response behaviors under the effects of cavitation load and cavitation heat. This study investigated the mechanical and thermal properties of the samples and their force- and heat-response behaviors using three-dimensional optical shaping. The results indicated that the addition of EP could significantly reduce the curing temperature of PAI by 80–110 ℃. However, this reduction led to the destruction of the mechanical properties of the material, including its toughness, which decreased to 8.21, 5.50, and 3.18 mJ·m−3 in P-280, P-200, and P-170, respectively. This occurred because of the reduction in rigid molecular chains, such as the imide and benzene rings. In P-280, P-200, P-170, the tensile strength decreased gradually from 114.11 to 75.52 and 70.74 MPa. This reduction in strength led to a decrease in the bearing capacity of the coating and increased fatigue cracking under cavitation load, resulting in the formation of a greater number of larger spalling pits. However, the addition of EP significantly degraded the thermal stability of PAI, making it susceptible to melting and decomposition under cavitation heat. The reductions in temperature corresponding to a 5% weight loss of the P-170, P-200, and P-280 samples after 30 min of cavitation erosion were 15.24%, 14.82%, and 9.05%, respectively. This further accelerated the degradation of the mechanical properties of the coating surface and the damage caused by cavitation erosion. In addition, the heat generated by cavitation erosion promoted pyrolysis and hydrolysis of the molecular chains. XPS results indicated a reduction in the oxygen content after 30 min of cavitation erosion. Specifically, P-280, P-200, and P-170 decreased by 0.67, 1.9, and as much as 3.33at.%, respectively. The breakage of the molecular chains further deteriorated the overall performance of the coatings. The SEM morphology of the P-170 flaking debris showed melting under the heat of cavitation and the subsequent condensation of water into spherical debris particles. After 30 min of accelerated cavitation erosion, the mass losses of P-200 and P-170 were 1.7 and 3.6 mg, respectively. These values were 2.1 and 4.5 times higher than that of P-280, respectively. Considering the curing temperature, overall performance, and cavitation resistance of the coating, P-200 was deemed more suitable for application on the surface of light alloy parts. This study provides guidelines for the research and development of PAI coatings based on its investigation of the relationship between the overall and cavitation performances of PAI coatings under different EP contents.

  • 0 前言

  • 空蚀(Cavitation erosion,CE)是由于流体高速运动过程中产生的气泡群运动至局部高压区域后在壁面附近发生高频(100~1 000 次 / (s·cm 2))溃灭,伴随高速(200 m / s)、高压(GPa)的冲击波和微射流(空化载荷)以及瞬间高温(空化热),进而对固体壁面造成损坏的一种特殊磨损失效形式[1-3]。在此极端工况下,材料表面会产生凹坑、裂纹扩展和疲劳剥落等不良现象。空蚀广泛存在于螺旋桨、水轮机及燃油泵中的止推轴承、齿轮、叶轮和泵壳等过流部件表面,因难以解决也被称为流体机械的“癌症”[4-5]。例如,欧洲宇航防务集团对欧洲空中客车工业公司生产的 A330 双发中远程双过道宽体客机燃油泵进行返厂维修时,发现燃油泵壳体表面普遍存在空蚀现象,部分空蚀损坏,甚至导致壳体内高能导线暴露在燃油蒸汽中,严重威胁飞行安全[6]。聚酰胺酰亚胺(Polyamide-imide,PAI)是一类高性能热塑性工程材料,因其具有出色的力学性能、耐磨性、尺寸稳定性、化学稳定性、绝缘性以及热稳定性[7-9]等优点,作为高温粘合剂、耐磨涂层[10]和抗空蚀涂层被广泛应用于车辆和航空航天[11]等工业领域,发挥了很好的防护效果。

  • 然而,随着汽车、航空航天装备轻量化的发展需求,大量钢制零部件正逐步被铝合金、镁合金和钛合金等轻质部件所代替[12-14]。尽管轻合金的使用显著降低了装备的重量、提高了燃油效率和推重比等关键性能,但它们的熔点、再结晶温度、形变温度和氧化温度等也明显低于传统钢材,造成一些原本适用于钢制零件的表面处理工艺在遇到轻合金部件时面临众多新的突出问题。其中,PAI 涂层在铝制、钛制等部件表面的固化工艺就是一个极为典型的案例:纯 PAI 的固化温度高达 280℃[15],在该条件下通常会造成轻合金部件尤其是精密的薄壁件产生变形,甚至是氧化变色,严重影响部件的装配和使用。

  • 因而,探究如何降低 PAI 涂层的固化温度并进一步拓展这类涂层在轻合金表面的防护应用,已成为涂料涂装领域的研究重点。KUZNETSOV[16]采用一步聚合的方法研究了聚酰亚胺在高沸点溶剂中的亚胺化行为,发现 140℃时亚胺化率程度较高。然而,现已开发的高沸点溶剂大多含有致癌风险,且一步法合成的聚酰亚胺热稳定性较差。OBA[17]研究了多种羟基酸类化合物作为低温固化促进剂对聚酰亚胺固化过程的催化作用,发现试验研究的大多数羟基羧酸只有在大量添加时才具有良好的催化作用,这会导致亚胺化后样品内不可避免存在残留物,导致聚酰亚胺力学性能下降,并对环境造成污染。相对于上述改性工艺,掺杂 4 官能度的环氧树脂 (Epoxy resin,EP)因可以诱发加成反应,降低 PAI 固化温度成效较为显著,且方法更为简单、便于操作,是目前工程化应用的首选方案之一。

