en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王优强,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为轴承的弹流润滑。E-mail: wyq1970301@126.com;

胡宇,女,1997年出生,硕士研究生。主要研究方向为轴承的弹流润滑。E-mail: xying20201226@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230910001

参考文献 1
ZHENG G,LAI F,LIN Y,et al.Study on the friction-reducing mechanisms of surface texture cemented carbide under dry sliding[J].Journal of Materials Engineering and Performance,2023,32(5):2074-2083.
参考文献 2
ROSENKRANZ A,COSTA H,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear — A review[J].Tribology International,2020,155(12):106792.
参考文献 3
WANG X M,LI C H,ZHANG Y B,et al.Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning[J].International Journal of Advanced Manufacturing Technology,2022,119(1-2):631-646.
参考文献 4
CHEN D,YANG X,ZHONG M,et al.Inspired by tree frog:bionic design of tread pattern and its wet friction properties[J].Journal of Bionic Engineering,2022,19(4):1064-1076.
参考文献 5
TORO A,ABDELAAL H A,ZULUAGA E,et al.Influence of surface morphology and internal structure on the mechanical properties and tribological response of boared tail and python regius snake skin[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,119(3):104497.
参考文献 6
MAWIGNON F J,LIU J,QIN L,et al.The optimization of biomimetic sharkskin riblet for the adaptation of drag reduction[J].Ocean Engineering,2023,275(1):1-15.
参考文献 7
IBRAHIM M D,AMRAN S N A,YUNOS Y S,et al.The study of drag reduction on ships inspired by simplified shark skin imitation[J].Applied Bionics and Biomechanics,2018,5(2):1-11.
参考文献 8
QIAN H,LIU B,WU D,et al.Facile fabrication of slippery lubricant-infused porous surface with pressure responsive property for anti-icing application[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,618(74):126457.
参考文献 9
WANG L,ZHANG S,ZHANG L,et al.Frictional properties of the wax coverings in nepenthes alata slippery zone:results from AFM scanning[J].Sains Malaysiana,2020,49(7):1491-1498.
参考文献 10
张鹏飞,张德远,陈华伟.猪笼草内表面微观结构及其浸润性研究[J].农业机械学报,2014,45(1):341-345.ZHANG Pengfei,ZHANG Deyuan,CHEN Huawei.Microstructure and wettability character of nepenthes’ pitcher surfaces[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):341-345.(in Chinese)
参考文献 11
HSU C P,LIN Y M,CHEN P Y.Hierarchical structure and multifunctional surface properties of carnivorous pitcher plants Nepenthes[J].JOM:The Journal of the Minerals,Metals & Materials Society,2015,67(4):744-753.
参考文献 12
NORDBERG R C,ESPINOSA M G,HU J C,et al.A Tribological comparison of facet joint,sacroiliac joint,and knee cartilage in the yucatan minipig[J].Cartilage,2021,13(6):346S-355S.
参考文献 13
赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of the effect of surface texture type on friction reduction performance of friction substitutes[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)
参考文献 14
刘腾飞,李瑞珍,张绍林,等.织构化动压轴承热流体润滑特性理论与试验研究[J].中国表面工程,2023,36(1):156-167.LIU Tengfei,LI Ruizhen,ZHANG Shaolin,et al.Theoretical and experimental study on thermal fluid lubrication characteristics of woven dynamic bearing[J].China Surface Engineering,2023,36(1):156-167.(in Chinese)
参考文献 15
邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU Weiwei,MENG Xiangyu,WANG Fei,et al.Compatibility of polyimide-based self-lubricating materials with WS2-Ag solid lubrication film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)
参考文献 16
HUANG D,LI Z,WANG Y,et al.Mechanisms and applications of diatomaceous materials with self-defense properties[J].Journal of Materials Chemistry A,2020,8(2):475-487.
参考文献 17
LI X,YAN S,LI Y,et al.Self-lubricating behavior of diatom frustules:A molecular dynamics simulation study[J].Journal of Colloid and Interface Science,2019,537(5):330-338.
参考文献 18
MENG F,GAO G,JIA Z.Study on tribological mechanism for multi-layer porous structure of diatom frustule[J].Microbial Ecology,2015,69(1):45-58.
参考文献 19
SUMPER M.A phase separation model for the nanopatterning of diatom biosilica[J].Science,2002,295(5564):2430-2433.
参考文献 20
SUBHASH G,YAO S,BELLINGER B,et al.Investigation of mechanical properties of diatom frustules using nanoindentation[J].Journal of Nanoscience and Nanotechnology,2005,5(1):50-56.
参考文献 21
李琛.基于圆筛藻硅质壳三维结构的纳米材料制备与表征[D].青岛:中国海洋大学,2011.LI Chen.Preparation and characterisation of nanomaterials based on the three-dimensional structure of siliceous shells of the round sieve algae[D].Qingdao:Ocean University of China,2011.(in Chinese)
参考文献 22
马健荣,刘明,徐信,等.硅藻研究与应用展望[J].山东农业科学,2010,8(48):52-56.MA Jianrong,LIU Ming,XU Xin,et al.Prospect of diatom research and application[J].Shandong Agricultural Science,2010,8(48):52-56.(in Chinese)
参考文献 23
MENG F M,DAVIS T,CAO J,et al.Study on effect of dimples on friction of parallel surfaces under different sliding conditions[J].Applied Surface Science,2010,256(9):2863-2875.
参考文献 24
MENG Fanming,HENG Yong Z,WANG Hongxia,et al.Study on acoustic performance for diatom frustule with nanoporous structure[J].Journal of Bionic Engineering,2023,20(31):1656-1669.
参考文献 25
李婷婷.仿生硅藻结构的水润滑轴承摩擦学性能研究 [D].重庆:重庆大学,2015.LI Tingting.Research on tribological properties of water-lubricated bearing with bionic diatom structure[D].Chongqing:Chongqing University,2015.(in Chinese)
参考文献 26
王福军.流体机械旋转湍流计算模型研究进展[J].农业机械学报,2016,47(2):1-14.WANG Fujun.Research progress of rotational turbulence computational model for fluid machinery[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):1-14.(in Chinese)
参考文献 27
高贵响.硅藻典型壳壁结构的摩擦学特性及其在水润滑轴承上的应用[D].重庆:重庆大学,2014.GAO Guixiang.Tribological performances of representative diatom shell structure and its application in water-lubricated bearing[D].Chongqing:Chongqing University,2014.(in Chinese)
参考文献 28
MENG F M,LI T T.Study of tribological performances of compound dimples based on diatom shell structures[J].International Journal of Surface Science and Engineering,2015,9(6):538-560.
参考文献 29
WANG S Z,CHEN F C,RUAN Z G,et al.Numerical simulation of lubrication performance on chevron textured surface under hydrodynamic lubrication[J].Tribology International,2021,154(1):106704.
参考文献 30
LIN X,JIANG S,ZHANG C,et al.Thermohydrodynamic analysis of high speed water-lubricated spiral groove thrust bearing considering effects of cavitation,inertia and turbulence[J].Tribology International,2018,119(12):645-658.
目录contents

