en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

殷冀平,男,1985年出生,博士研究生。主要研究方向为等离子体源及应用。E-mail: ahuyjp@163.com

通讯作者:

蔺增,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为真空表面工程与过程控制。E-mail: zlin@mail.neu.edu.cn

中图分类号:O539

DOI:10.11933/j.issn.1007-9289.20220116002

参考文献 1
BRAUER G.The oxides of niobium[J].Journal of Inorganic and General Chemistry,1941,248(1):1-31.
参考文献 2
NICO C,SOARES M,RODRIGUES J,et al.Sintered NbO powders for electronic device applications[J].The Journal of Physical Chemistry C,2011,115(11):4879-4886.
参考文献 3
PAN L,WANG Y,WANG X J,et al.Hydrogen photochromism in Nb2O5 powders[J].Physical Chemistry Chemical Physics,2014,16(38):20828-20833.
参考文献 4
OHSAWA T,OKUBO J,SUZUKI T,et al.An n-type transparent conducting oxide:Nb12O29[J].The Journal of Physical Chemistry C,2011,115(33):16625-16629.
参考文献 5
RICHTER F,KUPFER H,SCHLOTT P,et al.Optical properties and mechanical stress in SiO2/Nb2O5 multilayers[J].Thin Solid Films,2001,389(1-2):278-283.
参考文献 6
GIMON-KINSEL M E,BALKUS K J.Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors[J].Microporous and Mesoporous Materials,1999,28(1):113-123.
参考文献 7
LIU X,SADAF S M,PARK S,et al.Complementary resistive switching in niobium oxide-based resistive memory devices[J].IEEE Electron Device Letters,2013,34(2):235-237.
参考文献 8
RANI R A,ZOOLFAKAR A S,SUBBIAH J,et al.Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells[J].Electrochemistry Communications,2014,40:20-23.
参考文献 9
NICO C,MONTEIRO T,GRAÇA M P F.Niobium oxides and niobates physical properties:review and prospects[J].Progress in Materials Science,2016,80:1-37.
参考文献 10
CHEN K N,HSU C M,LIU J,et al.Investigation of antireflection Nb2O5 thin films by the sputtering method under different deposition parameters[J].Micromachines,2016,7(9):151.
参考文献 11
MASSE J P,SZYMANOWSKI H,ZABEIDA O,et al.Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films[J].Thin Solid Films,2006,515(4):1674-1682.
参考文献 12
XIAO X D,DONG G P,XU C,et al.Structure and optical properties of Nb2O5 sculptured thin films by glancing angle deposition[J].Applied Surface Science,2008,255(5):2192-2195.
参考文献 13
LEE C C,TIEN C L,HSU J C.Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering[J].Applied Optics,2002,41(10):2043-2047.
参考文献 14
GUO P,AEGERTER M A.RU(II)sensitized Nb2O5 solar cell made by the sol-gel process[J].Thin Solid Films,1999,351(1-2):290-294.
参考文献 15
ORVIS T,KUMARASUBRAMANIAN H,SURENDRAN M,et al.In situ monitoring of composition and sensitivity to growth parameters of pulsed laser deposition[J].ACS Applied Electronic Materials,2021,3(3):1422-1428.
参考文献 16
HUNSCHE B,VERGÖHL M,NEUHÄUSER H,et al.Effect of deposition parameters on optical and mechanical properties of MF-and DC-sputtered Nb2O5 films[J].Thin Solid Films,2001,392(2):184-190.
参考文献 17
高立,张建民.射频磁控溅射和电子束蒸发制备ZnO薄膜特性的比较[J].陕西师范大学学报:自然科学版,2009,37(3):23-27.GAO Li,ZHANG Jianmin.Comparisons between ZnO thin films fabricated by RF-magnetron sputtering and Electron-beam evaporation[J].Journal of Shaanxi Normal University(Natural Science Edition),2009,37(3):23-27.(in Chinese)
参考文献 18
KIRISTI M,GULEC A,BOZDUMAN F,et al.Radio frequency-H2O plasma treatment on indium tin oxide films produced by electron beam and radio frequency magnetron sputtering methods[J].Thin Solid Films,2014,567:32-37.
参考文献 19
OECHSNER H.Theoretical background and some applications of ECWR-plasmas[J].Vacuum,2008,83(4):727-731.
参考文献 20
殷冀平,蔺增,巴德纯.电子回旋共振波等离子体及其应用[J].真空科学与技术学报,2016,36(3):324-333.YIN Jiping,LIN Zeng,BA Dechun.Generation and application of electron cyclotron wave resonance plasma[J].Chinese Journal of Vacuum Science and Technology,2016,36(3):324-333.(in Chinese)
参考文献 21
殷冀平,乔宏,蔺增,等.基于LabVIEW的朗缪尔单探针数据处理系统[J].真空,2020,57(6):48-53.YIN Jiping,QIAO Hong,LIN Zeng,et al.Data processing system of single langmuir probe based on LabVIEW[J].Chinese Vacuum,2020,57(6):48-53.(in Chinese)
参考文献 22
阳生红,蒋志洁,张曰理.不同溅射功率制备的 Zn0.97Co0.03O 薄膜的结构和光学性质研究[J].电子元件与材料,2019,38(1):23-27.YANG Shenghong,JIANG Zhijie,ZHANG Yueli.Microstructure and optical properties of Zn0.97Co0.03O thin films prepared using magnetron sputtering at different sputtering power[J].Electronic Components and Materials,2019,38(1):23-27.(in Chinese)
参考文献 23
KIM C E,MOON P,KIM S,et al.Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films[J].Thin Solid Films,2010,518(22):6304-6307.
参考文献 24
王野,付秀华,张静,等.温度对电子束沉积 Nb2O5 薄膜性能的影响[J].长春理工大学学报:自然科学版,2020,43(3):42-28.WANG Ye,FU Xiuhua,ZHANG Jing,et al.Study on temperature influence of Nb2O5 thin films by electron beam evaporation[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2020,43(3):42-28.(in Chinese)
参考文献 25
RANI R A,ZOOLFAKAR A S,O'MULLANE A P,et al.Thin films and nanostructures of niobium pentoxide:fundamental properties,synthesis methods and applications[J].Journal of Materials Chemistry A,2014,2(38):15683-15703.
目录contents

