en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王波,男,高级工程师。主要研究方向为防腐涂料。E-mail: lywangb@hotmail.com。

吴连锋,男,高级工程师。主要研究方向为功能涂料。E-mail: wulianfeng126@126.com;

冯荟蒙,女,1995年出生,博士研究生。主要研究方向为自修复功能涂层。E-mail: oucfenghuimeng@163.com;

赵志鹏,男,1997年出生,博士研究生。主要研究方向为功能涂层。E-mail: 1457256089@qq.com;

李文,男,1989年出生,副教授。主要研究方向为防腐涂层。E-mail: liwen3710@ouc.edu.cn

通讯作者:

陈守刚,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为海洋新材料及其防护应用。E-mail: sgchen@ouc.edu.cn

中图分类号:TB381;TB34

DOI:10.11933/j.issn.1007-9289.20230629001

参考文献 1
WANG T,FENG H,WANG W,et al.Interfacial controllable heterojunctions nanosheets as photothermal catalyzer for cyclic photothermal self-healing of polydimethylsiloxane coating[J].Composites Part B:Engineering,2022,240:110002.
参考文献 2
ZHANG Z P,RONG M Z,ZHANG M Q.Polymer engineering based on reversible covalent chemistry:A promising innovative pathway towards new materials and new functionalities[J].Progress in Polymer Science,2018,80:39-93.
参考文献 3
刘丹,宋影伟,单大勇,等.镁合金自修复涂层研究进展[J].表面技术,2016,45(12):28-35.LIU D,SONG Y W,SHAN D Y,er al,Self-healing coatings form agnesium alloys:A review[J].Surface Technology,2016,45(12):28-35.(in Chinese)
参考文献 4
WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.
参考文献 5
王巍,王鑫,刘晓杰,等.海洋环境中自修复涂层研究进展[J].装备环境工程,2018,15(10):89-97.WANG W,WANG X,LIU X J,et al,Research progress of self-healing coatings in marine environment[J].Equipment Environment Engineering,2018,15(10):89-97.(in Chinese)
参考文献 6
ZHANG F,JU P,PAN M,et al.Self-healing mechanisms in smart protective coatings:A review[J].Corrosion Science,2018,144:74-88.
参考文献 7
LI B,XUE S,MU P,et al.Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys[J].ACS Applied Materials & Interfaces,2022,14(26):192-30204.
参考文献 8
张勇,樊伟杰,张泰峰,等.涂层自修复技术研究进展 [J].中国腐蚀与防护学报,2019,39(4):299-305.ZHANG Y,FAN W J,ZHANG T F,et al.Review of intelligent self-healing coatings[J].Journal of Chinese Society for Corrosion and Protection,2019,39(4):299-305.(in Chinese)
参考文献 9
葛倩倩,鲁浈浈,梁杨,等.基于微胶囊技术的超疏水自修复涂层研究进展[J].中国表面工程,2022,35(4):102-112.GE Q Q,LU Z Z,LIANG Y,et al.Research progress of superhydrophobic and self-healing coating based on microencapsulation technology[J].China Surface Engineering,2022,35(4):102-112.(in Chinese)
参考文献 10
ZHU M,YU J,LI Z,et al.Self-healing fibrous membranes[J].Angewandte Chemie,2022,134(41):e202208949.
参考文献 11
ZHANG C,LI W,LIU C,et al.Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings[J].Journal of Colloid and Interface Science,2022,608:1025-1039.
参考文献 12
CHEN J,LUO Z,AN R,et al.Novel intrinsic self-healing poly-silicone-urea with super-low ice adhesion strength[J].Small,2022,18(22):2200532.
参考文献 13
CHENG Y,XIE Y,CAO H,et al.High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor[J].Chemical Engineering Journal,2023,453:139823.
参考文献 14
HAN T Y,LIN C H,LIN Y S,et al.Autonomously self-healing and ultrafast highly-stretching recoverable polymer through trans-octahedral metal-ligand coordination for skin-inspired tactile sensing[J].Chemical Engineering Journal,2022,438:135592.
参考文献 15
ZHENG T,ZHOU Q,YANG T,et al.Disulfide bond containing self-healing fullerene derivatized polyurethane as additive for achieving efficient and stable perovskite solar cells[J].Carbon,2022,196:213-219.
参考文献 16
AN Z-W,XUE R,YE K,et al.Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods[J].Nanoscale,2023,15(14):6505-6520.
参考文献 17
HUANG X,GE G,SHE M,et al.Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor[J].Applied Surface Science,2022,598:153803.
参考文献 18
王金科,马菱薇,张达威.氮化钛含量对热塑性涂层光热效应及自修复性能的影响[J].中国表面工程,2020,33(1):125-132.WANG J K,MA L W,ZHANG D W.Effects of titanium nitride concentration on photothermal effects and self-healing properties of thermoplastic coatings[J].China Surface Engineering,2020,33(1):125-132.(in Chinese)
参考文献 19
FENG H,WANG W,ZHANG M,et al.2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications[J].Applied Catalysis B:Environmental,2020,266:118609.
参考文献 20
LI R,ZHANG L,SHI L,et al.MXene Ti3C2:an effective 2D light-to-heat conversion material[J].ACS Nano,2017,11(4):3752-3759.
参考文献 21
HADDADI S A,HU S,GHADERI S,et al.Amino-functionalized MXene nanosheets doped with Ce(III)as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel[J].ACS applied materials & interfaces,2021,13(35):42074-42093.
参考文献 22
ZAREPOUR A,AHMADI S,RABIEE N,et al.Self-healing MXene-and graphene-based composites:properties and applications[J].Nano-micro Letters,2023,15(1):100.
参考文献 23
司倩倩,陈厚和,张幺玄,等.超声波处理聚氨酯泡沫化学镀镍优化工艺[J].中国表面工程,2012,25(4):74-78.SI Q,CHEN H,ZHANG Y,et al.Condition optimization of electroless nickel plating for PUF with ultrasonic treatment[J].China Surface Engineering,2012,25(4):74-78.(in Chinese)
目录contents