    摘要

    表面微织构化是改善轴承摩擦学性能重要手段之一,目前对于表面微织构的设计多以加工简单的单层形状为主,但在对轴承织构化试验和数值模拟研究中发现,单层微织构在减少摩擦磨损和降低能耗方面仍不够突出。基于圆筛藻壳的多层孔状结构,设计矩形-半球型双层复合微织构,并应用于水润滑轴承的高压区,采用热流固耦合的方法,探究在考虑进水温度变化的条件下、双层复合型织构的尺寸变化和轴承转速对水润滑轴承摩擦性能的影响。结果表明:对于任何进水温度,双层复合型织构轴承的减摩性能优于光滑轴承和单层织构轴承。复合织构尺寸效应对润滑水膜压力影响不稳定,但对摩擦因数的影响相对平稳。另外,在任何温度下,复合型织构轴承的转速越高,润滑水膜压力和摩擦因数越大。研究成果在改善水润滑轴承摩擦学性能方面有更进一步的突破,可为减小摩擦磨损及延长轴承使用寿命的相关研究提供借鉴。

    Abstract

    Surface texturing is one of the main methods used to improve the tribological performance of bearings, and previous studies on microstructures mainly focused on a single-layer shape, such as rectangular, spherical, or cylindrical. However, in experimental and numerical simulation investigations of the tribological performance of textured lubricated bearings, the bearings have a single-layer pore shape and can only generate a dynamic pressure effect, which makes single-layer microtexture models in the reduction of friction, wear, and energy consumption insufficient for analyzing the performance. In addition, many recent studies on the tribological performance of textured water-lubricated bearings were based on isothermal assumptions but ignored the effect of temperature on the lubrication performance of bearings. This study mimicked the multilayered pore-like structure of circular-sieve algal shells and established a rectangular–hemispherical double-layered composite microtextured model to investigate the tribological performance of composite texturing-sized water-lubricated bearings. The model is applied to the high-pressure region of water-lubricated bearings and is based on the method of heat fluid–solid coupling to determine the water film load-carrying capacity of the water-lubricated bearing, the frictional force, and the friction factor effects. Inputs such as geometrical parameters from the literature were calculated, and the calculated water film load-carrying capacities were compared. The results were found to be consistent with results obtained from the literature, verifying the accuracy of the model. Based on this, the effects of the change in bearing speed and size of the double-layer composite texture on the tribological performance of composite textured water-lubricated bearings were investigated for different water inlet temperatures. The results indicate that for any water inlet temperature, the friction-reduction performance of double-layer composite textured bearings is better than those of smooth bearings and single-layer textured bearings. At a specific temperature, the higher the rotational speed, the higher the lubricating water-film pressure and the friction coefficient. At the same rotational speed, the water film pressure decreases with an increase in inlet water temperature when the inlet water temperature is low (20–50 ℃), whereas the coefficient of friction increases gradually. When the inlet water temperature increases to 50–60 ℃, the effects of temperature on the water film pressure and friction coefficient of the composite textured bearings gradually tend to stabilize. This indicates that the inlet temperature and bearing speed combine to influence the friction performance of the composite textured bearings. By changing the size of the composite textured structure, the inlet water temperature directly influences the friction performance of the composite textured bearing; the higher the inlet water temperature, the lower the water film pressure, but the coefficient of friction increases. At the same water inlet temperature, the size of the composite texture significantly influences the water film pressure but has a minimal effect on the coefficient of friction. This study promotes further breakthroughs in improving the tribological properties of water-lubricated bearings and provides a reference for related studies on reducing the frictional wear and extending the service life of bearings.

