en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

章凯,男,1994年出生,博士。主要研究方向为高温防护涂层。E-mail:kzhang17s@ustc.edu

通讯作者:

程玉贤,男,1981年出生,博士,研究员级高级工程师。主要研究方向为为高温防护涂层。E-mail:leo100223@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221102002

参考文献 1
CLEMENS H,MAYER S.Design,processing,microstructure,properties,and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials,2013,15:191-215.
参考文献 2
YAMAGUCHI M,INUI H,ITO K.High temperature structural intermetallics[J].Acta Materialia,2000,48:307-322
参考文献 3
BEWLAY B P,WEIMER M,KELLY T,et al.The science,technology,and implementation of TiAl alloys in commercial aircraft engines[J].MRS Online Proceedings Library Archive,2013,1516:49-58.
参考文献 4
HABEL U,HEUTLING F,HELM D,et al.Forged intermetallic γ-TiAl based alloy low pressure turbine blade in the geared turbofan[C]//Proceedings of the 13th World Conference on Titanium,August 16-20,2015,The Minerals,Metals and Materials Society,San Diego,California.TMS,2016,1223-1227.
参考文献 5
KLEIN T,CLEMENS H,MAYER S.Advancement of compositional and microstructural design of intermetallic gamma-TiAl based alloys determined by atom probe tomography[J].Materials,2016,9:755
参考文献 6
RAHMEL A,QUADAKKERS W J,SCHUTZE M.Fundamentals of TiAl oxidation:A critical review[J].Materials and Corrosion,1995,46:271-285.
参考文献 7
KOFSTAD P.High temperature corrosion[M].New York:Elsevier Applied Science,1988.
参考文献 8
PFLUMM R,FRIEDLE S,SCHÜTZE M.Oxidation protection of γ-TiAl-based alloys — A review[J].Intermetallics,2015,56:1-14.
参考文献 9
彭小敏,夏长清,王志辉,等.TiAl 基合金高温氧化及防护的研究进展[J].中国有色金属学报,2010,20(6):1116-1130.PENG Xiaomin,XIA Changqing,WANG Zhihui,et al.Development of high temperature oxidation and protection of TiAl-based alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(6):1116-1130.(in Chinese)
参考文献 10
党薇,李宏林,董贵荣,等.TiAl 合金高温抗氧化表面防护技术[J].表面工程与再制造,2019,19(4):34-38.DANG Wei,LI Honglin,DONG Guirong,et al.High temperature oxidation resistant surface protection technology of TiAl alloy[J].Surface Engineering & Remanufacturing,2019,19(4):34-38.(in Chinese)
参考文献 11
FRHLICH M,BRAUN R,LEYENS C.Oxidation resistant coatings in combination with thermal barrier coatings on γ-TiAl alloys for high temperature applications[J].Surface and Coatings Technology,2006,201:3911-3917.
参考文献 12
BRAUN R,ROVERE F,MAYRHOFER P H,et al.Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings[J].Intermetallics,2010,18(4):479-486.
参考文献 13
MOSER M,MAYRHOFER P H,CLEMENS H.On the influence of coating and oxidation on the mechanical properties of a γ-TiAl based alloy[J].Intermetallics,2008,16(10):1206-1211.
参考文献 14
ZHANG K,XIN L,LU Y L,et al.Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating:effects of silicon[J].Corrosion Science,2021(179):109151.
参考文献 15
KITAMIKA K,HASEGAWA H.Mechanical,tribological,and oxidation properties of Si-containing CrAlN films[J].Vacuum,2019,164:29-33.
参考文献 16
CHEN H W,CHAN Y C,LEE J W,et al.Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings[J].Surface and Coatings Technology,2010,205:1189-1194.
参考文献 17
