en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

董天顺,男,1968年出生,博士,副教授。主要研究方向为摩擦学及表面工程。E-mail: dongtianshun111@163.com

通讯作者:

李国禄,男,1966年出生,博士,教授。主要研究方向为摩擦学及表面工程。E-mail: liguolu0305@163.com

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230725001

参考文献 1
李星,王亚强,张金钰,等.高熵合金涂层的研究进展[J].表面技术,2023,52(1):1-20.LI Xing,WANG Yaqing,ZHANG Jinyu,et al.Research progress of high entropy alloy coatings[J].Surface Technology,2023,52(1):1-20.(in Chinese)
参考文献 2
DAI C D,ZHAO T L,DU C W,et al.Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J].Journal of Materials Science & Technology,2020,46:64-73.
参考文献 3
WEN X,CAI Z B,CUI X F,et al.Tribological and corrosion properties of NiCrCoTiV multi-principal element alloy prepared by vacuum hot-pressing sintering[J].Advanced Engineering Materials,2019,21:180123.
参考文献 4
曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and friction properties of laser cladding FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel surface[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)
参考文献 5
SHU F Y,LIU S,ZHAO H Y,et al.Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J].Journal of Alloys and Compounds,2018,731:662-666.
参考文献 6
LIANG H,MIAO J W,GAO B Y,et al.Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in sea water,NaCl solution and deionized water[J].Surface & Coatings Technology,2020,400:126214.
参考文献 7
QIU X W,WU M J,LIU C G,et al.Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids[J].Journal of Alloys and Compounds,2017,708:353-357.
参考文献 8
ZHANG Y G,GAO X F,LIANG X B,et al.Effect of laser remelting on the microstructure and corrosion property of the arc-sprayed AlFeNbNi coatings[J].Surface & Coatings Technology,2020,398:126099.
参考文献 9
CHONG Z Z,SUN Y N,CHENG W J,et al.Laser remelting induces grain refinement and properties enhancement in high-speed laser cladding AlCoCrFeNi high-entropy alloy coatings[J].Intermetallics,2022,150:107686.
参考文献 10
MA K,FENG L.Microstructure and properties of FeCrMnAlCu HEA coatings synthesized by induction remelting and laser remelting[J].Rare Metal Materials and Engineering,2023,52:111-118.
参考文献 11
JIN B Q,ZHANG N N,YIN S.Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting[J].Journal of Materials Science & Technology,2022,121:163-173.
参考文献 12
CHONG Z Z,SUN Y N,CHENG W J,et al.Trace boronizing strengthened AlCoCrFeNi high-entropy alloy coating manufactured by laser remelting:Enhanced wear and corrosion resistances[J].Materials Letters,2023,330:133314.
参考文献 13
ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.
参考文献 14
WANG W R,WAMG W L,YEH J W.Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J].Journal of Alloys and Compounds,2014,589:143-152.
参考文献 15
CHAO Q,GUO T T,JARVIS T,et al.Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel[J].Surface & Coatings Technology,2017,332:440-451.
参考文献 16
GU S,PENG W S,GUO W M,et al.Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings[J].Surface & Coatings Technology,2021,408:126793.
参考文献 17
HAMU G B,ELIEZER D,WAGNER L.The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J].Journal of Alloys and Compounds,2009,468:222-229.
参考文献 18
RALSTON K D,BIRBIRLILIS R N.Effect of grain size on corrosion:A review[J].Corrosion Science,2010,66:319-324.
参考文献 19
LIU Q,MA R N,DU A,et al.Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide[J].Corrosion Science,2019,150:64-75.
参考文献 20
DAI N W,ZHANG L C,ZHANG J X,et al.Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution[J].Corrosion Science,2016,102:484-489.
目录contents