  • 0 前言

  • 表面织构化是一种新型的表面处理技术,通过改变材料表面的形态和结构来改变材料的摩擦、润滑、耐磨和防腐等功能[1],尤其在摩擦学领域,对于改善机械零部件的综合性能、减少摩擦和延长寿命发挥着重要作用[2-3]

  • 近年来,随着仿生机械学的发展,自然界中生物表面的功能性微结构引起了越来越多研究者的关注。研究发现:树蛙脚掌[4] 表面结构具有湿黏附性; 蛇皮[5]的结构能够降低摩擦因数;鲨鱼[6][7]皮肤结构,具有很好的减阻性;猪笼草表面[8][11]接近超滑状态;猪膝关节[12]的静态加载摩擦因数大于滑行摩擦因数等。但是,目前大部分研究设计的织构形状多为单层结构,多层复合结构较少,且将仿生结构应用于轴承润滑系统研究很少[13-15]。本文基于硅藻的多级孔状结构,仿生研究了具有双层复合型织构的水润滑轴承的摩擦学性能。

  • 硅藻是生活在水中的单细胞浮游生物,硅藻细胞有上下两片坚硬的硅质壳,上壳比下壳稍大,像盒子一样套在一起,这种精致的形态和结构,使其具有高抗压强度。硅藻为了更好的适应环境,壳壁通常具有特殊的多级孔洞结构,可以化解压力,减少摩擦和磨损,在摩擦学领域具有潜在的应用。许多学者进行了相关研究。HUANG 等[16] 研究发现,硅藻壳多级结构和材料特性具有较强的自防御功能。LI 等[17]研究发现,硅藻以其自润滑性来克服壳壁各组织间的摩擦磨损。MENG 等[18] 对不同种类的硅藻结构进行研究,发现不同结构的硅藻壳所产生的摩擦学性能的不同。在藻类研究中,对圆筛藻的研究较多,德国 SUMPER[19]研究圆筛藻发现,藻壳是由六边形微孔排列形成的丝网状结构,这种纹饰繁密的结构增强了硅藻的硬度和强度。SUBHASH 等[20]研究并测试了圆筛藻硅壳的机械性能,发现圆筛藻壳的多层孔状结构能够增强圆筛藻在水中游动时的承载力,减小摩擦力和摩擦因数。随着表面处理技术的不断成熟,有学者开始在材料表面仿生制备硅藻壳结构,探究其应用价值[21-22]。孟凡明等[23]将与圆筛藻壳孔状结构相似的微造型应用于水润滑轴承的内表面,对其进行了摩擦学性能仿真分析,发现适当尺寸和位置的微造型能够提高滑动轴承承载力,减小摩擦。

  • 本文基于圆筛藻多级孔状结构,在水润滑轴承高压区仿生设计了矩形-半球形双层复合型微结构,采用热流固耦合的方法,仿真研究考虑进水温度变化条件下,双层复合织构的尺寸变化以及轴承的转速对水润滑轴承摩擦学性能的影响。研究成果可为改善水润滑轴承的润滑性能提供参考。

  • 1 分析模型

  • 1.1 表面织构几何模型

  • 图1 为圆筛藻的扫描电镜照片[24-25],圆筛藻壳结构为多级孔状结构。硅藻壳壁最外表面是微米级别的大孔(第一级孔),大孔中又嵌套尺寸相对较小的小孔(第二级孔)。因此,本文依照圆筛藻的多孔结构设计上层为矩形、下层为半球型的复合型织构模型。

  • 图1 圆筛藻的电镜照片[24-25]

  • Fig.1 SEM image of Coscinodiscus[24-25]

  • 考虑到旋转湍流中的旋转效应以及轴瓦材料参数对润滑效果产生的影响[26],采用热流固耦合的方法,但耦合计算复杂且计算时间较长,为了方便计算,研究对象选择轴承的一个具有表面织构的单元进行分析,建立如图2a 几何模型。轴承尺寸外径为 200 mm,内径为 100.2 mm,间隙为 0.1 mm,偏心距为 0.08 mm,偏心率为 0.8,偏位角为 45 °,轴承的宽度为 2 mm。润滑剂选择水。顺时针转动,转速为 700 r / min。由于轴承套材料普遍为高分子材料,如超高分子聚乙烯,所以参数设定泊松比为 0.4,弹性模量为 1 GPa。依照圆筛藻壳的多孔结构设计出上矩形下半球形的复合织构如图2b 所示,第一层矩形孔宽为 W,孔深为 D,第二层半圆孔半径为 R

  • 图2 水润滑轴承在高压区上具有织构的单元模型

  • Fig.2 Dimple model of water-lubricated bearings on high-pressure zones

  • 1.2 网格划分

  • 图3a 所示为用于流场分析的轴承水膜模型与网格划分。本模型的网格质量系数的平均值约为 0.79,偏斜系数的平均值约为 0.29。如图3b 所示为用于固体分析的轴承轴套模型与网格划分,本模型的网格质量系数的平均值约为 0.82,偏斜系数的平均值约为 0.25。网格的质量会影响仿真分析结果,高质量的网格可以提高运算精度。

  • 图3 模型的网格划分

  • Fig.3 Mesh generation of models

  • 1.3 控制方程与边界条件设置

  • 流体动量守恒方程为:

  • (ρu)t+div(ρuu)=div(μgradu)-px+SU
    (1)
  • (ρv)t+div(ρvu)=div(μgradv)-py+SV
    (2)
  • (ρw)t+div(ρwu)=div(μgradw)-pz+SW
    (3)
  • 式中, ρ 表示流体密度,km / m3SUSVSW 为动量守恒方程的广义源项,SU=Fx+sxSV=Fy+sySW=Fz+Sz。其中 sxsysz 的表达式为:

  • sx=xμux+yμvx+zμwx+x(λdivu)
    (4)
  • sy=xμuy+yμvy+zμwy+y(λdivu)
    (5)
  • sz=xμuz+yμvz+zμwz+z(λdivu)
    (6)
  • 式中,μ表示动力黏度,Pa· s;t 为时间,s;FxFyFz 分别是微元体上体积力在 xyz 方向的分量;对于一般的不可压缩流体sx =sy =sz =0;uvw 分别为流体在 xyz 方向的速度分量。

  • 以温度为变量的能量守恒方程如下:

  • (ρT)t+(ρuT)x+(ρvT)y+(ρwT)z=xkcpTx+ykcpTy+zkcpTz+ST
    (7)
  • 式中,cp 为比热容,J /(kg·℃);T 为时间;k 为流体的传热系数,W /(m·℃);ST为粘性耗散项。

