en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

丁昊昊,男,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为轮轨摩擦学。E-mail: haohao.ding@swjtu.edu.cn

通讯作者:

林强,男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为激光增材制造技术。E-mail: linqiang@swjtu.edu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007-9289.20230830002

参考文献 1
王延朋,丁昊昊,邹强,等.列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.WANG Yanpeng,DING Haohao,ZOU Qiang,et al.Research progress on rolling contact fatigue of railway wheel treads[J].Surface Technology,2020,49(5):120-128.(in Chinese)
参考文献 2
ZHU Y,WANG W J,LEWIS R,et al.A review on wear between railway wheels and rails under environmental conditions[J].Journal of Tribology,2019,141:120801.
参考文献 3
王文健,郭俊,刘启跃.轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J].中国表面工程,2010,23(3):106-109.WANG Wenjian,GUO Jun,LIU Qiyue.Study on relationship between wear and rolling fatigue crack of wheel/rail and prevention measures[J].China Surface Engineering,2010,23(3):106-109.(in Chinese)
参考文献 4
路世盛,周健松,王凌倩,等.球墨铸铁表面激光熔覆 Ni-Co 复合涂层的耐腐蚀及高温摩擦学性能[J].中国表面工程,2022,35(3):122-131.LU Shisheng,ZHOU Jiansong,WANG Lingqian,et al.Corrosion resistance and elevated-temperature wear properties of laser cladding Ni-Co composite coating on ductile cast iron[J].China Surface Engineering,2022,35(3):122-131.(in Chinese)
参考文献 5
LI S,HU Q,ZENG X,et al.Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J].Applied Surface Science,2004,240(1):63-70.
参考文献 6
曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and tribological properties of laser cladded FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)
参考文献 7
XU G,KUTSUNA M,LIU Z,et al.Characteristics of Ni-based coating layer formed by laser and plasma cladding processes[J].Materials Science & Engineering A,2005,417(1):63-72.
参考文献 8
KHANNA A,KUMARI S,KANUNGO S.Hard coatings based on thermal spray and laser cladding[J].International Journal of Refractory Metals & Hard Materials,2009,27(2):485-491.
参考文献 9
林文松,张光均,王慧萍.激光熔覆技术的研究进展[J].热处理技术与装备,2008,29(2):1-3,7.LIN Wensong,ZHANG Guangjun,WANG Huiping.Development of laser cladding technology[J].Heat Treatment Technology and Equipment,2008,29(2):1-3.(in Chinese)
参考文献 10
杨洗陈,李会山,刘运武,等.激光再制造技术及其工业应用[J].中国表面工程,2003(4):43-46.YANG Xichen,LI Huishan,LIU Yunwu,et al.Laser remanufacturing technology and its industrial application[J].China Surface Engineering,2003(4):43-46.(in Chinese)
参考文献 11
李波,吴丽娟,张欣,等.超音速激光沉积Ti6Al4V涂层的微观结构及耐蚀性能[J].中国表面工程,2018,31(5):159-166.LI Bo,WU Lijuan,ZHANG Xin,et al.Microstructure and corrosion-resistant property of Ti6Al4V coating prepared by supersonic laser deposition[J].China Surafce Engineering,2018,31(5):159-166.(in Chinese)
参考文献 12
周野飞,秦广阔,邢晓磊,等.激光熔覆无碳化物贝氏体涂层制备及其摩擦学性能[J].中国表面工程,2018,31(4):160-168.ZHOU Yefei,QIN Guangkuo,XING Xiaolei,et al.Preparation and tribological properties of carbide-free bainite coatings by laser cladding[J].China Surface Engineering,2018,31(4):160-168.(in Chinese)
参考文献 13
胡杰.激光熔覆重载轮轨材料的摩擦磨损性能的研究 [D].成都:西南交通大学,2012.HU Jie.Study on friction and wear properties of heavy-haul wheel/rail materials for laser cladding[D].Chengdu:Southwest Jiaotong University,2012.(in Chinese)
参考文献 14
付志凯,王文健,丁昊昊,等.激光熔覆铁基合金对轮轨材料磨损与损伤性能的影响[J].材料热处理学报,2015,36(8):217-222.FU Zhikai,WANG Wenjian,DING Haohao,et al.Effect of laser cladding Fe-based alloy on wear performance of wheel and rail steels[J].Transactions of Materials and Heat Treatment,2015,36(8):217-222.(in Chinese)
参考文献 15
慕鑫鹏.车轮材料激光熔覆涂层微观组织与磨损性能研究[D].成都:西南交通大学,2020.MU Xinpeng.Study on microstructure and wear properties of laser cladding coating on wheel materials[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)
参考文献 16
NIEDERHAUSER S,KARLSSON B.Fatigue behavior of Co-Cr laser cladded plates for railway application[J].Wear,2005,258(7-8):1156-1164.
参考文献 17
CLARE A,OYELOLA O,FOLKES J,et al.Laser cladding for railway repair and preventative maintenance[J].Journal of Laser Applications,2012,24(3):240-249.
参考文献 18
LEWIS S R,LEWIS R,GOODWIN P S,et al.Full-scale testing of laser clad railway track;case study-testing for wear,bend fatigue and insulated block joint lipping integrity[J].Wear,2017,376-377:1930-1937.
参考文献 19
WANG W J,HU J,GUO J,et al.Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials[J].Wear,2014,311(1-2):130-136.
参考文献 20
WANG W J,FU Z K,GUO J,et al.Investigation on wear resistance and fatigue damage of laser cladding coating on wheel/rail materials under the oil lubrication condition [J].Tribology Transactions,2016,59(5):810-817.
参考文献 21
YUAN W Y,LI R F,CHEN Z H,et al.A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J].Surface & Coatings Technology,2021,405:126582.
参考文献 22
谢颂京,白万金,姚建华.激光熔覆 Ni/SiC 金属陶瓷涂层组织与耐磨性能[J].金属热处理,2006,31(11):19-22.XIE Songjing,BAI Wanjin,YAO Jianhua.Microstructure and wear resistance of laser clad Ni/SiC ceramic coating[J].Heat Treatment of Metals,2006,31(11):19-22.(in Chinese)
参考文献 23
杨涛.钢轨材料表面三种激光熔覆涂层的工艺参数优化与磨损行为研究[D].成都:西南交通大学,2022.YANG Tao.Research on process parameters optimization and wear behavior of three type of laser cladding on the rail materials surface[D].Chengdu:Southwest Jiaotong University,2022.
参考文献 24
张有旭.GH4169 镍基高温合金激光熔覆温度场与流场特征研究[D].成都:西南交通大学,2023.ZHANG Youxu.Study on temperature field and flow field characteristics of laser cladding of GH4169 Nickel-based superalloy[D].Chengdu:Southwest Jiaotong University,2023.
参考文献 25
LAI Q,ABRAHAMS R,YAN W Y,et al.Influences of depositing materials,processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails[J].Journal of Materials Processing Technology,2019,263:1-20.
参考文献 26
乔英杰.工程材料[M].哈尔滨:哈尔滨工业大学出版社,2011.QIAO Yingjie.Engineering materials[M].Harbin:Harbin Institute of Technology Press,2011.(in Chinese)
参考文献 27
孙荣禄,牛伟,雷贻文,等.钛合金TC4激光熔覆 NiCrBSi+Ni/MoS2涂层组织和摩擦磨损性能[J].材料热处理学报,2014,35(6):157-162.SUN Ronglu,NIU Wei,LEI Yiwen,et al.Microstructure and tribological properties of laser clad NiCrBSi+ Ni/MoS2 coating on TC4 titanium alloy[J].Transactions of Materials and Heat Treatment,2014,35(6):157-162.(in Chinese)
参考文献 28
郭火明,王文健,刘腾飞,等.激光相变硬化处理对轮轨钢磨损性能影响[J].材料热处理学报,2014,35(5):169-174.GUO Huoming,WANG Wenjian,LIU Tengfei,et al.Effect of laser transformation hardening treatment on wear properties of wheel/rail steel[J].Transactions of Materials and Heat Treatment,2014,35(5):169-174(in Chinese).
参考文献 29
付春霞.激光溶覆及快速成形专用Fe基粉末的研究[D].济南:山东大学,2008.FU Chunxia.Study on Fe-based alloy powders for the laser cladding and the rapid forming[D].Jinan:Shandong University,2008.(in Chinese)
参考文献 30
夏银锋.自润滑激光溶覆层的制备及其组织与性能研究[D].秦皇岛:燕山大学,2011.XIA Yinfeng.Microstructure and behavior of self-lubricating composite coating prepared by laser cladding[D].Qinhuangdao:Yanshan University,2011.(in Chinese)
参考文献 31
HE C G,CHEN Y Z,HUANG Y B,et al.On the surface scratch and thermal fatigue damage of wheel material under different braking speed conditions[J].Engineering Failure Analysis,2017,79:889-901.
目录contents