    摘要

    中频磁控溅射虽相较于电子束蒸发成膜质量更好,但不可避免仍然存在一部分颗粒物,将严重影响光学薄膜的质量和光学特性。研究了使用电子回旋波共振(ECWR)等离子体源作为辅助设备与中频磁控溅射相配合沉积的氧化铌薄膜,进行了等离子体诊断和薄膜表征。结果表明:在相同条件下,ECWR 等离子体放电的氧化效果明显优于传统的感应耦合等离子体放电。ECWR 等离子体源能够在较低压强的纯氧环境下稳定产生高密度等离子体,无须通过氩气作“引子”来激发维持氧气的稳定放电,展示了电子回旋波共振放电结构的优越性。沉积得到的非晶氧化铌薄膜光滑均匀且透射率达 91%,能有效消除中频磁控溅射产生的颗粒物问题。通过透射率波峰位置对比发现纯氧 ECWR 放电样片出现红移,原因是其放电得到的薄膜均匀而致密,使光学禁带宽度向低能方向漂移出现带隙窄化。研究结果还揭示了离子源高密度、低能量特性与薄膜表面和光学特性之间的关系,为精密光学薄膜应用提供了新的解决方案。

    Abstract

    Niobium-oxide thin films present significant application prospects in the protection of optical devices and optical antireflection thin films owing to their high refractive index, good transparency, and other advantages. The complexity of niobium-oxide systems is related to their stoichiometric and nonstoichiometric existence. The chemical stoichiometry of slight changes in niobium oxides cannot be easily controlled, identified, and determined; as such, these oxide systems are not clearly understood. Therefore, the physical properties and control mechanisms of niobium oxides must be further investigated . In terms of preparation technology and related equipment, although intermediate-frequency magnetron sputtering yields better film quality than electron beam evaporation, it inevitably produces particles, which severely affects the quality and optical properties of optical thin films, particularly in precision optical thin-film applications. The aim of this study is to improve the deposition quality and optical properties of niobium-oxide thin films using electron cyclotron wave resonance (ECWR) plasma-enhanced intermediate-frequency magnetron sputtering technology. Using intermediate-frequency magnetron sputtering to spray niobium elements in a mixed atmosphere of argon and oxygen yields a niobium-oxide thin film via the interaction between oxygen plasma and niobium. During this process, the thin film contains both unoxidized niobium and incompletely oxidized (low-valence state) niobium oxide, which is assisted by an ECWR ion source to enhance oxidation. A substrate stage is placed on a rotatable turntable by integrating intermediate-frequency magnetron sputtering and an ECWR ion source into the same discharge chamber. During the deposition of niobium-oxide thin films, the substrate carrier can rotate back and forth between the magnetron sputtering and ion source for repeated thin-film deposition and auxiliary oxidation. After repeating the process above multiple times, niobium-oxide thin films with the desired thickness can be obtained. In this experiment, a comparative study pertaining to the use of ICP / ECWR ion sources to assist in the deposition of oxide thin films using pure oxygen and argon / oxygen-doped plasma discharge is conducted to investigate the effects of different discharge mechanisms of