  • 然而,EP 分子链段的引入必然会对 PAI 涂层的分子结构和理化性质产生一定影响,鉴于 PAI 抵抗空化载荷和空化热破坏的能力主要依赖其良好的力学性能和高温热稳定性,因此 EP 改性对 PAI 涂层的耐空蚀性能应该也会产生影响,但目前人们因缺乏研究,对此了解尚不清晰。因此有必要系统研究 EP的掺杂含量对PAI涂层固化温度及空蚀性能的影响,通过分析相应机理,优化筛选出更加适合轻合金过流部件使用的抗空蚀涂层。

  • 1 试验准备

  • 1.1 试验原料

  • 聚酰胺酰亚胺酸树脂(北京华通瑞驰材料科技有限公司)、AG80 环氧树脂(EP,上海华谊树脂有限公司)、N,N-二甲基甲酰胺(DMF)、N-甲基-2-吡咯烷酮(NMP)、无水乙醇(四川西陇科学有限公司,分析纯)。

  • 1.2 涂层制备

  • 将 AG80 按一定比例混合在 PAI 树脂中,然后用混合溶剂(DMF 和 NMP 体积比为 1∶1)将其稀释至固含量约为 15%。为增加涂层与金属基材的结合强度,基材表面预先进行喷砂处理,使其除锈标准等级至少达到 Sa2.5 级,然后把粗化后的金属基材(尺寸为 30 mm×24 mm×9 mm)在无水乙醇中超声清洗后烘干待用。使用斯特力牌喷枪将涂料均匀喷涂在基材表面(空气,0.2 MPa),室温下放置表干后高温固化。根据 AG80 含量不同(添加量分别为 0wt.%、10wt.%~40wt.%、20wt.%~50wt.%),使用马弗炉将相应 PAI 涂层分别在 280、200 和 170℃条件下固化,固化时间约为 1 h,固化后的涂层分别命名为 P-280、P-200 和 P-170。

  • 制备 PAI 是由两个相邻的羧酸基团或其衍生物与伯胺之间反应形成酰亚胺的过程,纯 PAI 树脂的固化是由聚酰胺酰亚胺酸在高温(280℃)烘焙下亚胺化脱水闭环形成酰亚胺环而成,过程如图1 所示。

  • 图1 PAI 的高温固化反应过程

  • Fig.1 High temperature curing reaction process of PAI

  • 添加 EP 改性后,EP 中的环氧基团会参与 PAI 的固化过程,改变了纯 PAI 固化必须依赖高温亚胺化脱水闭环的反应环节,因而可以有效降低固化温度,具体过程如下:环氧基团开环并与 PAI 中的羧基、伯胺、仲胺分别反应形成酯基、仲胺、叔胺[18-19]。 AG80 作为 4 官能度的树脂可以加速互穿反应,形成双连续相结构,环氧树脂参与固化过程如图2 所示。

  • 图2 EP 参与 PAI 固化过程的机理

  • Fig.2 Mechanism of EP participation in the PAI curing process

  • 1.3 加速空蚀试验

  • 为更好地研究 PAI 涂层的空蚀性能和机理,本文使用符合振动空蚀试验方法(GB/T6383—2009 标准) [20]的超声振动空蚀试验机对涂层样品进行加速空蚀试验,设备示意图如图3 所示。其中,上试样端面直径 16±0.02 mm,振动频率为 20 kHz,振幅 50 μm (峰-峰);涂层样品作为下试样,固定在样品台上,与上试样间的距离为 0.5±0.05 mm,与液面距离为 12± 1 mm;液体介质为去离子水,水温通过循环控温系统控制在 25±2℃。空蚀前及空蚀一定时间后涂层的质量使用万分之一天平称量,累计质量损失为二者之间的差值,本文中提供的数据为三次平行试验的平均值。

  • 图3 超声振动空蚀试验机

  • Fig.3 Ultrasonic vibration cavitation erosion testing machine

  • 1.4 结构成分、力学及热力学性能检测

  • 使用德国Bruker vertex 70红外光谱仪表征涂层固化前后的化学结构,液体树脂采用涂片法,扫描背景为空气和溴化钾盐片。固化后样品使用衰减全反射(Attenuated total reflection,ATR)方法,扫描背景为空气,扫描波数为 400~4 000 cm−1。使用荷兰 PANalytical B.V. EMPYREAN X 射线衍射仪对涂层的晶体结构进行分析,步长为 0.05,扫描范围为 5°~60°。采用中国上海力试科学仪器有限公司LE3504-H500 微机控制电子万能试验机对涂层的力学性能进行评价,拉伸样品尺寸为国标 4 型 ( GB/T528 — 2009[21])。使用德国 NETZSCH STA449F3 同步热分析表征涂层空蚀前后的热力学性能,升温速度 10.0 K / min,温度范围为室温~800℃。使用日本 OLYMPUS STM6 光学显微镜记录空蚀前后的表面形貌。使用日本 Hitachi SU8020 超高分辨场发射扫描电子显微镜观察涂层空蚀后表面形貌及剥落颗粒形貌,扫描电压为 1.0 kV。使用美国 Rtec-Instruments UP-Lambda 三维光学形貌仪对空蚀后涂层进行三位轮廓扫描表征。采用 Thermo Fisher Scientific ESCALAB XI+ X 射线光电子能谱仪对涂层空蚀区域前后元素种类与含量进行定量分析。使用瑞士 CSM NHT2 纳米压痕测试仪表征空蚀前后样品表面硬度变化,载荷为 1 N,保压时间为 2 s。

  • 其中涂层的弹性恢复率可以结合负载位移曲线,通过下列公式[22]计算得出:

  • η=b-ca×100%
    (1)
  • 式中,η 为弹性恢复率(%),a 为保压前压头压入深度(nm),b 为压头最大压入深度(nm),c 为卸载力后的压痕深度(nm)。