    摘要

    激光熔覆技术可用于钢轨局部损伤表面的局部修复,但局部修复钢轨材料的磨损与滚动接触疲劳损伤规律尚不清楚。通过在钢轨试样表面切除凹槽来模拟局部损伤,在凹槽处激光熔覆 Ni 基、Fe 基和 Co 基自熔性合金粉末,分析修复钢轨微观组织与硬度,然后利用双轮对滚试验研究局部修复钢轨试样的磨损与滚动接触疲劳行为。结果表明,激光熔覆涂层形成了共晶与枝晶组织,Ni 基涂层组织粗大、硬度较小,Fe 基与 Co 基涂层组织尺寸较小,Fe 基涂层硬度最大,Co 基涂层硬度居中。相比未熔覆区域,激光熔覆区(涂层)塑性变形层厚度较小,且涂层原始硬度越高,硬化后硬度越大,但硬化率和硬化层厚度更小。未熔覆区滚动接触疲劳裂纹较长,但裂纹角度较小;熔覆区裂纹长度均有所降低,但裂纹扩展角度明显增大;熔覆区与未熔覆区结合处疲劳损伤最为严重,疲劳裂纹角度和深度均比熔覆区和未熔覆区更大。对比分析发现,Stellite 21(Co 基)熔覆试样摩擦因数较低,熔覆区与未熔覆区磨损深度差较小,抗滚动接触疲劳性能较好,较为适合钢轨局部损伤的激光修复。研究结果可为激光熔覆技术在钢轨局部修复上的应用与优化提供理论与技术指导。

    Abstract

    With an increase in the axle load of trains, damage to the rails becomes more severe, decreasing their service life. Thus, local repair could be a solution for rail surface damage. Laser cladding is a relatively new additive manufacturing technology that can be used for local damage repair. However, wear and rolling contact fatigue (RCF) damage behaviors, particularly the damage at the boundary between the clad and unclad zones, have not been thoroughly explored. Thus, a pothole is cut off from the U75V rail sample (a roller sample) to simulate the local damage on the rail. Ni-, Fe-, and Co-based self-fluxing alloy powders (F103, Fe-Cr, Fe-58, Stellite 21, Stellite 22, and Stellite 23) are laser cladded at the pothole using a CO2 laser with a rectangular spot size of 7 mm × 1 mm, a laser power of 1.9 kW, a scan speed of 200 mm / min, and a powder feed rate of 15 g / min. The microstructure and hardness of the locally repaired rail materials are analyzed. The wear and RCF behaviors of the laser-repaired rail samples are studied using the twin-disc rolling test with a maximum contact pressure of 1.1 GPa, a slip ratio of 0.75%, and a rotational speed of 500 r / min. The number of cycles for each rolling test is 105 . The friction coefficient, wear rate, depth, plastic deformation, and damage morphology are analyzed. The results showed that the cladded sample could be divided into three regions in the depth direction on the cross section or in the rolling direction on the surface: the clad zone, heat-affected zone, and substrate. Fine eutectic and dendritic structures are formed in the laser cladding. The hardness is higher than that of the substrate. The microstructure of the Ni-based clad is coarse, and its hardness is low. The microstructural sizes of the Fe- and Co-based clads are small. The hardness of the Fe-based clads is high and that of the Co-based clads has an intermediate value. During the rolling test, the friction coefficient exhibits an increasing trend during the running-in period and then remains stable. The stable friction coefficient is approximately 0.4 and shows no evident difference for samples with different clads. After the rolling test, the wear rates of the samples with Ni- and Fe-based clads are high, and those of the samples with Co-based clads are low. The wear depth in the clad zone is smaller than that in the unclad zone. The surface hardness of the samples is increased after testing, and plastic deformation of the microstructure is observed in the cross section. Compared with the uncoated zone, the thickness of the plastic deformation layer in the laser cladded zone (that is, clads) is smaller. With an increase in the original hardness of the cladding, the hardness after testing is increased; however, the hardening ratio and plastic deformation layer thickness are decreased. The damage mode of the laser-repaired rail is predominated by fatigue wear. In the unclad zone, the RCF crack length is large whereas the crack angle is small. In the clad zone, the crack length is decreased whereas the crack angle is increased. The RCF damage at the boundary between the clad and unclad zones is the most severe. The crack angle and depth at the boundary are greater than those in the clad and unclad zones. Comparing the six studied clads, notably, the Stellite 21 (Co-based) cladded sample presents a lower friction coefficient, smaller wear depth difference between the cladded and uncladded zones, and better RCF resistance, making it more suitable for laser repair of local rail damage. The research results can provide theoretical and technical guidance for the application and optimization of laser cladding technology for local rail repair.