RF ion sources on the preparation of niobium-oxide thin films via mid-frequency magnetron sputtering. ICP / ECWR plasma discharge is analyzed using a Langmuir probe and emission spectroscopy plasma diagnostic technology, and the characterization results of thin-film deposition are examined. Compared with the conventional intermediate-frequency magnetron sputtering, the thin film deposited with ECWR ion-source assistance exhibits excellent smoothness, uniformity, and density. The optical transmittance improves significantly to 91%, thus effectively eliminating the particle issue caused by intermediate-frequency magnetron sputtering in optical thin films. Compared with the ICP RF ion source, which requires mixed-gas discharge, the ECWR plasma source can stably generate high-density plasma in a low-pressure pure oxygen environment without requiring argon as a “trigger” to excite and maintain a stable oxygen discharge. This demonstrates the superiority of the ECWR plasmonic discharge structure, and because of its low-energy characteristics, an amorphous niobium-oxide film is achieved. Using the transmittance peak of pure-oxygen ECWR discharge samples as a reference line, one can observe that the pure-oxygen ECWR discharge exhibits a significant red shift compared with other discharge forms. This is because changes in the grain size and the mass of the niobium-oxide film alter the bandgap width of the optical film. The thin film obtained via oxygen ECWR discharge deposition is uniform and dense, which causes the optical bandgap width to shift toward the low-energy direction, thus narrowing the bandgap. In addition, this study reveals the relationship between the high-density and low-energy characteristics of the ion sources and the surface and optical properties of the thin films. This discovery is crucial for the development of high-end vacuum coating equipment and control systems with independent intellectual property rights, as well as provides new solutions for precision optical thin-film applications.

  • 0 前言

  • 从 20 世纪 40 年代起 BRAUER 等[1]对多晶结构氧化铌的研究开始,在过去 80 年中已经有很多研究者报告了铌氧化物的各种物理性质,这些独特有趣的物理特性带来许多应用,包括固体电容器[2]、光致变色器件[3]、透明导电氧化物[4]、光学干涉滤波器[5]、气体传感器[6]、忆阻器[7]和染料敏化太阳能电池[8]等。氧化铌是一种复杂的金属氧化物,具有多相和多晶结构,具体是在铌-氧化合物中铌元素以 0、 2+、4+和 5+四种不同的电荷价态存在;相应的氧与这些电荷价态结合形成 Nb、NbO、NbO2 和 Nb2O5。铌氧化物体系复杂性与其化学计量和非化学计量的存在相关。在铌氧化物中,控制、识别和确定微小变化的化学计量比较困难,从而导致研究者对这些氧化物体系的理解仍不清晰,对铌氧化物的物理特性及其控制机理的研究非常紧迫和必要[9]

  • 氧化铌薄膜因其折射率高(n=2.3)、透光性好等优势在光学器件的保护和光学减反薄膜中有着巨大的应用前景[10]。在制备技术和相关设备方面,常见的方法包括等离子体增强化学气相沉积[11]、电子束蒸发[12]、离子束溅射[13]、溶胶-凝胶法[14]、脉冲激光沉积[15]和磁控溅射[16]等。本文使用中频磁控溅射 ( Medium frequency magnetron sputtering,MF-MS)在 K9 玻璃基底上沉积 SiO2-Nb2O5复合减反射薄膜;针对沉积的氧化铌薄膜光学透过性能不佳的问题,虽然磁控溅射相较于电子束蒸发等技术其制备出的薄膜中颗粒数量较少且体积较小[17-18],但在精密光学薄膜应用中还是有着很大的影响。基于以上原因采用等离子体源辅助磁控溅射的方法制备氧化铌薄膜,以改善其光学特性。

