-
0 前言
-
300M 钢螺栓是一种较高疲劳强度的螺栓,因其具有高强度、高刚性和良好的高温和常温下抗疲劳性等优点,广泛用于飞机结构件的装配[1]。飞机在高速、大负载和动载等极端条件下工作的情况增多,对高强度螺栓的表面质量、疲劳性能等提出了越来越高的要求[2]。作为关键承力部件,高强度螺栓长时间服役于剧烈振动和较大温差等恶劣环境,极易发生疲劳断裂,造成重大安全事故。据统计,在螺栓的疲劳破坏中,退刀槽占据 15%。因此为保证飞行安全,减少经济损失,须要对易发生疲劳断裂的部位进行滚压强化处理,提高螺栓的表面质量[3]。
-
滚压是螺栓表面强化的关键工艺,具有表面光整和强化的双重作用。在滚压轮施加压力的作用下,螺栓表面金属发生塑性变形,改善材料的晶粒组织,产生冷作硬化现象。滚压参数不同,对螺栓表面的强化效果也不同,滚压参数的选取作为影响螺栓表面质量的关键因素,在国内外引起了广泛研究。梁志强等[4]对 45CrNiMoVA 超高强度钢开展了滚压强化试验研究,分析了强力滚压对超高强度钢表层微观组织及残余应力的影响,测试分析表明,强力滚压可有效细化超高强度钢 45CrNiMoVA 表层晶粒,并改善残余应力分布。李光晖等[5]研究了超声滚压过程中静压力对铍铜合金表面完整性的影响,结果表明表面粗糙度随静压力增加先减小后增大,试样表面残余应力随静压力的增加逐渐增大,而静压力过大时,会破坏超声滚压试样的表面硬化层。李翔等[6]通过研究表面超声滚压不同加工参数对 DZ2 车轴钢表面性能的影响规律,结果表明不同的工艺参数对材料表面状态影响不同,随着主轴转速的增加,表面粗糙度值逐渐减小,表面轴向残余应力得到大幅度提高,随着静压力的增大,表面硬度的数值不断增大。
-
目前国内外对于滚压工艺表面完整性的研究主要集中在轴类、平面类、圆棒等结构形式简单的工件[7-8],同时关于滚压工艺研究中工件材料集中在钛合金、铝合金、镁合金材料等[9-10],对于 300M 高强度钢这种特殊材料很少涉及,缺乏对高强螺栓滚压强化表面质量的试验研究,尤其是滚压参数对材料表面完整性的影响规律研究。滚压量是滚压工艺中一项重要的加工参数,对表面完整性影响显著。故本文采用滚压强化技术对 300M 高强度钢螺栓进行工艺试验,分析滚压量对螺栓退刀槽表面粗糙度及形貌、显微硬度、微观组织、残余应力的影响规律,在高强度钢滚压强化方面补充了工艺数据,验证了滚压量对 300M 钢螺栓的滚压强化效果,可为高强度钢螺栓性能的提升提供数据参考。
-
1 滚压加工原理
-
螺栓退刀槽滚压强化原理如图1 所示。在滚压轮施加压力的作用下,表面金属产生连续局部塑性变形[11],表面微观凸起部分被滚压平整,金属表层晶粒组织沿滚压方向发生滑移变形,位错密度增加,产生冷作硬化现象及残余压应力[12-13]。滚压工艺可有效提高螺栓表面质量和性能,从而提高螺栓疲劳寿命[14]。
-
图1 螺栓退刀槽滚压强化原理
-
Fig.1 Rolling strengthening principle of bolt cutter groove
-
2 材料与方法
-
2.1 试验设备
-
试验使用大连理工大学自行研制的螺栓滚压强化工装,对车削后的螺栓退刀槽进行滚压强化。螺栓滚压加工过程如图2 所示,螺栓通过三爪卡盘固定在主轴上,随机床主轴旋转,尾座从后端将螺栓顶紧。滚压轮夹持在刀塔上,随刀塔做进给运动,滚压轮材质为硬质合金。通常在一般机械加工方法中,为实现工件高表面质量加工,一般会采用“大转速小进给”的参数选取原则。同时,基于前期对超高强度钢材料进行的相关试验,螺栓转速 n 为 600 r / min,进给量 fr为 0.01 mm / r 是较优参数组。滚压量 ap 分别选用 0.05、0.08、0.11 mm。
-
图2 螺栓滚压加工过程
-
Fig.2 Bolt rolling process
-
2.2 试验材料性能
-
试验件选用 300M 高强度钢螺栓,其力学性能见表1。螺栓结构尺寸参数:退刀槽圆角半径为1.2 mm,螺纹规格 MJ10×1.5。试验件实物见图3。
-
图3 300M 螺栓实物
-
Fig.3 300M bolt in kind
-
2.3 检测方法
-
采用zygo表面轮廓仪和VHX-600E型超景深显微镜,分别检测螺栓退刀槽滚压前后的表面粗糙度及表面形貌。沿退刀槽周向随机测量 5 个点,取平均值作为螺栓的表面粗糙度值。采用 MVS-1000Z 显微硬度仪对滚压后的螺栓样件表层进行硬度检测,加载载荷 5 N,保持时间 10 s,相同深度下测量 3 个点取算数平均值作为该深度下的硬度值。硬度检测前须对镶嵌好的螺栓样件进行研磨抛光处理。采用型号为 SU5000 的 SEM 场发射扫描电镜对滚压前后螺栓样件的微观组织进行观察,在光学显微镜观察之前需用 5%的硝酸酒精溶液对样品进行腐蚀,腐蚀时间 10 s 左右。采用 XL-640 应力测定仪检测螺栓表面残余应力,靶材为 Cr 靶,管电压 20 kV,管电流 4 mA,曝光时间为 10 s,沿周向测量 5 个点取平均作为螺栓残余应力值。
