en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

程志强,男,1996年出生,硕士研究生。主要研究方向为固体润滑材料。E-mail: 2390087251@qq.com

通讯作者:

高凯雄,男,1986年出生,副研究员。主要研究方向为空间固体润滑材料。E-mail: kxgao@licp.cas.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230328001

参考文献 1
MUTHURAJA A,NAIK S,RAJAK D K,et al.Experimental investigation on chromium-diamond like carbon(Cr-DLC)coating through plasma enhanced chemical vapour deposition(PECVD)on the nozzle needle surface[J].Diamond and Related Materials,2019,100:251-259.
参考文献 2
高晓明,胡明,孙嘉奕,等.润滑材料的空间环境效应 [J].中国材料进展,2017(7-8):0-5.GAO Xiaoming,HU Ming,SUN Jiayi,et al.Space environment effects on lubricants[J].Materials China,2017(7-8):0-5.(in Chinese)
参考文献 3
GAO K,WANG Y,ZHANG B,et al.Effect of vacuum atomic oxygen irradiation on the tribological properties of fullerene-like carbon and MoS2 films[J].Tribology International,2022,170:214-221.
参考文献 4
吴艳霞,李红轩,吉利.a-C:H 膜在不同真空度下的摩擦学行为研究[J].功能材料,2012,43(3):313-316.WU Yanxia,LI Hongxuan,JI Li.Investigation into the tribological properties of a-C:H film under different vacuum degree[J].Jorunal of Functional Materials.2012,43(3):313-316.(in Chinese)
参考文献 5
TSUBOTA T,KURATSU K,MURAKAM N,et al.Attempt of deposition of Ag-doped amorphous carbon film by Ag-cathode DC plasma with CH4 flow[J].Journal of Nanoscience and Nanotechnology,2015,15(6):4619-4631.
参考文献 6
WANG C F,CHIOU S Y,CHANG Y C,et al.Microstructures and properties of Ag-DLC films prepared by magnetron reactive sputtering[J].Materials Science and Engineering of Powder Metallurgy,2014,19(1):108-115.
参考文献 7
ABDOLGHADERI S,ASTINCHAP B,SHAFIEKHANI A.Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma[J].Journal of Materials Science Materials in Electronics,2016,27(7):6713-6720.
参考文献 8
WANG F,WANG L,XUE Q.Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum[J].Carbon,2016,96:411-420.
参考文献 9
LIU X,HAO J,XIE Y.Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films[J].Applied Surface Science,2016,379:358-366.
参考文献 10
LIU X,HAO J,YANG J,et al.Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum[J].Journal of Applied Physics,2011,110(5):532-537.
参考文献 11
LIU X,YANG J,HAO J,et al.Microstructure,mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages[J].Surface & Coatings Technology,2012,206(19-20):4119-4125.
参考文献 12
KIM S S,AHN C W,KIM T H.Tribological characteristics of magnetron sputtered MoS2 films in various atmospheric conditions[J].KSME International Journal,2002,16:1065-1071.
参考文献 13
DING X Z,ZENG X T,HE X Y,et al.Tribological properties of Cr-and Ti-doped MoS2 composite coatings under different humidity atmosphere[J].Surface & Coatings Technology,2010,205(1):224-231.
参考文献 14
GANGOPADHYAY S,ACHARYA R,CHATTOPADHYAY A K,et al.Composition and structure-property relationship of low friction,wear resistant TiN-MoSx composite coating deposited by pulsed closed-field unbalanced magnetron sputtering[J].Surface & Coatings Technology,2009,203(12):1565-1572.
参考文献 15
韦春贝,欧文敏,侯惠君,等.磁控溅射 MoS2-Ni 复合膜的结构与性能研究[J].表面技术,2017,46(10):135-142.WEI Chunbei,OU Wenmin,HOU Huijun,et al.Structure and properties of MoS2-Ni composite films fabricated by magnetron sputtering method[J].Surface Technology,2017,46(10):135-142.(in Chinese)
参考文献 16
杨保平,高斌基,张斌,等.MoS2-Al 复合薄膜高温摩擦学性能研究[J].表面技术,2018,47(3):140-147.YANG Baoping,GAO Binji,ZHANG Bin,et al.Tribological properties of MoS2-Al composite films at high temperature[J].Surface Technology,2018,47(3):140-147.(in Chinese)
参考文献 17
欧文敏,韦春贝,代明江,等.MoS2-Zr 复合薄膜的摩擦学性能研究[J].表面技术,2017,46(1):93-99.OU Wenmin,WEI Chunbei.DAI Mingjiang,et al.Tribological properties of MoS2-Zr composite films[J].Surface Technology,2017,46(1):93-99.(in Chinese)
参考文献 18
ZHAO X,LU Z,ZHANG G,et al.Self-adaptive MoS2-Pb-Ti film for vacuum and humid air[J].Surface and Coatings Technology,2018,345:152-166.
参考文献 19
BAI Y,PU J,WANG H,et al.High humidity and high vacuum environment performance of MoS2/Sn composite film[J].Journal of Alloys and Compounds,2019,800:107-115.
参考文献 20
KAI W,BY A,BZ B,et al.Modification of a-C:H films via nitrogen and silicon doping:The way to the superlubricity in moisture atmosphere[J].Diamond and Related Materials,2020,107:107873-107873.
参考文献 21
WANG S,WANG Z,QIN J,et al.Nanocrystalline MoS2 through directional growth along the(002)crystal plane under high pressure[J].Materials Chemistry and Physics,2011,130(1-2):170-174.
参考文献 22
ZENG C,PU J,WANG H,et al.Study on atmospheric tribology performance of MoS2-W films with self-adaption to temperature[J].Ceramics International,2019,45(13):15834-15842.
参考文献 23
WANG W,ZENG X,WARNER J H,et al.Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure[J].ACS Applied Materials & Interfaces,2020,12(29):33325-33335.
参考文献 24
ZHANG X,VITCHEV R G,LAUWERENS W,et al.Effect of crystallographic orientation on fretting wear behaviour of MoSx coatings in dry and humid air[J].Thin Solid Films,2001,396(1-2):69-77.
参考文献 25
PARK W,BAIK J,KIM T Y,et al.Photoelectron spectroscopic imaging and device applications of large-Area patternable single-Layer MoS2 Synthesized by chemical vapor deposition[J].ACS Nano,2014,8(5):4961-4968.
参考文献 26
GAO B,DU X,MA Y,et al.3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction[J].Applied Catalysis B:Environmental,2019,12(6):1562-1569.
参考文献 27
ZHANG K,KIM J K,PARK B,et al.Defect-induced epitaxial growth for efficient solar hydrogen production[J].Nano Letters,2017,17(11):6676-6683.
参考文献 28
YUAN Y,LU H,JI Z,et al.Enhanced visiblelight-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS2/TiO2 assembly[J].Chemical Engineering Journal,2015,275:8-16.
参考文献 29
ZHANG K,JIN B,GAO Y,et al.Aligned heterointerface-induced 1T-MoS2 monolayer with near-ideal gibbs free for stable hydrogen evolution reaction[J].Small,2019,15(8):804-815.
参考文献 30
DA G,YAMAGUCHI H,VOIRY D,et al.Photoluminescence from chemically exfoliated MoS2[J].Nano Letters,2011,11(12):5111-5116.
参考文献 31
CAI L,HE J,LIU Q,et al.Vacancy-induced ferromagnetism of MoS2 nanosheets[J].Journal of the American Chemical Society,2015,137(7):2622-2627.
参考文献 32
LIU Q,LI X,HE Q,et al.Gram-scale aqueous synthesis of stable few-layered 1T-MoS2:applications for visible-light-driven photocatalytic hydrogen evolution[J].Small,2015,11(41):5556-5564.
参考文献 33
AL-GAASHANI R,NAJJAr A,ZAKARIA Y,et al.XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J].Ceramics International,2019,45(11):14439-14448.
参考文献 34
CHAKRABORTY B,MATTE H S S R,Sood A K,et al.Layer-dependent resonant Raman scattering of a few layer MoS2[J].Journal of Raman Spectroscopy,2013,44(1):92-96.
参考文献 35
FC T,SL T.Correlation between ID/IG ratio from visible raman spectra and sp2/sp3 ratio from XPS spectra of annealed hydrogenated DLC film[J].Materials Transactions,2006,47(7):1847-1852.
参考文献 36
BERMAN D,eRDEMIR A,SUMANT A V.Approaches for achieving superlubricity in two-dimensional materials[J].ACS Nano,2018,12(3):2122-2137.
目录contents