  • 2 结果与讨论

  • 2.1 涂层的结构分析

  • 图4a 为 PAI、AG80 原料及固化后 P-170、P-200 和 P-280 涂层的红外光谱图[23],其中,P-170 和 P-200 所示红外谱图曲线与 P-280 相同,证明掺杂 EP 的样品固化完全。3 468 cm−1 处为-OH 伸缩振动吸收峰, PAI 的特征基团为酰胺键(-CO-NH-)和酰亚胺键 (-CO-N-CO-),其中 3 300 cm−1 处为-NH 伸缩振动峰,1 587 cm−1 处为-NH-弯曲振动峰,1 770 cm−1、 1 710 cm−1 处则表现出相应 C=O 伸缩振动特征, 1 368 cm−1 处为 C-N 伸缩振动。AG80 与 PAI 反应固化后,在红外光谱图中表现为固化后涂层中不再显示 AG80 中 900 cm−1 左右的环氧基,如图4a 所示。

  • 图4b 给出了 P-280、P-200 和 P170 三种涂层的 XRD 图谱。不难发现,三种样品之间没有明显差别,在 2θ=18.9°处均显示出一个较大的弥散峰,呈现出典型的漫反射特征,为无定形聚合物的特征峰型,即改性前后的 PAI 涂层在固化后形成的无定形结构没有固定的晶面方向,显示出长程无序的特点,所以在各个方向都会出现一定的反射。

  • 图4 涂层结构表征谱图

  • Fig.4 Structural characterization spectra of the coatings

  • 2.2 涂层的力学性能

  • 空泡溃灭释放的冲击波和微射流作用到材料表面会产生极大的冲击载荷,因此材料自身的力学性能对于抵抗空蚀损坏至关重要。图5 展示了 PAI 改性前后拉伸试验的应力-应变曲线,可以看出随着 EP 含量的增加,涂层的韧性、拉伸断裂强度和断裂伸长率均持续下降:P-280 的拉伸断裂强度和断裂伸长率分别为 114.1 MPa 和 11.35%,P-200 的拉伸断裂强度和断裂伸长率分别为 75.52 MPa 和 11.37%,P-170 的拉伸断裂强度和断裂伸长率分别为 70.74 MPa 和 7.80%。另外,样品的韧性为应力-应变曲线在断裂点以下与 X 轴围成的面积,以 P-170 为例,韧性为 I 区域的面积[24]。计算结果显示,韧性的变化趋势与其他力学性能相似,即 P-280 的最高,为 8.21 mJ·m−3,P-170 的最低,为 3.18 mJ·m−3

  • 图5 P-170、P-200 和 P-280 样品的拉伸应力-应变曲线

  • Fig.5 Tensile stress-strain curves for samples P-170, P-200 and P-280

  • EP 改性后 PAI 的力学性能之所以会下降,主要是因为聚合物的综合力学性能由内部分子链化学键的强弱和分子间作用力决定。首先,增加 EP 掺杂比例降低了刚性、高强酰亚胺环及相邻苯环的比例,削弱了分子链的机械强度和化学键强度; 其次,酰亚胺环及苯环含量的减少还降低了聚合物链间 π-π 相互作用和酰亚胺芳杂环间共轭效应,导致分子间作用力的弱化;第三,酰亚胺环及苯环含量的减少以及分子间作用力弱化还降低了分子链间的内摩擦力,同样不利于聚合物力学强度的增加。另外,部分未参与反应的 AG80 在 PAI 树脂中以小分子的形式存在,进一步破坏了材料的力学性能[25-27]

  • 2.3 涂层的热力学性能

  • PAI 分子结构中含有酰胺基团和酰亚胺杂芳环,表现出聚酰胺和聚酰亚胺的双重特征。前者赋予 PAI 分子链柔性特征,后者在赋予 PAI 优异的机械强度的同时,还给予其优良的热稳定性、水解稳定性和化学稳定性。图6 给出了涂层的热重分析 (Thermo gravimetric analysis,TGA)曲线和微商热重 (Derivative thermogravimetry,DTG)曲线。对于 P-280,当温度低于 200℃时,涂层失重并不明显,即以该温度为上限,涂层具有较好的热稳定性;在 200~350℃时,TGA 曲线上显示出一个相对小的失重峰,且 DTG 曲线在 310℃左右出现一个较明显的吸热峰,此阶段是由于 PAI 侧链小分子分解导致的;而当温度处于 350~620℃时,TGA 曲线急剧下降,DTG 曲线则在 526℃处出现一个较大的吸热峰,说明此时 PAI 长链发生了严重分解。

  • 图6 P-170、P-200 和 P-280 涂层的热力学性能曲线

  • Fig.6 Thermodynamic performance curves of P-170, P-200 and P-280 coatings

  • 当添加 EP 后,尤其随着其含量的增加,涂层的失重温度和分解温度逐渐下降,如图6b 所示。从 P-200 到 P-170,DTG 曲线中的两个吸热峰逐渐向低温方向偏移,即涂层的热稳定性不断降低,这主要是因为添加 EP 以后降低了涂层中高温稳定性较好的酰胺基团与酰亚胺环的占比,造成聚合物分子链在高温下更易发生分解。

  • 也就是说,添加 EP 尽管有利于降低 PAI 涂层的固化温度,但同时也会劣化涂层的力学性能和热力学性能,这必然会影响它们的耐空蚀能力。

  • 2.4 涂层的空蚀性能及损坏机理

  • 图7 是随着时间变化 PAI 样品的累计空蚀质量损失曲线和质量损失速率曲线。从图中可以看出,所有样品的累计质量损失都随时间而增加。加速空蚀 30 min 后,P-280 涂层的累计质量损失仅为 0.8 mg,而 P-200 涂层的则上升至 1.7 mg,P-170 涂层的则更是高达 3.6 mg,分为 P-280 样品的 2.1 和 4.5 倍。从图7b 中还可以看出,三种样品的空蚀损失速率都分为三个阶段:(Ⅰ)0~10 min,损失速率较快,为快速损失期;(Ⅱ)10~20 min,损失速率极慢,为空蚀孕育期;(Ⅲ)20~30 min,损失速率加快,为空蚀加速期。也就是说,PAI 涂层相较于传统金属材料,例如不锈钢、镍铝青铜等[28-30],在空蚀孕育期之前多了一个快速损失期。究其原因是 PAI 涂层在固化过程中存在收缩行为,导致涂层内应力较高,形成了一些缩孔等缺陷(如图8 所示),这些表面缺陷在空蚀过程中会诱发更多的空泡在其周围形成并溃灭[31-33],从而对周围组织产生更大冲击力,导致它们率先脱落。