-
3 结果与分析
-
3.1 表面粗糙度与表面形貌
-
滚压后螺栓退刀槽表面形貌与表面轮廓如图4、5 所示。
-
图4 滚压前螺栓退刀槽表面形貌与轮廓
-
Fig.4 Surface morphology and contour of bolt undercut groove before rolling
-
图5 滚压后螺栓退刀槽表面形貌与轮廓
-
Fig.5 Surface morphology and contour of bolt undercut groove after rolling
-
由图4、5 可以看出,未滚压螺栓退刀槽表面存在明显的车削痕迹,车削加工下螺栓样件表面呈现规则的周向车刀痕,表面波峰与波谷之间高低起伏较大。滚压量为 0.05 mm 时,经过了滚压轮加工的表面发生连续局部塑性流动与塑性变形[15],形成了规则平整的微观形貌;滚压量为 0.08 mm 时,试样表面车削痕迹基本消失,轮廓变得平缓、光滑,凹凸痕迹变浅,凹坑和划痕数量明显减少,表面质量得到有效改善;滚压量为 0.11 mm 时,螺栓表面出现了较多凹坑和耕犁现象,表面质量反而变差。
-
对车削后及不同滚压量下螺栓退刀槽的表面粗糙度 Sa 进行检测,结果如表2 所示。
-
结果显示:原始螺栓样件表面粗糙度为 0.235 µm,螺栓滚压后表面粗糙度 Sa 得到明显降低,不同滚压量滚压后的表面粗糙度 Sa 相比滚压前降低 57%~75%。
-
由图6 可知:滚压量对表面粗糙度 Sa 的影响显著,随滚压量的增加表面粗糙度先减小后增大,滚压量较小时,适当增加滚压量可增大滚压力,提高螺栓表面塑性变形程度,减小表面微观缺陷,因此表面粗糙度显著降低。滚压量为 0.08 mm 时,表面粗糙度 Sa 达到最小值,相比滚压前降低 75%。当滚压量增大到 0.11 mm 时表面粗糙度不减反增,可能是金属表面受到滚压轮的冲击和挤压作用较大,使螺栓退刀槽局部产生较大塑性变形,影响了螺栓的表面质量。
-
图6 滚压量对螺栓退刀槽表面粗糙度 Sa 的影响
-
Fig.6 Effect of rolling amount on surface roughness Sa of bolt retract groove
-
3.2 微观组织的 SEM 表征
-
不同工艺参数下螺栓 SEM 表层微观组织如图7 所示,300M 钢的主要组织为板条马氏体[16],晶粒粗大且弥散,在各方向均匀排列分布。
-
不同滚压量下螺栓退刀槽表层微观组织的 SEM 表征如图7 所示,在滚压加工前,试样中含有大量粗晶、不同取向的板条马氏体。经滚压加工后, 300M 钢的表面组织发生明显变化,表层马氏体晶粒被压碎细化,位错密度显著增大。塑性变形程度随滚压量的增加而增大,滚压量为 0.11 mm 时形成了 166 µm 的塑性变形层。
-
将显微组织放大到 800 倍进行观察发现,滚压量为 0.05 mm 时,在近表层可观察到约 20 µm 以细晶为特征的严重塑性变形层,该区域内晶粒严重细化且分布较为紧密,由于严重的塑性变形,样品顶部区域的晶界变得模糊。滚压量为 0.08 mm 时,严重塑性变形层深度增大到 32 µm,随距滚压表面深度的增加滚压加工对马氏体的影响逐渐减小,板条马氏体的细化程度逐渐降低,形成了约 106 µm 的过渡变形层。观察微观组织图片可发现,滚压强化区与基体区材料形成了明显的对比,由于严重塑性变形区位错密度较大,晶粒较为紧凑,因此该区域颜色较为灰暗,基体区组织分散,颜色则较为明亮。
-
图7 滚压量对螺栓表层微观组织的影响
-
Fig.7 Effect of rolling amount on the microstructure of bolt surface layer
-
3.3 微观组织的 EBSD 表征
-
此外,为更清晰地观察滚压后表层晶粒与位错密度变化情况,分别对不同滚压量下螺栓退刀槽微观组织进行 EBSD 表征。
-
图8 为滚压前后距螺栓退刀槽表面 15 µm 左右的晶粒取向图。由螺栓 IPF 图可知,在滚压轮作用下,螺栓退刀槽表层马氏体组织明显破碎细化且组织间分布紧密。
-
图8 滚压前后螺栓晶粒取向(IPF)
-
Fig.8 Grain orientation of bolts before and after rolling (IPF)