    摘要

    空间装备正朝着重载、长时间运行的方向发展,对润滑材料的性能要求日益提高。当前二硫化钼(MoS2)薄膜主要在真空低载下(<0.5 GPa)服役,因此须发展针对真空宽载(中高载)下服役的二硫化钼复合薄膜。通过非平衡磁控溅射技术制备 MoS2 / DLC 复合薄膜,利用 SEM、AFM、XRD、XPS、Raman、TEM、真空摩擦试验机等分析薄膜结构、形貌、摩擦学性能及磨损机制。结果显示:DLC 的加入能够改善 MoS2 柱状结构,使复合薄膜更加致密,并且能够促进薄膜以(002) 晶面择优取向生长。复合薄膜在真空宽载(0.73~1.27 GPa)下均能保持稳定的低摩擦因数(0.02~0.06)和低磨损率 (10−10 mm3 ·N−1 ·m−1 ),与 MoS2相比降低了三个数量级。通过对磨屑进行分析,发现复合薄膜在摩擦过程能发生石墨化转变,形成有序的石墨结构以及润滑性能优良的(002)取向的 MoS2,同时在 MoS2 催化作用及接触应力诱导下,形成的层间低剪切力的石墨结构及层状的 MoS2 有利于实现低摩擦因数和低磨损率。非晶碳的加入使得复合薄膜在真空环境下能够保持低摩擦因数和超低磨损率。通过复合结构设计实现了二硫化钼 / 碳复合薄膜在真空宽载条件下的超低磨损,可为空间超低磨损薄膜的设计、开发和应用提供一定的实验基础和理论指导。

    Abstract

    The evolution of space equipment has been progressing to support heavier loads and longer durations of operation, necessitating the advancement of higher-performance lubricating materials. Currently, molybdenum disulfide (MoS2) films are predominantly used under low vacuum loads (< 0.5 GPa), underscoring the urgent need for developing MoS2 composite films that can perform under a wider range of vacuum loads, including medium and high loads. In this study, MoS2 / diamond-like carbon (DLC) composite films were carefully fabricated using non-equilibrium magnetron sputtering technology. A variety of analytical methods,such as scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and vacuum friction testing, were utilized to thoroughly assess the structure, morphology, tribological properties, and wear mechanisms of the films. The SEM images clearly show that the DLC film's surface is densely structured, consisting of closely packed small particles of similar sizes, without noticeable defects such as cracks or holes. Conversely, the surface of the MoS2 film features a worm-like structure, leading to a surface that is not smooth. When comparing the surface morphology of the MoS2 / DLC composite film to that of the DLC film, it is observed that both surfaces are composed of uniform small particles; however, the composite film’s particles create a rough, island-like structure. This is attributed to the amorphous growth of the DLC film, which disrupts the one-dimensional growth pattern of MoS2. Compared to the MoS2 film, the cross-sectional organization of the composite film shows an improvement, with a less pronounced columnar structure leading to a denser film structure. The presence of amorphous carbon prevents the formation of the columnar structure in MoS2, effectively mitigating the issues of pores, cracks, and other defects in the MoS2 film. Notably, the XRD diffraction peaks of the composite film were primarily observed at the (002) crystal face, with amorphous carbon aiding the film's growth and promoting a preferred orientation on this crystal face, which enhances its lubrication effectiveness. The hardness of the composite film increased significantly to 8.13 GPa, marking an eightfold improvement over the pure MoS2 film. Additionally, the surface roughness of the composite film was significantly reduced to 1.66 nm, in contrast to the higher surface roughness of 5.89 nm exhibited by the pure MoS2 film. The hardness of the MoS2 / DLC film also showed a significant increase when compared to the MoS2 film. The inherent low hardness of the MoS2 film, which leads to high wear rates, is effectively countered by the addition of carbon, increasing the composite film's hardness and thereby reducing its wear rate. The elastic recovery rate of the composite film was also found to be improved over the MoS2 film. The integration of DLC with MoS2 modifies the MoS2 film's structure, incorporating the DLC film's high hardness advantage into the composite, enhancing its performance under medium to high loads. XPS analysis confirmed that the composite film is predominantly composed of 2H-MoS2, favoring effective lubrication. To evaluate the tribological properties of the composite film, comprehensive testing was conducted under a wide range of vacuum loads, from 0.73 GPa to 1.27 GPa, showing the film's ability to consistently maintain a low friction coefficient (0.02–0.06) and a low wear rate 10−10 mm3 ·N−1 ·m1 ). Comparative analysis has shown that, relative to MoS2 alone, the composite film significantly lowers both the friction coefficient and wear rate by three orders of magnitude. Further detailed examination revealed that the composite film is capable of undergoing a graphitization transformation, which leads to the creation of ordered graphite structures. These structures effectively lubricate MoS2 with a (002) orientation, a process induced by both the catalytic effect of MoS2 and contact stress. The development of layer-intercalated low shear stress graphite structures and layered MoS2, facilitated by the catalytic influence of MoS2 and contact stress, was identified as crucial for attaining both a low friction coefficient and wear rate. The incorporation of amorphous carbon into the composite film plays a significant role in enabling it to sustain a low friction coefficient and an ultra-low wear rate, even within a vacuum environment. Moreover, this study not only contributes practical insights but also offers valuable theoretical guidance for the future application, design, and development of MoS2 / carbon composite films.

