en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

柳建,男,1982年出生,博士,副研究员。主要研究方向为再制造工程和高熵合金增材制造。E-mail: xbdliu5899@163.com

通讯作者:

王海斗,男,1969,博士,研究员。主要研究方向为再制造工程、表面工程和摩擦学。E-mail: whaidou2021@163.com

中图分类号:TG27

DOI:10.11933/j.issn.1007-9289.20230530004

参考文献 1
刘昊,高强,戴剑博,等.超声滚压强化对 CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响[J].中国表面工程,2022,35(6):107-115.LIU Hao,GAO Qiang,DAI Jianbo et al.The effect of ultrasonic rolling strengthening on the wear resistance of CoCrFeMnNiM(M=Ti,Mo)high entropy alloy laser cladding layer[J].China Surface Engineering,2022,35(6):107-115.(in Chinese)
参考文献 2
SENKOV O,MILLER J,MIRACLE D,et al.Accelerated exploration of multi-principal element alloys with solid solution phases[J].Nature Communications,2015,6(1):1-10.
参考文献 3
YEH J W,CHEN S K,LIN S J,et al.Nanostructured HEAs with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
参考文献 4
RANGANATHAN S.Alloyed pleasures:multimetallic cocktails[J].Current Science,2003,85(10):1404-1406.
参考文献 5
TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in CoCrFeMnNi HEAs[J].Acta Materialia,2013,61(13):4887-4897.
参考文献 6
YEH J W,CHANG S Y,HONG Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu–Ni-Al-Co–Cr–Fe–Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics,2007,103(1):41-46.
参考文献 7
TONG C J,CHEN Y L,YEH J W,et al.Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-993.
参考文献 8
LI D,LI C,FENG T,et al.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J].Acta Materialia,2017,123:285-294.
参考文献 9
CHOU Y,YEH J,SHIH H,et al.The effect of molybdenum on the corrosion behaviour of the HEAs Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J].Corros Sci,2010,52(8):2571-2581.
参考文献 10
BUTLER T,ALFANO J,MARTENS R,et al.High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si)multicomponent HEAs[J].Journal of Operations Management,2015,67(1):246-259.
参考文献 11
HSU C Y,SHEU T S,YEH J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni HEAs[J].Wear,2010,268:653-659.
参考文献 12
CHUANG M H,TSAI M H,WANG W R,et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy HEAs[J].Acta Materialia,2011,59(16):6308-6317.
参考文献 13
WEN Q F,YANG Q,SHAO Q.Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys[J].Metals Open Access Metallurgy Journal,2017,7(11):482-497.
参考文献 14
HOU Y,LIU T,HE D,et al.Sustaining strength ductility synergy of SLM Fe50Mn30Co10Cr10 metastable highentropy alloy by Si addition[J].Social Science Electronic Publishing,2022,145(1):107565.
参考文献 15
YUAN L,YAN Z,ZHANG H,et al.Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J].Journal of Alloys and Compounds,2016,694:869-876.
参考文献 16
SHEN Z Y,LIU G X,HE L M,et al.Thermal property and failure behaviors of Gd doped LaZrCeO coatings with feathery microstructure[J].Mater Degrad,2022,6:17-23.
参考文献 17
何胜豪,程芳,夏松钦,等.高熵合金的制备及性能[J].热加工工艺,2022,51(18):22-29.HE Shenghao,CHENG Fang,XIA Songqin,et al.Preparation and properties of high-entropy alloy[J].Hot Working Process,2022,51(18):22-29.(in Chinese)
参考文献 18
LIU H,SUN S,ZHANG T,et al.Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J].Surface and Coatings Technology,2020,405(10):126522.
参考文献 19
曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and friction properties of laser cladding FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel surface[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)
参考文献 20
HUANG S F,ZENG X L,DU X,et al.Microstructure and mechanical properties of the Nb37.7Mo14.5Ta12.6Ni28.16Cr7.04 multi-principal alloys fabricated by gas tungsten wire arc welding additive manufacturing[J].Vacuum,2023,210,111900.
参考文献 21
KUMAR A,SWARNAKAR A K,BASU A.et al.Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix high entropy alloys[J].Journal of Alloys and Compounds,2018,748:889-897.
参考文献 22
GUO Z,ZHANG A,HAN J,et al.Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo HEAs[J].Journal of Materials Science,2019,54:5844-5841
目录contents