  • 水润滑轴承属于外筒静止内筒旋转的模型,根据雷诺公式,计算出临界雷诺数为:

  • Re=41.1Rc=919.024
    (8)
  • 实际 Re 可由下式计算:

  • R=ρvhη
    (9)
  • 式中,v 表示为水的流速,取 4 m / s;h 表示水膜厚度,m。

  • 经计算可知,实际雷诺数远大于临界雷诺值,故判定该模型为紊流模型,本试验选用标准 k-ε 湍流模型进行研究。

  • 本文主要研究轴承的承载力、摩擦力和摩擦因数。关于轴承的承载力如式(10)~(12)所示:

  • Wx=A prcosαdαdz
    (10)
  • Wy=A prsinαdαdz
    (11)
  • W=Wx2+Wy2
    (12)
  • 式中,p 为水膜压力,Pa;r 为轴的半径,m;α 为轴承沿周向的角度,(°);A 表示为水膜与轴承间的流固耦合的面积,m 2

  • 对水膜的剪切应力进行积分可以得出水膜的摩擦力,如式(14)、(15)所示:

  • Ffx=A τrsinαdαdz
    (13)
  • Ffy=A τrcosαdαdz
    (14)
  • Ff=Ffx2+Ffy2
    (15)
  • 式中,τ 为水膜的剪切力,Pa。

  • 由式(12)、(15)计算所得水膜的承载力和摩擦力,由式(16)计算可得摩擦因数:

  • f=FfW
    (16)
  • 假设所有算例均不考虑气穴现象。设置边界条件如图4 所示,具体设置为:

  • (1)设置流体内壁面为无滑移壁面边界条件,绕 Z 轴顺时针转动,转速为 700 r / min。

  • (2)进口区处设置进水的压力值和温度,出口区设置的压力值与进水区的压力值相同,两个区域的压力值均为 101 kPa。

  • (3)流体外壁面设置为壁面边界条件,流体外壁面设置为流固耦合边界条件,固体内壁面设置为接触面。

  • (4)固体的外壁面设置为位移边界条件,设置为完全约束。

  • 图4 边界条件

  • Fig.4 Boundary conditions

  • 2 结果与讨论

  • 2.1 计算模型有效性验证

  • 为了保证仿真结果的准确性,取文献[27]中的参数,使用 ANSYS 15.0 中的 Fluent 模块进行仿真分析,设定其几何参数、控制方程、边界条件及网格划分方法与原文献保持一致,但在控制方程中增加能量方程,边界条件中设置为 20℃时的水,设定其工作条件与本文的复合型织构轴承一致,即同为 ε=0.8,转速为 700 r / min,织构间隔为 9°,织构个数为 10 个。图5 所示为本文中模型与文献[27] 中模型的压力对比情况。

  • 图5 压力对比情况

  • Fig.5 Pressure contrast

  • 由图5 可知,在水温为 20℃时,本文的周向水膜压力趋势与文献[28]中的压力趋势大致吻合,水膜的最大压力值与最小压力值的集中区域也与文献中的位置基本相同。这就表明了本文中采取的计算模型和计算方法较为合理,计算结果可信。

  • 2.2 进水温度对轴承的摩擦特性影响

  • 单层织构模型和双层复合型织构模型的第一层孔深 D 取 0.7 mm,孔宽 W 取 0.5 mm,复合型织构模型的第二层孔半径 R 取 0.2 mm,转速设定为 700 r / min。图6 为光滑轴承、单层织构轴承以及双层复合型织构轴承在改变进水温度的条件下的最大水膜压力值的变化趋势。

  • 如图6a 所示,任何进水温度下,两种织构型轴承的水膜压力大于光滑轴承。进一步观察图6b 可以看出,单层织构的水膜压力随温度的升高而下降,且下降幅度较大,双层复合织构的下降呈先快后缓的变化趋势。当进水温度较低(20~40℃) 时,随着进水温度的身高,水膜压力下降趋势较明显,而当进水温度较高(40~60℃)时,进水温度对水膜压力影响不大。由图6b 还可以看出,进水温度在 20~30℃,单层织构的水膜压力大于双层织构,在 30℃左右,单层织构的水膜压力等于双层织构,在 30~60℃,单层织构的水膜压力小于双层织构。

  • 图6 轴承的压力随进水温度的变化

  • Fig.6 Variation of bearing pressure with inlet water temperature

  • 有研究表明[29],表面织构能够使摩擦副两表面间的润滑剂流场产生非对称的压力分布,流场的流动情况和分布决定压力的大小,复合型织构能够产生多次动压效应,使动压效应增强。另外,水温升高导致水的粘性系数下降,转动时产生的摩擦力下降,承载力就下降,导致动压效应减弱,影响了水膜压力和壁面剪切压力。由此可见,进水温度和织构形貌特征共同作用影响润滑水膜的压力。

  • 图7 显示了光滑轴承、单层织构轴承和双层复合型织构轴承在改变进水温度的条件下的摩擦力及摩擦因数变化趋势。

  • 如图7a 所示,三种轴承的摩擦力值均随着进水温度的升高逐渐下降,这是由于进水温度增大,环境黏度降低,水的黏度也降低,粘性剪切力降低,导致轴承摩擦力降低。相比于光滑轴承和单层织构轴承,双层复合型织构轴承的摩擦力值最优,且轴承的摩擦力呈先快后缓的下降趋势。当进水温度较低(20~40℃)时,摩擦力随温度的升高而下降显著,但当进水温度较高(40~60℃)时,温度对其摩擦力的影响不大。

  • 图7 不同类型轴承的试验结果

  • Fig.7 Test results of different types of bearings under different inlet temperatures