  • 0 前言

  • 随着航天领域的快速发展,核心精密运动部件需在极端工况(重载、高速等)下服役,会面临表面严重磨损导致系统失效问题,因此须研究和开发硬度高、低摩擦和低磨损的润滑薄膜材料,来保证航天器在复杂工况下的稳定运行[1]

  • 我国目前所采用的空间固体润滑材料主要为二硫属层状结构化合物,如二硫化钼(MoS2),该类化合物具有层片状六方晶系结构。MoS2 为 S-Mo-S 三个平面层构成的薄层单元,在单元层内,Mo、S 原子间通过强共价键结合,而层间以弱范德华力结合,这使得层间在低剪切力作用下发生滑移,表现出良好的润滑减摩性能[2-3]。但 MoS2由于层间结构的弱作用力,易产生磨屑和磨损,尚不能满足中高载荷下空间系统长寿命的要求。

  • 类金刚石碳(DLC)薄膜和 MoS2 在润滑方面呈现优异的性能,但两者结构不同,具有各自不同的特点。DLC 薄膜是以 sp 3、sp 2 键结合为主体,形成的网状非晶态结构,这种结构使得 DLC 在摩擦磨损方面有优异的表现,如摩擦因数小,磨损率低等。虽然 DLC 薄膜在大气环境下表现出优异的摩擦学性能,但是在真空环境下存在摩擦失效问题。目前,对于真空环境下 DLC 薄膜的失效机制有了初步结论,氢钝化和释放机制对真空中 DLC 薄膜的摩擦学性能有很大影响[4]。为了改善 DLC 在真空环境下的摩擦学性能,WANG 等[5-7]制备了 Ag / DLC 复合薄膜,该复合薄膜在真空条件下获得比较好的摩擦学性能,这是因为 Ag 纳米颗粒嵌入碳非晶中,改变 DLC 薄膜的比表面积和化学活性,有利于转移膜的形成,降低了摩擦因数。WANG 等[8]制备了 S 和 F 共掺杂 DLC 薄膜,在真空环境下的摩擦因数为 0.02 左右,在摩擦副球上发现了类石墨烯结构的高氟化转移膜,特殊的类石墨烯结构使其复合薄膜在真空环境下具有低摩擦因数。LIU 等[9-11] 将 Al、Si 掺杂进 DLC 薄膜,研究结果发现掺杂后 DLC 薄膜形成了类似于交联聚合物的纳米结构和类富勒烯结构,在真空下获得较低的磨损率 (1.1×10−7 mm 3 ·N−1 ·m−1)。对于 DLC 薄膜在真空下的摩擦性能改善集中于掺杂单个元素,对于具有优异摩擦性能的化合物如 MoS2、WS2 等缺乏深入研究。

  • 过渡金属二硫化物(TMD),如 MoS2等,作为固体润滑剂具有自润滑特性。由于它存在层状结构及弱的范德华作用,薄膜在真空下具有低摩擦因数[12]。但是溅射 TMD 薄膜有一个不可忽视的问题—多孔的薄膜结构,导致低的硬度和应用中有限的承载能力及摩擦过程中高的磨损率[13-14]。通过添加金属元素 Ni、Al、Zr 等元素,改善 MoS2 薄膜的致密度,改善 MoS2 受到高温、湿度等环境因素的影响[15-17]。 ZHANG 等[18]制备的 MoS2-Pb-Ti 薄膜在真空中具备优异摩擦学性能,主要归因于 MoS2 主导的接触界面、弹性模量的增加和转移层的改善。WANG 等[19] 研究发现,掺锡改变了 MoS2 的晶体结构,提高了硬度和弹性模量,并降低了 MoS2 薄膜的氧化活性。特别是在 75 %RH 的高湿度和高真空环境下,与纯 MoS2 薄膜相比,Sn 含量为 7.2 at.%的 MoS2 / Sn 复合薄膜具有更好的摩擦学性能。对 MoS2 掺杂改性主要集中在复合金属元素,对于复合非金属元素如 C 和 N 等元素值得更深入地探讨。

  • DLC 具有高硬度,低磨损的优点,而 MoS2薄膜在真空环境下具有稳定的低摩擦因数,MoS2 与 DLC 结合可以形成致密的复合薄膜,这有利于改善薄膜的力学性能及摩擦磨损性能。本文通过非平衡磁控溅射工艺制备 MoS2 / DLC 复合薄膜,比较 DLC 薄膜、MoS2及 MoS2 / DLC 复合薄膜在真空环境下的摩擦学性能,探讨真空宽载条件下 MoS2 / DLC 复合薄膜低摩擦因数和超低磨损的机理,更加深入地了解二硫化钼 / 碳复合薄膜的真空摩擦机制,可为进一步拓展二硫化钼 / 碳复合薄膜的应用、设计和开发提供一定的实践经验和理论指导。

  • 1 试验准备

  • 1.1 薄膜制备

  • 通过非平衡磁控溅射系统,在单晶硅片(100) 表面沉积 DLC 薄膜、MoS2 薄膜和 MoS2 / DLC 复合薄膜。沉积前,为了去除表面杂质将硅片在乙醇中超声 30 min,将清洗后的硅片转移到磁控溅射腔室里,气压抽到 4.0 MPa,通入氩气 50 mL / min,接通高偏压(−600 V)轰击硅片,以去除表面氧化物层,持续 30 min。为提高薄膜结合力需要先沉积碳过渡层,使用石墨靶(50 mm×6 mm,纯度 99.9%) 用中频电流 0.5 A,偏压−50 V 沉积 20 min。DLC 薄膜使用石墨靶(50 mm×6 mm,纯度 99.9%)溅射制备,MoS2薄膜通过硫钼复合靶(50 mm×6 mm,纯度 99.9%)制备,MoS2 / DLC 复合薄膜通过硫钼复合靶以及甲烷作为碳源制备而来。薄膜具体制备参数见表1。