  • 0 前言

  • 随着铁路朝重载化方向不断发展,钢轨服役条件愈加苛刻,其服役损伤问题日益严重。钢轨常见损伤形式包括侧磨、波磨、剥离、擦伤等,对铁路运行安全产生不利影响[1-3]。目前,治理钢轨损伤的主要措施为定期打磨,然而为了保证钢轨平顺性,对局部损伤(如擦伤、硌伤、局部剥离掉块等)打磨时需要对很长一段钢轨表面进行较大深度的打磨处理,增加了钢轨打磨量,缩短服役寿命。因此,钢轨局部损伤的修复技术研究具有重要工程需求。

  • 激光熔覆是一种新型的增材制造技术[4-6],可用于机械零部件的局部修复。激光熔覆通过高能激光束,将熔覆粉末与基体表面迅速熔化形成熔池,结束后自冷却形成稀释率低、与基体材料呈冶金结合的表面涂层。根据熔覆粉末材料不同,可获得耐磨、耐蚀、抗氧化等性能[7-9]。与热喷涂、堆焊等传统修复工艺相比,激光熔覆技术具有层-基结合性能好、层内组织均匀、自动化程度高等优点[10-11],已在汽车制造业、石油化工、生物医学、航空航天等领域广泛应用[12]。目前,激光熔覆在铁路轮轨上的应用研究已经开展,但相对较少,尚未形成成熟的应用。

  • 激光熔覆粉末材料是决定涂层性能的关键,目前,激光熔覆粉末材料主要包括自熔性粉末材料、陶瓷材料和复合材料等。其中,自熔性粉末是指包含大量 B 和 Si 元素的 Fe 基、Ni 基和 Co 基合金粉末,B 和 Si 元素因其优异的脱氧和造渣能力而起到净化涂层的作用。同时,考虑到较高的性价比以及与轮轨基体材料(即钢铁材料)的相容性,自熔性粉末成为轮轨表面激光熔覆的最佳选择之一。

  • 胡杰[13]在重载车轮和钢轨材料表面激光熔覆 Co 基自熔性合金粉末,发现熔覆区主要分为平面晶区、胞状晶区以及树枝晶区,显微硬度与耐磨损性能得到显著提升。付志凯等[14]在 Fe 基合金复合粉末中加入不同比例 La2O3,研究表明加入 La2O3 粉末能够有效地阻碍涂层晶粒生长,抑制涂层中裂纹萌生和扩展。慕鑫鹏[15]在 Fe 基粉末中加入不同比例 CaF2 和 h-BN,发现当 Fe 基粉末、h-BN 与 CaF2的质量比为 98∶1∶1 时,涂层组织晶粒最小,车轮减磨效果最佳。NIEDERHAUSER等[16]和CLARE等[17] 在钢轨表面激光熔覆 Co-Cr 合金、Ni 基合金、Co 基合金(Stellite6)等,发现激光熔覆处理可改善钢轨材料抗疲劳能力。LEWIS 等[18]选用 6 种不同的复合材料对 R260 级钢轨材料表面进行激光熔覆处理,双轮滚动试验研究表明,所有熔覆材料表现出较好的抗疲劳性能,但只有 Stellite6、Stellite12 和马氏体不锈钢(Martensitic Stainless Steel,MSS)涂层能有效地减少磨损。WANG 等[19-20]研究了重载工况和不同介质下激光熔覆轮轨材料的磨损规律,结果表明:激光熔覆能够减轻重载轮轨损伤情况,并延长轮轨材料的服役寿命。

  • 综上发现,国内外研究者已在轮轨表面开展了激光熔覆研究工作,但目前研究主要是对整个钢轨或车轮试样进行整体熔覆,对于现场经常出现的局部损伤,激光局部修复研究尚未系统开展。因此,研究钢轨局部损伤处的激光熔覆涂层性能,探明局部修复后钢轨磨损与滚动接触疲劳损伤行为,特别是熔覆区和未熔覆区交界处的损伤规律迫在眉睫。

  • 本文在钢轨试样表面切除凹槽来模拟钢轨局部损伤的预处理,采用 3 类自熔性粉末(Ni 基、Fe 基和 Co 基粉末),利用激光熔覆技术对钢轨凹槽区域进行修复,分析激光修复区域微观组织与显微硬度等涂层性能。然后利用双轮对滚试验机对激光局部熔覆修复试样进行轮轨滚动接触模拟试验,分析激光修复试样的摩擦、磨损和滚动接触疲劳损伤规律,对比确定最佳合金粉末,研究结果可为钢轨局部损伤的激光修复应用与优化提供理论与技术支撑。

  • 1 试验准备

  • 1.1 激光熔覆修复钢轨试样制备

  • 由于后续轮轨滚动接触模拟试验需要轮轨试样为轮形,因此钢轨局部激光熔覆试样直接使用轮形试样。从 U75V 钢轨轨顶取样,试样直径为 52 mm,厚度为 10 mm,试样制备与试验示意图见图1,钢轨化学成分(质量分数)见表1。利用线切割机在钢轨表面切除倒梯形凹槽,凹槽深度为 5 mm,底部宽度为 5 mm、凹糟底部角度为 135°。之后,利用 TR-3000 多模横流 CO2激光器在钢轨凹槽处进行激光熔覆,熔覆后再进行车削加工、抛光至表面粗糙度约为 0.1 μm。

  • 图1 局部激光修复钢轨试样制备与试验的示意图

  • Fig.1 Illustration of rail samples processing with locally laser cladding and test

  • 表1 轮轨试样化学成分(质量分数 / %)

  • Table1 Chemical compositions of wheel and rail (wt.%)

  • 本文选用 6 种自熔性粉末,可分为 3 类,分别包括 1 种 Ni 基粉末(F103)、2 种 Fe 基粉末(Fe-Cr、 Fe-58)和 3 种 Co 基粉末(Stellite21、Stellite22 和 Stellite31)。合金粉末粒径为 80~150 目,形状为球形或椭球形,以保证送粉连续性,提高粉末的熔化效率[21]。3 类自熔性粉末材料的化学成分(质量分数)如表2 所示,可以看出 3 类粉末各自最大元素含量分别为 Ni、Fe 和 Co。除此之外,对比 2 种 Fe基粉末可以发现,相比 Fe-Cr,Fe-58 中的 Cr 和 Si 含量较高;对比 3 种 Co 基合金,Stellite31 中的 Ni 含量比 Stellite21 和 Stellite22 更高。激光熔覆工艺参数为:矩形光斑大小为 7 mm×1 mm,激光功率为 1.9 kW,扫描速度为 200 mm / min,送粉速度为 15 g / min。

  • 表2 自熔性合金粉末化学成分(质量分数 / %)

  • Table2 Chemical compositions of self-fluxing alloy powder (wt.%)

  • 1.2 轮轨滚动接触模拟试验

  • 轮轨滚动接触模拟试验在双轮对滚试验机 (MJP-30A 滚动磨损与接触疲劳试验机)上进行。钢轨试样为 1.1 节制备的激光局部修复钢轨试样,车轮试样取自 CL60 车轮踏面,车轮材料化学成分 (质量分数)见表1,试样直径为 52 mm,厚度为 5 mm。轮轨试样之间的法向载荷为 2.25 kN,通过赫兹接触理论公式(式(1))计算可得:最大赫兹接触应力为 1.1 GPa,轮轨滑差率为 0.75%,钢轨试样转速为 500 r / min,循环次数为 1×105 次,所有试验均重复 2 次。