    摘要

    现有关于高熵合金涂层重熔处理的研究大多集中在涂层的组织结构、力学性能和耐磨损性能等方面,对其耐腐蚀性能的研究较少。为了揭示激光重熔对高熵合金涂层耐腐蚀性能的影响,采用等离子喷涂技术在 AISI 1045 钢表面制备 AlCoCrFeNi 高熵合金涂层,并采用激光重熔工艺对其进行重熔处理,对重熔前后涂层的组织结构和耐腐蚀性能进行对比研究。结果表明:激光重熔基本消除了喷涂层中的孔隙和裂纹等缺陷,涂层与基体之间由机械结合转变为冶金结合;重熔层由 BCC 固溶体相和少量 FCC 析出相组成,组织形态呈树枝晶状。极化曲线和电化学阻抗谱分析表明,激光重熔可以改善 AlCoCrFeNi 高熵合金涂层在 3.5% NaCl 溶液中的耐腐蚀性能。激光重熔后,涂层的自腐蚀电位从−0.4216 V 增加到−0.2821 V,腐蚀电流密度从 4.809×10−7 A / cm2 降低到 1.475×10−7 A / cm2 。长期浸泡腐蚀试验也表明重熔层的耐腐蚀性能要显著优于喷涂层。通过等离子喷涂结合激光重熔技术得到缺陷较少、耐腐蚀性较好的高熵合金涂层,对于高熵合金的广泛应用具有重要的参考价值。

    Abstract

    The high cost of producing multi-principal component high-entropy alloys (HEAs) has limited their widespread application, despite their superior properties. Applying HEA coatings to conventional metals can harness these exceptional properties while conserving precious metal resources. Nonetheless, HEA coatings frequently exhibit defects like pores and cracks, which significantly impair their functionality. Research has demonstrated that laser remelting can effectively mitigate most of these defects, refining the coatings' microstructure and enhancing their overall performance. Although existing studies on laser-remelted HEA coatings have primarily concentrated on their microstructure, mechanical attributes, and wear resistance, the impact of laser remelting on their corrosion resistance remains less explored. This investigation assessed the corrosion resistance of an AlCoCrFeNi HEA coating applied to AISI 1045 steel via plasma spraying, followed by laser remelting. The coatings' microstructures, both pre- and post-remelting, were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), with a particular focus on the elemental distribution at the coating-substrate interface. Phase analysis was conducted using X-ray diffraction (XRD), while transmission electron microscopy (TEM) provided insights into the microstructural details of both coatings. Electrochemical and immersion corrosion tests evaluated the coatings' resistance to corrosion. The findings revealed that laser remelting substantially reduced the defects present in the plasma-sprayed coating, decreasing porosity from 4.8% to a negligible 0.3%. This process also converted the mechanical bonding between the coating and substrate into a stronger metallurgical bond. Despite the remelting process, the elemental composition of the coating remained close to an equimolar ratio, consistent with HEA definitions. The laser-remelted coating exhibited a predominance of the BCC solid solution phase, alongside minor FCC phase precipitates, with a higher BCC content than the original sprayed coating. This resulted in a uniform and dense microstructure, characterized by dendritic and interdendritic patterns. Electrochemical tests, including polarization curve analysis and electrochemical impedance spectroscopy, indicated that laser remelting significantly enhances the corrosion resistance of the AlCoCrFeNi HEA coating in a 3.5% NaCl solution. Laser remelting significantly enhanced the corrosion resistance of the HEA coating, evidenced by an increase in self-corrosion potential from –0.4216 V to –0.2821 V and a reduction in corrosion current density from 4.809×10−7 A / cm2 to 1.475×10−7 A / cm2 . Long-term immersion tests further confirmed the superior corrosion resistance of the laser-remelted coating compared to the plasma-sprayed coating. The improved performance is attributed to the elimination of large pores and visible cracks that characterized the surface of the sprayed coating. These defects allowed electrolyte penetration to the coating-substrate interface, facilitating electrochemical reactions. Additionally, electrolyte infiltration led to significant Cl aggregation within the pores, hindering the formation of a protective passive film on the sprayed coating's surface. Laser remelting addressed these issues by effectively sealing the pores and cracks, enabling the formation of a uniform and dense passivation film that significantly impedes electrolyte penetration. The process of combining plasma spraying with laser remelting produces HEA coatings with fewer defects and enhanced corrosion resistance, offering valuable insights for broadening the application of HEAs in various industries.