  • 如图7b 所示,对于任何进水温度,两种织构型轴承的摩擦因数都小于光滑轴承,且摩擦因数均随温度的升高而线性增长,增长趋势大致相同,但是复合织构的摩擦因数稍优于单层织构。这说明,进水温度和织构形貌特征共同作用影响着轴承的摩擦因数。

  • 2.3 不同转速下复合型织构轴承的摩擦特性

  • 图8 显示了转速范围在 700~1 100 r / min 内,复合型织构轴承改变进水温度所产生的最大水膜压力及摩擦因数的变化趋势。

  • 如图8a 所示,任何进水温度下,转速越高,复合织构的水膜压力越大。原因是,转速越高,单位时间内通过的水越多,产生的摩擦力越大,水膜压力越大。当转速达到一定值,流体的流动由层流变为紊流时,承载力显著提高,水膜压力显著增大[30]。对于同一转速,水膜压力的变化趋势大致相同。当进水温度较低(20~50℃)时,水膜压力随着进水温度的升高而下降,当进水温度较高(50~60℃)时,进水温度对润滑水膜压力的影响较小。这与前面图6b 转速为 700 r / min 时相吻合,说明当转速一定时,水膜压力随进水温度变化规律大致相同。

  • 图8 不同转速下复合型织构的试验结果

  • Fig.8 Test results of the compound dimple bearing at different rotation speeds

  • 如图8b 所示,对于任何进水温度,转速越高,复合型织构轴承的摩擦因数越大,但是当转速和进水温度同时较高时,摩擦因数趋于稳定。

  • 原因是,转速升高,虽然动压水膜形成的摩擦因数减小,但是复合型织构能够产生多次动压效应,使织构的动压效应增强,摩擦因数增大。同时,由前面图7b 可知,进水温度越高,复合型织构轴承的摩擦因数越大,因此进水温度与转速协同作用影响复合型织构轴承的摩擦因数。由图8b 还可以看出,对于相同的转速,摩擦因数值随进水温度的升高而逐步增大。这与前面图7b 转速为 700 r / min 时相吻合。这说明,在转速一定的条件下,摩擦因数随进水温度变化规律大致相同。

  • 2.4 织构的第一层宽度对轴承的摩擦特性影响

  • 复合型织构模型固定第一层孔深 D 为 0.7 mm,第二层孔半径 R 为 0.2 mm,轴承的偏心率 ε 为 0.8,转速为 700 r / min,改变第一层的织构宽度。图9显示了进水温度范围在 30~60℃内,第一层的织构宽度的变化对轴承压力及摩擦因数的影响情况。

  • 图9 轴承压力及摩擦因数随着第一层织构宽度的变化

  • Fig.9 Variation of bearing pressure and friction factor with the first layer dimple width

  • 如图9a 所示,改变进水温度,随着第一层织构宽度 W 的增大,水膜压力值总体呈现出增大的变化趋势,但是变化规律呈增大-减小-增大的折线状, W 在 0.5~0.7 mm 范围内,水膜压力随宽度的增大而增大;W 在 0.7~0.8 mm 范围内,水膜压力随宽度的增大而减小;W 在 0.8.~0.9 mm 范围内,水膜压力随宽度的增大而上升。如图9b 所示,在改变进水温度的条件下,随着第一层织构宽度的增加,轴承的摩擦因数整体下降趋势较为平缓,最后趋于稳定。

  • 可见,对于 W 的任何宽度值,温度越高,润滑水膜压力越小,而摩擦因数越大;在相同温度下,第一层矩形织构的宽度对水膜压力的影响呈折线状,不同的织构宽度形成的水膜压力明显不同,但对摩擦因数的影响相对平缓。

  • 为了更好地解释织构型轴承的水膜压力在织构第一层宽度 W 为 0.8 mm 时随温度的变化情况,以图10 所示的流迹线图进行解释。流迹线图能够反映流体在流场中的流动状态,处于同一条流线上的质点运动方向与该点处流线的切线方向相同[27]

  • 图10 第一层织构宽度为 0.8 mm 时不同温度下的流迹线

  • Fig.10 Flow trace of dimple with the first layer of 0.8 mm width under different temper atures

  • 如图10 所示,在第一层织构 W 为 0.8 mm 时,随着进水温度的改变,织构内流迹线也发生了变化。在进水温度为 40℃时,织构内部的旋涡尺寸和体积占比较小。在进水温度为 50℃时,织构内旋涡尺寸和体积占比较大,且在织构内产生新的旋涡。随着温度继续升高,织构内旋涡尺寸和体积继续增大,且旋涡强度增大。

  • 当织构内的旋涡未完全形成时,动压效应占主导影响;而在旋涡形成后,随着旋涡的尺寸和体积比逐渐增大,转化成旋涡能量的部分流体能量逐渐增多,使得水膜压力出现下降趋势。因此,进水温度在 40~50℃内,水膜压力的下降幅度较小,水膜成型比较稳定,水膜压力受温度影响较小。

  • 为了解释复合型织构轴承的水膜压力随第一层织构宽度的变化情况,以图11 所示的流迹线图进行解释。

  • 如图11a 所示,织构内的旋涡刚开始生成。如图11b 所示,织构内继续生成新的旋涡。如图11c 所示,织构内部旋涡尺寸和体积占比开始增大,旋涡强度较大。如图11d 所示,织构内部旋涡尺寸和体积占比逐渐减小。因此,第一层织构 W 在 0.5~0.7 mm 范围内,随着尺寸的增大,织构内动压效应的影响逐渐增大,水膜压力呈逐渐上升的状态;当 W 在 0.7~0.8 mm 范围内,由于旋涡强度开始增强,旋涡尺寸和体积开始增大,部分转化为旋涡能量的流体能量开始增多,此范围内的水膜压力开始下降; 而 W 在 0.8~0.9 mm 范围内,转化为旋涡能量的流体能量减少,水膜压力出现回升。