  • σmax=FρπL1-μ12E1+1-μ22E2
    (1)
  • 式中,σmax 为最大接触应力(MPa);π 为圆周率,取 3.1416;F 为法向载荷(N);ρ 为轮轨试样接触处的曲率(mm−1);μ1 为车轮材料泊松比;μ2 为钢轨材料泊松比;E1为车轮材料弹性模量;E2 为钢轨材料弹性模量;L 为轮轨试样接触宽度(本试验中轮轨试样的线接触宽度 L=5 mm)。

  • 试验前后,将所有试样浸泡在酒精中超声波清洗,然后在热空气中烘干,最后使用电子天平 (JA4103,精度:0.000 1 g)称重,钢轨磨损率定义为单位滚动距离的质量损失(μg / m)。由于车轮试样厚度为 5 mm、钢轨试样厚度为 10 mm,因此滚动试验后,钢轨试样表面沿圆周方向上中部区域为磨痕区域,其宽度为 5 mm(轮轨试样接触宽度),两边区域为未接触区域。利用表面廓形仪(JB-6C) 沿着钢轨试样轴向测量获得磨损廓形(即未接触区-磨损区-未接触区),通过比较未接触区和磨损区高度可以确定磨损深度。利用 MVK-H21 维氏硬度计对钢轨试样进行硬度测量分析。使用 5%硝酸酒精溶液腐蚀修复试样的基体和热影响区,使用王水溶液腐蚀修复试样的涂层区。利用 VHX-6000 光学显微镜(Optical microscope,OM)和 Phenom Pro 扫描电子显微镜( Scanning electron microscope,SEM)观察试样的显微组织和滚动接触疲劳损伤形貌。

  • 2 结果与讨论

  • 2.1 局部修复钢轨试样微观组织与硬度

  • 图2 所示为局部激光熔覆修复钢轨试样的剖面显微组织形貌(Stellite31),可以看出修复钢轨主要由熔覆区(Clad zone)、热影响区(Heat affected zone,HAZ)和基体区(Substrate)3 个部分构成[22]。熔覆层组织没有明显裂纹和气孔等缺陷,涂层与基体实现了良好的冶金结合。热影响区中靠近熔覆区的边界处形成了马氏体(I 区),这主要是因为激光熔覆过程中产生高温。杨涛[23]通过数值仿真研究发现,激光熔覆使钢轨表面温度可达 1 643℃,远超过钢轨的奥氏体化温度(一般在 750~900℃),然后会迅速冷却。张有旭[24]研究发现,基体冷却速度可达 460℃ / s,使材料组织发生马氏体相变。随着热影响区深度增加,熔覆过程导致的温升较低,钢轨原始的珠光体组织难以形成高温奥氏体,但珠光体中的片层状渗碳体开始溶解,并且温度越高,溶解越明显,因此在热影响区中部形成以球状渗碳体为主的微观组织结构(II 区),热影响区底部可以观察到短棒状和椭圆状的渗碳体(III 区)[25]。随着深度继续增加,温度的影响也进一步降低,微观组织无明显变化,因此基体区为典型的钢轨原始组织(片层状珠光体组织,IV 区)[26]

  • 图2 局部激光熔覆钢轨试样剖面显微组织

  • Fig.2 Microstructure of rail cross section with local laser clad

  • 图3 为 6 种自熔性合金粉末激光熔覆涂层微观组织照片,可以看出涂层组织由枝晶组织和共晶组织所构成。这是由于在激光熔覆过程中,激光束高温作用下合金粉末快速熔化,同时基体也因吸收能量形成熔池,当激光束离开熔池后,快速冷凝的熔融液体生成枝晶组织,随后在固体间金属液体继续发生形核凝固,形成共晶组织,其中共晶组织的形貌特征主要由凝固速度决定 [27-29]

  • 图3 6 种合金粉末涂层 OM(左)和 SEM(右)微观组织图

  • Fig.3 OM (left) and SEM (right) microstructure images of 6 alloy powder clads

  • 不同自熔性粉末涂层组织的晶粒尺寸和形状也存在差异,Ni 基涂层(F103)组织最为粗大,枝晶组织以胞状和树枝状为主,共晶组织无明显的片层结构。Fe 基涂层(Fe-Cr、Fe-58)组织尺寸较小,其枝晶组织与 Ni 基涂层类似,但 Fe 基涂层的共晶组织可观测到明显的片层结构。Co 基涂层(Stellite21、Stellite22、Stellite31)细化效果更为明显,这可能是由于钴基粉末涂层有较低的晶界张力与晶界能,使得晶粒增大的驱动力降低,晶粒因此得到细化。对比 3 种 Co 基涂层可以发现: Stellite21 和 Stellite22 的共晶组织为片层结构,而 Stellite31 组织最为致密,共晶组织无明显片层结构,胞状枝晶组织明显增多,与共晶组织交错生长。

  • 图4a所示为6种自熔性合金粉末熔覆区涂层的表面硬度,未熔覆区域钢轨原始硬度约为 300 HV0.3,经过激光熔覆处理之后,熔覆区域的硬度呈现不同程度的增加,主要是因为激光熔覆涂层的固溶强化与细晶强化作用[30]。其中,Ni 基合金粉末涂层硬度提升幅度较低,表面硬度达到 315~330 HV0.3。Fe 基涂层硬度最大,Fe-Cr 涂层硬度约为 710 HV0.3,Fe-58 涂层硬度达到 820 HV0.3,硬度提高了 173%。Co 基涂层硬度居于 Fe 基与 Ni 基涂层之间,3 种 Co 基硬度相差较小,约为 460~500 HV0.3。决定涂层硬度的因素主要包括化学成分和微观组织尺寸等。虽然与纯 Co(约 125 HB)和纯 Ni(约 80 HB)相比,纯 Fe 硬度较小(约 50 HB),但作为合金,当 C 元素存在时,Fe-C 合金(即钢材) 的硬度显著提升,此外 Cr 元素也可提高涂层的强度与硬度。另外,与 Fe 基涂层和 Co 基涂层相比,Ni 基涂层微观组织较为粗大,且共晶组织无明显的片层结构,这也导致 Ni 基涂层硬度较低。因此,本文中 3 类涂层呈现:Fe 基涂层硬度>Co 基涂层硬度>Ni 基涂层硬度的趋势。

  • 图4b 是激光熔覆修复后钢轨试样剖面的显微硬度曲线,发现在涂层表层处硬度有略微下降趋势,主要是由于激光熔覆时涂层表面冷却速度快,微观组织更加细密,硬度较高。随着涂层深度增加,硬度值较为均匀。热影响区硬度在与涂层交界处较高,随着深度增加,逐渐降低至钢轨基体硬度,这主要是由于热影响区顶部组织中含有马氏体,中部组织为棒状渗碳体,在一定程度上提高了其硬度。在热影响区靠近基体的位置,由于此处的温度较低,不足以发生相变,其硬度与钢轨基体硬度无明显差异。