LIU C B,PEI W,HUANG F,et al.Improved mechanical and thermal properties of CrAlN coatings by Si solid solution[J].Vacuum,2016,125:180-184.
参考文献 18
陈建国,邝志辉,周志恒.CrAlSiN 涂层的制备及其性能研究[J].机电工程技术,2019,48(9):62-64.CHEN Jianguo,KUANG Zhihui,ZHOU Zhiheng.Research on preparation and properties of CrAlSiN coating[J].Mechanical & Electrical Engineering Technology,2019,48(9):62-64.
参考文献 19
张济,房海波,黄曼,等.Si 含量对CrAlSiN薄膜抗氧化性能的影响[J].沈阳理工大学学报,2017,36(1):5-8.ZHANG Ji,FANG Haibo,HUANG Man,et al.Effect of Si content on oxidation properties of CrAlSiN coatings[J].Journal of Shenyang Ligong University,2017,36(1):5-8.(in Chinese)
参考文献 20
张而耕,何澄,陈强.Si 元素掺杂CrAlSiN涂层的性能研究进展[J].中国陶瓷,2018,54(12):7-14.ZHANG Ergeng,HE Cheng,CHEN Qiang.Research progress on the properties of Si doped CrAlSiN coatings[J].China Ceramics,2018,54(12):7-14(in Chinese).
参考文献 21
宋亮,马明庆,张罡,等.磁控溅射CrAlSiN硬质膜层的高温抗氧化性能[J].沈阳理工大学学报,2019,38(3):34-39.SONG Liang,MA Mingqing,ZHANG Gang,et al.High temperature oxidation resistance of magnetron sputtered CrAlSiN hard film[J].Journal of Shenyang Ligong University,2019,38(3):34-39.(in Chinese)
参考文献 22
李娜,韩滨,左文彬,等.多弧离子镀制备 CrAlSiN/TiAlSiN 纳米涂层的结构和性能研究[J].表面技术,2017,46(7):1-6 LI Na,HAN Bin,ZUO Wenbin,et al.Structure and properties of CrAlSiN/TiAlSiN nano-coatings prepared by multi-arc plasma deposition[J].Surface Technology,2017,46(7):1-6(in Chinese).
参考文献 23
REITER A E,DERFLINGER V H,HANSELMANN B,et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J].Surface and Coatings Technology,2005,200(7):2114-2122.
参考文献 24
WILLMANN H,MAYRHOFER P H,PERSSON P O A,et al.Thermal stability of Al-Cr-N hard coatings[J].Scripta Materialia,2006,54:1847-1851.
参考文献 25
KAWATE M,KIMURA A,SUZUKI T.Microhardness and lattice parameter of Cr1-xAlxN films[J].Journal of Vacuum Science and Technology,A Vacuum Surfaces and Films,2002,20(2):569-571.
参考文献 26
KIMURA A,KAWATE M,HASEGAWA H,et al.Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films[J].Surface and Coatings Technology,2003,169-170:367-370.
参考文献 27
POLCAR T,CAVALEIRO A.High temperature properties of CrAlN,CrAlSiN and AlCrSiN coatings-structure and oxidation[J].Materials Chemistry and Physics,2011,129(1-2):195-201.
参考文献 28
LIU Y Q,CONG H T,CHENG H M.Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles[J].Journal of Materials Research,2009,24:24-31.
参考文献 29
KIRCHLECHNER C,MARTINSCHITZ K J,DANIEL R,et al.Residual stresses in thermally cycled CrN coatings on steel[J].Thin Solid Films,2008,517(3):1167-1171.
参考文献 30
KIM D J,SEO D Y,HUANG X,et al.Cyclic oxidation behavior of a beta gamma powder metallurgy TiAl-4Nb-3Mn alloy coated with a NiCrAlY coating[J].Surface and Coatings Technology,2012,206(13):3048-3054.
参考文献 31
BRAUN R,ROVERE F,MAYRHOFER P H,et al.Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings[J].Intermetallics,2010,18(4):479-486.
参考文献 32
GASKELL D R.Introduction to the thermodynamics of materials[M].4th eds.New York:Taylor & Francis,2003.
参考文献 33
FRHLICH M,BRAUN R,LEYENS C.Oxidation resistant coatings in combination with thermal barrier coatings on γ-TiAl alloys for high temperature applications[J].Surface and Coatings Technology,2006,201:3911-3917.
目录contents