-
图9、10 所示的局部取向差可通过估计局部定向差平均角定性反应样件的塑性变形程度。在图9a 和图10a、10c、10e 中,蓝色代表较低的局部定向角,红色代表较高的局部定向角。滚压后螺栓退刀槽局部定向差平均角由 0.619°最大增大到 0.875°,一般来说,KAM 值与位错密度成正相关[17]。因此,可证明滚压工艺使螺栓表层组织发生塑性变形,并在近表层引入了高密度位错。随滚压深度增加,小角度晶界含量增大,促进了晶体中的位错运动,使材料表面塑性变形程度与位错密度均逐步提升。
-
图9 滚压前螺栓局部取向差(KAM)
-
Fig.9 Local orientation difference of bolts before rolling (KAM)
-
图10 滚压后螺栓局部取向差(KAM)
-
Fig.10 Local orientation difference of bolts after rolling (KAM)
-
3.4 显微硬度
-
不同滚压量下螺栓显微硬度检测结果如图11 所示。未滚压螺栓表层硬度即基体硬度,稳定在 570~580 HV。
-
图11 滚压量对螺栓退刀槽显微硬度的影响
-
Fig.11 Effect of rolling amount on the microhardness of bolt retract groove
-
由螺栓显微硬度变化曲线可知:滚压后螺栓显微硬度显著提高。这是因为在滚压过程中,滚压轮提供的能量加速了螺栓表层晶粒位错运动[18],金属发生冷作硬化和塑性变形,从而使表层硬度增大。随距滚压表面深度增加,位错密度及塑性变形减小,硬度值逐渐降低,在距滚压表面 280~400 µm 时趋于稳定,达到基体硬度。滚压量为 0.11 mm 时表层硬度提升最为显著,由 570 HV 增大到 660 HV,相比基体硬度提高了 16%。结果表明滚压加工对螺栓具有一定的强化效果。
-
结合微观组织测试结果分析,金属表层晶粒产生的塑性变形及晶粒细化是产生加工硬化的重要原因,可以通过 Hall-Petch 效应来解释[19]:
-
式中,HV为加工后样件局部硬度,H0 为样件基体硬度,k 为 Hall-Petch 常数,d 为晶粒尺寸。由此公式可知,材料表面经滚压后的硬度与晶粒尺寸成反比。滚压过程中螺栓表层金属发生严重塑性变形,阻碍了晶粒间的运动,使得位错大量积累,表层晶粒尺寸明显减小,从而提高了螺栓表层硬度。
-
3.5 残余应力
-
图12 显示了不同滚压量下螺栓退刀槽表面残余应力变化情况,未滚压螺栓表面存在 111.2 MPa 的残余压应力,主要由车削过程中的车削力引起。
-
图12 滚压量对螺栓表面残余应力的影响
-
Fig.12 Influence of rolling amount on the residual stress on the surface of bolts
-
如图12 所示,滚压后在螺栓表面引入较大的残余压应力,当滚压量为 0.11 mm 时,残余压应力达到最大,为 848.4 MPa,与未滚压相比提升了 662%。随滚压量增大,螺栓表面塑性变形程度更为剧烈,位错密度与晶粒细化程度增大,使螺栓表面残余应力也得到相应提高[20]。
-
4 结论
-
对 300M 高强钢螺栓退刀槽部位开展不同滚压量下的滚压强化试验,并对不同滚压参数下的表面完整性进行系统研究,得出以下结论:
-
(1)滚压工艺可有效改善螺栓表面微观缺陷,产生的冷作硬化和塑性变形可显著提升螺栓物理力学性能。
-
(2)选用合适的滚压参数可使滚压效果达到最优,本文补充的表面完整性数据可应用于螺栓工艺参数优化设计。
-
(3)表面粗糙度与残余应力是影响疲劳寿命的重要因素,分析结果可用于螺栓断裂原因分析。结合表面完整性数据对疲劳寿命进行预测优化是未来研究的重点。
-
参考文献
-
[1] 应俊龙,巢昺轩,蒋克全,等.超高强度钢的发展及展望[J].新技术新工艺,2018(12):1-4.YING Junlong,CHAO Bingxuan,JIANG Kequan,et al.Development and prospect of ultra high strength steel[J].New Technology & New Process,2018(12):1-4.(in Chinese)
-