  • 图7 空蚀过程涂层质量变化曲线

  • Fig.7 Mass change curves of coatings during cavitation erosion

  • 为了更好地比较样品损坏初期表面形貌的变化,使用三维轮廓仪表征涂层表面形貌(如图9 所示),并对特征蚀坑的形貌参数进行分析,结果如表1 所示。空蚀 10 min 时,P-170 表面以剥落坑为主,坑的剥落面积在 1 500~5 500 μm 2,体积为 30 000~13 000 μm 3,最大侵蚀深度近 40 μm。P-200 样品剥落坑较 P-170 样品的更少,且体积更小,坑的剥落面积为 900~3 800 μm 2,体积为 6 000~36 000 μm 3,最大侵蚀深度在 20 μm 以下。而 P-280 空蚀表面尽管也出现了一些剥落坑,但明显比 P-170 和 P-200 的小:剥落面积为 350~750 μm 2,体积为 750~1 550 μm 3,最大侵蚀深度约 4 μm,仅为 P-170 的 1 / 10 左右,为 P-200 的 1 / 5 左右。可见在空蚀初期,P-280 的耐空蚀能力也明显优于 EP 改性后的涂层样品,这和纯 PAI 自身的优异力学性能密切相关。

  • 图8 固化后涂层初始表面形貌的光学显微镜(OM)图片

  • Fig.8 Optical microscope (OM) pictures of the initial surface topography of the cured coatings

  • 图9 空蚀 10 min 后涂层表面三维形貌与二维形貌

  • Fig.9 Three-dimensional topography and two-dimensional topography of the coating surface after 10 min of cavitation erosion

  • 表1 P-170、P-200 和 P-280 样品空蚀 10 min 后表面特征蚀坑数据

  • Table1 Characteristic surface cratering data of P-170, P-200 and P-280 samples after 10 min cavitation erosion

  • 当表面疏松组织剥落后,内部相对致密的组织可以更好地发挥 PAI 高强、高热稳定性的优势,从而能更好地抵御空化载荷和空化热的冲击破坏,质量损失较小,因而空蚀进入孕育阶段。然而随着大量空泡高频溃灭产生的载荷冲击和瞬间高温在涂层表面的作用叠加,表层组织产生了不可逆的屈服形变等力学响应行为及分子链分解、水解甚至熔化等热力学响应行为,引发力学性能劣化、组织疏松化的演变,最终导致涂层空蚀损坏速度再次加快。

  • 图10 显示了空蚀前及空蚀 20 min 后涂层表面经纳米压痕检测的力学性能,其中图10a 为涂层的负载位移曲线,图10b 为根据式(1)计算得出的涂层弹性恢复率,该数值的大小能有效反映卸载外力作用后材料的恢复能力,数值越大代表材料越易恢复至初始状态,即尺寸稳定好。随着 EP 添加量的增加,PAI 涂层的弹性恢复率由 P-280 的 51.3%下降到 P-170 的 47.7%,即掺入 EP 导致涂层的尺寸稳定性略微降低。空蚀 20 min 后,所有涂层样品的弹性恢复率均有所下降,P-280 下降到 50.23%,P-200 下降到 46.31%,而 P-170 的下降程度最为明显,由 47.7%降至 40.4%。

  • 上述演变趋势同样体现在涂层样品的其他力学性能的检测结果中,如图10c、10d 所示:尽管添加 EP 仅造成 P-170 涂层的硬度(H)、模量(E)以及抗塑性形变能力(H3 / E2)小幅降低,但其在空蚀相同时间后的硬度和抗塑性形变能力下降幅度却更加明显,说明 EP 改性 PAI 的分子结构和组织结构在空化载荷和空化热的高频冲击下发生了更严重的退化。

  • 为了更好地分析 PAI 涂层在空蚀过程中分子结构的变化,采用 XPS 进一步表征了样品表面元素含量的变化,其中碳元素和氧元素占总元素含量的相对含量变化如表2 所示。不难发现,经过 30 min 空蚀后,涂层表面氧元素含量降低,说明空化热在促进分子链发生热解的同时,也加速了涂层表面分子链的水解反应。在空化热的作用下,酰亚胺环和苯环之间的 C-N 键发生裂解,生成相对不稳定的羧酸基团和酰胺键;而含有酰胺键的分子链在高温水环境中也会分解生成胺和羧酸,然后部分分子链中的氧元素以 CO2 的方式逸出;同时,该过程可能还伴随着自由基的生成和分子链的重排过程[34-36]。在以上因素的综合作用下,氧元素含量降低。水解过程如图11 所示。

  • 图10 空蚀 20 min 前后涂层的力学性能变化

  • Fig.10 Changes in mechanical properties of coatings before and after 20 min of cavitation erosion

  • 表2 空蚀 30 min 前后 P-170、P-200 和 P-280 样品表面元素含量

  • Table2 Surface element contents of P-170, P-200, and P-280 samples before and after 30 min of cavitation erosion

  • 图11 空蚀作用下分子链失效过程的机理

  • Fig.11 Mechanism of molecular chain failure process under cavitation erosion effect