    摘要

    TiAl 合金作为新型高温结构材料在航空航天和汽车工业领域已获应用,然而在 850 ℃及以上温度服役时抗氧化性不足,施加氮化物涂层在提高 TiAl 合金抗氧化性和耐磨性等综合性能方面独具优势,目前关于氮化物涂层对 TiAl 基合金抗氧化性影响的研究有限。采用多弧离子镀方法在 TiAl 合金表面分别制备 AlCrN 涂层、AlCrSiN 涂层、CrAlN 涂层和 CrAlSiN 涂层,研究涂层对 TiAl 合金 900℃循环氧化行为的影响。XRD 结果表明,AlCrN 和 AlCrSiN 涂层主要呈现 AlN 结构,而 CrAlN 和 CrAlSiN 涂层为 CrN 结构。在 AlCrSiN 和 CrAlSiN 涂层中,Si 可能固溶于晶格中形成(Al, Cr, Si)N 和(Cr, Al, Si)N 固溶体。在 900 ℃经过 300 个周期的循环氧化,AlCrN 和 AlCrSiN 涂层表面氧化膜主要由 Al2O3组成,热循环过程中涂层中形成大量裂纹。CrAlN 和 CrAlSiN 涂层表面氧化膜主要由 Cr2O3 组成,连续致密,无开裂剥落。其中 CrAlN 涂层表面 Cr2O3膜下面形成了 Al 的内氧化物,其氧化增重高于 CrAlSiN 涂层。此外,CrAlN 和 CrAlSiN 涂层均与 TiAl 合金发生较严重的互扩散,在 CrAlN / TiAl 界面和 CrAlSiN / TiAl 界面处形成较厚的互扩散层。可见,CrAlN 和 CrAlSiN 涂层显著提高了 TiAl 合金的抗高温氧化性能,而涂层中 Si 的添加使得涂层抗氧化性得到进一步的提升。研究结果可为 TiAl 合金施加氮化物涂层高温防护提供潜在可能。

    Abstract

    TiAl-based alloys are used in the aerospace and automotive industries because of their low density, reliable strength, and good oxidation resistance. However, the Al content of the TiAl-based alloys is approximately 50 at.%; thus, it cannot form a protective alumina scale when oxidized over 850 ℃, resulting in poor high-temperature oxidation resistance. Many coatings such as metallic, ceramic, aluminide or silicide diffusion, and glass coatings have been investigated to improve the oxidation resistance of TiAl alloys. Furthermore, the effects of alloying or halogens on the oxidation of TiAl alloys have been studied. Nitride coatings have unique advantages for improving the comprehensive properties of TiAl alloys owing to their wear and oxidation resistance. However, studies on the effect of nitride coatings on the oxidation resistance of TiAl-based alloys are limited. In this study, a multi-arc ion plating system was used to deposit AlCrN, AlCrSiN, CrAlN, and CrAlSiN coatings on a TiAl alloy. The influence of AlCr(Si)N and CrAl(Si)N coatings on the cyclic oxidation of the TiAl alloy was investigated at 900 ℃. Furthermore, the influence of the Al content on the coating structure and thermal cycle resistance was investigated. The as-deposited AlCr(Si)N and CrAl(Si)N coatings were homogeneous, compact, and well combined with the matrix alloy. Compared with the CrAl(Si)N coatings, the AlCr(Si)N coatings exhibited a deeper contrast in scanning electron micro scopes back scattered electron pattern, which might be related to the higher Al content. X-ray diffraction patterns showed that the AlCrN and AlCrSiN coatings exhibited an AlN structure, whereas the CrAlN and CrAlSiN coatings exhibited CrN structures. Si may have dissolved into the crystal lattice of the AlCrSiN and CrAlSiN coatings to form (Al, Cr, Si)N and (Cr, Al, Si)N solid solutions. During oxidation for 300 cycles at 900 ℃, oxide scales primarily composed of Al2O3 formed at the surface of AlCrN and AlCrSiN coatings, and numerous cracks formed in the coatings. Aluminum and titanium reacted with oxygen through cracks to form many ridged oxides on the surface of the coatings. However, the matrix was severely oxidized. Therefore, the AlCr(Si)N coatings exhibited poor thermal cycle resistance, which could not improve the cycle oxidation resistance of TiAl alloys. Therefore, research on the development of coatings should consider not only the improvement of oxidation resistance, but also other properties to adapt to complex environmental conditions in the actual service process. After oxidation, continuous and dense oxide scales without cracking or peeling formed on the surface of the CrAlN and CrAlSiN coatings primarily composed of Cr2O3. The weight gain of the CrAlN coating was higher than that of the CrAlSiN coating, which was attributed to the formation of an internal oxidation zone under the outer Cr2O3 layer. Therefore, the addition of Si efficiently inhibited the formation of an inner oxidation zone in the CrAlSiN coating. In addition, the CrAl(Si)N coating decomposed into CrN, Cr2N, Cr, and h-AlN after annealing. After oxidation, thick interdiffusion zones formed at both the CrAlN / TiAl and CrAlSiN / TiAl interfaces owing to the significant interdiffusion between the CrAlN or CrAlSiN coatings and the TiAl matrix. TiN and Ti2AlN beneath the CrAlSiN coating in the interdiffusion zone (IDZ) at the CrAlSiN / TiAl interfaces were primarily formed by the diffusion of N from CrAlSiN to TiAl. Moreover, the released Al diffused from the TiN and Ti2AlN layers to form TiAl2. In the discontinuous Laves phase, Ti5Si3 and Al3Nb were formed between the TiAl2 and nitride layers, and the diffusion barrier of Si addition for N to the TiAl alloy was not apparent, which might be due to the lack of formation of a continuous Ti5Si3 layer in the IDZ. It could be concluded that both the CrAlN and CrAlSiN coatings significantly improved the high-temperature oxidation resistance of the TiAl alloy, and the addition of Si to the coating further improved the oxidation resistance. These results provide prospects for the application of nitride coatings for high-temperature oxidation protection of TiAl-based alloys.