  • 图11 60℃时不同织构宽度下的流迹线分布

  • Fig.11 Flow trace of dimple with different first-layer widths at 60℃

  • 2.5 织构的第二层半径对轴承的摩擦特性影响

  • 固定织构的第一层孔深 D 为 0.7 mm,孔宽 W 为 0.5 mm,轴承的偏心率都为 ε=0.8。改变织构第二层的孔半径值 R。图12 显示了第二层织构半径的变化对水膜压力的影响情况。

  • 从图12a 中可以看出,与第一层宽度的影响相似,改变进水温度,随着半径 R 的增大,水膜的压力均呈现增大→减小→增大的变化趋势。对于不同进水温度,当半径 R 为 0.150 mm 时,水膜压力均最小。如图12b 所示,对于不同的进水温度,摩擦因数随半径 R 的变化趋势大致相同,开始变化不大,但当半径 R 超过 0.175 mm 时,摩擦因数开始下降,并且进水温度的越高,下降的幅度越大。另外,对于相同半径,温度越高,摩擦因数越大。

  • 图12 轴承压力及摩擦因数随第二层织构半径的变化

  • Fig.12 Variation of bearing pressure and friction factor with the second-layer dimples radius

  • 总之,对于任何织构半径 R,进水温度越高,润滑水膜的压力越小,而摩擦因数越大。对于相同的进水温度,水膜压力随半径的变化呈折线状,不同的织构半径形成的水膜压力不同,但织构半径的变化对摩擦因数影响不明显。

  • 为了解释第二层织构半径对水膜压力及摩擦因数的影响,采用温度为 60℃时的流迹线图13 来解释。在进水温度为 60℃时,改变第二层织构半径 R 可以看出织构内的流迹线的流动趋势发生了变化。 R 在 0.1~0.125 mm 范围内,织构内开始逐渐生成新的旋涡,并且织构内的旋涡尺寸和体积占比逐渐减小,水膜压力开始增加。R 在 0.125~0.15 mm 范围内,织构内旋涡已完全形成,旋涡尺寸和体积占比逐渐增加,水膜压力开始下降。R 在 0.15~0.2 范围内,随着第二层织构半径的增加,织构内又重新产生新的旋涡,因此,水膜压力又重新增加。

  • 综上所述,在不同的进水温度下,改变复合织构的形貌尺寸,将直接影响复合型织构轴承的摩擦性能,进水温度越高,水膜压力越低,但是摩擦因数增大。对于相同的进水温度,复合织构形貌尺寸对水膜压力影响显著,但对摩擦因数影响不大。

  • 图13 不同织构半径下的流迹线分布

  • Fig.13 Flow trace of dimples with different second-layer radius

  • 3 结论

  • (1)复合型织构能够提高轴承的水膜压力,减小摩擦,且能够在较高温度时仍保持较高的水膜压力,改善轴承的润滑性能。

  • (2)转速越高,复合型织构轴承的水膜压力和摩擦因数越大,当转速和进水温度同时较高时,摩擦因数趋于稳定,表明转速和进水温度共同作用制约着复合型织构轴承的摩擦性。

  • (3)在不同的进水温度下,改变复合织构的形貌尺寸,将直接影响复合型织构轴承的摩擦性能,对于相同的进水温度,复合织构宽度和深度对水膜压力影响显著,但对摩擦因数影响不大。

  • (4)进水温度、轴承转速和复合织构的形貌尺寸共同作用,影响水润滑轴承的摩擦性。估计存在一个合适的值,使复合织构水润滑轴承的减摩性最佳。

  • (5)未与其他形状的复合织构进行对比分析,关于不同形貌、不同尺寸的复合织构对水润滑轴承摩擦学性能的影响,有待进一步研究。

  • 参考文献

    • [1] ZHENG G,LAI F,LIN Y,et al.Study on the friction-reducing mechanisms of surface texture cemented carbide under dry sliding[J].Journal of Materials Engineering and Performance,2023,32(5):2074-2083.

    • [2] ROSENKRANZ A,COSTA H,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear — A review[J].Tribology International,2020,155(12):106792.

    • [3] WANG X M,LI C H,ZHANG Y B,et al.Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning[J].International Journal of Advanced Manufacturing Technology,2022,119(1-2):631-646.

    • [4] CHEN D,YANG X,ZHONG M,et al.Inspired by tree frog:bionic design of tread pattern and its wet friction properties[J].Journal of Bionic Engineering,2022,19(4):1064-1076.

    • [5] TORO A,ABDELAAL H A,ZULUAGA E,et al.Influence of surface morphology and internal structure on the mechanical properties and tribological response of boared tail and python regius snake skin[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,119(3):104497.

    • [6] MAWIGNON F J,LIU J,QIN L,et al.The optimization of biomimetic sharkskin riblet for the adaptation of drag reduction[J].Ocean Engineering,2023,275(1):1-15.

    • [7] IBRAHIM M D,AMRAN S N A,YUNOS Y S,et al.The study of drag reduction on ships inspired by simplified shark skin imitation[J].Applied Bionics and Biomechanics,2018,5(2):1-11.

    • [8] QIAN H,LIU B,WU D,et al.Facile fabrication of slippery lubricant-infused porous surface with pressure responsive property for anti-icing application[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,618(74):126457.

    • [9] WANG L,ZHANG S,ZHANG L,et al.Frictional properties of the wax coverings in nepenthes alata slippery zone:results from AFM scanning[J].Sains Malaysiana,2020,49(7):1491-1498.