  • 对比不同样品之间的区别,可以看出:氧元素含量在 P-280 空蚀后下降幅度为 0.67at.%,在 P-200 空蚀后下降幅度为 1.9at.%,而在 P-170 空蚀后的下降幅度则高达 3.33at.%,说明后者在空化热的作用下产生了更加严重的水解反应。分子链水解和热解破坏了其完整性,必然会对材料的力学性能造成更为严重的影响[34],这应该是 P-170 涂层在空蚀相同时间后力学性能劣化程度更大的原因之一。

  • 空蚀对 PAI 分子链的破坏还体现在材料热稳定性的变化上,图12 给出了空蚀前后 PAI 的 TGA 曲线。结果表明:空蚀 30 min 后,P-170 热失重 5%的温度同比下降 15.24%,P-200 热失重 5%的温度同比下降 14.82%,而 P-280 热失重 5%对应的温度仅下降 9.05% (表3)。显然 P-170 涂层的热稳定性在空蚀以后也遭到更为严重的破坏,这应归因于该涂层在空化热作用下分子链发生了更为严重的水解,并形成更多分子量更小的低聚物,它们在高温下更易热解失重。

  • 图12 空蚀 30 min 后 P-170、P-200 和 P-280 涂层的热力学性能曲线

  • Fig.12 Thermodynamic performance curves of P-170, P-200 and P-280 coatings after 30 min of cavitation erosion

  • 表3 空蚀 30 min 前后 P-170、P-200 和 P-280 样品热失重 5%对应温度(T5%

  • Table3 Temperatures corresponding to 5% thermal weight loss (T5%) of P-170, P-200 and P-280 samples before and after 30 min of cavitation erosion

  • 图13 展示了涂层在空蚀 20 min 后表面的 SEM 形貌。从中可以更加清晰地看出,P-170 空蚀表面不仅存在较深的剥落坑,而且存在大量宽、大、密的裂纹,其中大部分是以剥落坑为中心向四周扩展的,说明该涂层在空蚀过程中发生了严重的疲劳开裂,导致其表面组织非常疏松,这也是导致其在空蚀后力学性能急剧变差的另一原因。裂纹的快速扩展必然会导致表层组织产生更加严重的脆性剥落,所以该涂层在空蚀加速期的损失速率明显更大(图7b)。相较于 P-170, P-200 尤其是 P-280 的表面损坏形貌则要轻微得多,不仅剥落坑的尺寸明显更小,而且裂纹也明显更加细小、数量更少,说明这些涂层确实可以更好地抵抗空泡溃灭的冲击破坏。究其原因,除了 P-200 和 P-280 本身就具有良好的力学性能以外,其分子链更好的热稳定性也发挥了非常关键的作用。

  • 除了裂纹和剥落坑,从样品空蚀表面的高倍 SEM 照片(图13b、13c 和 13e)中还可以看出, P-170 表面还存在一些近球形且表面光滑的颗粒或凸起结构,它们应该是在空化热作用下表面组织发生熔化形成的,但是这种现象在 P-200 空蚀表面变轻,在 P-280 空蚀表面则更加不明显,这是因为添加 EP 使 PAI 固化结束后存在小分子量的链段[37-39],尤其是添加量较高时,该部分热塑性的组织在空化热的作用下更易熔化。P-170 更易高温熔化的现象在空蚀剥落颗粒中观察的更加明显。如图14 所示,在三种样品中均可观察到蜂窝状组织结构,这是由较大颗粒在剥落后或剥落前在空化热的作用下不完全熔融形成的,且随 EP 含量减少,该类组织与脆性剥落碎片数量比例呈下降趋势。同时,在 P-170 的空蚀碎屑中可以观察到球形度非常高的颗粒,表明它们在空化热的作用下已发生充分熔化,进而在表面张力的作用下形成球形熔滴并经周围的水介质冷却形成球形颗粒。这种现象在 P-200 样品中同样可以观察到,但是在 P-280 的空蚀颗粒中并没有找到这种球形结构,仅在脆性剥落颗粒的表面发现了高温灼烧的痕迹,再次表明热稳定性较好的 PAI 材料可以更好地抵抗空化热的熔化作用。此外,在所有涂层的脆性剥落颗粒中都可以明显看到变形褶皱,证明空泡溃灭作用到涂层表面的冲击载荷强度均超过了它们的屈服强度,产生了不可逆的形变,反复叠加后最终导致疲劳裂纹和脆性剥落的发生。

  • 图13 PAI 样品空蚀 20 min 后的表面形貌的 SEM 图

  • Fig.13 SEM images of the surface morphology of PAI samples after 20 min of cavitation erosion

  • 图14 PAI 样品空蚀 30 min 后剥落碎屑形貌的 SEM 图

  • Fig.14 SEM images of exfoliated debris morphology of PAI samples after cavitation for 30 min

  • 综上所述,添加 EP 导致 PAI 涂层的热稳定性和力学性能均出现不同程度的下降,使涂层表面在空化热的作用下更易熔化、水解甚至热解,进一步劣化了 EP 改性涂层表面的力学性能,造成其在空化载荷的冲击下更易产生开裂,最终加速了材料的空蚀剥离。

  • 3 结论

  • (1)通过红外光谱和 XRD 测试,表征了涂层的微观结构。结果显示,随着 AG80 环氧树脂添加量的增加,更多的环氧基可以与 PAI 中的羧基、氨基和酰胺基反应,从而使改性后的 PAI 涂层的固化温度逐步由 280℃降低至 170℃。改性前后固化形成的 P-280、P-200 和 P-170 涂层均为无定形结构。

  • (2)通过拉伸试验测试,表征了涂层的力学性能。结果显示,改性 PAI 涂层中酰亚胺环、苯环和酰胺基团等分子结构的减少造成韧性、拉伸断裂强度和伸长率等综合力学性能以及热稳定性均出现下降,尤其是 P-170 在三种涂层中的性能最差。