  • 0 前言

  • TiAl 基合金因其较低的密度、较高的强度和较好的抗氧化性,作为新一代高温结构材料受到了人们的关注[1–5]。虽然 TiAl 基合金中 Al 元素含量高达 50 at.%,在高温下尤其是 850℃以上的环境中使用时,合金氧化后表面形成的混合氧化膜却不能为合金提供良好的防护[67]。而随着工业的发展,TiAl 合金服役的工况日益严苛[8]。研究人员通过合金化、施加防护涂层或表面卤素处理等作为 TiAl 基合金高温防护的技术进行了相关研究[8-10]

  • 其中,氮化物涂层在提高 TiAl 合金抗氧化性和耐磨性等综合性能方面独具优势,然而关于氮化物涂层对 TiAl 基合金抗氧化性影响的研究有限。现有研究结果表明,CrAlYN 涂层在 800℃氧化过程中为 TiAl 基合金提供了良好的防护[11],然而当温度提高到 850℃以上时,CrAl(Y)N[12]涂层抗氧化性变差。主要原因在于,一方面温度升高涂层氧化速率增加,另一方面涂层与 TiAl 合金之间严重的互扩散导致涂层退化,加剧涂层的氧化。在热暴露过程中氮化物涂层中的 N 会向 TiAl 合金中扩散,与合金中的 Ti 反应形成 TiN 和 Ti2AlN[12-13]。ZHANG 等 [14] 发现 Ti-48Al-2Cr-2Nb 合金表面沉积的 TiAlSiN 涂层在 900℃表现出优异的抗氧化性,为 TiAl 合金提供了良好的防护。其中 Si 的添加不仅促进了 Al 的选择性氧化,提高涂层自身的抗氧化性,同时在涂层 / 合金界面形成 Ti5Si3 层,阻碍了 N 向合金中的扩散[14]

  • 在CrAlN涂层中添加Si也能够提高其耐磨性和抗氧化性[15-20],然而已有的关于 Si 对 CrAlN 涂层高温下较长时间抗氧化性能影响的研究较为有限[15-171921],此外在 TiAl 基合金表面施加 CrAlSiN 涂层,高温下是否也能像 TiAlSiN 涂层那样促使涂层 / 合金界面形成 Ti5Si3 扩散阻挡层尚不清楚。为此通过多弧离子镀方法在 Ti-48Al-2Cr-2Nb 合金表面制备 CrAl(Si)N 涂层,研究 CrAl(Si)N 涂层对 TiAl 合金 900℃循环氧化性能的影响。同时制备 AlCr(Si)N 涂层,讨论涂层中 Al 含量对涂层结构及循环氧化性能影响。