    摘要

    高熵合金相较于传统合金可以同时具备高强度、高硬度以及出色的耐腐蚀性和耐高温性能,具有广阔的工业应用前景。元素及其含量是高熵合金组织性能的最直接影响因素,为探究非金属元素对 FeCoNiCrMnAl0.5 高熵合金耐磨性的影响,采用真空电弧熔炼技术制备 FeCoNiCrMnAl0.5(Si0.5)高熵合金铸锭,研究 Si 元素对高熵合金微观组织结构、硬度及干摩擦学性能的影响。试验发现,FeCoNiCrMnAl0.5合金铸锭物相为单一 FCC 相结构,组织呈现等轴树枝晶特点,晶粒大小为 20~30 μm; FeCoNiCrMnAl0.5Si0.5铸锭物相由 FCC+BCC 相组成,晶粒尺寸为 10~20 μm;FeCoNiCrMnAl0.5铸锭硬度较低仅为 185.8 HV0.1, FeCoNiCrMnAl0.5Si0.5铸锭硬度可达到 750.7 HV0.1,其抗磨损性能相比 FeCoNiCrMnAl0.5也提升超过 10 倍。这表明 Si 元素能促使高熵合金物相结构由 FCC 向 BCC 转变,同时具有细化晶粒,大幅提升高熵合金的硬度与抗磨损性能作用。Si 元素的作用对高熵合金具有普遍的适用性,可为高熵合金涂层耐磨性的强化提供参考。

    Abstract

    Vacuum arc melting (VAM) technology stands as a pivotal technique in the synthesis of High-entropy alloys (HEAs), offering distinctive benefits and wide-ranging potential applications. Primarily, VAM is executed under high-vacuum conditions, which mitigates oxidation and gas contamination at elevated temperatures, facilitating the creation of high-purity HEA materials. These high-purity alloys are crucial in sectors like aviation, aerospace, and electronics, where material integrity significantly impacts performance and reliability. The vacuum setting plays a vital role in eliminating gases and impurities from metals, thus elevating the quality and properties of the resulting materials. Moreover, VAM technology is characterized by its high degree of controllability. The manipulation of process variables such as electrode spacing, arc current, and atmospheric conditions allows for precise tailoring of the alloy's composition and microstructure. This precision is instrumental in exploring the relationship between the composition of HEAs and their properties, enabling the development of custom alloys designed to fulfill specific requirements across various industries. HEAs are recognized for their exceptional attributes, including superior strength, enhanced ductility, and outstanding corrosion resistance. Their complex crystal structures endow them with a performance edge over conventional alloys, making VAM a critical method in advancing the development and application of HEAs. Therefore, HEAs produced via VAM technology present vast application potential across multiple domains. In materials science, HEAs are poised to revolutionize the fabrication of advanced structural components, including engine parts and aerospace structures, by leveraging their superior physical and chemical characteristics. These properties make HEAs ideal for enduring the rigors of high temperature, high pressure, and the multifaceted challenges of aviation and aerospace operational environments. Specifically, the incorporation of HEAs into aircraft engine components can significantly enhance high-temperature strength and wear resistance, leading to notable improvements in engine efficiency and longevity. Beyond aviation and aerospace, HEAs find applicability in sectors such as high-speed rail and nuclear energy equipment, offering innovative pathways for the advancement of engineering structural materials. In the energy sector, the exceptional thermal conductivity and resistance to high temperatures of HEAs make them suitable for use in combustion devices, heat exchangers, and as thermoelectric materials. The paradigm shift in design concepts allows HEAs to outperform traditional alloys by exhibiting a combination of high strength, hardness, superior corrosion resistance, and high-temperature endurance, thus opening up expansive industrial applications. The composition of HEAs, including the selection of elements and their proportions, plays a critical role in determining their microstructure and resultant properties. This direct relationship between elemental composition and alloy characteristics underscores the importance of precision in the design and production of HEAs, highlighting the transformative potential of VAM technology in the field. This study explores the impact of non-metallic elements on the wear resistance of FeCoNiCrMnAl0.5 HEAs. Utilizing VAM technology, FeCoNiCrMnAl0.5 (Si0.5) HEA ingots were prepared to examine the influence of Si on the alloy's microstructure, hardness, and dry friction characteristics. The investigation revealed that the FeCoNiCrMnAl0.5 alloy exhibits a singular FCC phase structure characterized by equiaxed dendritic morphology with a grain size ranging from 20–30 μm. Conversely, the addition of Si results in the FeCoNiCrMnAl0.5Si0.5 ingot featuring both FCC and BCC phases, alongside a reduced grain size of 10–20 μm. Notably, the hardness of the FeCoNiCrMnAl0.5Si0.5 ingot significantly increases to 750.7HV0.1 from 185.8HV0.1 observed in the FeCoNiCrMnAl0.5 ingot, enhancing its wear resistance by over tenfold. These findings demonstrate that Si effectively facilitates a phase transformation from FCC to BCC, refines grains, and markedly boosts the hardness and wear resistance of HEAs. The role of Si in enhancing HEAs' properties suggests a broader applicability in strengthening the wear resistance of HEA coatings. Moreover, VAM technology showcases scalability and environmental sustainability, supporting large-scale production to fulfill industrial demands. This method exhibits a lower energy requirement compared to traditional metallurgical processes, minimizing waste generation and environmental pollution, thereby contributing to reduced carbon emissions and endorsing sustainability. In summary, VAM technology emerges as a pivotal approach in the fabrication of HEAs, holding vast potential across materials science, aviation, aerospace, energy, and other engineering disciplines. It promises to accelerate the development and application of novel materials, propelling industrial advancement and economic growth.