  • (3)通过 XPS、TGA 测试对涂层空蚀前后的化学组成和热稳定性进行分析,同时观察涂层空蚀前后 OM、SEM 等表面形貌。结果显示,PAI 涂层热稳定性的降低导致其在空化热作用下更易熔化、水解和热解,破坏了分子链的完整性,进而导致其在空化载荷的冲击下更易产生屈服变形、疲劳开裂和脆性剥落,加剧空蚀损坏。综合考虑涂层的固化温度及空蚀性能,P-200 涂层更适合作为轻质过流部件表面的抗空蚀涂层。

  • 参考文献

    • [1] RANADE N V,SARVOTHAMAN V,RANADE V V.Acoustic analysis of vortex-based cavitation devices:inception and extent of cavitation[J].Industrial & Engineering Chemistry Research,2021,60(22):8255-8268.

    • [2] LI W G,YU Z B,KADAM S.An improved cavitation model with thermodynamic effect and multiple cavitation regimes[J].International Journal of Heat and Mass Transfer,2023,205:123854.

    • [3] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [4] TSUTSUMI K,WATANABE S,TSUDA S,et al.Cavitation simulation of automotive torque converter using a homogeneous cavitation model[J].European Journal of Mechanics-B/Fluids,2017,61:263-270.

    • [5] AKTAS B,ATLAR M,TURKMEN S,et al.Systematic cavitation tunnel tests of a propeller in uniform and inclined flow conditions as part of a round robin test campaign[J].Ocean Engineering,2016,120:136-151.

    • [6] 张驰.浅谈A330飞机燃油泵气穴腐蚀问题和管控措施[J].中国科技纵横,2020,9:148-149.ZHANG Chi.Introduction to A330 aircraft fuel pump cavitation corrosion problems and control measures[J].China Science & Technology Overview,2020,9:148-149.(in Chinese)

    • [7] YANG F H,HUO L X,CHEN F,et al.High efficiency synthesis of temperature resistant polyamideimide resin with branched structure using microreactor[J].Reactive and Functional Polymers,2023,183:105502.

    • [8] LAO H J,MUSHTAQ N,CHEN G F,et al.Transparent polyamide-imide films with high Tg and low coefficient of thermal expansion:design and synthesis[J].Polymer,2020,206:122889.

    • [9] 邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU Weiwei,MENG Xiangyu,WANG Fei,et al.Compatibility of polyimide self-lubricating material with WS2-Ag solid lubricating film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)

    • [10] LI G H,MA Y J,WAN H Q,et al.Flake aluminum reinforced polyamideimide-polytetrafluoroethylene bonded solid lubricating composite coating for wear resistance and corrosion protection[J].European Polymer Journal,2021,152:110485.

    • [11] JIA W C,SHANGGUAN J F,LANG F,et al.Study on the tribological properties of Si3N4/polyamide-imide composites[J].High Performance Polymers,2022,34:616-625.

    • [12] ZHU L,LI N,CHILDS P R N.Light-weighting in aerospace component and system design[J].Propulsion and Power Research,2018,7:103-119.

    • [13] SONSINO C M.Consideration of salt-corrosion fatigue for lightweight design and proof of aluminium safety components in vehicle applications[J].International Journal of Fatigue,2022,154:106406.

    • [14] ZHAN H Y,ZENG G,WANG Q G,et al.Unified casting(UniCast)aluminum alloy-a sustainable and low-carbon materials solution for vehicle lightweighting[J].Journal of Materials Science & Technology,2023,154:251-268.

    • [15] MOHAN J D,AHMAD L A,SYNTHESIS,et al.Study of thermal cycloimidization of novel poly(amide amic acid)to poly(amide imide)by thermogravimetric analysis[J].Journal of Macromolecular Science(Part B),2011,50(7):1388-1401.

    • [16] KUZNETSOV A A.One-pot polyimide synthesis in carboxylic acid medium[J].High Performance Polymers,2000(12):445-460.

    • [17] OBA M.Effect of curing accelerators on thermal imidization of polyamic acids at low temperature[J].Journal of Polymer Science Part A:Polymer Chemistry,1996,34:651-658.

    • [18] CHALYKH A E,ZHAVORONOK E S,KOCHNOVA Z A,et al.Structure formation in binary carboxyl-containing rubber-epoxide oligomer mixtures[J].Russian Journal of Physical Chemistry B,2009,3:507-511.

    • [19] LIU Y,WU W,CHEN Y,et al.The effects of polyamic acid on curing behavior,thermal stability,and mechanical properties of epoxy/DDS system[J].Journal of Applied Polymer Science,2013,127:3213-3220.

    • [20] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.振动空蚀试验方法:GB/T 6383— 2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.The method of vibration cavitation erosion test:GB/T 6383—2009[S].Beijing:Standards Press of China,2009.(in Chinese)

    • [21] LIU Y,WU W,CHEN Y,et al.The effects of polyamic acid on curing behavior,thermal stability,and mechanical properties of epoxy/DDS system[J].Journal of Applied Polymer Science,2013,127:3213-3220.

    • [22] LIU X Q,YANG J,HAO J Y,et al.A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J].Advanced Materials,2012,24:4614-4617.

    • [23] 欧宝立,汪雨微,段俊,等.BTA@SPANI-POSS 环氧涂层的制备及防腐性能[J].中国表面工程,2022,35(4):161-171.OU Baoli,WANG Yuwei,DUAN Jun,et al.Preparation and anticorrosive performance of BTA@SPANI-POSS epoxy coating[J].China Surface Engineering,2022,35(4):161-171.(in Chinese)

    • [24] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T 528—2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Rubber,vulcanized or thermoplasticdetermination of tensile stress-strain properties:GB/T 528—2009[S].Beijing:Standards Press of China,2009.(in Chinese)

    • [25] PARK S J,HEO G Y,JIN F L.Cure behaviors and thermal stabilities of tetrafunctional epoxy resin toughened by polyamideimide[J].Macromolecular Research,2015,23:320-324.