  • 0 前言

  • 在工业生产中,许多零部件工作在复杂的服役环境中,对其耐磨、耐腐蚀、抗氧化等综合表面性能要求很高[1],传统的金属材料越来越难以满足要求。多主元高熵合金具有优异的综合性能,在复杂服役环境中展示出广阔的应用前景[2-3]。但是块体高熵合金的成本太高,难以广泛应用。在传统金属表面制备高熵合金涂层,不仅可以发挥其优异的综合性能,还可以节省贵金属的消耗[4-7]

  • 然而,高熵合金涂层中往往会存在许多孔隙和裂纹等缺陷,这对其性能非常不利。已有研究表明,激光重熔可以消除高熵合金涂层中的大部分缺陷,改善涂层的显微组织,进而提高其耐磨性[8-9]。MA 等[10]分别采用冷喷涂结合感应重熔和冷喷涂结合激光重熔制备 FeCrMnAlCu 高熵合金涂层,发现与激光重熔相比,采用感应重熔制备的高熵合金涂层中 BCC 相的晶格畸变程度更严重,因而具有更高的显微硬度和更好的耐磨性。JIN 等[11]通过等离子喷涂结合激光重熔制备 AlCoCrFeNi(TiN)x 高熵合金涂层,发现激光重熔后,涂层中原位形成了 TiN-Al2O3 陶瓷颗粒和立方 B2 相,这些强化相弥散分布,使得涂层的显微硬度和耐磨损性能显著提高。然而,现有关于高熵合金涂层重熔处理的研究中对其耐腐蚀性能的研究较少[12]

  • 本文采用等离子喷涂技术在 AISI 1045 钢表面制备 AlCoCrFeNi 高熵合金涂层,并采用激光重熔工艺对其进行重熔处理,在此基础上对重熔前后涂层的组织结构和耐腐蚀性能进行对比研究。

  • 1 材料和方法

  • 1.1 涂层的制备

  • 采用的 AlCoCrFeNi 高熵合金粉末由北京研邦新材料科技有限公司所生产,其元素含量如表1 所示。合金粉末粒度比较均匀,球化程度高,如图1 所示。

  • 表1 AlCoCrFeNi 粉末的元素含量(at.%)

  • Table1 Element content of AlCoCrFeNi powder (at.%)

  • 图1 粉末形貌

  • Fig.1 Morphology of the powder

  • 基体采用AISI 1045 钢,尺寸为30 mm×60 mm× 10 mm。在喷涂之前,首先对基体表面进行喷砂粗化处理,然后用乙醇和丙酮对其进行超声清洗,再用 GP-80 型等离子喷涂设备喷涂 AlCoCrFeNi 高熵合金涂层。激光重熔采用的是 JK2003SM 型激光设备,光斑直径 5 mm,搭接率 50%,功率 1.2 kW,扫描速度 10 mm / s,氩气流量 10 L / min。

  • 1.2 涂层的表征

  • 采用 JSM-6510A 型扫描电子显微镜(SEM)和能谱分析仪(EDS)观察重熔前后涂层的显微形貌,并分析涂层与基体界面处的元素分布。采用 D8 ADVANCE 型 X 射线衍射仪分析涂层的物相。采用 Tecnai F20型透射电子显微镜观察涂层的组织结构。采用灰度法测量重熔前后涂层的孔隙率,每种涂层随机选取 5 个区域进行孔隙率测量。