    • [10] 张鹏飞,张德远,陈华伟.猪笼草内表面微观结构及其浸润性研究[J].农业机械学报,2014,45(1):341-345.ZHANG Pengfei,ZHANG Deyuan,CHEN Huawei.Microstructure and wettability character of nepenthes’ pitcher surfaces[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):341-345.(in Chinese)

    • [11] HSU C P,LIN Y M,CHEN P Y.Hierarchical structure and multifunctional surface properties of carnivorous pitcher plants Nepenthes[J].JOM:The Journal of the Minerals,Metals & Materials Society,2015,67(4):744-753.

    • [12] NORDBERG R C,ESPINOSA M G,HU J C,et al.A Tribological comparison of facet joint,sacroiliac joint,and knee cartilage in the yucatan minipig[J].Cartilage,2021,13(6):346S-355S.

    • [13] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of the effect of surface texture type on friction reduction performance of friction substitutes[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [14] 刘腾飞,李瑞珍,张绍林,等.织构化动压轴承热流体润滑特性理论与试验研究[J].中国表面工程,2023,36(1):156-167.LIU Tengfei,LI Ruizhen,ZHANG Shaolin,et al.Theoretical and experimental study on thermal fluid lubrication characteristics of woven dynamic bearing[J].China Surface Engineering,2023,36(1):156-167.(in Chinese)

    • [15] 邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU Weiwei,MENG Xiangyu,WANG Fei,et al.Compatibility of polyimide-based self-lubricating materials with WS2-Ag solid lubrication film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)

    • [16] HUANG D,LI Z,WANG Y,et al.Mechanisms and applications of diatomaceous materials with self-defense properties[J].Journal of Materials Chemistry A,2020,8(2):475-487.

    • [17] LI X,YAN S,LI Y,et al.Self-lubricating behavior of diatom frustules:A molecular dynamics simulation study[J].Journal of Colloid and Interface Science,2019,537(5):330-338.

    • [18] MENG F,GAO G,JIA Z.Study on tribological mechanism for multi-layer porous structure of diatom frustule[J].Microbial Ecology,2015,69(1):45-58.

    • [19] SUMPER M.A phase separation model for the nanopatterning of diatom biosilica[J].Science,2002,295(5564):2430-2433.

    • [20] SUBHASH G,YAO S,BELLINGER B,et al.Investigation of mechanical properties of diatom frustules using nanoindentation[J].Journal of Nanoscience and Nanotechnology,2005,5(1):50-56.

    • [21] 李琛.基于圆筛藻硅质壳三维结构的纳米材料制备与表征[D].青岛:中国海洋大学,2011.LI Chen.Preparation and characterisation of nanomaterials based on the three-dimensional structure of siliceous shells of the round sieve algae[D].Qingdao:Ocean University of China,2011.(in Chinese)

    • [22] 马健荣,刘明,徐信,等.硅藻研究与应用展望[J].山东农业科学,2010,8(48):52-56.MA Jianrong,LIU Ming,XU Xin,et al.Prospect of diatom research and application[J].Shandong Agricultural Science,2010,8(48):52-56.(in Chinese)

    • [23] MENG F M,DAVIS T,CAO J,et al.Study on effect of dimples on friction of parallel surfaces under different sliding conditions[J].Applied Surface Science,2010,256(9):2863-2875.

    • [24] MENG Fanming,HENG Yong Z,WANG Hongxia,et al.Study on acoustic performance for diatom frustule with nanoporous structure[J].Journal of Bionic Engineering,2023,20(31):1656-1669.

    • [25] 李婷婷.仿生硅藻结构的水润滑轴承摩擦学性能研究 [D].重庆:重庆大学,2015.LI Tingting.Research on tribological properties of water-lubricated bearing with bionic diatom structure[D].Chongqing:Chongqing University,2015.(in Chinese)

    • [26] 王福军.流体机械旋转湍流计算模型研究进展[J].农业机械学报,2016,47(2):1-14.WANG Fujun.Research progress of rotational turbulence computational model for fluid machinery[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):1-14.(in Chinese)

    • [27] 高贵响.硅藻典型壳壁结构的摩擦学特性及其在水润滑轴承上的应用[D].重庆:重庆大学,2014.GAO Guixiang.Tribological performances of representative diatom shell structure and its application in water-lubricated bearing[D].Chongqing:Chongqing University,2014.(in Chinese)

    • [28] MENG F M,LI T T.Study of tribological performances of compound dimples based on diatom shell structures[J].International Journal of Surface Science and Engineering,2015,9(6):538-560.

    • [29] WANG S Z,CHEN F C,RUAN Z G,et al.Numerical simulation of lubrication performance on chevron textured surface under hydrodynamic lubrication[J].Tribology International,2021,154(1):106704.

    • [30] LIN X,JIANG S,ZHANG C,et al.Thermohydrodynamic analysis of high speed water-lubricated spiral groove thrust bearing considering effects of cavitation,inertia and turbulence[J].Tribology International,2018,119(12):645-658.

  • 参考文献

    • [1] ZHENG G,LAI F,LIN Y,et al.Study on the friction-reducing mechanisms of surface texture cemented carbide under dry sliding[J].Journal of Materials Engineering and Performance,2023,32(5):2074-2083.

    • [2] ROSENKRANZ A,COSTA H,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear — A review[J].Tribology International,2020,155(12):106792.

    • [3] WANG X M,LI C H,ZHANG Y B,et al.Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning[J].International Journal of Advanced Manufacturing Technology,2022,119(1-2):631-646.

    • [4] CHEN D,YANG X,ZHONG M,et al.Inspired by tree frog:bionic design of tread pattern and its wet friction properties[J].Journal of Bionic Engineering,2022,19(4):1064-1076.

    • [5] TORO A,ABDELAAL H A,ZULUAGA E,et al.Influence of surface morphology and internal structure on the mechanical properties and tribological response of boared tail and python regius snake skin[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,119(3):104497.