  • 表1 薄膜制备参数

  • Table1 Film preparation parameters

  • 1.2 结构及性能表征

  • 借助场发射扫描电子显微镜(FE-SEM,Apreo S,美国)、AFM(原子力显微镜)分析薄膜的厚度、横截面形貌、表面粗糙度。利用激光共焦拉曼 (Jobin-Yvon HR-800)、X 射线光电子能谱(XPS, PHI-5702,物理电子公司,美国)测试薄膜键合结构、元素含量。利用纳米压痕仪(NHT3)测试薄膜硬度和结合力,其中结合力是使用 100 μm 压头,镀膜在硅片上加载不同载荷(MoS2:5 N,DLC:15 N, MoS2 / DLC:10 N)测试完成。采用三维(3D)轮廓仪、透射电子显微镜(TEM,JEM-2100)分别表征磨痕形貌和磨屑的纳米结构。

  • 1.3 真空摩擦试验

  • 薄膜的真空摩擦试验是在 UMT-3 进行,将待测薄膜固定于摩擦机腔室内,放置对磨 3 mm 半径的 400C 球,关闭腔室,通过分子泵和机械泵将摩擦试验机腔室真空抽到 1 mPa。设置参数:旋转摩擦半径 3 mm,转速 300 r / min,测试时间 30 min。

  • 薄膜的磨损率 W(mm 3 ·N−1 ·m−1)计算如下[20]

  • W=VFn×L

  • 式中,V 为磨损量(mm 3),Fn代表法向载荷(N), L 表示滑动长度(m)。

  • 2 结果与分析

  • 2.1 薄膜结构表征

  • DLC、MoS2和 MoS2 / DLC 薄膜的表面及截面形貌如图1 所示,从图1a 可以观察到 DLC 薄膜表面结构较为致密,表面是由堆积的小颗粒组成,颗粒尺寸相差较小,颗粒间紧密相连,没有出现明显裂纹、孔洞等缺陷。MoS2 薄膜表面呈现蠕虫状结构,这种独特的结构使其表面粗糙,缺乏平整度 (图1b)。图1c 中为 MoS2 / DLC 复合薄膜的表面形貌,与 DLC 薄膜相比,表面也由均匀的小颗粒组成,但是小颗粒形成凹凸不平的岛状结构。这是因为 DLC 薄膜的非晶态生长,破坏 MoS2沿着一维轴向生长的模式。DLC、MoS2 和 MoS2 / DLC 的截面形貌如图2a、2b 和 2c 所示,DLC 薄膜的截面结构非常致密,没有缺陷。MoS2薄膜横截面存在明显的柱状结构,柱状结构导致其存在空隙,裂纹等缺陷。复合薄膜的横截面组织与 MoS2 薄膜相比得到了改善,柱状结构不再明显,薄膜结构变的相对致密,非晶碳的加入抑制 MoS2 柱状结构的形成,有效改善了 MoS2 薄膜孔隙、裂纹等缺陷问题。复合薄膜与单一组分的薄膜相比,微观组织结构发生了明显的改变,微观组织结构的改变势必会对薄膜的摩擦磨损性能产生影响。

  • 图1 薄膜的表面形貌

  • Fig.1 Surface morphology of the film

  • 图2 薄膜断面形貌

  • Fig.2 Film cross-sectional morphology

  • 图3 为 DLC、MoS2和 MoS2 / DLC 复合膜的 X 射线衍射光谱,MoS2 有八面体配位的四方晶系 (1T)、钼原子三棱柱配位的六方对称晶系(2H)和斜方对称晶系(3R)三种晶体结构,其中最稳定最常见的状态是六方对称结构(2H)。对于图3 中 MoS2 薄膜的衍射峰分别对应为 2H(002)、2H(100)、 2H(103)、2H(106)、2H(112)[21-23]。在 2H(112) 出现类似的非晶峰,其他晶面(2H(002)、2H(100)) 的衍射峰也并非传统尖锐峰,出现较大的峰宽。通常认为 XRD 衍射峰宽的增加是由晶粒尺寸变小造成的,但是对于二硫化物这类物质不能这样简单的判断,这是因为 MoS2 结晶不良,会存在 MoS2 层间无序等缺陷,这些因素都会影响峰宽[21]。复合薄膜只有两个衍射峰 2H(002)、2H(103),同样主要为 2H-MoS2。非晶碳促进 MoS2 沿着 2H(002)面择优生长,对于 2H(002)择优取向有利于其润滑性能[24],衍射峰数量的减少说明了无定形碳的加入会改变 MoS2 晶粒的生长方式,且复合薄膜的衍射峰为尖锐峰,表明结晶良好。这是因为在共溅射过程中成核点增加,提高了成核率,使得复合薄膜中结晶度变高。结晶度与致密度密不可分,对于复合薄膜,致密度的提高,一方面降低 MoS2 / DLC 薄膜的表面粗糙度,能够使得薄膜保持低摩擦因数,而另一方面使 MoS2 缺乏承载能力的柱状结构,变得紧凑致密,这是导致 MoS2 / DLC 复合薄膜的低磨损的直接原因。

  • 图3 不同薄膜的 XRD 图谱

  • Fig.3 XRD spectra of different films

  • 借助 AFM(原子力显微镜)对薄膜表面粗糙度进行精确测量,如图4 所示。DLC、MoS2 和 MoS2 / DLC 的表面粗糙度分别为 0.61、5.89、 1.66 nm。这一变化趋势与 SEM 得到的结果完全一致,这是因为在溅射过程中 MoS2 柱状结构被 DLC 网络结构嵌入生长,并且填充了 MoS2 薄膜的表面空隙,出现一些明显的岛状结构,复合薄膜的粗糙度因此介于 MoS2 与 DLC 之间。除材料本身成分和结构因素外,表面粗糙度的改善对于降低摩擦因数和磨损率是有益的。

  • 图4 薄膜的 AFM 图像

  • Fig.4 AFM images of thin films

  • 采用纳米压痕仪对三种薄膜的力学性能进行了对比。薄膜的结合力如表2 所示,复合薄膜的结合力为 5.185 N,介于 DLC 薄膜和 MoS2结合力之间。 DLC、MoS2 和 MoS2 / DLC 薄膜的弹性模量(E) 和硬度(H)如图5 所示,DLC、MoS2和 MoS2 / DLC 薄膜的硬度分别为 13.72、 1.05、 8.12 GPa。 MoS2 / DLC 薄膜的硬度与 MoS2 薄膜相比,硬度有了显著的提高,MoS2薄膜一个不可忽视的问题就是薄膜硬度较低导致其磨损率高,碳的加入使复合薄膜硬度提高,有利于降低磨损率,复合薄膜的弹性回复率与 MoS2 薄膜相比也有了提高。显然,DLC 与 MoS2 复合后,改变 MoS2 薄膜的结构,使复合薄膜集成了 DLC 薄膜高硬度的优点,这将有助于薄膜在中高载荷下服役。因此,借助复合掺杂等制备工艺来改善单一组分薄膜的劣势,通过结构的转变使复合薄膜具备新特性。