  • 采用电化学腐蚀和浸泡腐蚀两种腐蚀试验,测试重熔前后 AlCoCrFeNi 涂层的耐腐蚀性能。腐蚀溶液选用质量分数为 3.5%的 NaCl 溶液。试验开始前,将块体涂层样品切割成尺寸为 10 mm× 10 mm×10 mm 的试样,并进行环氧树脂密封处理,只将涂层表面暴露在溶液中,暴露面积为 1 cm2。使用上海辰华 CHI660E 电化学工作站,对涂层试样进行电化学腐蚀试验,通过测试两种涂层的极化曲线和电化学阻抗谱来表征其耐腐蚀性能。对涂层试样进行 10 d 的长期浸泡腐蚀试验,观察两种涂层表面的腐蚀形貌,对比耐腐蚀性能。

  • 2 结果与讨论

  • 2.1 涂层的显微形貌

  • 重熔前后 AlCoCrFeNi 涂层的截面形貌和孔隙率测定图如图2 所示。喷涂层呈现出固有的层状结构,内部含有较多大的孔洞和明显裂纹,致密度不高。经激光重熔后,喷涂层中的层状结构消失,孔隙和裂纹等缺陷基本被消除。经测定,喷涂层的孔隙率为 4.8%,而重熔层的孔隙率仅为 0.3%。因此,激光重熔显著提高了涂层的致密度。

  • 图2 截面形貌和孔隙率测定图

  • Fig.2 Cross-section morphology and porosity measurement diagram

  • 重熔前后 AlCoCrFeNi 涂层的界面形貌及其线扫结果如图3 所示,可见喷涂层与基体之间存在明显的界面,各元素含量在界面处发生突变,呈现出机械结合的界面结合形式,而重熔层与基体之间结合紧密,没有明显的缺陷,而且在界面处发生了一定程度的元素扩散现象,形成了一个过渡区,说明在涂层与基体之间形成了冶金结合。两种涂层中各元素含量如表2 所示,根据表中数值,可计算涂层的混合熵值,计算公式如下:

  • ΔSconf =-R1N xilnxi
    (1)
  • 式中,R=8.314 J /(K·mol),xi 是各元素含量(at.%), N 是元素的数量。经计算喷涂层和重熔层的混合熵值分别为 1.608 9R 和 1.598 9R。重熔层中的各元素含量近似于等摩尔比,且混合熵值大于 1.5R,说明其仍属于高熵合金涂层[13]

  • 图3 界面处线扫描分析结果

  • Fig.3 Results of line scanning analysis at the interface

  • 表2 两种涂层中的元素含量(at.%)

  • Table2 Element content in two coatings (at.%)

  • 2.2 涂层的物相

  • 两种AlCoCrFeNi涂层的XRD图谱如图4所示。喷涂层呈现出单一的 BCC 固溶体结构,重熔层除了含有 BCC 固溶体相,还生成了少量 FCC 固溶体相,而且由于重熔过程中涂层完全熔化后再结晶,BCC 固溶体相的主峰强度显著提高[14-15]。同时,由于 Al 元素容易被氧化,还生成了少量 α-Al2O3 相。两种涂层均为固溶体相结构,几乎没有形成金属间化合物,这可从吉布斯自由能的角度解释:

  • ΔGmix=ΔHmix-TΔSmix
    (2)
  • 式中,ΔGmix 是混合吉布斯自由能,ΔHmix 是混合焓, ΔSmix是混合熵,T 是合金中不同元素混合时的温度。从式(2)可以看出熵值越大,吉布斯自由能越小,因此高熵合金涂层具有较高的稳定性。在可能形成的各种合金相中,随机互溶的固溶体具有最高的混合熵,可避免相分离导致的金属间化合物的产生[16]