  • 1 电子回旋波共振等离子体技术

  • 本文所用的射频等离子体源利用电子回旋波共振(Electron cyclotron wave resonance,ECWR)等离子体放电技术。ECWR 等离子体源在亥姆赫兹线圈磁场的加成下具有高密度、低能量且均匀性好等优点[19-20],相比于传统的感应耦合等离子体 (Inductively coupled plasma,ICP)放电,ECWR 源具有低气压下氧气单独放电的可能性,这为后续相关试验中使用纯粹的氧气放电提供前提条件。使用 ECWR 等离子体源进行了纯氩气和纯氧气放电,如图1 所示。

  • 图1 使用ECWR设备进行的纯氩气和纯氧气等离子体放电

  • Fig.1 Plasma discharge of pure argon and pure oxygen using ECWR equipment

  • 单独使用中频磁控溅射技术,在氩气和氧气混合气氛下溅射出铌元素,氧等离子体与铌相互作用获得氧化铌薄膜;但在此过程中,薄膜中会存在未被氧化的铌元素或者未被完全氧化(低价态)的氧化铌。本文将中频磁控溅射和 ECWR / ICP 源集成在同一个真空腔体中(如图2 所示),通过亥姆赫兹线圈磁场电源开关来分别实现ECWR和ICP等离子体源进行辅助沉积和后氧化处理。利用朗缪尔探针和发射光谱技术对等离子体放电进行诊断,将诊断数据和薄膜沉积结果相结合进行分析讨论。

  • 图2 使用 ECWR / ICP 源辅助中频磁控溅射进行氧化铌薄膜沉积的示意图

  • Fig.2 Schematic diagram of niobium oxide film deposition using ECWR / ICP ion source assisted medium frequency magnetron sputtering

  • 2 等离子体诊断和镀膜试验

  • 本文自主搭建了朗缪尔单探针测试系统,使用 BLUE-Wave 光纤光谱仪(StellarNet 公司,美国) 开发了等离子体探针分析软件和光谱分析软件[21]。需要特别指出:低压条件下纯氧气的 ICP 放电非常困难,本文中 ECWR 源在特定磁场强度条件下放电后,逐步降低磁场强度直到彻底关闭磁场,能够维持 ICP 纯氧气放电,但这种放电极其不稳定,仅用于比较研究。

  • 使用朗缪尔探针分别对 ICP 和 ECWR 放电条件下不同气体比例的等离子体放电进行诊断,所得的电子密度和电子温度如图3 所示。从图3 可以看出,随着氧掺入量的增加 ECWR 的电子温度比较稳定。

  • 纯氩气条件下的ECWR电子密度是ICP的两倍左右,随着氧气掺入比例的增加其差距逐渐减小,但是 ECWR 电子密度始终高于 ICP 电子密度。

  • 图4 显示了 ICP 和 ECWR 放电条件下不同气体的电子能量概率分布函数( Electron energy probability function,EEPF)。可以看出 ECWR 放电下纯氩气放电其高能电子尾较大,电子温度偏高,在纯氧气条件 ECWR 放电仍然拥有高能尾,这部分高能电子有助于提升电子密度。从图4 还可以看出,纯氧气 ECWR 放电的 EEPF 曲线低能峰甚至超过了纯氩的 ICP 放电,其电子密度也要略高,同时其高能电子尾要低于纯氩 ICP,整体分布曲线更偏向于低电子能量部分,使得其电子温度比 ICP 纯氩放电低,这与图3 的结果相统一。

  • 图3 不同气体比例的 ICP 和 ECWR 放电条件下电子密度和电子温度的变化

  • Fig.3 Variations of electron density and temperature in ICP and ECWR discharges with different gas ratio

  • 图4 不同气体的 ICP 和 ECWR 放电 EEPF 曲线

  • Fig.4 EEPF curves of ICP and ECWR discharges with different gas ratio

  • 图5 显示了不同气体比例的 ICP 和 ECWR 等离子体放电的发射光谱,如图5 的 O I 776.5 位置所示 ECWR 放电氧特征峰强度远强于 ICP。根据图3,在朗缪尔探针测试下以上差距较小,这是因为氧气与探针针尖发生氧化反应,造成探针采集电子的信息并不准确,这反映了朗缪尔探针对于反应气体诊断具有局限性,而光谱诊断技术可以起到有效的信息补充。