  • 图4 激光熔覆试样硬度

  • Fig.4 Hardness of laser cladded samples

  • 2.2 摩擦与磨损行为

  • 图5a 为轮轨摩擦因数随轮轨滚动接触循环次数的变化趋势,图5b 为 6 种激光熔覆试样在摩擦稳定阶段的摩擦因数。可以发现,摩擦因数主要分为跑合与稳定两个阶段。跑合阶段内,摩擦因数呈逐渐增加趋势,然后趋于稳定。摩擦因数稳定后,不同合金粉末激光熔覆钢轨试样的摩擦因数相差不大,且与未熔覆钢轨的摩擦因数(约 0.4)接近。其中,Ni 基涂层激光修复钢轨摩擦因数略小,Stellite21 涂层试样居中,Fe 基涂层试样摩擦因数相对略大,这与材料的硬度存在一定的正相关性。

  • 图6 为 6 种局部激光熔覆修复钢轨试样的磨损率。可以发现,Ni 基(F103)激光修复钢轨和 Fe 基(Fe-Cr 和 Fe-58)激光修复钢轨磨损率较大,Co 基(Stellite21、22、31)激光修复钢轨磨损率较小。通过对比硬度发现,Ni 基体涂层硬度较小,Fe 基涂层硬度最大,Co 基涂层硬度居中,这说明局部修复后熔覆层硬度不是决定整个钢轨试样磨损率的关键因素,这主要是因为钢轨为局部修复,钢轨试样磨损率来自于修复区域和未修复(未熔覆)区域的磨损。此外,熔覆层与未熔覆区域的磨损程度存在差异,不均匀磨损会加剧轮轨接触的振动,进而可能会影响试样的磨损。因此,需要分析局部修复试样熔覆区与未熔覆区的磨损差异。

  • 图5 激光熔覆钢轨试样摩擦因数

  • Fig.5 Friction factor of laser cladded rail samples

  • 图6 钢轨试样磨损率

  • Fig.6 Wear rate of rail samples

  • 由于钢轨试样厚度为 10 mm,车轮试样厚度为 5 mm,因此以钢轨未磨损区为基准,通过轮廓测量其磨损深度。根据图 7 左上角的廓形图可以看出, 磨损坑中部磨损深度最大,图 7 给出了 6 种钢轨试样熔覆区和未熔覆区的最大磨损深度。可以发现,熔覆区的磨损深度比未熔覆区更小,主要是因为熔覆区涂层材料微观组织细密,熔覆层内的网状共晶体骨架也可增强其强度,导致耐磨性能提升。

  • 图7 钢轨试样磨损深度

  • Fig.7 Wear depth of rail sample

  • 在现场应用时,熔覆区和未熔覆区磨损深度差可导致钢轨不平顺,磨损深度差大时容易在熔覆区和未熔覆区边界处形成疲劳裂纹,甚至导致材料剥离。对比 6 种激光熔覆修复试样可以发现,F103、 Stellite22 和 Stellite31 磨损深度差较大,为 30~40 µm,Stellite21 修复涂层的磨损深度差异最小,大约为 10 µm,从磨损深度差异角度考虑 Stellite21 更适合铁路钢轨材料的局部修复。

  • 2.3 塑变硬化行为

  • 在轮轨滚动摩擦磨损过程中,由于垂向力和切向力的双重影响,钢轨表面材料组织发生位错,并且随着试验的不断进行,这些位错运动穿过晶界最终形成了宏观的塑性变形层。塑性变形方向主要是由轮轨接触界面的切向力方向决定,塑性变形程度随深度的增加呈减弱趋势[31]。图8 所示为修复钢轨试样剖面塑性变形层 OM 照片,发现未熔覆区(基体区与热影响区)钢轨塑性变形严重,塑性变形深度为 120~135 μm。熔覆区塑性变形较轻微,这是因为熔覆区涂层组织较为均匀且致密,并且具有较高的强度和硬度,大大提高了材料微观组织抵抗塑性流动的能力。

  • 对比 6 种熔覆涂层塑性变形层深度可以发现,原始硬度较大的 Fe 基熔覆涂层(Fe-Cr 和 Fe58)塑形变形深度最小,为 20~35 μm,原始硬度居中的 Co 基熔覆涂层(Stellite21、Stellite22、Stellite31) 塑性变形层深度为 40~70 μm,原始硬度最小的 Ni 基熔覆涂层,其塑形变形深度也最大,约为 80 μm。说明激光熔覆涂层原始硬度与塑性变形层厚度呈相反趋势,涂层材料越硬,抵抗塑性变形的能力越强。

  • 图8 钢轨试样剖面塑性变形 OM 图

  • Fig.8 OM images of plastic deformation on the cross section of rail samples

  • 图9 所示为 6 种激光熔覆涂层试验后的硬度及硬化率。滚动摩擦磨损后,由于材料组织发生塑性变形,涂层硬度均有所提升,而且原始硬度越大的涂层(如 Fe 基涂层),硬化后的表面硬度越大,但硬化率(硬化后硬度除以原始硬度)越小。此外,涂层的硬化率与塑性变形层厚度呈正相关。

  • 图9 试验前后激光熔覆涂层硬度

  • Fig.9 Hardness of laser clads before and after test

  • 2.4 损伤行为

  • 图10 为激光局部熔覆自熔性粉末涂层(Fe-Cr) 钢轨试样表面损伤照片。从表面图片上无法识别热影响区,仅能观测到熔覆区(图10a 右侧图片)和未熔覆区(钢轨表面基体区,图10a 左侧图片),此外,由于熔覆区和未熔覆区磨损程度不同,还可以观测到结合区(Bond zone,图10a 中部图片)。

  • 可以发现,熔覆区、未熔覆区和结合区均可以观察到滚动接触疲劳裂纹,其中,结合区的滚动接触疲劳损伤更加严重。为了进一步分析疲劳损伤规律,图11 给出了 6 种激光修复钢轨试样熔覆区(中间图片)和结合区(两侧图片)的剖面损伤形貌,图12 给出了熔覆区、结合区、未熔覆基体区滚动接触疲劳裂纹长度、角度和深度数据。

  • 对比未熔覆区、熔覆区和结合区发现:未熔覆区的滚动接触疲劳损伤行为(图8a、8b)呈现为典型的钢轨滚动接触疲劳损伤,虽然疲劳裂纹长度较长(图12a),但裂纹沿着材料塑性变形方向发展,裂纹角度较小(图12b),因此裂纹深度也较小。

  • 图10 激光局部修复钢轨试样表面损伤形貌(Fe-Cr)

  • Fig.10 Surface damage morphology of locally cladded rail samples (Fe-Cr)

  • 图11 试验后钢轨试样的剖面损伤 SEM 照片

  • Fig.11 SEM photos of the rail profile damage after test

  • 相比未熔覆区,熔覆区裂纹长度均有所降低,但是由于涂层硬度较高,涂层晶胞尺寸较小,而且表面塑性变形层较薄,裂纹扩展角度均明显增大,导致裂纹深度并没有显著减小,Fe-Cr 裂纹深度略微减小,F103 和 Stellite21 裂纹深度无明显变化, Fe-58、Stellite22、Stellite31 裂纹深度明显增大。