  • 表2 薄膜结合力

  • Table2 Film adhesion

  • 图5 薄膜的载荷-位移图

  • Fig.5 Load-displacement diagram of the film

  • 为了进一步确定 MoS2 / DLC 复合薄膜中的元素含量及组成,对薄膜进行 XPS 表征,结果如图6 所示。从 XPS 全谱图中可以看出,出现了 162.1、 229.5、284.8 和 530.0eV 峰位,分别对应 S 2p、Mo 3d、C 1s 和 O 1s,395.8 和 414.0 eV 的双峰对应于 Mo 3p[25]。为了进一步分析复合薄膜的结构,对于 XPS谱峰进洛伦兹-高斯拟合。S 2p的峰位于 161.0 和 163.1eV,对应着 S 2p3/2和 S 2p1/2轨道(图5b)[26]。由图6c 可知,Mo 的 3d5/2 或 3d3/2 轨道的结合能分别为 229.33 和 232.51 eV,对应着 2H-MoS2 的 Mo4+[27-28],同时,以 228.01 和 231.5 eV 左右为中心的峰表明了空位 Mo 和 1T-MoS2 的存在[29-30],结合能较高的 235.02eV 为 Mo6+,主要是 MoO3 的存在[31-32]。通过 S 2p 和 Mo 3d 的拟合结果可知,试验条件下制备的 MoS2 / DLC 复合薄膜含有较高比例的 2H-MoS2晶体结构,2H-MoS2 为稳定半导体态,具有较好润滑性能。对于 C 1s 可以分成三个峰 (284.5、286.1 和 288.03 eV),即 C-C、C-O 和 C=O[33]。 O 1s 的分峰如图6e,在 531.4eV 为 MoO3,532.5eV 为 C=O。O 的存在一方面为残余真空腔室里的氧,另一方面为薄膜在储存或转移过程中受到污染。借助 XPS 表征手段,得知制备的复合薄膜中的 MoS2 主要为 2H-MoS2,这与复合薄膜中主要为 2H 晶面相吻合(图3)。表3 为 MoS2 / DLC 薄膜的元素含量结果,C、O、Mo、S 的原子百分比含量分别为 52.75、9.50、20.92 和 15.86,S 原子与 Mo 原子百分比为 1.31,与化学计量数 2 相差较大,这是因为在靶材溅射过程中需要通入 CH4 作为碳源,S 与 H 更容易结合为 H2S 被抽走,导致溅射到基材上的 S 会变少,所以导致出现原子百分比差异。

  • 图6 MoS2 / DLC 薄膜的 XPS 谱图

  • Fig.6 XPS spectra of MoS2 / DLC films

  • 表3 MoS2 / DLC 薄膜的元素含量

  • Table3 Elemental content of MoS2 / DLC films

  • 2.2 摩擦学性能

  • DLC、MoS2和 MoS2 / DLC 薄膜的真空摩擦试验在 UMT-3(真空可控气氛摩擦试验机)进行,对于 MoS2 / DLC 复合薄膜在真空环境下变载荷的试验如图7 所示,在 5 N 载荷下 DLC 薄膜在 500 s 左右失效,DLC 在真空下的失效原因是碳薄膜表面多悬键,摩擦对偶表面会产生强烈的摩擦化学作用,导致高摩擦因数和快速失效[4]。MoS2 在真空下的摩擦因数达到 0.02,MoS2 稳定的低摩擦因数也是其在空间环境下广泛应用的一个重要原因。在 5 N 载荷下,MoS2 / DLC 复合薄膜在 900 s 之后摩擦因数也稳定到了 0.02 左右,当载荷变为中载(1.11 GPa) 时,复合薄膜的摩擦因数稳定后为 0.07 左右,并没有发生薄膜失效问题,当重载(1.27 GPa)时,摩擦因数与中载(1.11 GPa)时相比,摩擦因数曲线更加稳定,摩擦因数为 0.06 左右,同样能在真空下保持较长时间。MoS2 / DLC 复合薄膜能够避免 DLC 薄膜在真空下摩擦迅速失效问题,且同样具备 MoS2 在真空下低摩擦因数的优异性能。

  • 图7 DLC、MoS2和 MoS2 / DLC 薄膜的摩擦因数

  • Fig.7 Friction factor of DLC,MoS2 and MoS2 / DLC films

  • 对于不同薄膜的磨损情况如图8 所示, MoS2 / DLC 复合薄膜在不同载荷下的磨损率极低,在 5 N 载荷下与纯 MoS2薄膜相比,磨损率降低了 3 个数量级(图8d),显著改善 MoS2 薄膜高磨损的问题。从图8a、8b 和 8c 可以直观的观察到,在低、中、高宽范围载荷(5~15 N)下,复合薄膜磨痕均不明显,磨损率也几乎一致(图8d);中载(1.11 GPa) 和重载(1.27 GPa)磨痕两侧的有略微的突起,判断为薄膜之后磨屑的堆积。

  • 图8 MoS2 / DLC 薄膜不同载荷下的三维磨损形貌及磨损率

  • Fig.8 Three-dimensional wear morphology and wear rate of MoS2 / DLC films under different loads

  • 由于 MoS2 和 C 对激光拉曼的敏感性,借助 Raman 光谱对 MoS2 / DLC 复合薄膜以及转移膜来探究碳原子的键合情况,如图9a 所示。对于 MoS2,它在 300~500 cm−1 存在两个特征峰,这两个特征峰分别为 E1 2g(383 cm−1)和 A2g(408 cm−1)的振动模式[34]。复合薄膜在 1 000~1 800 cm−1 有一个不对称的宽峰,其中在 1 350 cm−1 附近有一个弱肩峰(D 峰),在 1 550 cm−1 左右有一个很强的宽峰(G 峰),这是典型的 DLC 结构。D 峰与 G 峰的强度之比为ID / IG,已有文献表明ID / IG的数值变化与 DLC 薄膜的石墨化程度有关[35]。从图9b 可知,在 5 N 载荷下转移膜的 ID / IG 是变大的,复合薄膜的ID / IG =0.94,磨屑的ID / IG为 1.25,其他载荷下(10 N,15 N)磨屑的ID / IG数值比复合薄膜的ID / IG均有所增大,变化规律如图9c,ID / IG数值呈现的变大趋势说明在摩擦的过程中促进石墨化转变。G 峰的半峰宽(GFWHM)也具有着碳结构转变的信息,复合薄膜的 GFWHM 为 103 cm−1,不同载荷下的转移膜上的 GFWHM均小于 103 cm−1,总体随载荷的增大呈现变小的趋势,GFWHM 与纳米团簇尺寸相关,可以简单认为纳米团簇变大而 GFWHM 减小。ID / IG变大,意味着无定形碳向有序的片状石墨结构转变,团簇的尺寸相应的也会增大。