  • 0 前言

  • 高熵合金是近年来创新合金设计提出的新合金体系[1-2],因其优异的性能受到广泛关注。我国台湾学者叶均蔚教授定义的高熵合金须要满足如下两个条件[3]: ①合金含有 5 种或 5 种以上的主要元素;②每个主要元素的含量在 5~35 at.%。高熵合金具有高熵效应[4]、鸡尾酒效应[5]、缓慢扩散效应[6]和晶格畸变效应[7],能抑制复杂金属间化合物的出现,易形成由较为简单的体心立方(BCC)、面心立方(FCC)以及密排六方(HCP)构成[8]的固溶体。

  • 2004 年 CANTOR 等首次制备最具代表性的单一面心立方(FCC)结构的 CoCrFeNiMn 高熵合金[9]。研究表明,CoCrFeNi 基高熵合金具有优良的塑性,而在该系列高熵合金中加入其他合金元素以提高合金性能是研究的重点之一,改变高熵合金元素含量将会使其表现出不同性能[10]。HSU 等[11]研究 AlCoCrFexMo0.5Ni 高熵合金体系的摩擦磨损性能。其变化趋势表明硬度与摩擦因数成反比,合金的硬度越高其耐磨性越高,体心立方相合金的耐磨性要比面心立方相合金耐磨性更优异,同时固溶强化效果越显著合金耐磨性越好。CHUANG 等[12]研究 AlxCo1.5CrFeNi1.5Ti 系列高熵合金的耐磨性能,发现 Co1.5CrFeNi1.5Ti 和 Al0.2Co1.5CrFeNi1.5Ti 合金具有优良的耐磨性能,尽管高熵合金的硬度与耐磨性同 SUJ2 和 SKH51 钢相当,但其耐磨性至少两倍于传统耐磨钢 SUJ2 与 SKH51。高熵合金优良的抗氧化性能与抗高温软化性能被认为是高耐磨性能的主要原因[12]。Al、Si 元素与 Fe、Co、Ni 元素的二元混合焓较负。相应的高熵合金中,Al-Al、Al-Si 和 Si-Si 对的平均数量显著减少,而 Ni-Al、Co-Si、Fe-Si、 Ni-Si 和 Fe-Co 对的平均数量相应增加。SRO (Short-range order)参数的变化表明 Al 和 Si 倾向于与 Fe、Co 和 Ni 原子成键,从而降低势能,SRO 行为对高熵合金的磁性能和力学性能有重要影响[13]