    摘要

    涂层服役过程容易划伤产生裂纹缺陷造成被动失效,降低防护性能,研发具有自修复性能的防腐涂层对海洋工程材料的腐蚀防护具有重要意义。采用刻蚀剥离法成功合成 MXene 二维纳米材料,再通过一锅法合成具有丰富氢键的 MXene 聚氨酯本征自修复涂层。MXene 优异的光热转换性促进了涂层链段的运动和氢键重组过程,进而提升了自修复性能。对 MXene 涂层进行 5 次划伤-光热自修复循环测试,低频阻抗模值均能恢复到 108 Ω·cm2左右,具有优异的多循环自修复性能。通过电化学阻抗测试,MXene 涂层具有较好的长效防腐性能,在浸泡的 30 d 期内,涂层的低频阻抗模值能一直保持在 108 Ω·cm2 以上,一方面归因于二维材料优异的阻隔性能,另一方面涂层的自修复性不断修补微裂纹,减缓了腐蚀介质的渗入。试验结果表明,将 MXene 材料作为光热转换剂制备得到具有良好光热响应性和长效防腐性的聚氨酯自修复涂层。光热响应型 MXene 自修复涂层具备长效防护性能,能够应用于海洋工程装备提升服役寿命。

    Abstract

    Coatings are prone to scratching and cracking defects during service, which result in passive failure and reduced protective performance. The development of self-healing anticorrosive coatings is necessary for the corrosion protection of marine engineering materials. In this study, MXene two-dimensional nanomaterials were successfully synthesized using an etching and stripping method, and MXene polyurethane self-healing coatings with rich hydrogen bonds were synthesized using a one-pot method. The microstructure of the MXene was investigated using scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The results showed that the aluminum layer of Ti3AlC2 was successfully etched by acid etching and ultrasonic stripping to obtain a two-dimensional Ti3C2 MXene material. Self-healing polyurethane coatings containing numerous hydrogen bonds were synthesized using Polytetramethylene ether glycol as the soft segment, isophorone diisocyanate and toluene diisocyanate as the hard segments, and Dimethylglyoxime as the chain extender. MXene was doped into the coating as a photothermal agent to improve the repair efficiency and protection performance. The synthesis of PU and PU / MXene was confirmed using Fourier transform infrared spectroscopy. The photothermal properties of the coatings were characterized using a near-infrared laser emitter and thermal imager. The temperature of the PU / MXene coating surface increased by more than 20 ℃ within 1 min, reaching 43.1 ℃, which was significantly higher than the 29 ℃ of the PU coatings, demonstrating that the composite coating doped with MXene exhibited a good photothermal conversion performance under near infrared light. The self-healing process of the coating was monitored using confocal laser scanning microscopy. The healing rate of the PU / MXene coating was higher than that of the PU coating. The excellent photothermal conversion of MXene facilitated the motion of the coating segments and the hydrogen bond recombination process, thereby improving the self-healing performance. The self-healing and anticorrosion properties of the coatings were investigated via electrochemical testing. The initial low-frequency (0.01 Hz) impedance mode value of the PU / MXene coating samples before scratching was close to 109 Ω·cm2 , which is significantly higher than that of the PU coating (107 Ω·cm2 ), and the corrosion resistance was better. After the first scratching, the low-frequency impedance mode value of the coated sample sharply decreased to below 105 Ω·cm2 , and the corrosion resistance decreased. After the repair, the low-frequency impedance mode value was restored to an impedance value close to the initial level. The scratch and photothermal self-healing cycle of the PU / MXene coating were tested for five times, and the low-frequency impedance modulus could be restored to approximately 108 Ω·cm2 . However, the impedance mode values of the PU-coated samples after the repair were significantly lower than those of the PU / MXene-coated samples. The MXene / PU coating exhibited excellent cycle repair performance, which significantly improved the service life. The electrochemical impedance test results show that the low-frequency impedance modulus of the coating sample can be maintained above 108 Ω·cm2 . When immersed in a 3.5 wt.% sodium chloride solution for 30 d, the low-frequency impedance mode value of the PU / MXene coating can remain above 108 Ω·cm2 , whereas the PU coating is only higher than 106 Ω·cm2 , indicating that the anticorrosion property of the PU / MXene coating can be maintained for an extended period. Two main reasons are responsible for why the PU / MXene coatings exhibit improved long-term anticorrosion performance. On the one hand, this is attributed to the excellent barrier properties of the two-dimensional materials; on the other hand, the self-repair of the coating constantly repairs microcracks and reduces the infiltration of corrosive media. The experimental results showed that a polyurethane self-healing coating with a good photothermal response and long-term anticorrosion was prepared using MXene as a photothermal conversion agent. This study provides a theoretical basis for the practical application of photothermal responsive polyurethane self-healing coatings on marine engineering equipment.