  • 图9 MoS2 / DLC 复合薄膜的 Raman 光谱

  • Fig.9 Raman spectra of MoS2 / DLC composite films

  • 为了更好地进一步了解 5N 载荷下 MoS2 / DLC 低摩擦和低磨损机制,将转移膜使用 300 目微栅膜转移到 HRTEM 下观察分析,图10 显示载荷 5 N 磨屑的 HRTEM 图像。从 HRTEM 图像中可以明显地观察到大量有序的 MoS2 片状纳米结构,晶面间距为 0.62 nm,对应 2H(002)晶面,这与图3 的 XRD 相符合,同时通过 HRTEM 观察到磨屑中存在晶面间距为 0.35 nm 的有序片状石墨结构。由于 MoS2 邻层间的非对称性接触,其大量的片状 MoS2 能够降低剪切力,从而使复合薄膜在真空环境下维持低摩擦因数。

  • 已有研究发现[36],在 MoS2 的 Mo 原子催化作用可以将 sp 2 键的无定形碳转变为有序的片状纳米石墨结构。复合薄膜在真空下优异的摩擦学性能归结为:MoS2的存在能够发挥其在真空下低摩擦的特性,层状的特殊结构在摩擦过程中能够起到保护 DLC 薄膜的作用,DLC 无定形碳影响 MoS2 的生长方式,改变了 MoS2 的柱状特性,使复合薄膜结构变的较为致密。层状结构的 MoS2 和石墨结构,层与层之间由弱的范德华力连接,相较于 DLC 薄膜,复合薄膜对偶面之间的共价键的连接显著减少,使得对偶面之间的黏着磨损大大降低,最终降低了薄膜的磨损率。而复合薄膜沉积过程中,MoS2 相和非晶 C 相共同生长,DLC 的非晶态生长方式使得复合薄膜柱状特征相较于纯 MoS2 薄膜明显减弱,薄膜组织结构更加致密。因此,相较于 MoS2 薄膜,复合薄膜的硬度更高,表面粗糙度更低,在摩擦的过程中不易产生“犁沟”效应,形成“切削”阻力,可以在更高的载荷下获得稳定的较低摩擦因数和低磨损率。

  • 图10 5 N 载荷下复合薄膜的转移膜 HRTEM 图

  • Fig.10 HRTEM image of transfer film of composite film under 5N

  • 3 结论

  • 基于 MoS2 在真空环境下获得低摩擦因数和 DLC 薄膜优异的力学性能,通过复合的手段,制备 MoS2 / DLC 复合薄膜。获得以下主要结论:

  • (1)DLC 与 MoS2 复合后改善了 MoS2 柱状结构,使薄膜结构更加致密。复合薄膜的硬度显著提高,表面粗糙度也得到减小。

  • (2)DLC 加入改变了 MoS2 生长模式,使其选择有利于润滑的晶面择优生长。

  • (3)MoS2 / DLC 在宽载下实现了低摩擦因数和低磨损优异性能。MoS2 / DLC 复合薄膜中的层状 MoS2 起到润滑和避免 DLC 薄膜真空失效问题,无序的碳非晶在 MoS2的催化作用下发生石墨化转变,有利于减小磨损,能够发挥 DLC 的低磨损的特点,实现复合薄膜在真空环境下的超低磨损。

  • 参考文献

    • [1] MUTHURAJA A,NAIK S,RAJAK D K,et al.Experimental investigation on chromium-diamond like carbon(Cr-DLC)coating through plasma enhanced chemical vapour deposition(PECVD)on the nozzle needle surface[J].Diamond and Related Materials,2019,100:251-259.

    • [2] 高晓明,胡明,孙嘉奕,等.润滑材料的空间环境效应 [J].中国材料进展,2017(7-8):0-5.GAO Xiaoming,HU Ming,SUN Jiayi,et al.Space environment effects on lubricants[J].Materials China,2017(7-8):0-5.(in Chinese)

    • [3] GAO K,WANG Y,ZHANG B,et al.Effect of vacuum atomic oxygen irradiation on the tribological properties of fullerene-like carbon and MoS2 films[J].Tribology International,2022,170:214-221.

    • [4] 吴艳霞,李红轩,吉利.a-C:H 膜在不同真空度下的摩擦学行为研究[J].功能材料,2012,43(3):313-316.WU Yanxia,LI Hongxuan,JI Li.Investigation into the tribological properties of a-C:H film under different vacuum degree[J].Jorunal of Functional Materials.2012,43(3):313-316.(in Chinese)

    • [5] TSUBOTA T,KURATSU K,MURAKAM N,et al.Attempt of deposition of Ag-doped amorphous carbon film by Ag-cathode DC plasma with CH4 flow[J].Journal of Nanoscience and Nanotechnology,2015,15(6):4619-4631.

    • [6] WANG C F,CHIOU S Y,CHANG Y C,et al.Microstructures and properties of Ag-DLC films prepared by magnetron reactive sputtering[J].Materials Science and Engineering of Powder Metallurgy,2014,19(1):108-115.

    • [7] ABDOLGHADERI S,ASTINCHAP B,SHAFIEKHANI A.Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma[J].Journal of Materials Science Materials in Electronics,2016,27(7):6713-6720.

    • [8] WANG F,WANG L,XUE Q.Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum[J].Carbon,2016,96:411-420.

    • [9] LIU X,HAO J,XIE Y.Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films[J].Applied Surface Science,2016,379:358-366.

    • [10] LIU X,HAO J,YANG J,et al.Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum[J].Journal of Applied Physics,2011,110(5):532-537.

    • [11] LIU X,YANG J,HAO J,et al.Microstructure,mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages[J].Surface & Coatings Technology,2012,206(19-20):4119-4125.

    • [12] KIM S S,AHN C W,KIM T H.Tribological characteristics of magnetron sputtered MoS2 films in various atmospheric conditions[J].KSME International Journal,2002,16:1065-1071.

    • [13] DING X Z,ZENG X T,HE X Y,et al.Tribological properties of Cr-and Ti-doped MoS2 composite coatings under different humidity atmosphere[J].Surface & Coatings Technology,2010,205(1):224-231.