  • 本文采用中频磁控溅射和 ECWR 等离子体源相结合的方式制备氧化铌薄膜。中频磁控溅射放电参数:溅射功率为 47.5 kW,沉积速率约为 0.72 nm / s,放电气体比例约为 Ar∶O2 = 4∶3。 ECWR / ICP 源相关放电参数为:射频功率 500 W,压强 0.5 Pa,总气体流量保持不变,放电气体为纯氧气、纯氩气和氩 / 氧比 1∶1;沉积时间约为 10 min,对有无磁场条件下的 ECWR 放电和 ICP 放电分别进行对比。

  • 图5 氩氧混合气体和纯氧气的 ICP 和 ECWR 放电的发射光谱图

  • Fig.5 Emission spectrum line diagram of ICP and ECWR discharges of argon-oxygen mixed gas and pure oxygen

  • 使用场发射扫描电子显微镜(Field emission scanning electron microscope,FE-SEM)观察氧化铌薄膜的表面形貌,使用 X 射线衍射仪(X-ray diffraction,XRD)分析薄膜的显微结构,使用紫外 / 可见分光光度计测量薄膜的光学透过率。

  • 3 结果与分析

  • 为了进行对比研究,将 ECWR 源完全关闭,使用传统的中频磁控溅射技术制备氧化铌薄膜,如图6 所示。观察到氧化铌薄膜上有很多明显的颗粒物,由图6 右上角的放大图像可以看出颗粒的尺寸大多在微米级别,包括部分未被完全氧化的铌包埋在薄膜里。这些颗粒物将影响薄膜的致密度和光学特性。

  • 本文开展了氩氧比为 1∶1 的 ICP 放电和 ECWR 放电以及纯氧气 ECWR 放电研究,以探寻不同放电机理的射频离子源对中频磁控溅射制备氧化铌薄膜的作用和影响。图7 显示了氩氧比为 1∶1的ICP放电和ECWR放电辅助沉积的氧化铌薄膜的 SEM 图片。从图7 中可以看出,在 ECWR 源辅助条件下,薄膜上依然有颗粒物存在;与 ICP 相比, ECWR 放电条件下颗粒物较少,薄膜比较平滑,证明混合气体放电中等离子体具有一定程度的氧化作用。在薄膜表面依然有一些尺寸较大的颗粒物存在,主要原因是基片受离子源氧化作用的时间不长,氧化不充分。

  • 图6 中频磁控溅射制备的氧化铌薄膜的 SEM 图像

  • Fig.6 SEM images of niobium oxide films deposited by medium frequency magnetron sputtering

  • 图7 氩氧比为 1∶1 的 ICP 放电和 ECWR 放电辅助沉积氧化铌薄膜的 SEM 图

  • Fig.7 SEM images of niobium oxide films assisted by ICP and ECWR with Ar / O ratio of 1:1

  • 使用纯氧气 ECWR 放电辅助制备的氧化铌薄膜,致密性非常好,薄膜非常平整光滑,将放大倍数提高至 20 万倍,观察薄膜的表面形貌,如图8 所示。从图8 中可以看出,薄膜表面没有明显的颗粒物等特征,薄膜致密且光滑。结合诊断可以推断:溅射出来的铌在高离化率的ECWR源作用下被完全氧化,形成致密的、符合化学计量比的氧化铌薄膜。

  • 图8 纯氧气 ECWR 放电辅助沉积的氧化铌薄膜的 SEM 图

  • Fig.8 SEM images of niobium oxide films assisted by ECWR discharge with pure oxygen

  • 使用分光计进行光学透过性的检测,结果如图9 所示。由图9 可见,传统中频磁控溅射技术制备的氧化铌薄膜基本没有透光性能。而纯氧气 ECWR 放电辅助沉积的氧化铌薄膜的透射率高达 91%。以纯氧气 ECWR 放电样片的透射率波峰为基准线,可以发现纯氧气 ECWR 放电较其它放电形式,出现明显的红移,结合图7 和图8,其原因是氧化铌薄膜中晶粒尺寸和质量变化导致光学薄膜中禁带宽度发生改变,纯氧 ECWR 放电沉积得到的薄膜均匀而致密,使得光学禁带宽度向低能方向漂移,出现带隙窄化[22-23]

  • 图9 不同氧化铌薄膜在可见光波长下的透射率

  • Fig.9 Transmittance of niobium oxide films deposited with different gas ratios at visible wavelength

  • 图10 为不同放电条件下 K9 玻璃上沉积氧化铌薄膜的实物图,样片从左到右依次为氩氧混合比例 1∶1 的 ICP 放电、氩氧混合比例 1∶1 的 ECWR 放电和纯氧气的 ECWR 放电辅助沉积的样品。