  • 1 材料与方法

  • 1.1 试样制备

  • TiAl 基材选用 Ti-48Al-2Cr-2Nb(at.%)合金,通过线切割将合金基体切成 15 mm×10 mm×2 mm 的小片,用砂纸打磨样品表面后抛光。将样品放入乙醇与丙酮的混合溶液中超声清洗,干燥备用。通过 DH-4 型多弧离子镀设备,使用 Al-30Cr(at.%)、 Al-30Cr-10Si(at.%)、Cr-50Al(at.%)及 Cr-50Al-10Si (at.%)合金靶材,在 TiAl 合金表面分别沉积 AlCr(Si)N 和 CrAl(Si)N 涂层,涂层沉积参数见表1,沉积态涂层成分见表2。

  • 表1 沉积 AlCr(Si)N 和 CrAl(Si)N 涂层工艺参数

  • Table1 Deposition parameters of AlCr (Si) N and CrAl (Si) N coatings

  • 表2 沉积态 AlCr(Si)N 和 CrAl(Si)N 涂层成分

  • Table2 Compositions of the deposited AlCr (Si) N and CrAl (Si) N coatings (at.%)

  • 1.2 循环氧化试验

  • AlCr(Si)N和CrAl(Si)N涂层900℃循环氧化试验在温度校准后的管式循环氧化装置中进行,一个循环周期包括样品在氧化温度下保温 60 min,在空气中冷却15 min,每隔20个周期使用精度为0.01 mg 的精密天平测量一次样品重量(前 20 周期中在第 5 和第 10 周期分别测一次)。

  • 1.3 表征与分析测试

  • 通过 InspectF50 扫描电子显微镜(SEM)观察氧化前后涂层形貌,用 Oxford 能谱仪(EDS)测量涂层成分,由 Talos-F200x 透射电子显微镜(TEM)分析氧化后涂层与合金基材界面互扩散区结构。通过 X’Pert PRO 型 X 射线衍射仪(XRD)分析氧化前后样品相成分,其测量角度 2θ 的范围选用 10°~90°。

  • 2 结果与讨论

  • 2.1 沉积态涂层结构

  • AlCrN 涂层、AlCrSiN 涂层、CrAlN 涂层和 CrAlSiN 涂层的 SEM 表面和截面形貌如图1 所示,可以看到 4 种涂层均匀致密且与 TiAl 合金结合良好。相比于 CrAlN 和 CrAlSiN 涂层,AlCrN 和 AlCrSiN 涂层衬度较深,这可能与涂层中 Al 含量较高有关。

  • 图2 显示了 4 种涂层的 XRD 图,对于 AlCrN 和 AlCrSiN 涂层,主要检测到了 h-AlN 的衍射峰,其与 PDF 卡片中向左偏移。这说明在 AlCrN 和 AlCrSiN 涂层中 Cr 和 Si 原子作为 Al 的替位原子固溶在 h-AlN 的晶格中,由于 Cr 原子半径比 Al 大, Cr 固溶于 AlN 晶格中导致其晶格常数增大。此外,在 AlCrN 涂层中还检测到了峰强较低的 c-CrN 相,表明这一涂层由 h-AlN 和 c-CrN 两种相组成,以 h-AlN 结构为主。而对于 CrAlN 和 CrAlSiN 涂层均呈现面心立方 c-CrN 结构,同 PDF 卡片中 c-CrN 的标准峰位相比,两种涂层的峰位均向右偏移,这说明在 CrN 晶格中 Al、Si 原子可能取代 Cr 原子的位置,从而形成置换固溶体[22]。REITER 等[23]和 WILLMANN 等[24]对 Cr1-xAlxN 的研究表明,x≤ 0.70~0.75 时,Al 取代 Cr 的位置固溶到 CrN 晶格中,x>0.75 时,Al 含量高于在 CrN 中的固溶极限,使得具有六方结构的 AlN 析出,Cr1-xAlxN 由 c-CrN 结构转变为 h-AlN 结构,在这些研究工作中沉积态 Al0.7Cr0.3N 涂层为 c-CrN 结构[23-24]

  • 图1 沉积态 AlCrN、AlCrSiN、CrAlN 和 CrAlSiN 涂层表面和截面形貌

  • Fig.1 Surface and cross-sectional morphologies of the as-deposited AlCrN, AlCrSiN, CrAlN, and CrAlSiN coatings