  • Si 元素具有提高合金强度、硬度以及摩擦性等作用,HOU 等[14]在 Fe50Mn30Co10Cr10高熵合金中加入 Si 元素,发现含 Si 元素的亚稳高熵合金屈服强度和抗拉强度性能优于未添加 Si 元素的高熵合金,其主要原因在于 Si 元素增加高熵合金中 γ(FCC)相的亚稳定性,变形过程中通过调节孪生应变促进相变诱发塑性变形。YUAN 等[15]采用感应悬浮熔炼法制备的 HfMo0.5NbTiV0.5Six 高熵合金的组织性能研究发现,HfMo0.5NbTiV0.5 基体为简单无序的体心立方(BCC)相,添加 Si 元素后,合金内部生成多元硅化物(Hf,Nb,Ti)5Si3,随着 Si 含量的增加呈现出亚共晶→共晶→过共晶的转变。加入 Si 提高了高熵合金的硬度和强度,同时增强其耐磨性。SHEN 等[16]对通过气体雾化工艺制备的 AlCoCrCuFeNiSix HEAs 组织性能进行研究发现,Si 元素可以提升气体雾化过程中的冷却速度降低偏析,同时在不降低结晶度的情况下提高高熵合金硬度。目前,制备高熵合金时主要采用真空电弧熔炼技术,该方法能制备熔点较高的难熔高熵合金。真空电弧熔炼不会发生氧化,制备高熵合金时可以去除元素中杂质[17]

  • Si 元素能抑制金属间化合物产生,使合金力学性能更加稳定,增加熔融金属的流动性、减少凝固收缩率,提高合金的硬度和抗氧化性。本文使用真空电弧熔炼技术制备 FeCoNiCrMnAl0.5(Si0.5)高熵合金,研究 Si 元素添加前后合金微观组织结构、硬度与及耐磨性差异及摩擦学性能的变化,为提高高熵合金耐磨性提供新的解决方案。

  • 1 材料与方法

  • 表1 列示了 FeCoNiCrMnAl0.5(Si0.5)高熵合金成分。FeCoNiCrMnAl0.5(Si0.5)高熵合金铸锭采用电弧熔炼法制备,根据表1 中各元素含量称取相应原材料,称重前进行超声清洗等前处理,清洗时间、频率和温度分别为 1 h、40 kHz 和 60℃。清洗完毕后进行烘干处理,之后按照原料熔点高-低-高的顺序依次将原料小块置于电弧熔炼炉的水冷铜模坩埚内。随后向炉内充入高纯度氩气(99.999%)使熔炼气氛气压维持在 0.05 MPa。熔炼时电流缓慢增大,待合金完全熔化形成熔液后采用电磁搅拌技术使原料成分充分混合反应。所有高熵合金试样反复翻转熔炼 5 次以保证合金组织和成分的均匀性。

  • 表1 FeCoNiCrMnAl0.5(Si0.5)高熵合金元素含量 (质量分数 / wt.%)

  • Table1 Elemental content of FeCoNiCrMnAl0.5 (Si0.5) high entropy alloy (wt.%)

  • 采用 DK77 型电火花切割机在高熵合金铸锭上切割 5 mm×5 mm×2 mm 试块进行金相样品制备,采用冷镶嵌方法进行镶样,先进行研磨后使用金刚石抛光液抛光处理,直至表面无划痕形成光亮的镜面,使用 1%HF+1.5%HCl+2.5%HNO3 的腐蚀液进行腐蚀。采用荷兰 Phenom 公司生产的 Prox 型桌面式电子显微镜(SEM)及其附带的能谱分析仪 (EDS),对铸锭显微组织表面形貌和摩擦磨损面形貌进行观察分析。同时使用德国 BRUKER 公司生产的 D8 Advance 型 X 射线衍射仪对物相进行分析,入射光源为 Cu 靶扫描电压≤40 kV,电流≤40 mA,扫描角度为 20~80°,扫描速率为 5(°)/ min。

  • 硬度测试设备为 HVST-1000Z 型维氏硬度计。测试时保证点间隔大于 1 mm 的基础上随机选取 5 个测试点,以 5 点硬度平均值为合金硬度值,测试时载荷 100 g,保载 15 s。

  • 使用 MDW-05 往复式摩擦磨损试验机对高熵合金进行干摩擦性能测试。测试时摩擦副分别为 Φ6.5 mm的钢球和Al2O3球,载荷为30、50和100 N,加载时间 30 min、往复行程 5 mm,运行频率 2 Hz。摩擦因数变化由计算机同步监控。每次试验前后,都要对试样进行清洗烘干称重,并计算出在不同摩擦条件下的磨损量。使用数控超声波清洗器进行清洗,称重设备精度为 0.1 mg 的 ISO 9001 型分析天平。最后对磨损表面形貌进行观测分析,研究合金在不同载荷条件下的摩擦磨损机制。