  • 图4 两种涂层的 XRD 图谱

  • Fig.4 XRD patterns of two coatings

  • 2.3 涂层的显微组织结构

  • 图5a 为 AlCoCrFeNi 喷涂层的透射电镜显微组织形貌,可以看出它主要由灰色基底相和黑色析出相组成。对灰色基底相 A 区域和黑色析出相 B 区域进行衍射斑点标定和 EDS 分析,衍射斑点标定结果如图5b 和 5c 所示,EDS 分析结果如表3 所示。区域 A 的成分组成和原始粉末相差不大,各元素含量接近于等摩尔比,其相结构为 BCC 固溶体相。区域 B 各元素含量不再近似于等摩尔比,其中,Fe、 Co 和Cr元素含量明显较高,结合衍射斑点分析可知,其相结构为 FCC 析出相,这与 XRD 得到的分析结果有所不同,推测是由于其含量较少而难以发现。

  • 图5 喷涂层透射电镜图像

  • Fig.5 TEM image of the sprayed coating

  • 表3 区域 A、B 的元素含量(at.%)

  • Table3 Element content in A and B areas (at.%)

  • AlCoCrFeNi 重熔层的 SEM 组织形貌如图6。图6a 显示,经激光重熔后,涂层组织由枝晶和枝晶间组成。图6b、6c 显示重熔层中部组织多为等轴晶,重熔层下部多为胞状树枝晶。由能谱分析可知,枝晶内部(A、B、F、H)富含 Al 元素,枝晶间(C、 D、E、G)有 Fe 和 Cr 元素的偏析发生。

  • 图7a 为重熔层的透射电镜显微组织形貌。可以看出它仍由灰色基底相和黑色析出相组成。对灰色基底相 C 区域和黑色析出相 D 区域进行衍射斑点标定和 EDS 分析,衍射斑点标定结果如图7b 和 7c 所示,EDS 分析结果如表4 所示。与喷涂层相比,区域 C 的 Fe 元素含量有所增加,这是因为在重熔层与基体的界面处存在少量的 Fe 元素扩散,但各元素含量仍接近于等摩尔比,分析其相结构为 BCC 固溶体相。区域 D 具有较高的 Fe 元素含量,结合衍射斑点确定其相结构为 FCC 铁基化合物。

  • 图6 重熔层的组织结构与元素含量

  • Fig.6 Microstructure and element content of remelted coating

  • 图7 重熔层透射电镜图像

  • Fig.7 TEM image of the remelted coating.

  • 表4 C、D 区域的元素含量(at.%)

  • Table4 Element content of C and D areas (at.%)

  • 2.4 涂层的耐腐蚀性能

  • 两种 AlCoCrFeNi 涂层在 3.5%的 NaCl 溶液中的电化学腐蚀试验结果如图8a 所示。与喷涂层相比,重熔层具有更高的开路电位。在 1 800 s 时,重熔层的开路电位基本达到稳定值,为−0.318 V,但喷涂层的开路电位仍有明显的下降趋势,为 −0.444 V,因此重熔层的腐蚀倾向更小。两种涂层的极化曲线和电化学参数如图8b 所示,喷涂层的自腐蚀电位为−0.421 6 V,腐蚀电流密度为 4.809× 10−7 A / cm2,激光重熔后,重熔层的自腐蚀电位增加到 −0.282 1 V,自腐蚀电流降低到 1.475 × 10−7 A / cm2。金属材料的组织结构与其自腐蚀电位和腐蚀电流密度之间存在很大的关联,自腐蚀电位越高,腐蚀电流密度越低,代表材料拥有较高的化学稳定性和较低的腐蚀倾向[17-18]。激光重熔后,喷涂层中的孔隙和裂纹等缺陷基本被消除,电解液难以再通过缺陷渗入重熔层,所以重熔层具有更高的自腐蚀电位和更低的腐蚀电流密度。因此,在 3.5% 的 NaCl 溶液中,AlCoCrFeNi 重熔层的耐腐蚀性能明显优于喷涂层。

  • 图8 两种涂层在 3.5%NaCl 溶液中的开路电位和极化曲线

  • Fig.8 Open circuit potential and polarization curves of two coatings in 3.5%NaCl solution