    关键词

    自修复聚氨酯MXene防腐

  • 0 前言

  • 金属材料在海洋环境的长期服役中极易发生腐蚀问题,不仅影响装备的服役寿命及效用,导致我国每年的经济损失高达上千亿美元,而且存在重大的安全隐患[1]。自然界中,自修复是生物体普遍具有的能力,其可以使生物组织有效地修复遭受到的物理或者化学伤害,并达到与受伤害之前相似的物化性能,从而具有更好的环境适应性和更长的寿命[2-3]。受自然启发,将自修复特性引入合成涂层当中,可以使涂层的使用性能和寿命都得到提升,自修复防护涂层因其主动愈合和优异的耐腐蚀性而成为研究热点[4-5]

  • 根据修复机理,自修复涂层可主要分为两类[6]:一类是外援型自修复涂层,将内部包含涂层缓蚀剂或修复剂的纳米容器预先埋植入到涂层中,当涂层损伤微裂纹延伸到纳米容器附近时,涂层缓蚀剂或修复剂将起作用,防止裂纹进一步扩展并修复裂纹保护涂层[7-8]。纳米容器有多种种类,包括微胶囊纳米容器[9]、微血管纳米容器[10]、介孔纳米容器[11]等,然而纳米容器中的缓蚀剂或修复剂是不可再生的。因此,外援型自修复涂层很难在同一位置实现多个循环自修复过程。相反,另一种是本征型自修复涂层,它是形状记忆涂层或内部具有许多动态键的涂层[12]。目前,应用于自修复材料的动态键包括氢键[13]、金属配位键[14]、二硫键[15]、Diels-Alder[16]、静电相互作用[17]等。动态键的断裂重组过程促进了宏观上的自修复过程。在理想条件下,本征自修复涂层具有无限次循环修复的可能性,因为自修复过程不消耗任何反应材料。事实上,自愈效率会随着自修复周期的增加而降低,这导致了动态键利用率的降低。综上所述,提高涂层的循环自修复和长效防腐性能是一个具有挑战性的问题。

  • 外部刺激反应是提高自修复涂层修复效率和减少反应时间的一种手段。光是一种远程激发装置,可实现远程激发涂层修复,受损部位可以在不影响其他部位的情况下修复[18]。MXene 是一类新型的具有类石墨烯结构的二维材料,由过渡金属碳化物、氮化物或碳氮化物构成[19]。MXene 被证明了具有独特的光热转换性能——入射光能被光热材料吸收,然后转化为热能(热)供进一步使用。LI 等对 MXene 的光热转换效率进行了测试,得到其有近 100%的内部光热转换效率的结果[20]。MXene 能够有效地吸收和利用近红外区的光,通过光热转换促进在温度起主导作用的各种应用[21]。从材料自修复角度来看,温度的升高往往有利于聚合物链段的运动和可逆反应的进行,这有利于在自修复效率的提升,扩大自修复涂层的修复温度范围[22]

  • 聚氨酯涂层由于丰富的酰胺键而具有出色的稳定性和耐候性,因此具有出色的腐蚀保护性能[23]。聚氨酯涂层具有较低的玻璃化转变温度和丰富的分子间氢键,因此聚氨酯涂层是光热自修复防腐涂层作为基础涂层的理想选择。但是,在低温或常温下自修复效率的提升仍然是现今的研究重点。引入在近红外光范围内具有强吸收性和优异光热转换性的 MXene 材料,有利于设计出在红外光照射下具有优异自修复效率的复合材料。本文采用单层 MXene——Ti3C2,旨在研究出一种光热响应型 MXene 基自修复涂层并对其自修复性能进行研究。

  • 1 试验准备

  • 1.1 样品制备

  • 1.1.1 MXene 制备过程

  • 将 1.5 g LiF 和 15 mL(30 wt.%,9 M)HCl 置于聚四氟乙烯容器瓶中,300 r / min 应 30 min;将 0.5 g Ti3AlC2在 30 min 内缓缓加入上述溶液中,并在 35℃下 300 r / min 搅拌 24 h;将刻蚀得到的样品加去离子水洗涤,先采用 8 000 r / min 离心 8 min,保留底层沉淀,之后均采用 10 000 r / min 离心 10 min,保留底层沉淀,洗至悬浮液 pH 等于 6 后,保留底层沉淀,冻干后得到中间产物;将 200 mg 的干燥后的中间产物分散到 50 mL 水中,搅拌 1 h 确保其分散均匀;在不断鼓入氩气的条件下超声 1 h,过程中温度保持在 20℃,功率 37 kHz,振幅 60%;在 3 500 r / min 下离心 1 h,收集上层清液并导入玻璃瓶中在 5℃冰箱中保存;底部沉淀重新溶于水,继续超声离心,再收集上层清液在 5℃冰箱中保存,使用前将上清液冷冻干燥,得到最终产物分层 MXene Ti3C2纳米片。