  • 2 结果与分析

  • 2.1 显微组织结构

  • 图1 所示分别为 FeCoNiCrMnAl0.5 和 FeCoNiCrMnAl0.5Si0.5 铸锭的显微结构。由图可以看出,FeCoNiCrMnAl0.5 合金组织为等轴树枝晶,晶粒大小为 20~30 μm。FeCoNiCrMnAl0.5Si0.5 合金枝晶特点不明显,晶粒尺寸为 10~20 μm。对比图1a 和图1b 发现,添加 Si 元素后,合金组织发生变化,枝晶生长受到抑制,平均晶粒减小。Si 元素具有增加熔体流动性、抑制偏析的作用,进而提升铸锭凝固过程中温度场的均匀性,并缩短凝固时间,这是枝晶生长受到抑制、晶粒发生细化的主要原因。

  • 图1 高熵合金铸锭显微结构

  • Fig.1 Microstructure of high entropy alloy ingots

  • 图2 显示了合金铸锭的 XRD 测试结果,从图中发现,FeCoNiCrMnAl0.5铸锭主要由 FCC 相组成,而 FeCoNiCrMnAl0.5Si0.5铸锭由 FCC+BCC 相组成,这表明 Si 元素的加入会促使高熵合金的相结构由 FCC 向 BCC 转变。同时,对比图2a 和图2b 可以看出,加入 Si 元素后,高熵合金中 FCC 峰的强度有所减弱,衍射峰位角增多,表明合金晶粒生长过程中择优取向性减弱,合金各向异性减弱。Si 的原子半径较其他元素差异较小,容易进入元素之间的空隙中,使 FCC 相急剧膨胀变形发生晶格畸变,增加高熵合金的 ε(晶格畸变能),增强固溶强化效应[18],严重的晶格畸变变形会导致相结构转变由 FCC 相产生 BCC 相[19]。同时,Si 元素加入后,δ(原子半径差)增大也促进 BCC 相的形成[20]。此外,如前所述,Si 元素的加入有利于熔体流动性、抑制偏析,铸锭凝固过程中温度场的均匀性得以提升,因此晶粒沿各向生长的几率相同,这是 FCC 峰的强度有所减弱,衍射峰位角增多,合金各向异性减弱的主要原因。

  • 图2 高熵合金铸锭 XRD 图谱

  • Fig.2 XRD pattern of High Entropy Alloy ingot

  • 2.2 硬度与耐磨性

  • 常温下对高熵合金铸锭进行硬度测试,发现 FeCoNiCrMnAl0.5铸锭平均硬度值为 185.8 HV0.1,然而, FeCoNiCrMnAl0.5Si0.5 铸锭硬度远远高于FeCoNiCrMnAl0.5 高熵合金,达到 750.7 HV0.1。 FeCoNiCrMnAl0.5Si0.5 铸锭具有高硬度的主要原因是,Si 原子的原子尺寸小,更容易进入晶格间隙晶增大格畸变能,能改善固溶强化效果提高耐磨性和硬度[21]。同时,添加 Si 元素有利于提高成形过程中熔池的流动性,加快熔池散热速度并使温度场更加均匀,进而有利于合金组织细化,同时形成位错胞、纳米孪晶、细小析出相和多峰晶粒等结构[22],能提升合金力学性能。此外,由于 Si 元素促进晶格结构由 FCC 向 BCC 转变,BCC 相结构硬度要优于 FCC 相,所以 FeCoNiCrMnAl0.5Si0.5 合金硬度远远高于 FeCoNiCrMnAl0.5合金。