  • 图10 不同放电条件下 K9 玻璃上沉积氧化铌薄膜实物图

  • Fig.10 Niobium oxide films deposited on K9 glass under different discharge conditions

  • 使用 XRD 分析纯氧 ECWR 下得到的薄膜的晶体结构,结果如图11 所示。发现在 27°处有个氧波包,但并没有形成明显的特征峰结构[24]。考虑到 Nb2O5在 200℃下处于非晶状态[25],而 ECWR 源提供的等离子体具有低能量特性,由此推断,ECWR 辅助沉积的氧化铌薄膜具有非晶结构。本文应用的 ECWR 源具有的高密度、低能量特性,将在低温等离子体薄膜沉积领域(包括光学薄膜和半导体薄膜) 有着重要的应用前景。

  • 图11 纯氧 ECWR 放电条件下的氧化铌薄膜 XRD 谱图

  • Fig.11 XRD images of niobium oxide films prepared by pure oxygen ECWR discharge

  • 4 结论

  • (1)ECWR 等离子体源能够在较低压强的纯氧环境下稳定产生高密度、低能量的等离子体,辅助中频磁控溅射技术可以制备非晶的氧化铌薄膜。制备的薄膜光滑、致密、均匀,光学透过性好,解决了传统中频磁控溅射技术会带来颗粒物的问题。

  • (2)等离子体诊断和镀膜试验结果均表明 ECWR 的放电、氧化效果显著优于传统的 ICP 放电。

  • 参考文献

    • [1] BRAUER G.The oxides of niobium[J].Journal of Inorganic and General Chemistry,1941,248(1):1-31.

    • [2] NICO C,SOARES M,RODRIGUES J,et al.Sintered NbO powders for electronic device applications[J].The Journal of Physical Chemistry C,2011,115(11):4879-4886.

    • [3] PAN L,WANG Y,WANG X J,et al.Hydrogen photochromism in Nb2O5 powders[J].Physical Chemistry Chemical Physics,2014,16(38):20828-20833.

    • [4] OHSAWA T,OKUBO J,SUZUKI T,et al.An n-type transparent conducting oxide:Nb12O29[J].The Journal of Physical Chemistry C,2011,115(33):16625-16629.

    • [5] RICHTER F,KUPFER H,SCHLOTT P,et al.Optical properties and mechanical stress in SiO2/Nb2O5 multilayers[J].Thin Solid Films,2001,389(1-2):278-283.

    • [6] GIMON-KINSEL M E,BALKUS K J.Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors[J].Microporous and Mesoporous Materials,1999,28(1):113-123.

    • [7] LIU X,SADAF S M,PARK S,et al.Complementary resistive switching in niobium oxide-based resistive memory devices[J].IEEE Electron Device Letters,2013,34(2):235-237.

    • [8] RANI R A,ZOOLFAKAR A S,SUBBIAH J,et al.Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells[J].Electrochemistry Communications,2014,40:20-23.

    • [9] NICO C,MONTEIRO T,GRAÇA M P F.Niobium oxides and niobates physical properties:review and prospects[J].Progress in Materials Science,2016,80:1-37.

    • [10] CHEN K N,HSU C M,LIU J,et al.Investigation of antireflection Nb2O5 thin films by the sputtering method under different deposition parameters[J].Micromachines,2016,7(9):151.

    • [11] MASSE J P,SZYMANOWSKI H,ZABEIDA O,et al.Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films[J].Thin Solid Films,2006,515(4):1674-1682.

    • [12] XIAO X D,DONG G P,XU C,et al.Structure and optical properties of Nb2O5 sculptured thin films by glancing angle deposition[J].Applied Surface Science,2008,255(5):2192-2195.

    • [13] LEE C C,TIEN C L,HSU J C.Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering[J].Applied Optics,2002,41(10):2043-2047.

    • [14] GUO P,AEGERTER M A.RU(II)sensitized Nb2O5 solar cell made by the sol-gel process[J].Thin Solid Films,1999,351(1-2):290-294.

    • [15] ORVIS T,KUMARASUBRAMANIAN H,SURENDRAN M,et al.In situ monitoring of composition and sensitivity to growth parameters of pulsed laser deposition[J].ACS Applied Electronic Materials,2021,3(3):1422-1428.

    • [16] HUNSCHE B,VERGÖHL M,NEUHÄUSER H,et al.Effect of deposition parameters on optical and mechanical properties of MF-and DC-sputtered Nb2O5 films[J].Thin Solid Films,2001,392(2):184-190.