  • 1.1.2 自修复涂层制备过程

  • 将聚四氢呋喃(PTMEG,2 g)、二甲基乙二肟 (DMG,0.232 g)和甘油(0.046 g)在配备有磁力搅拌器的水浴加热锅中 50℃溶于 5 mL 丙酮,再加入异佛尔酮二异氰酸酯(IPDI,0.527 25g)、甲苯二异氰酸酯(TDI,0.527 25g)、二月桂酸二丁基锡 (DBTDL,0.02 g),搅拌反应 2 h 使混合物粘稠。然后将该混合物倒入聚四氟乙烯模具中,并在 60℃下聚合反应 24 h 成膜,得到自修复聚氨酯涂层。将 0.02 g MXene Ti3C2 纳米片超声分散于 2 mL 丙酮中,在反应初期加入混合物中,其他操作不变,得到 PU / MXene 自修复聚氨酯涂层。

  • 1.2 表征测试

  • 利用扫描电子显微镜(SEM)对原材料 Ti3AlC2、中间产物和最终产物 MXene 表面形貌进行表征和对比;利用透射电子显微镜(TEM)进一步对 MXene 的表面形貌进行表征,并利用能谱仪(EDS)、X 射线衍射分析(XRD)和 X 射线光电子能谱仪(XPS) 进一步分析 MXene 的组分等情况。光热测试使用近红外激光发射器(MDL-H-808-5W),并通过热像仪 (Fotric 324)收集数据。通过 VK-X260K 激光共聚焦显微镜(CLSM)监测涂层的修复过程。利用 Autolab PGSTAT302N 电化学工作站进行涂层的 EIS 测试。

  • 2 结果与讨论

  • 2.1 材料结构表征与分析

  • 图1 分别为原材料,刻蚀后得到的中间产物和分层处理后的表面形貌表征情况。图1a~1c 均为 SEM 图,从图1a 可以清晰看出原始样品是呈熔融盐状的块状物体;图1b 中出现松散的手风琴状结构,层状结构明显,符合多层 MXene 的形貌特征。

  • 图1c 为离心分层后的最终产物产物,显示出的层状结构透明且边缘清晰。图1d为最终产物的TEM 图,可以看出其整体较薄,边缘清晰,形成类似于石墨烯结构的单层或少量层的二维超薄纳米片,初步认为图中最透明处为单层 MXene。图2 为 MXene 的 EDS 表征的结果,可以明显看出最终样品存在 Ti、C 和 O 元素,而不含 F 元素,推测在制备单层 MXene 材料的过程中,由于没有利用 HF,而是直接在水中进行超声离心,因而由于水解等作用,产物最终主要以-OH 封端。

  • 图1 不同材料的形貌表征(a)原材料的 SEM 图(b)中间产物的 SEM 图(c)最终产物 MXene 的 SEM 图(d)MXene 的 TEM 图

  • Fig.1 Surface morphology: (a) SEM of raw material; (b) SEM of intermediate product; (c) SEM of final product MXene; (d) TEM of MXene.

  • 图2 MXene 的 EDS 图谱

  • Fig.2 EDS spectra of MXene

  • 图3 为原材料和 MXene 的 XRD 表征结果。可以很明显地看到,原材料依次出现了(002)、(004)、(100)、(102)、(104)、(105)、(109)和(110)一系列特征峰,根据表征结果,本文采用得原材料 Ti3AlC2 是纯净的。单层 MXene 的 XRD 谱图中,由于并未加入插层剂扩大层间距,因而在 10°之前,出现的明显的(002)特征峰是符合单层 MXene 的结构的。对比原材料和单层 MXene 在 29°的 Al 元素特征峰可以发现,单层 MXene 在 29°仅有一个很小的峰,说明刻蚀较为完全。

  • 图3 原材料和 MXene 的 XRD 图谱

  • Fig.3 XRD spectra of the raw materials and MXene

  • 由图4 通过 XPS 分析进一步研究 MXene 的元素组成。图4a 描绘了 MXene 的高分辨率 C 1s 光谱,可以看出除了 Ti 和 C 元素外,推测还存在 F 和 O 元素,表明表面存在-OH 和-F(Ti3C2(OH)2,Ti3C2F2)。图4b 所示为 Ti3C2 的高分辨率 Ti 2p 光谱,进行分峰处理后可以得到三个峰,分析认为其分别为 Ti-O、Ti-F、Ti-C。这些结果证明成功形成了 Ti3C2,且表面主要存在-OH 和部分-F 作为终止基团存在。