  • 图3、4 为两种高熵合金铸锭在不同摩擦条件下摩擦因数随时间变化曲线图,在载荷相同条件下,高熵合金在与 Al2O3 摩擦副对磨时摩擦因数随时间变化的波动相对要大。添加 Si 元素后,合金的摩擦因数随时间变化波动幅度变小,整个摩擦磨损过程更加平稳,添加 Si 元素有利于提升高熵合金的摩擦性能。表2 为不同摩擦副及不同载荷条件下两种高熵合金平均摩擦因数统计表,对比表中数据可以看出,陶瓷摩擦副条件下高熵合金的平均摩擦因数相对都要大,说明相比于钢球,高熵合金抗陶瓷摩擦磨损性能相对要差。添加 Si 元素后无论是钢球或陶瓷球做摩擦副,相同载荷条件下,FeCoNiCrMnAl0.5Si0.5合金的摩擦因数远小于 FeCoNiCrMnAl0.5 合金的摩擦因数,表明 Si 元素加入后大幅提升了高熵合金的抗干摩擦性能。

  • 图3 FeCoNiCrMnAl0.5不同载荷下摩擦因数

  • Fig.3 Friction factor of FeCoNiCrMnAl0.5 under different loads

  • 图4 FeCoNiCrMnAl0.5Si0.5不同载荷下摩擦因数

  • Fig.4 Friction factor of FeCoNiCrMnAl0.5Si0.5 under different loads

  • 表2 不同载荷下平均摩擦因数

  • Table2 Average friction factor under different loads

  • 图5 显示摩擦副为钢球时 FeCoNiCrMnAl0.5 和 FeCoNiCrMnAl0.5Si0.5 两种合金在不同载荷条件下的磨损面 SEM 照片。对比 FeCoNiCrMnAl0.5 铸锭的磨痕显微结构表面可以观察到大量凹面,剥落凹面中存在少量磨屑,因 FeCoNiCrMnAl0.5 铸锭硬度低,随摩擦载荷增大,摩擦磨损方向出现部分材料转移和塑性变形的现象,样品出现片状脱落。图5b、5d、5f 显示 FeCoNiCrMnAl0.5Si0.5 铸锭在 30 N 载荷下磨损表面未出现凹面,整体平整光滑,在 50、100 N 载荷下可以观察到极少量的剥落。图5d、5f 中出现氧化磨损,且出现氧化磨损区域较小,Si 元素的加入大幅提升了合金的抗干摩擦性能。

  • 图6 显示摩擦副为Al2O3球时FeCoNiCrMnAl0.5和 FeCoNiCrMnAl0.5Si0.5 两种合金在不同载荷条件下的磨损面 SEM 照片。由图6 可以看出, FeCoNiCrMnAl0.5 铸锭的磨损表面有部分凹坑和大量磨屑剥落,特别在 100 N 载荷下, FeCoNiCrMnAl0.5 铸锭的磨损表面出现微裂纹和大量片状剥落,在磨痕中心处观察到黏着磨损现象。由图6b、6d、6f 发现,FeCoNiCrMnAl0.5Si0.5 铸锭在 30 N 载荷下磨损表面有少量磨屑,同样载荷下 FeCoNiCrMnAl0.5Si0.5 铸锭磨痕表面形貌较 FeCoNiCrMnAl0.5铸锭的磨损表面平整光滑,且无大量片状剥落。 FeCoNiCrMnAl0.5Si0.5 比 FeCoNiCrMnAl0.5 铸锭的耐磨损效果好,添加 Si 使 FeCoNiCrMnAl0.5硬度增加,同时也提高耐磨性。

  • 图5 铸锭在钢球下的磨痕形貌图

  • Fig.5 Morphology of abrasion marks of ingots under steel balls

  • 图7 是高熵合金铸锭磨损量对比图。发现 FeCoNiCrMnAl0.5Si0.5 质量损失量均远小于 FeCoNiCrMnAl0.5,载荷相同、摩擦副相同情况下添加 Si 元素后 FeCoNiCrMnAl0.5Si0.5 铸锭摩擦质量损失量减少超过 10 倍,表明 Si 元素的添加可以大幅提升 FeCoNiCrMnAl0.5 合金的耐磨性。

  • 图6 铸锭在 Al2O3 球下的磨痕形貌

  • Fig.6 Abrasion morphology of ingots under Al2O3 balls

  • 图7 高熵合金不同摩擦副下质量磨损量图

  • Fig.7 Mass wear of high entropy alloy under different friction pairs

  • 3 结论

  • 采用真空电弧熔炼技术制备 FeCoNiCrMnAl0.5(Si0.5)高熵合金,研究添加 Si 元素对高熵合金组织及性能的影响,得到以下结论:

  • (1)Si 元素的添加增加了熔体流动性,提升了铸锭凝固过程中温度场的均匀性,并能抑制偏析,同时提高了合金晶格畸变能,增大了原子半径差。这是 FeCoNiCrMnAl0.5Si0.5 晶粒发生细化,促使物相结构出现 BCC 相的主要原因,同样也是 FeCoNiCrMnAl0.5Si0.5 合金具有高硬度和优异干摩擦学性能的根本原因。

  • (2)添加 Si 元素细化合金晶粒,提升合金力学性能与耐磨性具有普遍性,可为高熵合金设计提供指导和参考。

  • (3)晶粒细化及枝晶生长的抑制能够提升合金的综合性能。下一步将开展相关测试试验,以明晰 Si 元素的添加对相关性能的影响机制与机理。

  • 参考文献

    • [1] 刘昊,高强,戴剑博,等.超声滚压强化对 CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响[J].中国表面工程,2022,35(6):107-115.LIU Hao,GAO Qiang,DAI Jianbo et al.The effect of ultrasonic rolling strengthening on the wear resistance of CoCrFeMnNiM(M=Ti,Mo)high entropy alloy laser cladding layer[J].China Surface Engineering,2022,35(6):107-115.(in Chinese)

    • [2] SENKOV O,MILLER J,MIRACLE D,et al.Accelerated exploration of multi-principal element alloys with solid solution phases[J].Nature Communications,2015,6(1):1-10.

    • [3] YEH J W,CHEN S K,LIN S J,et al.Nanostructured HEAs with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [4] RANGANATHAN S.Alloyed pleasures:multimetallic cocktails[J].Current Science,2003,85(10):1404-1406.

    • [5] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in CoCrFeMnNi HEAs[J].Acta Materialia,2013,61(13):4887-4897.

    • [6] YEH J W,CHANG S Y,HONG Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu–Ni-Al-Co–Cr–Fe–Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics,2007,103(1):41-46.

    • [7] TONG C J,CHEN Y L,YEH J W,et al.Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-993.

    • [8] LI D,LI C,FENG T,et al.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J].Acta Materialia,2017,123:285-294.

    • [9] CHOU Y,YEH J,SHIH H,et al.The effect of molybdenum on the corrosion behaviour of the HEAs Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J].Corros Sci,2010,52(8):2571-2581.

    • [10] BUTLER T,ALFANO J,MARTENS R,et al.High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si)multicomponent HEAs[J].Journal of Operations Management,2015,67(1):246-259.

    • [11] HSU C Y,SHEU T S,YEH J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni HEAs[J].Wear,2010,268:653-659.

    • [12] CHUANG M H,TSAI M H,WANG W R,et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy HEAs[J].Acta Materialia,2011,59(16):6308-6317.

    • [13] WEN Q F,YANG Q,SHAO Q.Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys[J].Metals Open Access Metallurgy Journal,2017,7(11):482-497.

    • [14] HOU Y,LIU T,HE D,et al.Sustaining strength ductility synergy of SLM Fe50Mn30Co10Cr10 metastable highentropy alloy by Si addition[J].Social Science Electronic Publishing,2022,145(1):107565.

    • [15] YUAN L,YAN Z,ZHANG H,et al.Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J].Journal of Alloys and Compounds,2016,694:869-876.

    • [16] SHEN Z Y,LIU G X,HE L M,et al.Thermal property and failure behaviors of Gd doped LaZrCeO coatings with feathery microstructure[J].Mater Degrad,2022,6:17-23.

    • [17] 何胜豪,程芳,夏松钦,等.高熵合金的制备及性能[J].热加工工艺,2022,51(18):22-29.HE Shenghao,CHENG Fang,XIA Songqin,et al.Preparation and properties of high-entropy alloy[J].Hot Working Process,2022,51(18):22-29.(in Chinese)

    • [18] LIU H,SUN S,ZHANG T,et al.Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J].Surface and Coatings Technology,2020,405(10):126522.

    • [19] 曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and friction properties of laser cladding FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel surface[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)

    • [20] HUANG S F,ZENG X L,DU X,et al.Microstructure and mechanical properties of the Nb37.7Mo14.5Ta12.6Ni28.16Cr7.04 multi-principal alloys fabricated by gas tungsten wire arc welding additive manufacturing[J].Vacuum,2023,210,111900.