    • [17] 高立,张建民.射频磁控溅射和电子束蒸发制备ZnO薄膜特性的比较[J].陕西师范大学学报:自然科学版,2009,37(3):23-27.GAO Li,ZHANG Jianmin.Comparisons between ZnO thin films fabricated by RF-magnetron sputtering and Electron-beam evaporation[J].Journal of Shaanxi Normal University(Natural Science Edition),2009,37(3):23-27.(in Chinese)

    • [18] KIRISTI M,GULEC A,BOZDUMAN F,et al.Radio frequency-H2O plasma treatment on indium tin oxide films produced by electron beam and radio frequency magnetron sputtering methods[J].Thin Solid Films,2014,567:32-37.

    • [19] OECHSNER H.Theoretical background and some applications of ECWR-plasmas[J].Vacuum,2008,83(4):727-731.

    • [20] 殷冀平,蔺增,巴德纯.电子回旋共振波等离子体及其应用[J].真空科学与技术学报,2016,36(3):324-333.YIN Jiping,LIN Zeng,BA Dechun.Generation and application of electron cyclotron wave resonance plasma[J].Chinese Journal of Vacuum Science and Technology,2016,36(3):324-333.(in Chinese)

    • [21] 殷冀平,乔宏,蔺增,等.基于LabVIEW的朗缪尔单探针数据处理系统[J].真空,2020,57(6):48-53.YIN Jiping,QIAO Hong,LIN Zeng,et al.Data processing system of single langmuir probe based on LabVIEW[J].Chinese Vacuum,2020,57(6):48-53.(in Chinese)

    • [22] 阳生红,蒋志洁,张曰理.不同溅射功率制备的 Zn0.97Co0.03O 薄膜的结构和光学性质研究[J].电子元件与材料,2019,38(1):23-27.YANG Shenghong,JIANG Zhijie,ZHANG Yueli.Microstructure and optical properties of Zn0.97Co0.03O thin films prepared using magnetron sputtering at different sputtering power[J].Electronic Components and Materials,2019,38(1):23-27.(in Chinese)

    • [23] KIM C E,MOON P,KIM S,et al.Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films[J].Thin Solid Films,2010,518(22):6304-6307.

    • [24] 王野,付秀华,张静,等.温度对电子束沉积 Nb2O5 薄膜性能的影响[J].长春理工大学学报:自然科学版,2020,43(3):42-28.WANG Ye,FU Xiuhua,ZHANG Jing,et al.Study on temperature influence of Nb2O5 thin films by electron beam evaporation[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2020,43(3):42-28.(in Chinese)

    • [25] RANI R A,ZOOLFAKAR A S,O'MULLANE A P,et al.Thin films and nanostructures of niobium pentoxide:fundamental properties,synthesis methods and applications[J].Journal of Materials Chemistry A,2014,2(38):15683-15703.

  • 参考文献

    • [1] BRAUER G.The oxides of niobium[J].Journal of Inorganic and General Chemistry,1941,248(1):1-31.

    • [2] NICO C,SOARES M,RODRIGUES J,et al.Sintered NbO powders for electronic device applications[J].The Journal of Physical Chemistry C,2011,115(11):4879-4886.

    • [3] PAN L,WANG Y,WANG X J,et al.Hydrogen photochromism in Nb2O5 powders[J].Physical Chemistry Chemical Physics,2014,16(38):20828-20833.

    • [4] OHSAWA T,OKUBO J,SUZUKI T,et al.An n-type transparent conducting oxide:Nb12O29[J].The Journal of Physical Chemistry C,2011,115(33):16625-16629.

    • [5] RICHTER F,KUPFER H,SCHLOTT P,et al.Optical properties and mechanical stress in SiO2/Nb2O5 multilayers[J].Thin Solid Films,2001,389(1-2):278-283.

    • [6] GIMON-KINSEL M E,BALKUS K J.Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors[J].Microporous and Mesoporous Materials,1999,28(1):113-123.

    • [7] LIU X,SADAF S M,PARK S,et al.Complementary resistive switching in niobium oxide-based resistive memory devices[J].IEEE Electron Device Letters,2013,34(2):235-237.

    • [8] RANI R A,ZOOLFAKAR A S,SUBBIAH J,et al.Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells[J].Electrochemistry Communications,2014,40:20-23.