  • 图4 MXene 的 XPS 图谱

  • Fig.4 XPS spectra of the MXene

  • 2.2 涂层结构表征与性能分析

  • 分别利用傅里叶变换红外光谱仪(FTIR)对没有加 MXene 的空白涂层和加入 MXene 的涂层进行表征。如图5 所示,首先对空白样品进行分析,可以看到,图中 2 264 cm−1 处无特征峰产生,说明原料中的-N=C=O 完全反应,同时 3 315、1 716 和 1 104 cm−1 的三个峰,分别对应氨基甲酸酯中的-N-H-、-C=O 和-C-O 三个峰,可以佐证氨基甲酸酯的生成,进一步可以看到 987 cm−1 处也存在一处峰,推测其为丁二酮肟与二异氰酸酯反应后,生成的氨基甲酸酯中的 N-O 振动产生的。同时,结合样品为表面光滑、透明且不粘腻的固态膜形态,有理由相信,本试验成功制备出了聚氨酯涂层。

  • 红外吸收光谱主要分析有机官能团、氧化物、配位化合物和无机盐中的阳离子,因而对复合涂层的表征分析,主要集中在 MXene 的加入对聚氨酯涂层的影响上。对不同掺杂含量的复合涂层样品进行测试,发现其得到的红外吸收光谱大体一致,在一定程度上说明,掺杂 MXene 并未对涂层结构发生较大影响。如图5 所示,对比空白涂层和加入 MXene 的涂层可以发现,各峰位置基本没有发生变化,可以推测,MXene 的加入,并未对聚氨酯涂层本身的结构产生其他影响。结果表明,MXene 的添加量仅为 1%,其掺杂没有引起涂层的变化。

  • 图5 PU 和 MXene / PU 的 FTIR 图谱

  • Fig.5 FTIR spectra of the PU and MXene / PU

  • MXene 在很宽的太阳光谱范围内具有良好的光热转换性能,尤其是在近红外光区域(750~850 nm),显示出极强的吸收性。本文意在研究复合后的涂层是否也具有较好的光热转换性能,尤其在近红外光区域。选用掺杂 MXene 的复合涂层进行近红外光响应测试。图6 所示为不同时间下,用 808 nm 激光照射后,PU 和 PU / MXene 涂层表面发生的温度变化。可以很明显地看到,1 min 以内 PU / MXene 涂层升高了 20℃以上,达到 43.1℃,远远大于 PU 涂层的 29℃,证明掺杂 MXene 的复合涂层的确对近红外光具有很好的光热转换性能。通过激光共聚焦分析了 PU 和 PU / MXene 涂层的自修复过程,如图7 所示。随着近红外光的照射,PU / MXene 涂层的修复速率明显大于 PU 涂层,这是由于 MXene 材料将光能转化为热能,加速了聚合物涂层的链段运动,划痕逐渐愈合。另外,温度的上升有利于涂层中氢键的重组,进一步加速自修复过程。

  • 图6 在 808 nm 近红外光照射下,PU 和 PU / MXene 涂层的温度伴随时间变化情况

  • Fig.6 Under 808nm near-infrared light, the temperature of PU (a) - (c) and PU / MXene (d) - (f) coatings changes with time (a) (d) 10 s, (b) (e) 30 s, (c) (f) 60 s

  • 图7 在 808 nm 近红外光照射下,PU 和 PU / MXene 涂层的自修复过程伴随时间变化情况

  • Fig.7 Under 808 nm near-infrared light, the self-healing process of PU (a) - (c) and PU / MXene (d) - (f) coating with time (a) (d) 10 s, (b) (e) 30 s, (c) (f) 60 s

  • 对 MXene 聚氨酯涂层划伤和愈合后进行电化学测试。利用 ZSimDemo 对电化学阻抗试验数据进行拟合和分析。图8 是本试验采用的阻抗拟合模型。Rs 为溶液电阻,Qc 为涂层电容,Rc 为涂层电阻,Qdl 为双电层电容,Rct 为界面电荷转移电阻。低频阻抗模值可以一定程度上表征涂层耐腐蚀性能的优劣,低频阻抗模值越高,涂层耐腐蚀性越好。如图9 所示,PU / MXene 涂层样品未划伤前的初始低频(0.01 Hz)阻抗模值为可接近 109 Ω·cm 2,远大于 PU 涂层的 107 Ω·cm 2,耐腐蚀性能更好。在第一次用小刀划伤涂层后,涂层样品的低频阻抗模值出现突降,降为 105 Ω·cm 2 以下,耐腐蚀性能也将随之下降。原因是划痕的存在会形成腐蚀性介质通道,加速腐蚀介质的渗入。在经过一定时间的光照下,PU / MXene 涂层中光热转换剂 MXene 能够吸收光能转化为热量,促进涂层内分子链的迁移,在 808 nm 红外光照射下逐渐完成自修复过程,低频阻抗模值又重新回复到接近初始水平的阻抗值。第二次划伤修复后,涂层恢复阻抗值略有降低,但是仍然可达108 Ω·cm 2。后续共进行 5 次循环划伤自修复测试,每次随着划痕的自修复,涂层的防腐效果也都得到了恢复,低频阻抗模值均可恢复四个数量级,到达 108 Ω·cm 2 左右。而 PU 涂层样品修复后阻抗模值远低于 PU / MXene 涂层,以上结果说明,MXene 涂层材料经过多次原位循环自修复后,仍能具有良好的耐腐蚀能力。