[2] 王燕礼,朱有利,杨嘉勤.滚压强化技术及在航空领域研究应用进展[J].航空制造技术,2018,61(5):75-83.WANG Yanli,ZHU Youli,YANG Jiaqin.Rolling strengthening technology and its research and application progress in aviation field[J].Aeronautical Manufacturing Technology,2018,61(5):75-83.(in Chinese)
-
[3] 李瑞锋,张德远,程明龙.高强钢大直径内螺纹超声滚压强化技术[J].中国表面工程,2014,27(2):63-68.LI Ruifeng,ZHAGN Deyuan,CHENG Minglong.Ultrasonic rolling strengthening technology for large diameter internal thread of high strength steel[J].China Surface Engineering,2014,27(2):63-68.(in Chinese)
-
[4] 梁志强,陈一帆,栾晓圣,等.超高强度钢强力滚压残余应力仿真与试验研究[J].表面技术,2021,50(1):413-421,431.LIANG Zhiqiang,CHEN Yifan,LUAN Xiaosheng,et al.Simulation and experimental study on residual stress of ultra-high strength steel after strong rolling[J].Surface Technology,2021,50(1):413-421,431.(in Chinese)
-
[5] 李光晖,林有希,蔡建国.静压力对超声滚压铍铜合金表面完整性的影响[J].机械强度,2022,44(5):1069-1074.LI Guanghui,LIN Youxi,CAI Jianguo.Effect of staticpressure on surface integrity of ultrasonic rolling beryllium copper alloy[J].Journal of Mechanical Strength,2022,44(5):1069-1074.(in Chinese)
-
[6] 李翔,吴毅,尹鸿祥,等.表面超声滚压工艺参数对车轴钢表面性能的影响[J].高速铁路新材料,2022,1(1):113-118.LI Xiang,WU Yi,YI Hongxiang,et al.Effect of surface ultrasonic rolling process parameters on surface properties of axle steel[J].Advanced Materials of High Speed Railway,2022,1(1):113-118.(in Chinese)
-
[7] 于鑫,孙杰,李世涛,等.滚压工艺对EA4T车轴表面质量完整性的影响及预测模型建立[J].中国表面工程,2014,27(5):87-95.YU Xin,SUN Jie,LI Shitao,et al.The influence of rolling process on the surface quality integrity of EA4T axle and the establishment of prediction model[J].China Surface Engineering,2014,27(5):87-95.(in Chinese)
-
[8] 杨东,刘战强,贺蒙,等.钛合金TC4低塑性滚压表面完整性的实验研究[J].华南理工大学学报:自然科学版,2017,45(1):137-144.YANG Dong,LIU Zhanqiang,HE Meng,et al.Experimental study on surface integrity of titanium alloy TC4 by low plastic rolling[J].Journal of South China University of Technology:Social Science Edition,2017,45(1):137-144.(in Chinese)
-
[9] YANG Shenliang,LI Xun,WANG Ziming,et al.Influence of side milling on surface integrity and fatigue behavior of TC4 Specimens[J].Surface Technology,2019,48(11):372-380.