    • [26] HEFLIN D G,MANSSON J A E.Mechanisms for combining polyamide and epoxy and their effects on mechanical performance:A review[J].Polymers and Polymer Composites,2022,30:1-19.

    • [27] ZHANG L L,ZHANG X H,WEI X H,et al.Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J].Composites Science and Technology,2022,230:109787.

    • [28] CAO B S,WU C L,WANG L,et al.Effect of residual stress and phase constituents on corrosion-cavitation erosion behavior of 304 stainless steel by iso-material manufacturing of laser surface melting[J].Journal of Materials Research and Technology,2023,26:6532-6551.

    • [29] MA J K,HOU G L,CAO H B,et al.Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze?[J].Corrosion Science,2022,209:110700.

    • [30] 李豪,吴凤和,赵夙,等.超声波冲击技术对 AA6061-T6 空蚀行为的影响[J].中国表面工程,2021,34(3):83-89.LI Hao,WU Fenghe,ZHAO Su,et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J].China Surafce Engineering,2021,34(3):83-89.(in Chinese)

    • [31] LI P H,GUO W G,YUAN K B,et al.Effects of processing defects on the dynamic tensile mechanical behavior of laser-solid-formed Ti-6Al-4 V[J].Materials Characterization,2018,140:15-29.

    • [32] WANG Y J,AN Y L,HOU G L,et al.Effect of cooling rate during annealing on microstructure and ultrasonic cavitation behaviors of Ti6Al4V alloy[J].Wear,2023,512-513(15):204529.

    • [33] LIANG H L,TSAI C W,GUO S.Design of corrosion-resistant high-entropy alloys through valence electron concentration and new phacomp[J].Journal of Alloys and Compounds,2021,883:160787.

    • [34] KUMAGAI S,HOSAKA S,HOSAKA T,et al.Steam pyrolysis of polyimides:effects of steam on raw material recovery[J].Environmental Science & Technology,2015,49:13558-13565.

    • [35] KUMAGAI S,HOSAKA T,KAMEDA T,et al.Pyrolysis and hydrolysis behaviors during steam pyrolysis of polyimide[J].Journal of Analytical and Applied Pyrolysis,2016,120:75-81.

    • [36] XU Y,ZEHNDER A T.Moisture degradation effects on the mechanical properties of HFPE-II-52 polyimide:experiments and modeling[J].Experimental Mechanics,2017,57:857-869.

    • [37] RYU C H,KIM Y H,BAE Y C.Phase transition behaviors of polyimide blends[J].European Polymer Journal,2000,36:495-501.

    • [38] THRONE J L.Study of the compaction and sintering of two high-performance thermoplastic polyimides[J].Advances in Polymer Technology,1989,9:281-191.

    • [39] HE L,CHEN T,ZHANG Y,et al.Imide-DOPO derivative endows epoxy resin with excellent flame retardancy and fluorescence without losing glass transition temperature[J].Composites Part B:Engineering,2022,230:109553.

  • 参考文献

    • [1] RANADE N V,SARVOTHAMAN V,RANADE V V.Acoustic analysis of vortex-based cavitation devices:inception and extent of cavitation[J].Industrial & Engineering Chemistry Research,2021,60(22):8255-8268.

    • [2] LI W G,YU Z B,KADAM S.An improved cavitation model with thermodynamic effect and multiple cavitation regimes[J].International Journal of Heat and Mass Transfer,2023,205:123854.

    • [3] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [4] TSUTSUMI K,WATANABE S,TSUDA S,et al.Cavitation simulation of automotive torque converter using a homogeneous cavitation model[J].European Journal of Mechanics-B/Fluids,2017,61:263-270.

    • [5] AKTAS B,ATLAR M,TURKMEN S,et al.Systematic cavitation tunnel tests of a propeller in uniform and inclined flow conditions as part of a round robin test campaign[J].Ocean Engineering,2016,120:136-151.

    • [6] 张驰.浅谈A330飞机燃油泵气穴腐蚀问题和管控措施[J].中国科技纵横,2020,9:148-149.ZHANG Chi.Introduction to A330 aircraft fuel pump cavitation corrosion problems and control measures[J].China Science & Technology Overview,2020,9:148-149.(in Chinese)

    • [7] YANG F H,HUO L X,CHEN F,et al.High efficiency synthesis of temperature resistant polyamideimide resin with branched structure using microreactor[J].Reactive and Functional Polymers,2023,183:105502.

    • [8] LAO H J,MUSHTAQ N,CHEN G F,et al.Transparent polyamide-imide films with high Tg and low coefficient of thermal expansion:design and synthesis[J].Polymer,2020,206:122889.

    • [9] 邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU Weiwei,MENG Xiangyu,WANG Fei,et al.Compatibility of polyimide self-lubricating material with WS2-Ag solid lubricating film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)

    • [10] LI G H,MA Y J,WAN H Q,et al.Flake aluminum reinforced polyamideimide-polytetrafluoroethylene bonded solid lubricating composite coating for wear resistance and corrosion protection[J].European Polymer Journal,2021,152:110485.

    • [11] JIA W C,SHANGGUAN J F,LANG F,et al.Study on the tribological properties of Si3N4/polyamide-imide composites[J].High Performance Polymers,2022,34:616-625.

    • [12] ZHU L,LI N,CHILDS P R N.Light-weighting in aerospace component and system design[J].Propulsion and Power Research,2018,7:103-119.

    • [13] SONSINO C M.Consideration of salt-corrosion fatigue for lightweight design and proof of aluminium safety components in vehicle applications[J].International Journal of Fatigue,2022,154:106406.