  • 图8 模拟电化学数据的等效电路图

  • Fig.8 Equivalent circuit diagram simulating electrochemical data

  • 图9 PU 和 PU / MXene 涂层在划伤-自修复循环过程中 0.01 Hz 时阻抗变化图

  • Fig.9 Impedance variation of PU and PU / MXene coating at 0.01 Hz during the scratch-self-healing cycle

  • 通过电化学阻抗测试( EIS) 对 PU 和 PU / MXene 涂层样品在 3.5 wt.% NaCl 溶液中进行长效防腐性能评价,如图10 和 11 所示。一般来说,Nyquist 图容抗半径越大,则防腐性能越好。如图10、11a 所示,PU / MXene 涂层在浸泡第一天时的容抗半径远超出 PU 涂层,说明 PU / MXene 涂层具有更好的耐腐蚀性。随着浸泡时间的延长,容抗半径不断减小,是由微裂纹的产生,环境中的腐蚀介质不断渗入而导致的。但 3 d 后的容抗半径减小的幅度较小,材料的耐腐蚀性得以保持,原因是材料的自修复性不断修补微裂纹,减缓了腐蚀介质的渗入。Bode 图中,低频下的阻抗模值|Z|值越大,保护涂层的防腐性能越好。如图10 和 11b、11d 所示,PU / MXene 涂层样品的低频阻抗模值|Z|0.01 Hz 第一天浸泡时超出 PU 涂层两个数量级,具有很好的防腐性能。第 3 d 的低频阻抗模值较之第 1 d 大幅下降,原因是伴随这腐蚀介质的接触,涂层遭到破坏。但 3 d 后低频阻抗模值的下降幅度减小,甚至第 3 d 与第 7 d 测试的结果几乎没有差别。这是因为当涂层受损后,MXene 光热转换剂在接收自然光激发下产生热量,提高了分子链的运动能力,使受损部位得到修复,使低频阻抗模值下降速度减缓。在 3.5 wt.%氯化钠溶液中长期浸泡,PU / MXene 涂层的低频阻抗模值能一直保持 108 Ω·cm 2 以上,而 PU 涂层只有 106 Ω·cm 2 以上,说明 PU / MXene 涂层防腐性更能很好地长期保持,进一步证实了 MXene 的作用。

  • 如图10、11 所示,在 Bode-相位角图中,随着浸泡时间的增加,同一频率下的相位角随之减小,达到最大相位角的对应频率向高频移动,即涂层材料不断受损,导致防腐性能下降。但第 3 d 后测试的相位角曲线整体变化幅度较小,说明材料的自修复性使损坏部位得到一定程度的修补,减缓了腐蚀效果的降低。

  • 图10 PU 涂层样品在 3.5 wt.% NaCl 溶液中的 EIS 结果(a)Nyquist 图(b)阻抗模值|Z|随频率变化的 Bode 图(c)相位角随频率变化的 Bode 图(d)0.01 Hz 下阻抗模值|Z|随时间变化图

  • Fig.10 EIS results of PU / MXene coating in simulated seawater (3.5 wt.% NaCl) solution: (a) Nyquist diagram; (b) Bode diagram of impedance modulus |Z| with frequency variation; (c) Bode diagram of phase angle with frequency; (d) Variation diagram of impedance modulus |Z| with time at 0.01 Hz.

  • 图11 PU / MXene 涂层样品在 3.5 wt.% NaCl 溶液中的 EIS 结果(a)Nyquist 图(b)阻抗模值|Z|随频率变化的 Bode 图(c)相位角随频率变化的 Bode 图(d)0.01 Hz 下阻抗模值|Z|随时间变化图

  • Fig.11 EIS results of PU / MXene coating in simulated seawater (3.5 wt.% NaCl) solution: (a) Nyquist diagram; (b) Bode diagram of impedance modulus |Z| with frequency variation; (c) Bode diagram of phase angle with frequency; (d) Variation diagram of impedance modulus |Z| with time at 0.01 Hz.

  • 根据电化学阻抗谱及其结果分析,加入了 MXene 的涂层具有优异的多循环修复性能和长效防腐性能。这主要是由于 MXene 具有优异的光热转换效果,促进分子链的运动,加速修复过程。根据石墨烯等其它片状增强材料的防腐蚀机理推测,MXene 的层状结构给涂层带来的迷宫效应同样显著,有效地延长了腐蚀组分在涂层中的传输通道。MXene 涂层对电解质溶液向涂层的渗透有更好的阻隔作用,即涂层体现出更好的保护性能。

  • 3 结论

  • (1)通过蚀刻和剥离制备了二维纳米材料光热转换剂 MXene,具有优异的光热转换性能。

  • (2)采用一锅法制备了具有自修复性能的了 PU 和 MXene / PU 涂层,涂层划伤后,在 808 nm 激光照射下,MXene / PU 涂层修复速率更快。

  • (3)MXene / PU 涂层具有优异的自修复防腐性能,MXene 自身片层结构增长了腐蚀介质的侵入路径,涂层的自修复性不断修补微裂纹,减缓了腐蚀介质的渗入。

  • 参考文献

    • [1] WANG T,FENG H,WANG W,et al.Interfacial controllable heterojunctions nanosheets as photothermal catalyzer for cyclic photothermal self-healing of polydimethylsiloxane coating[J].Composites Part B:Engineering,2022,240:110002.