  • 两种 AlCoCrFeNi 涂层在 3.5% NaCl 的溶液中的电化学阻抗谱图如图9 所示,图9a 显示重熔层具有更大的容抗弧半径,容抗弧半径越大,其电阻就越大,在电解液与电极的界面处电荷转移也就越困难,其耐腐蚀性能也就越好。图9b 显示重熔层在高频区的阻抗模值较小,在低频区的阻抗模值较大,表明其耐腐蚀性能较好[19]。图9c 所示为两种涂层的 Bode 图,和喷涂层相比,重熔层相位角的最小值更小,为−75°,而相位角越小,说明其耐腐蚀性能越好。因此,在 3.5% NaCl 的溶液中,AlCoCrFeNi 重熔层的耐腐蚀性能要明显优于喷涂层。

  • 图9 两种涂层的电化学阻抗谱图

  • Fig.9 Electrochemical impedance spectra of two coatings

  • 图10 为两种 AlCoCrFeNi 涂层在 3.5% NaCl 的溶液中的等效电路图,拟合结果如表5 所示。其中, Rs 表示电解液电阻,Rf表示涂层表面钝化膜的电阻,重熔层的电阻 Rf约为喷涂层的 3 倍,更大的 Rf具有更致密的表面钝化膜,而表面氧化膜越致密其耐腐蚀性能也就越好。Qf表示电解液与涂层表面钝化膜之间的电容,Qf数值与电解液中腐蚀介质的多少相关,其数值越小,则腐蚀介质越少。Rct 为涂层与电解液间的电荷转移电阻,重熔层的 Rct值约为喷涂层的 16 倍,Rct 值越大,表明电解液中的电荷转移越困难,腐蚀电流密度也就越小,腐蚀过程难以进行。拟合结果表明,重熔层的耐蚀性要显著优于喷涂层,这与上述极化曲线和电化学阻抗谱得到的结果一致,进一步验证了激光重熔可以提高高熵合金涂层的耐腐蚀性能。

  • 图10 涂层等效电路图

  • Fig.10 Equivalent circuit diagram of coating

  • 表5 涂层等效电路拟合参数

  • Table5 Fitting parameters of coating equivalent circuit

  • 两种 AlCoCrFeNi 涂层在 3.5% NaCl 的溶液中浸泡 10 d 后的腐蚀形貌如图11 所示。喷涂层表面出现了大量的腐蚀坑,根据腐蚀坑的形态和分布可以看出,喷涂层中的孔洞和裂纹是腐蚀最严重的地方,这是因为在电化学腐蚀过程中,电解液会通过孔洞和裂纹渗入到涂层与基体的结合处,随后在结合处形成双层电容,进一步发生了电化学反应[17],这从图12 的 EDS 元素分布可以得到验证,EDS 显示,孔洞处存在大量的 Cl 聚集。同时,Cl 因其半径小而具有较好的穿透能力,所以涂层表面易附着大量的 Cl,而 Cl 的附着会导致涂层表面的钝化膜难以形成。此外,喷涂层中孔洞和裂纹等缺陷处存在的大量 Cl 聚集,进一步增加了表面钝化膜形成的难度,涂层没有表面钝化膜,Cl 就能够通过这些缺陷轻易进入涂层内部,进行局部腐蚀[20]。随着试验进行,局部腐蚀变得越来越严重,最终会形成大尺寸的腐蚀坑。图12 还显示在腐蚀坑的内部,存在部分 Fe 元素的聚集,分析认为,腐蚀液通过缺陷进入了涂层内部,在涂层与基体的界面处发生腐蚀,导致腐蚀产物生成,这对于涂层与基体的结合强度非常不利,最终可能导致喷涂层脱落。然而对腐蚀后的重熔层形貌进行观察,发现表面仅出现局部点蚀,其余部分表现出较高的耐蚀性,这是因为重熔层表面几乎没有缺陷,在 3.5% NaCl 的溶液中表面容易形成均匀致密的钝化膜,极大地制约了电解质的渗透,使其获得了良好的耐腐蚀性能。