    • [14] ZHAN H Y,ZENG G,WANG Q G,et al.Unified casting(UniCast)aluminum alloy-a sustainable and low-carbon materials solution for vehicle lightweighting[J].Journal of Materials Science & Technology,2023,154:251-268.

    • [15] MOHAN J D,AHMAD L A,SYNTHESIS,et al.Study of thermal cycloimidization of novel poly(amide amic acid)to poly(amide imide)by thermogravimetric analysis[J].Journal of Macromolecular Science(Part B),2011,50(7):1388-1401.

    • [16] KUZNETSOV A A.One-pot polyimide synthesis in carboxylic acid medium[J].High Performance Polymers,2000(12):445-460.

    • [17] OBA M.Effect of curing accelerators on thermal imidization of polyamic acids at low temperature[J].Journal of Polymer Science Part A:Polymer Chemistry,1996,34:651-658.

    • [18] CHALYKH A E,ZHAVORONOK E S,KOCHNOVA Z A,et al.Structure formation in binary carboxyl-containing rubber-epoxide oligomer mixtures[J].Russian Journal of Physical Chemistry B,2009,3:507-511.

    • [19] LIU Y,WU W,CHEN Y,et al.The effects of polyamic acid on curing behavior,thermal stability,and mechanical properties of epoxy/DDS system[J].Journal of Applied Polymer Science,2013,127:3213-3220.

    • [20] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.振动空蚀试验方法:GB/T 6383— 2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.The method of vibration cavitation erosion test:GB/T 6383—2009[S].Beijing:Standards Press of China,2009.(in Chinese)

    • [21] LIU Y,WU W,CHEN Y,et al.The effects of polyamic acid on curing behavior,thermal stability,and mechanical properties of epoxy/DDS system[J].Journal of Applied Polymer Science,2013,127:3213-3220.

    • [22] LIU X Q,YANG J,HAO J Y,et al.A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J].Advanced Materials,2012,24:4614-4617.

    • [23] 欧宝立,汪雨微,段俊,等.BTA@SPANI-POSS 环氧涂层的制备及防腐性能[J].中国表面工程,2022,35(4):161-171.OU Baoli,WANG Yuwei,DUAN Jun,et al.Preparation and anticorrosive performance of BTA@SPANI-POSS epoxy coating[J].China Surface Engineering,2022,35(4):161-171.(in Chinese)

    • [24] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T 528—2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Rubber,vulcanized or thermoplasticdetermination of tensile stress-strain properties:GB/T 528—2009[S].Beijing:Standards Press of China,2009.(in Chinese)

    • [25] PARK S J,HEO G Y,JIN F L.Cure behaviors and thermal stabilities of tetrafunctional epoxy resin toughened by polyamideimide[J].Macromolecular Research,2015,23:320-324.

    • [26] HEFLIN D G,MANSSON J A E.Mechanisms for combining polyamide and epoxy and their effects on mechanical performance:A review[J].Polymers and Polymer Composites,2022,30:1-19.

    • [27] ZHANG L L,ZHANG X H,WEI X H,et al.Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J].Composites Science and Technology,2022,230:109787.

    • [28] CAO B S,WU C L,WANG L,et al.Effect of residual stress and phase constituents on corrosion-cavitation erosion behavior of 304 stainless steel by iso-material manufacturing of laser surface melting[J].Journal of Materials Research and Technology,2023,26:6532-6551.

    • [29] MA J K,HOU G L,CAO H B,et al.Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze?[J].Corrosion Science,2022,209:110700.

    • [30] 李豪,吴凤和,赵夙,等.超声波冲击技术对 AA6061-T6 空蚀行为的影响[J].中国表面工程,2021,34(3):83-89.LI Hao,WU Fenghe,ZHAO Su,et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J].China Surafce Engineering,2021,34(3):83-89.(in Chinese)

    • [31] LI P H,GUO W G,YUAN K B,et al.Effects of processing defects on the dynamic tensile mechanical behavior of laser-solid-formed Ti-6Al-4 V[J].Materials Characterization,2018,140:15-29.

    • [32] WANG Y J,AN Y L,HOU G L,et al.Effect of cooling rate during annealing on microstructure and ultrasonic cavitation behaviors of Ti6Al4V alloy[J].Wear,2023,512-513(15):204529.

    • [33] LIANG H L,TSAI C W,GUO S.Design of corrosion-resistant high-entropy alloys through valence electron concentration and new phacomp[J].Journal of Alloys and Compounds,2021,883:160787.

    • [34] KUMAGAI S,HOSAKA S,HOSAKA T,et al.Steam pyrolysis of polyimides:effects of steam on raw material recovery[J].Environmental Science & Technology,2015,49:13558-13565.

    • [35] KUMAGAI S,HOSAKA T,KAMEDA T,et al.Pyrolysis and hydrolysis behaviors during steam pyrolysis of polyimide[J].Journal of Analytical and Applied Pyrolysis,2016,120:75-81.

    • [36] XU Y,ZEHNDER A T.Moisture degradation effects on the mechanical properties of HFPE-II-52 polyimide:experiments and modeling[J].Experimental Mechanics,2017,57:857-869.

    • [37] RYU C H,KIM Y H,BAE Y C.Phase transition behaviors of polyimide blends[J].European Polymer Journal,2000,36:495-501.

    • [38] THRONE J L.Study of the compaction and sintering of two high-performance thermoplastic polyimides[J].Advances in Polymer Technology,1989,9:281-191.

    • [39] HE L,CHEN T,ZHANG Y,et al.Imide-DOPO derivative endows epoxy resin with excellent flame retardancy and fluorescence without losing glass transition temperature[J].Composites Part B:Engineering,2022,230:109553.

  • 手机扫一扫看