    • [2] ZHANG Z P,RONG M Z,ZHANG M Q.Polymer engineering based on reversible covalent chemistry:A promising innovative pathway towards new materials and new functionalities[J].Progress in Polymer Science,2018,80:39-93.

    • [3] 刘丹,宋影伟,单大勇,等.镁合金自修复涂层研究进展[J].表面技术,2016,45(12):28-35.LIU D,SONG Y W,SHAN D Y,er al,Self-healing coatings form agnesium alloys:A review[J].Surface Technology,2016,45(12):28-35.(in Chinese)

    • [4] WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.

    • [5] 王巍,王鑫,刘晓杰,等.海洋环境中自修复涂层研究进展[J].装备环境工程,2018,15(10):89-97.WANG W,WANG X,LIU X J,et al,Research progress of self-healing coatings in marine environment[J].Equipment Environment Engineering,2018,15(10):89-97.(in Chinese)

    • [6] ZHANG F,JU P,PAN M,et al.Self-healing mechanisms in smart protective coatings:A review[J].Corrosion Science,2018,144:74-88.

    • [7] LI B,XUE S,MU P,et al.Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys[J].ACS Applied Materials & Interfaces,2022,14(26):192-30204.

    • [8] 张勇,樊伟杰,张泰峰,等.涂层自修复技术研究进展 [J].中国腐蚀与防护学报,2019,39(4):299-305.ZHANG Y,FAN W J,ZHANG T F,et al.Review of intelligent self-healing coatings[J].Journal of Chinese Society for Corrosion and Protection,2019,39(4):299-305.(in Chinese)

    • [9] 葛倩倩,鲁浈浈,梁杨,等.基于微胶囊技术的超疏水自修复涂层研究进展[J].中国表面工程,2022,35(4):102-112.GE Q Q,LU Z Z,LIANG Y,et al.Research progress of superhydrophobic and self-healing coating based on microencapsulation technology[J].China Surface Engineering,2022,35(4):102-112.(in Chinese)

    • [10] ZHU M,YU J,LI Z,et al.Self-healing fibrous membranes[J].Angewandte Chemie,2022,134(41):e202208949.

    • [11] ZHANG C,LI W,LIU C,et al.Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings[J].Journal of Colloid and Interface Science,2022,608:1025-1039.

    • [12] CHEN J,LUO Z,AN R,et al.Novel intrinsic self-healing poly-silicone-urea with super-low ice adhesion strength[J].Small,2022,18(22):2200532.

    • [13] CHENG Y,XIE Y,CAO H,et al.High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor[J].Chemical Engineering Journal,2023,453:139823.

    • [14] HAN T Y,LIN C H,LIN Y S,et al.Autonomously self-healing and ultrafast highly-stretching recoverable polymer through trans-octahedral metal-ligand coordination for skin-inspired tactile sensing[J].Chemical Engineering Journal,2022,438:135592.

    • [15] ZHENG T,ZHOU Q,YANG T,et al.Disulfide bond containing self-healing fullerene derivatized polyurethane as additive for achieving efficient and stable perovskite solar cells[J].Carbon,2022,196:213-219.

    • [16] AN Z-W,XUE R,YE K,et al.Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods[J].Nanoscale,2023,15(14):6505-6520.

    • [17] HUANG X,GE G,SHE M,et al.Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor[J].Applied Surface Science,2022,598:153803.

    • [18] 王金科,马菱薇,张达威.氮化钛含量对热塑性涂层光热效应及自修复性能的影响[J].中国表面工程,2020,33(1):125-132.WANG J K,MA L W,ZHANG D W.Effects of titanium nitride concentration on photothermal effects and self-healing properties of thermoplastic coatings[J].China Surface Engineering,2020,33(1):125-132.(in Chinese)

    • [19] FENG H,WANG W,ZHANG M,et al.2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications[J].Applied Catalysis B:Environmental,2020,266:118609.

    • [20] LI R,ZHANG L,SHI L,et al.MXene Ti3C2:an effective 2D light-to-heat conversion material[J].ACS Nano,2017,11(4):3752-3759.

    • [21] HADDADI S A,HU S,GHADERI S,et al.Amino-functionalized MXene nanosheets doped with Ce(III)as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel[J].ACS applied materials & interfaces,2021,13(35):42074-42093.

    • [22] ZAREPOUR A,AHMADI S,RABIEE N,et al.Self-healing MXene-and graphene-based composites:properties and applications[J].Nano-micro Letters,2023,15(1):100.

    • [23] 司倩倩,陈厚和,张幺玄,等.超声波处理聚氨酯泡沫化学镀镍优化工艺[J].中国表面工程,2012,25(4):74-78.SI Q,CHEN H,ZHANG Y,et al.Condition optimization of electroless nickel plating for PUF with ultrasonic treatment[J].China Surface Engineering,2012,25(4):74-78.(in Chinese)

  • 参考文献

    • [1] WANG T,FENG H,WANG W,et al.Interfacial controllable heterojunctions nanosheets as photothermal catalyzer for cyclic photothermal self-healing of polydimethylsiloxane coating[J].Composites Part B:Engineering,2022,240:110002.