    • [14] GANGOPADHYAY S,ACHARYA R,CHATTOPADHYAY A K,et al.Composition and structure-property relationship of low friction,wear resistant TiN-MoSx composite coating deposited by pulsed closed-field unbalanced magnetron sputtering[J].Surface & Coatings Technology,2009,203(12):1565-1572.

    • [15] 韦春贝,欧文敏,侯惠君,等.磁控溅射 MoS2-Ni 复合膜的结构与性能研究[J].表面技术,2017,46(10):135-142.WEI Chunbei,OU Wenmin,HOU Huijun,et al.Structure and properties of MoS2-Ni composite films fabricated by magnetron sputtering method[J].Surface Technology,2017,46(10):135-142.(in Chinese)

    • [16] 杨保平,高斌基,张斌,等.MoS2-Al 复合薄膜高温摩擦学性能研究[J].表面技术,2018,47(3):140-147.YANG Baoping,GAO Binji,ZHANG Bin,et al.Tribological properties of MoS2-Al composite films at high temperature[J].Surface Technology,2018,47(3):140-147.(in Chinese)

    • [17] 欧文敏,韦春贝,代明江,等.MoS2-Zr 复合薄膜的摩擦学性能研究[J].表面技术,2017,46(1):93-99.OU Wenmin,WEI Chunbei.DAI Mingjiang,et al.Tribological properties of MoS2-Zr composite films[J].Surface Technology,2017,46(1):93-99.(in Chinese)

    • [18] ZHAO X,LU Z,ZHANG G,et al.Self-adaptive MoS2-Pb-Ti film for vacuum and humid air[J].Surface and Coatings Technology,2018,345:152-166.

    • [19] BAI Y,PU J,WANG H,et al.High humidity and high vacuum environment performance of MoS2/Sn composite film[J].Journal of Alloys and Compounds,2019,800:107-115.

    • [20] KAI W,BY A,BZ B,et al.Modification of a-C:H films via nitrogen and silicon doping:The way to the superlubricity in moisture atmosphere[J].Diamond and Related Materials,2020,107:107873-107873.

    • [21] WANG S,WANG Z,QIN J,et al.Nanocrystalline MoS2 through directional growth along the(002)crystal plane under high pressure[J].Materials Chemistry and Physics,2011,130(1-2):170-174.

    • [22] ZENG C,PU J,WANG H,et al.Study on atmospheric tribology performance of MoS2-W films with self-adaption to temperature[J].Ceramics International,2019,45(13):15834-15842.

    • [23] WANG W,ZENG X,WARNER J H,et al.Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure[J].ACS Applied Materials & Interfaces,2020,12(29):33325-33335.

    • [24] ZHANG X,VITCHEV R G,LAUWERENS W,et al.Effect of crystallographic orientation on fretting wear behaviour of MoSx coatings in dry and humid air[J].Thin Solid Films,2001,396(1-2):69-77.

    • [25] PARK W,BAIK J,KIM T Y,et al.Photoelectron spectroscopic imaging and device applications of large-Area patternable single-Layer MoS2 Synthesized by chemical vapor deposition[J].ACS Nano,2014,8(5):4961-4968.

    • [26] GAO B,DU X,MA Y,et al.3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction[J].Applied Catalysis B:Environmental,2019,12(6):1562-1569.

    • [27] ZHANG K,KIM J K,PARK B,et al.Defect-induced epitaxial growth for efficient solar hydrogen production[J].Nano Letters,2017,17(11):6676-6683.

    • [28] YUAN Y,LU H,JI Z,et al.Enhanced visiblelight-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS2/TiO2 assembly[J].Chemical Engineering Journal,2015,275:8-16.

    • [29] ZHANG K,JIN B,GAO Y,et al.Aligned heterointerface-induced 1T-MoS2 monolayer with near-ideal gibbs free for stable hydrogen evolution reaction[J].Small,2019,15(8):804-815.

    • [30] DA G,YAMAGUCHI H,VOIRY D,et al.Photoluminescence from chemically exfoliated MoS2[J].Nano Letters,2011,11(12):5111-5116.

    • [31] CAI L,HE J,LIU Q,et al.Vacancy-induced ferromagnetism of MoS2 nanosheets[J].Journal of the American Chemical Society,2015,137(7):2622-2627.

    • [32] LIU Q,LI X,HE Q,et al.Gram-scale aqueous synthesis of stable few-layered 1T-MoS2:applications for visible-light-driven photocatalytic hydrogen evolution[J].Small,2015,11(41):5556-5564.

    • [33] AL-GAASHANI R,NAJJAr A,ZAKARIA Y,et al.XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J].Ceramics International,2019,45(11):14439-14448.

    • [34] CHAKRABORTY B,MATTE H S S R,Sood A K,et al.Layer-dependent resonant Raman scattering of a few layer MoS2[J].Journal of Raman Spectroscopy,2013,44(1):92-96.

    • [35] FC T,SL T.Correlation between ID/IG ratio from visible raman spectra and sp2/sp3 ratio from XPS spectra of annealed hydrogenated DLC film[J].Materials Transactions,2006,47(7):1847-1852.

    • [36] BERMAN D,eRDEMIR A,SUMANT A V.Approaches for achieving superlubricity in two-dimensional materials[J].ACS Nano,2018,12(3):2122-2137.

  • 参考文献

    • [1] MUTHURAJA A,NAIK S,RAJAK D K,et al.Experimental investigation on chromium-diamond like carbon(Cr-DLC)coating through plasma enhanced chemical vapour deposition(PECVD)on the nozzle needle surface[J].Diamond and Related Materials,2019,100:251-259.

    • [2] 高晓明,胡明,孙嘉奕,等.润滑材料的空间环境效应 [J].中国材料进展,2017(7-8):0-5.GAO Xiaoming,HU Ming,SUN Jiayi,et al.Space environment effects on lubricants[J].Materials China,2017(7-8):0-5.(in Chinese)

    • [3] GAO K,WANG Y,ZHANG B,et al.Effect of vacuum atomic oxygen irradiation on the tribological properties of fullerene-like carbon and MoS2 films[J].Tribology International,2022,170:214-221.

    • [4] 吴艳霞,李红轩,吉利.a-C:H 膜在不同真空度下的摩擦学行为研究[J].功能材料,2012,43(3):313-316.WU Yanxia,LI Hongxuan,JI Li.Investigation into the tribological properties of a-C:H film under different vacuum degree[J].Jorunal of Functional Materials.2012,43(3):313-316.(in Chinese)

    • [5] TSUBOTA T,KURATSU K,MURAKAM N,et al.Attempt of deposition of Ag-doped amorphous carbon film by Ag-cathode DC plasma with CH4 flow[J].Journal of Nanoscience and Nanotechnology,2015,15(6):4619-4631.