    • [6] MAWIGNON F J,LIU J,QIN L,et al.The optimization of biomimetic sharkskin riblet for the adaptation of drag reduction[J].Ocean Engineering,2023,275(1):1-15.

    • [7] IBRAHIM M D,AMRAN S N A,YUNOS Y S,et al.The study of drag reduction on ships inspired by simplified shark skin imitation[J].Applied Bionics and Biomechanics,2018,5(2):1-11.

    • [8] QIAN H,LIU B,WU D,et al.Facile fabrication of slippery lubricant-infused porous surface with pressure responsive property for anti-icing application[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,618(74):126457.

    • [9] WANG L,ZHANG S,ZHANG L,et al.Frictional properties of the wax coverings in nepenthes alata slippery zone:results from AFM scanning[J].Sains Malaysiana,2020,49(7):1491-1498.

    • [10] 张鹏飞,张德远,陈华伟.猪笼草内表面微观结构及其浸润性研究[J].农业机械学报,2014,45(1):341-345.ZHANG Pengfei,ZHANG Deyuan,CHEN Huawei.Microstructure and wettability character of nepenthes’ pitcher surfaces[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):341-345.(in Chinese)

    • [11] HSU C P,LIN Y M,CHEN P Y.Hierarchical structure and multifunctional surface properties of carnivorous pitcher plants Nepenthes[J].JOM:The Journal of the Minerals,Metals & Materials Society,2015,67(4):744-753.

    • [12] NORDBERG R C,ESPINOSA M G,HU J C,et al.A Tribological comparison of facet joint,sacroiliac joint,and knee cartilage in the yucatan minipig[J].Cartilage,2021,13(6):346S-355S.

    • [13] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of the effect of surface texture type on friction reduction performance of friction substitutes[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [14] 刘腾飞,李瑞珍,张绍林,等.织构化动压轴承热流体润滑特性理论与试验研究[J].中国表面工程,2023,36(1):156-167.LIU Tengfei,LI Ruizhen,ZHANG Shaolin,et al.Theoretical and experimental study on thermal fluid lubrication characteristics of woven dynamic bearing[J].China Surface Engineering,2023,36(1):156-167.(in Chinese)

    • [15] 邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU Weiwei,MENG Xiangyu,WANG Fei,et al.Compatibility of polyimide-based self-lubricating materials with WS2-Ag solid lubrication film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)

    • [16] HUANG D,LI Z,WANG Y,et al.Mechanisms and applications of diatomaceous materials with self-defense properties[J].Journal of Materials Chemistry A,2020,8(2):475-487.

    • [17] LI X,YAN S,LI Y,et al.Self-lubricating behavior of diatom frustules:A molecular dynamics simulation study[J].Journal of Colloid and Interface Science,2019,537(5):330-338.

    • [18] MENG F,GAO G,JIA Z.Study on tribological mechanism for multi-layer porous structure of diatom frustule[J].Microbial Ecology,2015,69(1):45-58.

    • [19] SUMPER M.A phase separation model for the nanopatterning of diatom biosilica[J].Science,2002,295(5564):2430-2433.

    • [20] SUBHASH G,YAO S,BELLINGER B,et al.Investigation of mechanical properties of diatom frustules using nanoindentation[J].Journal of Nanoscience and Nanotechnology,2005,5(1):50-56.

    • [21] 李琛.基于圆筛藻硅质壳三维结构的纳米材料制备与表征[D].青岛:中国海洋大学,2011.LI Chen.Preparation and characterisation of nanomaterials based on the three-dimensional structure of siliceous shells of the round sieve algae[D].Qingdao:Ocean University of China,2011.(in Chinese)

    • [22] 马健荣,刘明,徐信,等.硅藻研究与应用展望[J].山东农业科学,2010,8(48):52-56.MA Jianrong,LIU Ming,XU Xin,et al.Prospect of diatom research and application[J].Shandong Agricultural Science,2010,8(48):52-56.(in Chinese)

    • [23] MENG F M,DAVIS T,CAO J,et al.Study on effect of dimples on friction of parallel surfaces under different sliding conditions[J].Applied Surface Science,2010,256(9):2863-2875.

    • [24] MENG Fanming,HENG Yong Z,WANG Hongxia,et al.Study on acoustic performance for diatom frustule with nanoporous structure[J].Journal of Bionic Engineering,2023,20(31):1656-1669.

    • [25] 李婷婷.仿生硅藻结构的水润滑轴承摩擦学性能研究 [D].重庆:重庆大学,2015.LI Tingting.Research on tribological properties of water-lubricated bearing with bionic diatom structure[D].Chongqing:Chongqing University,2015.(in Chinese)

    • [26] 王福军.流体机械旋转湍流计算模型研究进展[J].农业机械学报,2016,47(2):1-14.WANG Fujun.Research progress of rotational turbulence computational model for fluid machinery[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):1-14.(in Chinese)

    • [27] 高贵响.硅藻典型壳壁结构的摩擦学特性及其在水润滑轴承上的应用[D].重庆:重庆大学,2014.GAO Guixiang.Tribological performances of representative diatom shell structure and its application in water-lubricated bearing[D].Chongqing:Chongqing University,2014.(in Chinese)

    • [28] MENG F M,LI T T.Study of tribological performances of compound dimples based on diatom shell structures[J].International Journal of Surface Science and Engineering,2015,9(6):538-560.

    • [29] WANG S Z,CHEN F C,RUAN Z G,et al.Numerical simulation of lubrication performance on chevron textured surface under hydrodynamic lubrication[J].Tribology International,2021,154(1):106704.

    • [30] LIN X,JIANG S,ZHANG C,et al.Thermohydrodynamic analysis of high speed water-lubricated spiral groove thrust bearing considering effects of cavitation,inertia and turbulence[J].Tribology International,2018,119(12):645-658.

  • 手机扫一扫看