  • 由于本文是研究对钢轨试样进行局部修复,因此对熔覆区与未熔覆基体区结合处的疲劳损伤进行分析非常重要。图11 为试验后钢轨试样的剖面损伤 SEM 照片,图12 所示为试验后钢轨试样裂纹尺寸。由图11 和图12 可知,结合区都有裂纹的萌生,并沿着分界线一直向下扩展,且此处的裂纹较其他区域都更为严重,裂纹的角度和深度均比熔覆区和未熔覆区更大。例如:Fe-Cr、Fe-58 和 Stellite31 涂层的结合区存在明显的大尺寸裂纹。

  • 对比 6 种激光熔覆涂层试样可以发现,激光熔覆涂层滚动接触疲劳损伤形式和机理并无本质差异,疲劳裂纹均从表面以一定角度向组织内部扩展,最终疲劳断裂并从试样表面剥落,其损伤形式均以疲劳磨损为主。由于不同涂层微观组织与力学性能差异,其损伤程度存在差异。对于 Ni 基(F103)粉末激光修复钢轨试样,涂层区和结合区疲劳裂纹尺寸均较大,这和钢轨磨损深度差异较大有关(图7)。对于 Fe 基(Fe-Cr 和 Fe-58)粉末激光修复钢轨试样,由于涂层硬度大,涂层和结合区疲劳损伤严重,比如 Fe-Cr 试样的结合区出现剥离掉块现象;Fe-58试样因其最高的硬度,有着最大的裂纹角度(45°) 和最深的裂纹深度(35 μm)。对于 Co 基涂层,随着试样磨损深度差的增加,涂层及结合区裂纹尺寸 (长度、深度和角度)均呈现增加趋势。相比 6 种钢轨试样,Stellite21 熔覆试样的裂纹长度最短 (26 μm),扩展深度也较浅(20°),这主要是由于 Stellite21 涂层枝晶组织较为致密,裂纹穿透枝晶组织所需的能量也就更高。此外,Stellite21 试样的磨损深度差异最小,导致的轮轨冲击作用较小。同时, Stellite21 试样的摩擦因数也较低,因此表现出较好的抗疲劳性能。

  • 图12 试验后钢轨试样裂纹尺寸

  • Fig.12 Crack sizes of rail sample after test

  • 3 结论

  • (1)自熔性合金粉末激光熔覆涂层形成了细小共晶组织与枝晶组织,能够起到细晶强化作用。Ni 基涂层组织粗大,硬度较小,Fe 与 Co 基涂层组织尺寸较小,其中 Fe 基涂层硬度较大,Co 基涂层硬度居中。

  • (2)轮轨滚动接触模拟试验后,相比未熔覆区域,激光熔覆区(涂层)塑性变形层厚度较小,且涂层原始硬度越高,硬化后硬度越大,但硬化率和硬化层厚度均更小。

  • (3)激光熔覆修复钢轨损伤形式以疲劳磨损为主。激光熔覆区磨损深度比未熔覆区小。未熔覆区滚动接触疲劳裂纹较长,但裂纹角度较小;熔覆区裂纹长度均有所降低,但裂纹扩展角度均明显增大; 熔覆区与未熔覆区结合处疲劳损伤最为严重,疲劳裂纹角度和深度均比熔覆区和未熔覆区更大。

  • (4)对比分析 6 种激光熔覆涂层,Stellite21 熔覆试样摩擦因数较低,熔覆区与未熔覆区磨损深度差较小,抗滚动接触疲劳性能较好,较为适合钢轨的局部修复。

  • 参考文献

    • [1] 王延朋,丁昊昊,邹强,等.列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.WANG Yanpeng,DING Haohao,ZOU Qiang,et al.Research progress on rolling contact fatigue of railway wheel treads[J].Surface Technology,2020,49(5):120-128.(in Chinese)

    • [2] ZHU Y,WANG W J,LEWIS R,et al.A review on wear between railway wheels and rails under environmental conditions[J].Journal of Tribology,2019,141:120801.

    • [3] 王文健,郭俊,刘启跃.轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J].中国表面工程,2010,23(3):106-109.WANG Wenjian,GUO Jun,LIU Qiyue.Study on relationship between wear and rolling fatigue crack of wheel/rail and prevention measures[J].China Surface Engineering,2010,23(3):106-109.(in Chinese)

    • [4] 路世盛,周健松,王凌倩,等.球墨铸铁表面激光熔覆 Ni-Co 复合涂层的耐腐蚀及高温摩擦学性能[J].中国表面工程,2022,35(3):122-131.LU Shisheng,ZHOU Jiansong,WANG Lingqian,et al.Corrosion resistance and elevated-temperature wear properties of laser cladding Ni-Co composite coating on ductile cast iron[J].China Surface Engineering,2022,35(3):122-131.(in Chinese)

    • [5] LI S,HU Q,ZENG X,et al.Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J].Applied Surface Science,2004,240(1):63-70.

    • [6] 曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and tribological properties of laser cladded FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)

    • [7] XU G,KUTSUNA M,LIU Z,et al.Characteristics of Ni-based coating layer formed by laser and plasma cladding processes[J].Materials Science & Engineering A,2005,417(1):63-72.

    • [8] KHANNA A,KUMARI S,KANUNGO S.Hard coatings based on thermal spray and laser cladding[J].International Journal of Refractory Metals & Hard Materials,2009,27(2):485-491.

    • [9] 林文松,张光均,王慧萍.激光熔覆技术的研究进展[J].热处理技术与装备,2008,29(2):1-3,7.LIN Wensong,ZHANG Guangjun,WANG Huiping.Development of laser cladding technology[J].Heat Treatment Technology and Equipment,2008,29(2):1-3.(in Chinese)

    • [10] 杨洗陈,李会山,刘运武,等.激光再制造技术及其工业应用[J].中国表面工程,2003(4):43-46.YANG Xichen,LI Huishan,LIU Yunwu,et al.Laser remanufacturing technology and its industrial application[J].China Surface Engineering,2003(4):43-46.(in Chinese)

    • [11] 李波,吴丽娟,张欣,等.超音速激光沉积Ti6Al4V涂层的微观结构及耐蚀性能[J].中国表面工程,2018,31(5):159-166.LI Bo,WU Lijuan,ZHANG Xin,et al.Microstructure and corrosion-resistant property of Ti6Al4V coating prepared by supersonic laser deposition[J].China Surafce Engineering,2018,31(5):159-166.(in Chinese)

    • [12] 周野飞,秦广阔,邢晓磊,等.激光熔覆无碳化物贝氏体涂层制备及其摩擦学性能[J].中国表面工程,2018,31(4):160-168.ZHOU Yefei,QIN Guangkuo,XING Xiaolei,et al.Preparation and tribological properties of carbide-free bainite coatings by laser cladding[J].China Surface Engineering,2018,31(4):160-168.(in Chinese)

    • [13] 胡杰.激光熔覆重载轮轨材料的摩擦磨损性能的研究 [D].成都:西南交通大学,2012.HU Jie.Study on friction and wear properties of heavy-haul wheel/rail materials for laser cladding[D].Chengdu:Southwest Jiaotong University,2012.(in Chinese)

    • [14] 付志凯,王文健,丁昊昊,等.激光熔覆铁基合金对轮轨材料磨损与损伤性能的影响[J].材料热处理学报,2015,36(8):217-222.FU Zhikai,WANG Wenjian,DING Haohao,et al.Effect of laser cladding Fe-based alloy on wear performance of wheel and rail steels[J].Transactions of Materials and Heat Treatment,2015,36(8):217-222.(in Chinese)

    • [15] 慕鑫鹏.车轮材料激光熔覆涂层微观组织与磨损性能研究[D].成都:西南交通大学,2020.MU Xinpeng.Study on microstructure and wear properties of laser cladding coating on wheel materials[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)

    • [16] NIEDERHAUSER S,KARLSSON B.Fatigue behavior of Co-Cr laser cladded plates for railway application[J].Wear,2005,258(7-8):1156-1164.