  • 图11 两种涂层在 3.5% NaCl 的溶液中的腐蚀形貌

  • Fig.11 Corrosion morphology of two coatings in 3.5% NaCl solution

  • 图12 喷涂层腐蚀后表面的元素分布

  • Fig.12 Element distribution on the surface of sprayed coating after corrosion

  • 3 结论

  • (1)激光重熔基本消除了 AlCoCrFeNi 喷涂层中的孔隙和裂纹等缺陷,使得涂层结构变得均匀致密,涂层与基体之间由机械结合转变为冶金结合。

  • (2)重熔层仍然属于高熵合金涂层,其组织主要由 BCC 固溶体相和少量 FCC 析出相组成,组织形态呈树枝晶状。

  • (3)激光重熔可以明显改善 AlCoCrFeNi 高熵合金涂层在 3.5% NaCl 溶液中的耐腐蚀性能,这是因为重熔层表面几乎没有缺陷,极大地制约了电解质的渗透,使其获得了良好的耐腐蚀性能。

  • 参考文献

    • [1] 李星,王亚强,张金钰,等.高熵合金涂层的研究进展[J].表面技术,2023,52(1):1-20.LI Xing,WANG Yaqing,ZHANG Jinyu,et al.Research progress of high entropy alloy coatings[J].Surface Technology,2023,52(1):1-20.(in Chinese)

    • [2] DAI C D,ZHAO T L,DU C W,et al.Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J].Journal of Materials Science & Technology,2020,46:64-73.

    • [3] WEN X,CAI Z B,CUI X F,et al.Tribological and corrosion properties of NiCrCoTiV multi-principal element alloy prepared by vacuum hot-pressing sintering[J].Advanced Engineering Materials,2019,21:180123.

    • [4] 曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and friction properties of laser cladding FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel surface[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)

    • [5] SHU F Y,LIU S,ZHAO H Y,et al.Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J].Journal of Alloys and Compounds,2018,731:662-666.

    • [6] LIANG H,MIAO J W,GAO B Y,et al.Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in sea water,NaCl solution and deionized water[J].Surface & Coatings Technology,2020,400:126214.

    • [7] QIU X W,WU M J,LIU C G,et al.Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids[J].Journal of Alloys and Compounds,2017,708:353-357.

    • [8] ZHANG Y G,GAO X F,LIANG X B,et al.Effect of laser remelting on the microstructure and corrosion property of the arc-sprayed AlFeNbNi coatings[J].Surface & Coatings Technology,2020,398:126099.

    • [9] CHONG Z Z,SUN Y N,CHENG W J,et al.Laser remelting induces grain refinement and properties enhancement in high-speed laser cladding AlCoCrFeNi high-entropy alloy coatings[J].Intermetallics,2022,150:107686.

    • [10] MA K,FENG L.Microstructure and properties of FeCrMnAlCu HEA coatings synthesized by induction remelting and laser remelting[J].Rare Metal Materials and Engineering,2023,52:111-118.

    • [11] JIN B Q,ZHANG N N,YIN S.Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting[J].Journal of Materials Science & Technology,2022,121:163-173.

    • [12] CHONG Z Z,SUN Y N,CHENG W J,et al.Trace boronizing strengthened AlCoCrFeNi high-entropy alloy coating manufactured by laser remelting:Enhanced wear and corrosion resistances[J].Materials Letters,2023,330:133314.

    • [13] ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

    • [14] WANG W R,WAMG W L,YEH J W.Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J].Journal of Alloys and Compounds,2014,589:143-152.

    • [15] CHAO Q,GUO T T,JARVIS T,et al.Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel[J].Surface & Coatings Technology,2017,332:440-451.

    • [16] GU S,PENG W S,GUO W M,et al.Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings[J].Surface & Coatings Technology,2021,408:126793.