    • [6] WANG C F,CHIOU S Y,CHANG Y C,et al.Microstructures and properties of Ag-DLC films prepared by magnetron reactive sputtering[J].Materials Science and Engineering of Powder Metallurgy,2014,19(1):108-115.

    • [7] ABDOLGHADERI S,ASTINCHAP B,SHAFIEKHANI A.Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma[J].Journal of Materials Science Materials in Electronics,2016,27(7):6713-6720.

    • [8] WANG F,WANG L,XUE Q.Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum[J].Carbon,2016,96:411-420.

    • [9] LIU X,HAO J,XIE Y.Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films[J].Applied Surface Science,2016,379:358-366.

    • [10] LIU X,HAO J,YANG J,et al.Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum[J].Journal of Applied Physics,2011,110(5):532-537.

    • [11] LIU X,YANG J,HAO J,et al.Microstructure,mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages[J].Surface & Coatings Technology,2012,206(19-20):4119-4125.

    • [12] KIM S S,AHN C W,KIM T H.Tribological characteristics of magnetron sputtered MoS2 films in various atmospheric conditions[J].KSME International Journal,2002,16:1065-1071.

    • [13] DING X Z,ZENG X T,HE X Y,et al.Tribological properties of Cr-and Ti-doped MoS2 composite coatings under different humidity atmosphere[J].Surface & Coatings Technology,2010,205(1):224-231.

    • [14] GANGOPADHYAY S,ACHARYA R,CHATTOPADHYAY A K,et al.Composition and structure-property relationship of low friction,wear resistant TiN-MoSx composite coating deposited by pulsed closed-field unbalanced magnetron sputtering[J].Surface & Coatings Technology,2009,203(12):1565-1572.

    • [15] 韦春贝,欧文敏,侯惠君,等.磁控溅射 MoS2-Ni 复合膜的结构与性能研究[J].表面技术,2017,46(10):135-142.WEI Chunbei,OU Wenmin,HOU Huijun,et al.Structure and properties of MoS2-Ni composite films fabricated by magnetron sputtering method[J].Surface Technology,2017,46(10):135-142.(in Chinese)

    • [16] 杨保平,高斌基,张斌,等.MoS2-Al 复合薄膜高温摩擦学性能研究[J].表面技术,2018,47(3):140-147.YANG Baoping,GAO Binji,ZHANG Bin,et al.Tribological properties of MoS2-Al composite films at high temperature[J].Surface Technology,2018,47(3):140-147.(in Chinese)

    • [17] 欧文敏,韦春贝,代明江,等.MoS2-Zr 复合薄膜的摩擦学性能研究[J].表面技术,2017,46(1):93-99.OU Wenmin,WEI Chunbei.DAI Mingjiang,et al.Tribological properties of MoS2-Zr composite films[J].Surface Technology,2017,46(1):93-99.(in Chinese)

    • [18] ZHAO X,LU Z,ZHANG G,et al.Self-adaptive MoS2-Pb-Ti film for vacuum and humid air[J].Surface and Coatings Technology,2018,345:152-166.

    • [19] BAI Y,PU J,WANG H,et al.High humidity and high vacuum environment performance of MoS2/Sn composite film[J].Journal of Alloys and Compounds,2019,800:107-115.

    • [20] KAI W,BY A,BZ B,et al.Modification of a-C:H films via nitrogen and silicon doping:The way to the superlubricity in moisture atmosphere[J].Diamond and Related Materials,2020,107:107873-107873.

    • [21] WANG S,WANG Z,QIN J,et al.Nanocrystalline MoS2 through directional growth along the(002)crystal plane under high pressure[J].Materials Chemistry and Physics,2011,130(1-2):170-174.

    • [22] ZENG C,PU J,WANG H,et al.Study on atmospheric tribology performance of MoS2-W films with self-adaption to temperature[J].Ceramics International,2019,45(13):15834-15842.

    • [23] WANG W,ZENG X,WARNER J H,et al.Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure[J].ACS Applied Materials & Interfaces,2020,12(29):33325-33335.

    • [24] ZHANG X,VITCHEV R G,LAUWERENS W,et al.Effect of crystallographic orientation on fretting wear behaviour of MoSx coatings in dry and humid air[J].Thin Solid Films,2001,396(1-2):69-77.

    • [25] PARK W,BAIK J,KIM T Y,et al.Photoelectron spectroscopic imaging and device applications of large-Area patternable single-Layer MoS2 Synthesized by chemical vapor deposition[J].ACS Nano,2014,8(5):4961-4968.

    • [26] GAO B,DU X,MA Y,et al.3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction[J].Applied Catalysis B:Environmental,2019,12(6):1562-1569.

    • [27] ZHANG K,KIM J K,PARK B,et al.Defect-induced epitaxial growth for efficient solar hydrogen production[J].Nano Letters,2017,17(11):6676-6683.

    • [28] YUAN Y,LU H,JI Z,et al.Enhanced visiblelight-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS2/TiO2 assembly[J].Chemical Engineering Journal,2015,275:8-16.

    • [29] ZHANG K,JIN B,GAO Y,et al.Aligned heterointerface-induced 1T-MoS2 monolayer with near-ideal gibbs free for stable hydrogen evolution reaction[J].Small,2019,15(8):804-815.

    • [30] DA G,YAMAGUCHI H,VOIRY D,et al.Photoluminescence from chemically exfoliated MoS2[J].Nano Letters,2011,11(12):5111-5116.

    • [31] CAI L,HE J,LIU Q,et al.Vacancy-induced ferromagnetism of MoS2 nanosheets[J].Journal of the American Chemical Society,2015,137(7):2622-2627.

    • [32] LIU Q,LI X,HE Q,et al.Gram-scale aqueous synthesis of stable few-layered 1T-MoS2:applications for visible-light-driven photocatalytic hydrogen evolution[J].Small,2015,11(41):5556-5564.

    • [33] AL-GAASHANI R,NAJJAr A,ZAKARIA Y,et al.XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J].Ceramics International,2019,45(11):14439-14448.

    • [34] CHAKRABORTY B,MATTE H S S R,Sood A K,et al.Layer-dependent resonant Raman scattering of a few layer MoS2[J].Journal of Raman Spectroscopy,2013,44(1):92-96.

    • [35] FC T,SL T.Correlation between ID/IG ratio from visible raman spectra and sp2/sp3 ratio from XPS spectra of annealed hydrogenated DLC film[J].Materials Transactions,2006,47(7):1847-1852.

    • [36] BERMAN D,eRDEMIR A,SUMANT A V.Approaches for achieving superlubricity in two-dimensional materials[J].ACS Nano,2018,12(3):2122-2137.

  • 手机扫一扫看