    • [17] CLARE A,OYELOLA O,FOLKES J,et al.Laser cladding for railway repair and preventative maintenance[J].Journal of Laser Applications,2012,24(3):240-249.

    • [18] LEWIS S R,LEWIS R,GOODWIN P S,et al.Full-scale testing of laser clad railway track;case study-testing for wear,bend fatigue and insulated block joint lipping integrity[J].Wear,2017,376-377:1930-1937.

    • [19] WANG W J,HU J,GUO J,et al.Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials[J].Wear,2014,311(1-2):130-136.

    • [20] WANG W J,FU Z K,GUO J,et al.Investigation on wear resistance and fatigue damage of laser cladding coating on wheel/rail materials under the oil lubrication condition [J].Tribology Transactions,2016,59(5):810-817.

    • [21] YUAN W Y,LI R F,CHEN Z H,et al.A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J].Surface & Coatings Technology,2021,405:126582.

    • [22] 谢颂京,白万金,姚建华.激光熔覆 Ni/SiC 金属陶瓷涂层组织与耐磨性能[J].金属热处理,2006,31(11):19-22.XIE Songjing,BAI Wanjin,YAO Jianhua.Microstructure and wear resistance of laser clad Ni/SiC ceramic coating[J].Heat Treatment of Metals,2006,31(11):19-22.(in Chinese)

    • [23] 杨涛.钢轨材料表面三种激光熔覆涂层的工艺参数优化与磨损行为研究[D].成都:西南交通大学,2022.YANG Tao.Research on process parameters optimization and wear behavior of three type of laser cladding on the rail materials surface[D].Chengdu:Southwest Jiaotong University,2022.

    • [24] 张有旭.GH4169 镍基高温合金激光熔覆温度场与流场特征研究[D].成都:西南交通大学,2023.ZHANG Youxu.Study on temperature field and flow field characteristics of laser cladding of GH4169 Nickel-based superalloy[D].Chengdu:Southwest Jiaotong University,2023.

    • [25] LAI Q,ABRAHAMS R,YAN W Y,et al.Influences of depositing materials,processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails[J].Journal of Materials Processing Technology,2019,263:1-20.

    • [26] 乔英杰.工程材料[M].哈尔滨:哈尔滨工业大学出版社,2011.QIAO Yingjie.Engineering materials[M].Harbin:Harbin Institute of Technology Press,2011.(in Chinese)

    • [27] 孙荣禄,牛伟,雷贻文,等.钛合金TC4激光熔覆 NiCrBSi+Ni/MoS2涂层组织和摩擦磨损性能[J].材料热处理学报,2014,35(6):157-162.SUN Ronglu,NIU Wei,LEI Yiwen,et al.Microstructure and tribological properties of laser clad NiCrBSi+ Ni/MoS2 coating on TC4 titanium alloy[J].Transactions of Materials and Heat Treatment,2014,35(6):157-162.(in Chinese)

    • [28] 郭火明,王文健,刘腾飞,等.激光相变硬化处理对轮轨钢磨损性能影响[J].材料热处理学报,2014,35(5):169-174.GUO Huoming,WANG Wenjian,LIU Tengfei,et al.Effect of laser transformation hardening treatment on wear properties of wheel/rail steel[J].Transactions of Materials and Heat Treatment,2014,35(5):169-174(in Chinese).

    • [29] 付春霞.激光溶覆及快速成形专用Fe基粉末的研究[D].济南:山东大学,2008.FU Chunxia.Study on Fe-based alloy powders for the laser cladding and the rapid forming[D].Jinan:Shandong University,2008.(in Chinese)

    • [30] 夏银锋.自润滑激光溶覆层的制备及其组织与性能研究[D].秦皇岛:燕山大学,2011.XIA Yinfeng.Microstructure and behavior of self-lubricating composite coating prepared by laser cladding[D].Qinhuangdao:Yanshan University,2011.(in Chinese)

    • [31] HE C G,CHEN Y Z,HUANG Y B,et al.On the surface scratch and thermal fatigue damage of wheel material under different braking speed conditions[J].Engineering Failure Analysis,2017,79:889-901.

  • 参考文献

    • [1] 王延朋,丁昊昊,邹强,等.列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.WANG Yanpeng,DING Haohao,ZOU Qiang,et al.Research progress on rolling contact fatigue of railway wheel treads[J].Surface Technology,2020,49(5):120-128.(in Chinese)

    • [2] ZHU Y,WANG W J,LEWIS R,et al.A review on wear between railway wheels and rails under environmental conditions[J].Journal of Tribology,2019,141:120801.

    • [3] 王文健,郭俊,刘启跃.轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J].中国表面工程,2010,23(3):106-109.WANG Wenjian,GUO Jun,LIU Qiyue.Study on relationship between wear and rolling fatigue crack of wheel/rail and prevention measures[J].China Surface Engineering,2010,23(3):106-109.(in Chinese)

    • [4] 路世盛,周健松,王凌倩,等.球墨铸铁表面激光熔覆 Ni-Co 复合涂层的耐腐蚀及高温摩擦学性能[J].中国表面工程,2022,35(3):122-131.LU Shisheng,ZHOU Jiansong,WANG Lingqian,et al.Corrosion resistance and elevated-temperature wear properties of laser cladding Ni-Co composite coating on ductile cast iron[J].China Surface Engineering,2022,35(3):122-131.(in Chinese)

    • [5] LI S,HU Q,ZENG X,et al.Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J].Applied Surface Science,2004,240(1):63-70.

    • [6] 曹佳俊,常成,邱兆国,等.AISI 1045 钢表面激光熔覆 FeCoCrNiAl0.5Ti0.5 涂层的界面特性及摩擦性能[J].中国表面工程,2023,36(2):54-64.CAO Jiajun,CHANG Cheng,QIU Zhaoguo,et al.Interface characteristics and tribological properties of laser cladded FeCoCrNiAl0.5Ti0.5 coating on AISI 1045 steel[J].China Surface Engineering,2023,36(2):54-64.(in Chinese)

    • [7] XU G,KUTSUNA M,LIU Z,et al.Characteristics of Ni-based coating layer formed by laser and plasma cladding processes[J].Materials Science & Engineering A,2005,417(1):63-72.