    • [17] HAMU G B,ELIEZER D,WAGNER L.The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J].Journal of Alloys and Compounds,2009,468:222-229.

    • [18] RALSTON K D,BIRBIRLILIS R N.Effect of grain size on corrosion:A review[J].Corrosion Science,2010,66:319-324.

    • [19] LIU Q,MA R N,DU A,et al.Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide[J].Corrosion Science,2019,150:64-75.

    • [20] DAI N W,ZHANG L C,ZHANG J X,et al.Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution[J].Corrosion Science,2016,102:484-489.

  • 参考文献

    • [1] 李星,王亚强,张金钰,等.高熵合金涂层的研究进展[J].表面技术,2023,52(1):1-20.LI Xing,WANG Yaqing,ZHANG Jinyu,et al.Research progress of high entropy alloy coatings[J].Surface Technology,2023,52(1):1-20.(in Chinese)

    • [2] DAI C D,ZHAO T L,DU C W,et al.Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J].Journal of Materials Science & Technology,2020,46:64-73.

    • [3] WEN X,CAI Z B,CUI X F,et al.Tribological and corrosion properties of NiCrCoTiV multi-principal element alloy prepared by vacuum hot-pressing sintering[J].Advanced Engineering Materials,2019,21:180123.

    • [4] 曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and friction properties of laser cladding FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel surface[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)

    • [5] SHU F Y,LIU S,ZHAO H Y,et al.Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J].Journal of Alloys and Compounds,2018,731:662-666.

    • [6] LIANG H,MIAO J W,GAO B Y,et al.Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in sea water,NaCl solution and deionized water[J].Surface & Coatings Technology,2020,400:126214.

    • [7] QIU X W,WU M J,LIU C G,et al.Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids[J].Journal of Alloys and Compounds,2017,708:353-357.

    • [8] ZHANG Y G,GAO X F,LIANG X B,et al.Effect of laser remelting on the microstructure and corrosion property of the arc-sprayed AlFeNbNi coatings[J].Surface & Coatings Technology,2020,398:126099.

    • [9] CHONG Z Z,SUN Y N,CHENG W J,et al.Laser remelting induces grain refinement and properties enhancement in high-speed laser cladding AlCoCrFeNi high-entropy alloy coatings[J].Intermetallics,2022,150:107686.

    • [10] MA K,FENG L.Microstructure and properties of FeCrMnAlCu HEA coatings synthesized by induction remelting and laser remelting[J].Rare Metal Materials and Engineering,2023,52:111-118.

    • [11] JIN B Q,ZHANG N N,YIN S.Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting[J].Journal of Materials Science & Technology,2022,121:163-173.

    • [12] CHONG Z Z,SUN Y N,CHENG W J,et al.Trace boronizing strengthened AlCoCrFeNi high-entropy alloy coating manufactured by laser remelting:Enhanced wear and corrosion resistances[J].Materials Letters,2023,330:133314.

    • [13] ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

    • [14] WANG W R,WAMG W L,YEH J W.Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J].Journal of Alloys and Compounds,2014,589:143-152.

    • [15] CHAO Q,GUO T T,JARVIS T,et al.Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel[J].Surface & Coatings Technology,2017,332:440-451.

    • [16] GU S,PENG W S,GUO W M,et al.Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings[J].Surface & Coatings Technology,2021,408:126793.

    • [17] HAMU G B,ELIEZER D,WAGNER L.The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J].Journal of Alloys and Compounds,2009,468:222-229.

    • [18] RALSTON K D,BIRBIRLILIS R N.Effect of grain size on corrosion:A review[J].Corrosion Science,2010,66:319-324.

    • [19] LIU Q,MA R N,DU A,et al.Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide[J].Corrosion Science,2019,150:64-75.

    • [20] DAI N W,ZHANG L C,ZHANG J X,et al.Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution[J].Corrosion Science,2016,102:484-489.

  • 手机扫一扫看