  • CrAlN 和 CrAlSiN 涂层为 c-CrN 结构(图2), Al 和 Si 作为 Cr 的替位原子固溶于 CrN 晶格中,Al 和 Si 的固溶导致 CrN 的晶格常数变小。

  • 图2 沉积态 AlCr(Si)N 和 CrAl(Si)N 涂层 XRD 图

  • Fig.2 XRD patterns of as-deposited AlCr (Si) N and CrAl (Si) N coatings

  • AlCrN 涂层为 h-AlN 和 c-CrN 两种相结构的混合物,以 h-AlN 结构为主,AlCrSiN 涂层为 h-AlN 结构,说明这两种涂层中 Cr 和 Si 作为的 Al 的替位原子固溶于 CrN 晶格中,Cr 的固溶导致 AlN 的晶格常数变大,与文献中结果一致[23-24]。而 KIMURA 等[25]的研究则表明,x≤0.60 时,Cr1-xAlxN 为 c-CrN 结构,x≥0.70 时,Cr1-xAlxN 为 h-AlN 结构,也就是说 x 在 0.6~0.7,涂层发生由 c-CrN 到 h-AlN 的结构转变,在这项研究工作中,沉积态 Cr0.3Al0.7N 涂层为 h-AlN 结构[25]。同样成分的 Cr0.3Al0.7N 涂层,在不同的研究工作中其相结构呈现了明显差异,说明在 x=0.7 附近的临界成分点,不同沉积方法和参数会对涂层相结构产生较大影响。此外,本文中 AlCrSiN 涂层 Al 含量低于 AlCrN 涂层,XRD 却未检出 c-CrN,说明添加 Si 降低了 AlN 在 CrN 中的溶解度,这与 LIU 等[1726] 的研究结果相吻合。

  • 2.2 900℃循环氧化行为

  • 图3 显示了 AlCrN 涂层、AlCrSiN 涂层、CrAlN 涂层和 CrAlSiN 涂层在 900℃空气中循环氧化 300 周期的动力学曲线。可以看到,AlCrN 涂层氧化初期增重最大,循环 40 周期后开始失重;CrAlN 涂层氧化初期增重较大,后期增重逐渐变小,整个氧化期间未发生失重;AlCrSiN 涂层循环 20 周期内增重与 CrAlSiN 涂层相近,但在 40 到 300 个循环周期内涂层氧化增重持续增加,循环 160 周期后其氧化增重甚至超过了 CrAlN 涂层。CrAlSiN 涂层在 300 个循环周期内氧化增重始终最低,未出现失重。

  • 图3 AlCr(Si)N 和 CrAl(Si)N 涂层 900℃循环氧化动力学曲线

  • Fig.3 Dynamic curves of AlCr (Si) N and CrAl (Si) N coatings during cyclic oxidation at 900℃

  • 图4 显示了 AlCrN 和 AlCrSiN 涂层 900℃ 循环氧化 300 周期后的 SEM 表面和截面形貌。可见,两种涂层氧化后表面形成大量脊状氧化物,其中 AlCrSiN 涂层表面脊状氧化物更多。EDS 分析结果表明脊状氧化物为 Al2O3 和 TiO2 的混合氧化物,并且这些脊状氧化物下方的涂层及合金基材发生了较严重的氧化,而未生成脊状氧化物的区域涂层表面氧化膜很薄,涂层亦未发生氧化。900℃经过 300 个周期的循环氧化,CrAlN 和 CrAlSiN 涂层表面均形成了平整、连续、粘附性好的氧化膜(图5),EDS 分析表明氧化膜主要由 Cr2O3 组成。CrAlN 涂层表面氧化膜外层 Cr2O3 层下方存在一层内氧化区,其内分布着垂直界面呈柱状生长的 Al2O3。而 CrAlSiN 涂层没有发生明显内氧化,说明涂层中 Si 的添加能够有效地抑制涂层的内氧化,这也就是循环氧化 300 个周期过程中 CrAlSiN 涂层增重比 CrAlN 涂层增重小的原因。氧化后涂层完整,未发生开裂和剥落。