-
[10] 张海泉,郭培全.ZK60 镁合金表面滚压强化试验研究 [J].制造技术与机床,2020(2):93-97.ZHANG Haiquan,GUO Peiquan.Experimental study on surface rolling strengthening of ZK60 magnesium alloy[J].Manufacturing Technology & Machine Tool,2020(2):93-97.(in Chinese)
-
[11] 王伟,李博,姚志强.超高强度钢MJ螺纹滚压强化工艺研究[J].新技术新工艺,2015(12):64-66.WANG Wei,LI Bo,YAO Zhiqiang.Research on rolling strengthening process of MJ thread of ultra-high strength steel[J].New Technology & New Process,2015(12):64-66.(in Chinese)
-
[12] 栾晓圣,梁志强,赵文祥,等.组织状态对45CrNiMoVA钢超声滚压表面完整性的影响[J].中国表面工程,2021,34(4):74-81.LUAN Xiaosheng,LIANG Zhiqiang,ZHAO Wenxiang,et al.Effect of microstructure on surface integrity of 45CrNiMoVA steel by ultrasonic rolling[J].China Surface Engineering,2021,34(4):74-81.(in Chinese)
-
[13] 崔静伟,张旭,钞仲恺,等.滚轮参数对滚压件残余应力的数值模拟与研究[J].金属加工:热加工,2016(13):57-60.CUI Jingwei,ZHANG Xu,CHAO Zhongkai,et al.Numerical simulation and research of roller parameters on residual stress of rolling parts[J].Machinist Metal Cutting:Hot Processing,2016(13):57-60.(in Chinese)
-
[14] CHENG Minglong,ZHANG Deyuan,CHEN Huawei,et al.Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread[J].Journal of Materials Processing Technology,2014,214(11):2395-2401.
-
[15] DANG Jiaqiang,ZHANG Heng,AN Qinglong,et al.Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process[J].Surface and Coatings Technology,2021,421:127380.
-
[16] ZHAO Weidong,LIU Daoxin,CHIANG R,et al.Effects of ultrasonic nanocrystal surface modification on the surface integrity,microstructure,and wear resistance of 300M martensitic ultrahigh strength steel[J].Journal of Materials Processing Technology,2020,285:116767.
-
[17] LI H,HSU E,SZPUNAR J,et al.Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets[J].Journal of Materials Science,2008,43(22):7148-7156.
-
[18] ZHOU Tian,XIONG Yi,CHEN Zhengge,et al.Effect of surface nano-crystallization induced by supersonic fine particles bombarding on microstructure and mechanical properties of 300M steel[J].Surface and Coatings Technology,2021,421:127381.
-
[19] TONG Zhaopeng,LIU Huaile,JIAO Jiafei,et al.Microstructure,microhardness and residual stress of laser additivemanufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening[J].Journal of Materials Processing Technology,2020,285:116806.