    • [2] ZHANG Z P,RONG M Z,ZHANG M Q.Polymer engineering based on reversible covalent chemistry:A promising innovative pathway towards new materials and new functionalities[J].Progress in Polymer Science,2018,80:39-93.

    • [3] 刘丹,宋影伟,单大勇,等.镁合金自修复涂层研究进展[J].表面技术,2016,45(12):28-35.LIU D,SONG Y W,SHAN D Y,er al,Self-healing coatings form agnesium alloys:A review[J].Surface Technology,2016,45(12):28-35.(in Chinese)

    • [4] WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.

    • [5] 王巍,王鑫,刘晓杰,等.海洋环境中自修复涂层研究进展[J].装备环境工程,2018,15(10):89-97.WANG W,WANG X,LIU X J,et al,Research progress of self-healing coatings in marine environment[J].Equipment Environment Engineering,2018,15(10):89-97.(in Chinese)

    • [6] ZHANG F,JU P,PAN M,et al.Self-healing mechanisms in smart protective coatings:A review[J].Corrosion Science,2018,144:74-88.

    • [7] LI B,XUE S,MU P,et al.Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys[J].ACS Applied Materials & Interfaces,2022,14(26):192-30204.

    • [8] 张勇,樊伟杰,张泰峰,等.涂层自修复技术研究进展 [J].中国腐蚀与防护学报,2019,39(4):299-305.ZHANG Y,FAN W J,ZHANG T F,et al.Review of intelligent self-healing coatings[J].Journal of Chinese Society for Corrosion and Protection,2019,39(4):299-305.(in Chinese)

    • [9] 葛倩倩,鲁浈浈,梁杨,等.基于微胶囊技术的超疏水自修复涂层研究进展[J].中国表面工程,2022,35(4):102-112.GE Q Q,LU Z Z,LIANG Y,et al.Research progress of superhydrophobic and self-healing coating based on microencapsulation technology[J].China Surface Engineering,2022,35(4):102-112.(in Chinese)

    • [10] ZHU M,YU J,LI Z,et al.Self-healing fibrous membranes[J].Angewandte Chemie,2022,134(41):e202208949.

    • [11] ZHANG C,LI W,LIU C,et al.Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings[J].Journal of Colloid and Interface Science,2022,608:1025-1039.

    • [12] CHEN J,LUO Z,AN R,et al.Novel intrinsic self-healing poly-silicone-urea with super-low ice adhesion strength[J].Small,2022,18(22):2200532.

    • [13] CHENG Y,XIE Y,CAO H,et al.High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor[J].Chemical Engineering Journal,2023,453:139823.

    • [14] HAN T Y,LIN C H,LIN Y S,et al.Autonomously self-healing and ultrafast highly-stretching recoverable polymer through trans-octahedral metal-ligand coordination for skin-inspired tactile sensing[J].Chemical Engineering Journal,2022,438:135592.

    • [15] ZHENG T,ZHOU Q,YANG T,et al.Disulfide bond containing self-healing fullerene derivatized polyurethane as additive for achieving efficient and stable perovskite solar cells[J].Carbon,2022,196:213-219.

    • [16] AN Z-W,XUE R,YE K,et al.Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods[J].Nanoscale,2023,15(14):6505-6520.

    • [17] HUANG X,GE G,SHE M,et al.Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor[J].Applied Surface Science,2022,598:153803.

    • [18] 王金科,马菱薇,张达威.氮化钛含量对热塑性涂层光热效应及自修复性能的影响[J].中国表面工程,2020,33(1):125-132.WANG J K,MA L W,ZHANG D W.Effects of titanium nitride concentration on photothermal effects and self-healing properties of thermoplastic coatings[J].China Surface Engineering,2020,33(1):125-132.(in Chinese)

    • [19] FENG H,WANG W,ZHANG M,et al.2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications[J].Applied Catalysis B:Environmental,2020,266:118609.

    • [20] LI R,ZHANG L,SHI L,et al.MXene Ti3C2:an effective 2D light-to-heat conversion material[J].ACS Nano,2017,11(4):3752-3759.

    • [21] HADDADI S A,HU S,GHADERI S,et al.Amino-functionalized MXene nanosheets doped with Ce(III)as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel[J].ACS applied materials & interfaces,2021,13(35):42074-42093.

    • [22] ZAREPOUR A,AHMADI S,RABIEE N,et al.Self-healing MXene-and graphene-based composites:properties and applications[J].Nano-micro Letters,2023,15(1):100.

    • [23] 司倩倩,陈厚和,张幺玄,等.超声波处理聚氨酯泡沫化学镀镍优化工艺[J].中国表面工程,2012,25(4):74-78.SI Q,CHEN H,ZHANG Y,et al.Condition optimization of electroless nickel plating for PUF with ultrasonic treatment[J].China Surface Engineering,2012,25(4):74-78.(in Chinese)

  • 手机扫一扫看