    • [8] KHANNA A,KUMARI S,KANUNGO S.Hard coatings based on thermal spray and laser cladding[J].International Journal of Refractory Metals & Hard Materials,2009,27(2):485-491.

    • [9] 林文松,张光均,王慧萍.激光熔覆技术的研究进展[J].热处理技术与装备,2008,29(2):1-3,7.LIN Wensong,ZHANG Guangjun,WANG Huiping.Development of laser cladding technology[J].Heat Treatment Technology and Equipment,2008,29(2):1-3.(in Chinese)

    • [10] 杨洗陈,李会山,刘运武,等.激光再制造技术及其工业应用[J].中国表面工程,2003(4):43-46.YANG Xichen,LI Huishan,LIU Yunwu,et al.Laser remanufacturing technology and its industrial application[J].China Surface Engineering,2003(4):43-46.(in Chinese)

    • [11] 李波,吴丽娟,张欣,等.超音速激光沉积Ti6Al4V涂层的微观结构及耐蚀性能[J].中国表面工程,2018,31(5):159-166.LI Bo,WU Lijuan,ZHANG Xin,et al.Microstructure and corrosion-resistant property of Ti6Al4V coating prepared by supersonic laser deposition[J].China Surafce Engineering,2018,31(5):159-166.(in Chinese)

    • [12] 周野飞,秦广阔,邢晓磊,等.激光熔覆无碳化物贝氏体涂层制备及其摩擦学性能[J].中国表面工程,2018,31(4):160-168.ZHOU Yefei,QIN Guangkuo,XING Xiaolei,et al.Preparation and tribological properties of carbide-free bainite coatings by laser cladding[J].China Surface Engineering,2018,31(4):160-168.(in Chinese)

    • [13] 胡杰.激光熔覆重载轮轨材料的摩擦磨损性能的研究 [D].成都:西南交通大学,2012.HU Jie.Study on friction and wear properties of heavy-haul wheel/rail materials for laser cladding[D].Chengdu:Southwest Jiaotong University,2012.(in Chinese)

    • [14] 付志凯,王文健,丁昊昊,等.激光熔覆铁基合金对轮轨材料磨损与损伤性能的影响[J].材料热处理学报,2015,36(8):217-222.FU Zhikai,WANG Wenjian,DING Haohao,et al.Effect of laser cladding Fe-based alloy on wear performance of wheel and rail steels[J].Transactions of Materials and Heat Treatment,2015,36(8):217-222.(in Chinese)

    • [15] 慕鑫鹏.车轮材料激光熔覆涂层微观组织与磨损性能研究[D].成都:西南交通大学,2020.MU Xinpeng.Study on microstructure and wear properties of laser cladding coating on wheel materials[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)

    • [16] NIEDERHAUSER S,KARLSSON B.Fatigue behavior of Co-Cr laser cladded plates for railway application[J].Wear,2005,258(7-8):1156-1164.

    • [17] CLARE A,OYELOLA O,FOLKES J,et al.Laser cladding for railway repair and preventative maintenance[J].Journal of Laser Applications,2012,24(3):240-249.

    • [18] LEWIS S R,LEWIS R,GOODWIN P S,et al.Full-scale testing of laser clad railway track;case study-testing for wear,bend fatigue and insulated block joint lipping integrity[J].Wear,2017,376-377:1930-1937.

    • [19] WANG W J,HU J,GUO J,et al.Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials[J].Wear,2014,311(1-2):130-136.

    • [20] WANG W J,FU Z K,GUO J,et al.Investigation on wear resistance and fatigue damage of laser cladding coating on wheel/rail materials under the oil lubrication condition [J].Tribology Transactions,2016,59(5):810-817.

    • [21] YUAN W Y,LI R F,CHEN Z H,et al.A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J].Surface & Coatings Technology,2021,405:126582.

    • [22] 谢颂京,白万金,姚建华.激光熔覆 Ni/SiC 金属陶瓷涂层组织与耐磨性能[J].金属热处理,2006,31(11):19-22.XIE Songjing,BAI Wanjin,YAO Jianhua.Microstructure and wear resistance of laser clad Ni/SiC ceramic coating[J].Heat Treatment of Metals,2006,31(11):19-22.(in Chinese)

    • [23] 杨涛.钢轨材料表面三种激光熔覆涂层的工艺参数优化与磨损行为研究[D].成都:西南交通大学,2022.YANG Tao.Research on process parameters optimization and wear behavior of three type of laser cladding on the rail materials surface[D].Chengdu:Southwest Jiaotong University,2022.

    • [24] 张有旭.GH4169 镍基高温合金激光熔覆温度场与流场特征研究[D].成都:西南交通大学,2023.ZHANG Youxu.Study on temperature field and flow field characteristics of laser cladding of GH4169 Nickel-based superalloy[D].Chengdu:Southwest Jiaotong University,2023.

    • [25] LAI Q,ABRAHAMS R,YAN W Y,et al.Influences of depositing materials,processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails[J].Journal of Materials Processing Technology,2019,263:1-20.

    • [26] 乔英杰.工程材料[M].哈尔滨:哈尔滨工业大学出版社,2011.QIAO Yingjie.Engineering materials[M].Harbin:Harbin Institute of Technology Press,2011.(in Chinese)

    • [27] 孙荣禄,牛伟,雷贻文,等.钛合金TC4激光熔覆 NiCrBSi+Ni/MoS2涂层组织和摩擦磨损性能[J].材料热处理学报,2014,35(6):157-162.SUN Ronglu,NIU Wei,LEI Yiwen,et al.Microstructure and tribological properties of laser clad NiCrBSi+ Ni/MoS2 coating on TC4 titanium alloy[J].Transactions of Materials and Heat Treatment,2014,35(6):157-162.(in Chinese)

    • [28] 郭火明,王文健,刘腾飞,等.激光相变硬化处理对轮轨钢磨损性能影响[J].材料热处理学报,2014,35(5):169-174.GUO Huoming,WANG Wenjian,LIU Tengfei,et al.Effect of laser transformation hardening treatment on wear properties of wheel/rail steel[J].Transactions of Materials and Heat Treatment,2014,35(5):169-174(in Chinese).

    • [29] 付春霞.激光溶覆及快速成形专用Fe基粉末的研究[D].济南:山东大学,2008.FU Chunxia.Study on Fe-based alloy powders for the laser cladding and the rapid forming[D].Jinan:Shandong University,2008.(in Chinese)

    • [30] 夏银锋.自润滑激光溶覆层的制备及其组织与性能研究[D].秦皇岛:燕山大学,2011.XIA Yinfeng.Microstructure and behavior of self-lubricating composite coating prepared by laser cladding[D].Qinhuangdao:Yanshan University,2011.(in Chinese)

    • [31] HE C G,CHEN Y Z,HUANG Y B,et al.On the surface scratch and thermal fatigue damage of wheel material under different braking speed conditions[J].Engineering Failure Analysis,2017,79:889-901.

  • 手机扫一扫看