-
[20] 许全军,刘秀国,龚宝明,等.USRP 处理45钢微观梯度力学性能演变及残余应力分布[J].中国表面工程,2021,34(6):151-159.XU Quanjun,LIU Xiuguo,GONG Baoming,et al.Micro-gradient mechanical properties evolution and residual stress distribution of 45 steel treated by USRP[J].China Surface Engineering,2021,34(6):151-159.(in Chinese)
-
摘要
滚压加工是螺栓表面强化的主要方法,但关于滚压参数对高强度钢螺栓表面质量的影响规律研究鲜有报道。为了研究滚压量对 300M 钢螺栓退刀槽表面完整性的影响,使用 zygo 表面粗糙度轮廓仪、超景深显微镜、显微硬度计、X 射线应力衍射仪、扫描电镜等设备,对滚压后螺栓退刀槽表面粗糙度、表面形貌、显微硬度、残余应力、表层显微组织等进行检测。结果表明:随着滚压量的增大,表面粗糙度先减小后增大,当滚压量为 0.08 mm 时,表面粗糙度 Sa 达到最小值 0.058 µm,相比滚压前减小 75%;螺栓退刀槽表层晶粒明显细化,并形成高密度位错,滚压量为 0.11 mm 时塑性变形层深最大达 166 µm; 塑性变形使螺栓表层显微硬度显著增加,最大值为 660 HV,相比基体硬度提高 16%,形成 280~400 µm 的硬化层;滚压加工给螺栓表面引入较大的残余压应力,且随滚压量增加逐渐增大,残余压应力最大达 848.4 MPa。研究结果补充了 300M 高强钢螺栓退刀槽滚压表面完整性数据,可应用于工艺人员对民机、军机等螺栓断裂原因分析、疲劳寿命预测及螺栓滚压加工参数优选。
Abstract
Because of their high strength, precision, and hardness, 300M steel bolts are widely used in the assembly of various aircraft structural parts. Owing to long-term service in extreme environments, such as severe vibrations and large temperature differences, fatigue damage is prone to occur at the bolt-backing groove, resulting in major safety accidents. Rolling processing, which has dual functions of surface finishing and surface strengthening, is the primary processing technology for bolt surface strengthening. The selection of rolling parameters has significant influence on surface integrity and fatigue life. The rolling amount is an important parameter in the rolling process. To effectively improve the surface quality and performance of the bolt, a rolling strengthening test of the bolt-back groove under different rolling amounts was conducted on a self-developed special rolling tooling for bolts. The effect of the rolling amount on the surface integrity of the 300 M steel bolts was studied. Based on the previous test, the rolling amounts were selected as 0.05 mm, 0.08 mm, and 0.11 mm, respectively. The surface roughness, surface morphology, microhardness, residual stress, and surface microstructure of a 300 M steel bolt after back-groove rolling were tested using a Zygo surface roughness tester, super depth-of-field microscope, microhardness tester, X-ray stress diffractometer, and scanning electron microscope. The results showed that with an increase in the rolling amount, the surface roughness initially decreases and then increases. When the rolling amount is 0.08 mm, the surface roughness Sa reaches the minimum value of 0.058 μm, which is 75 % lower than that before rolling. The surface morphology of the bolt reaches the optimal state when the rolling amount is 0.08 mm, the turning marks basically disappear, and the surface is the most polished. As the rolling amount increases, the surface quality is destroyed, and a large number of pits and ploughs appear. The rolling process causes plastic deformation of the bolt surface structure, and the martensite grains are elongated and refined. Based on the results of the local orientation difference, the KAM value of the bolt after rolling increases from 0.619° to 0.875°, proving that the rolling process introduces high-density dislocations on the surface of the bolt. As the rolling amount increases, the content of the small-angle grain boundary increases, and the degree of plastic deformation of the bolt increases gradually. When the rolling amount is 0.11 mm, the depth of plastic deformation layer reaches 166 μm. In the surface layer of the bolt, the grain boundaries become blurred owing to severe plastic deformation. Cold work hardening and plastic deformation significantly increase the microhardness of the bolt surface, with a maximum value of 660 HV, which is 16 % higher than that of the matrix. Within 0-400 μm, the microhardness gradually decreases as the distance from the rolling surface increases. The rolling process introduces a large residual compressive stress on the bolt surface. When the rolling amount is 0.11 mm, the dislocation density between the microstructures reaches the maximum value, and the residual compressive stress reaches 848.4 MPa, which is 662 % higher than that without rolling. In this study, the surface integrity of a 300 M high-strength steel bolt cutter groove after rolling is systematically studied, and the influence of the rolling amount on the surface quality is analyzed, which can provide a reference for process personnel to optimize bolt rolling process parameters. Because the fatigue life of bolts is closely related to the surface roughness and residual stress, the research results can also be applied to the analysis of bolt fracture causes and prediction of fatigue life, providing technical support for the anti-fatigue manufacturing of high-strength bolts.
Keywords
300M steel bolt ; rolling amount ; surface roughness ; microstructure ; surface hardness ; residual stress