    • [21] KUMAR A,SWARNAKAR A K,BASU A.et al.Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix high entropy alloys[J].Journal of Alloys and Compounds,2018,748:889-897.

    • [22] GUO Z,ZHANG A,HAN J,et al.Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo HEAs[J].Journal of Materials Science,2019,54:5844-5841

  • 参考文献

    • [1] 刘昊,高强,戴剑博,等.超声滚压强化对 CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响[J].中国表面工程,2022,35(6):107-115.LIU Hao,GAO Qiang,DAI Jianbo et al.The effect of ultrasonic rolling strengthening on the wear resistance of CoCrFeMnNiM(M=Ti,Mo)high entropy alloy laser cladding layer[J].China Surface Engineering,2022,35(6):107-115.(in Chinese)

    • [2] SENKOV O,MILLER J,MIRACLE D,et al.Accelerated exploration of multi-principal element alloys with solid solution phases[J].Nature Communications,2015,6(1):1-10.

    • [3] YEH J W,CHEN S K,LIN S J,et al.Nanostructured HEAs with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [4] RANGANATHAN S.Alloyed pleasures:multimetallic cocktails[J].Current Science,2003,85(10):1404-1406.

    • [5] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in CoCrFeMnNi HEAs[J].Acta Materialia,2013,61(13):4887-4897.

    • [6] YEH J W,CHANG S Y,HONG Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu–Ni-Al-Co–Cr–Fe–Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics,2007,103(1):41-46.

    • [7] TONG C J,CHEN Y L,YEH J W,et al.Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-993.

    • [8] LI D,LI C,FENG T,et al.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J].Acta Materialia,2017,123:285-294.

    • [9] CHOU Y,YEH J,SHIH H,et al.The effect of molybdenum on the corrosion behaviour of the HEAs Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J].Corros Sci,2010,52(8):2571-2581.

    • [10] BUTLER T,ALFANO J,MARTENS R,et al.High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si)multicomponent HEAs[J].Journal of Operations Management,2015,67(1):246-259.

    • [11] HSU C Y,SHEU T S,YEH J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni HEAs[J].Wear,2010,268:653-659.

    • [12] CHUANG M H,TSAI M H,WANG W R,et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy HEAs[J].Acta Materialia,2011,59(16):6308-6317.

    • [13] WEN Q F,YANG Q,SHAO Q.Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys[J].Metals Open Access Metallurgy Journal,2017,7(11):482-497.

    • [14] HOU Y,LIU T,HE D,et al.Sustaining strength ductility synergy of SLM Fe50Mn30Co10Cr10 metastable highentropy alloy by Si addition[J].Social Science Electronic Publishing,2022,145(1):107565.

    • [15] YUAN L,YAN Z,ZHANG H,et al.Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J].Journal of Alloys and Compounds,2016,694:869-876.

    • [16] SHEN Z Y,LIU G X,HE L M,et al.Thermal property and failure behaviors of Gd doped LaZrCeO coatings with feathery microstructure[J].Mater Degrad,2022,6:17-23.

    • [17] 何胜豪,程芳,夏松钦,等.高熵合金的制备及性能[J].热加工工艺,2022,51(18):22-29.HE Shenghao,CHENG Fang,XIA Songqin,et al.Preparation and properties of high-entropy alloy[J].Hot Working Process,2022,51(18):22-29.(in Chinese)

    • [18] LIU H,SUN S,ZHANG T,et al.Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J].Surface and Coatings Technology,2020,405(10):126522.

    • [19] 曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and friction properties of laser cladding FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel surface[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)

    • [20] HUANG S F,ZENG X L,DU X,et al.Microstructure and mechanical properties of the Nb37.7Mo14.5Ta12.6Ni28.16Cr7.04 multi-principal alloys fabricated by gas tungsten wire arc welding additive manufacturing[J].Vacuum,2023,210,111900.

    • [21] KUMAR A,SWARNAKAR A K,BASU A.et al.Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix high entropy alloys[J].Journal of Alloys and Compounds,2018,748:889-897.

    • [22] GUO Z,ZHANG A,HAN J,et al.Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo HEAs[J].Journal of Materials Science,2019,54:5844-5841

  • 手机扫一扫看