    • [9] NICO C,MONTEIRO T,GRAÇA M P F.Niobium oxides and niobates physical properties:review and prospects[J].Progress in Materials Science,2016,80:1-37.

    • [10] CHEN K N,HSU C M,LIU J,et al.Investigation of antireflection Nb2O5 thin films by the sputtering method under different deposition parameters[J].Micromachines,2016,7(9):151.

    • [11] MASSE J P,SZYMANOWSKI H,ZABEIDA O,et al.Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films[J].Thin Solid Films,2006,515(4):1674-1682.

    • [12] XIAO X D,DONG G P,XU C,et al.Structure and optical properties of Nb2O5 sculptured thin films by glancing angle deposition[J].Applied Surface Science,2008,255(5):2192-2195.

    • [13] LEE C C,TIEN C L,HSU J C.Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering[J].Applied Optics,2002,41(10):2043-2047.

    • [14] GUO P,AEGERTER M A.RU(II)sensitized Nb2O5 solar cell made by the sol-gel process[J].Thin Solid Films,1999,351(1-2):290-294.

    • [15] ORVIS T,KUMARASUBRAMANIAN H,SURENDRAN M,et al.In situ monitoring of composition and sensitivity to growth parameters of pulsed laser deposition[J].ACS Applied Electronic Materials,2021,3(3):1422-1428.

    • [16] HUNSCHE B,VERGÖHL M,NEUHÄUSER H,et al.Effect of deposition parameters on optical and mechanical properties of MF-and DC-sputtered Nb2O5 films[J].Thin Solid Films,2001,392(2):184-190.

    • [17] 高立,张建民.射频磁控溅射和电子束蒸发制备ZnO薄膜特性的比较[J].陕西师范大学学报:自然科学版,2009,37(3):23-27.GAO Li,ZHANG Jianmin.Comparisons between ZnO thin films fabricated by RF-magnetron sputtering and Electron-beam evaporation[J].Journal of Shaanxi Normal University(Natural Science Edition),2009,37(3):23-27.(in Chinese)

    • [18] KIRISTI M,GULEC A,BOZDUMAN F,et al.Radio frequency-H2O plasma treatment on indium tin oxide films produced by electron beam and radio frequency magnetron sputtering methods[J].Thin Solid Films,2014,567:32-37.

    • [19] OECHSNER H.Theoretical background and some applications of ECWR-plasmas[J].Vacuum,2008,83(4):727-731.

    • [20] 殷冀平,蔺增,巴德纯.电子回旋共振波等离子体及其应用[J].真空科学与技术学报,2016,36(3):324-333.YIN Jiping,LIN Zeng,BA Dechun.Generation and application of electron cyclotron wave resonance plasma[J].Chinese Journal of Vacuum Science and Technology,2016,36(3):324-333.(in Chinese)

    • [21] 殷冀平,乔宏,蔺增,等.基于LabVIEW的朗缪尔单探针数据处理系统[J].真空,2020,57(6):48-53.YIN Jiping,QIAO Hong,LIN Zeng,et al.Data processing system of single langmuir probe based on LabVIEW[J].Chinese Vacuum,2020,57(6):48-53.(in Chinese)

    • [22] 阳生红,蒋志洁,张曰理.不同溅射功率制备的 Zn0.97Co0.03O 薄膜的结构和光学性质研究[J].电子元件与材料,2019,38(1):23-27.YANG Shenghong,JIANG Zhijie,ZHANG Yueli.Microstructure and optical properties of Zn0.97Co0.03O thin films prepared using magnetron sputtering at different sputtering power[J].Electronic Components and Materials,2019,38(1):23-27.(in Chinese)

    • [23] KIM C E,MOON P,KIM S,et al.Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films[J].Thin Solid Films,2010,518(22):6304-6307.

    • [24] 王野,付秀华,张静,等.温度对电子束沉积 Nb2O5 薄膜性能的影响[J].长春理工大学学报:自然科学版,2020,43(3):42-28.WANG Ye,FU Xiuhua,ZHANG Jing,et al.Study on temperature influence of Nb2O5 thin films by electron beam evaporation[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2020,43(3):42-28.(in Chinese)

    • [25] RANI R A,ZOOLFAKAR A S,O'MULLANE A P,et al.Thin films and nanostructures of niobium pentoxide:fundamental properties,synthesis methods and applications[J].Journal of Materials Chemistry A,2014,2(38):15683-15703.

  • 手机扫一扫看