  • 图6 显示了 4 种涂层在 900℃循环氧化 300 周期后的 XRD 分析结果。AlCrN 和 AlCrSiN 涂层氧化后形成的氧化物中均检测到了 TiO2,氧化物中 TiO2 的形成主要是由合金中的 Ti 元素通过涂层中的裂纹向外迁移,与空气中的氧反应形成的。此外,在氧化物中还检测到了 Al2O3,这可能一方面由于合金中的 Al 元素通过涂层中的裂纹向外迁移,与空气中氧反应生成 Al2O3,如前面观察到的,脊状氧化物由 TiO2 和 Al2O3 组成;另一方面,由于涂层中 Al 含量较高,氧化时在氧化膜中形成 Al2O3,对比图4 和图5,可以看到 AlCrN 和 AlCrSiN 涂层表面未生成脊状氧化膜的区域氧化膜比 CrAlN 和 CrAlSiN 涂层薄。AlCrN 和 AlCrSiN 涂层氧化产物中未能检测到 Cr2O3 的衍射峰,可能是由于这两种涂层表面平整区域氧化膜很薄,虽然氧化产物中可能生成了 Cr2O3,但 XRD 分析未能检测到。

  • 图4 900℃循环氧化 300 周期后 AlCr(Si)N 涂层的表面和截面形貌

  • Fig.4 Surface and cross-sectional morphologies of AlCr (Si) N coatings after oxidation for 300 cycles at 900℃

  • 氧化后 AlCrN 和 AlCrSiN 涂层都检测到 h-AlN 的衍射峰,AlCrN 涂层还检测到较强的 CrN 和 Cr2N 的衍射峰,说明氧化过程中涂层发生了分解,由 h-(Al,Cr,Si)N 分解为 CrN、Cr2N 和 h-AlN 相。 AlCrSiN 涂层氧化后 CrN 和 Cr2N 的衍射峰微弱,说明 Si 的添加可能抑制了涂层的分解。氧化后上述两种涂层样品中都检测到 TiN 相,说明涂层中的 N 元素在氧化过程中从涂层扩散到 TiAl 合金中与 Ti 反应形成了 TiN。CrAlN 和 CrAlSiN 涂层氧化后,XRD 分析均检测到较强的 Cr2O3 的衍射峰,与 EDS 结果一致,说明涂层表面薄而连续的氧化膜主要由 Cr2O3 组成。CrAlN 涂层同时检测到 Al2O3的衍射峰,对应内氧化区所形成的内氧化物 Al2O3,而 CrAlSiN 涂层 Al2O3 的峰微弱。氧化后 CrAl(Si)N 涂层试样均检测到了 CrN、Cr2N、Cr 和 h-AlN 及 TiN 的衍射峰,说明氧化过程中CrAl(Si)N 涂层发生了分解,从c-(Cr,Al,Si)N 分解为 CrN、Cr2N、Cr 和 h-AlN 相,同时 N 元素扩散到了 TiAl 合金中形成了 TiN 相。

  • 图5 900℃循环氧化 300 周期后 CrAl(Si)N 涂层的表面和截面形貌

  • Fig.5 Surface and cross-sectional morphologies of CrAl (Si) N coatings after oxidation for 300 cycles at 900℃

  • 图6 900℃循环氧化 300 周期后涂层的 XRD 谱图

  • Fig.6 XRD patterns of coatings after oxidation for 300 cycles at 900℃

  • 提高涂层中 Al 的含量能够促进其选择性氧化,从而提高涂层抗氧化性。POLCAR 等[27]对 CrAlN, CrAlSiN 和 AlCrSiN 涂层在 850~1 300℃的氧化行为进行研究,发现 Al 含量较高的 AlCrSiN 涂层氧化后氧化膜更薄,氧化增重更小。通过图4 和图5 也可以看出,900℃循环氧化 300 周期后,AlCrN 和 AlCrSiN 涂层表面平整区域的氧化膜比 Al 含量较低的CrAlN和CrAlSiN涂层薄。然而AlCrN和AlCrSiN 涂层在循环氧化过程中开裂,空气中氧和 TiAl 合金中组元通过裂纹快速迁移相互反应以致涂层表面形成大量脊状氧化物,而合金基材也发生了较严重的氧化,这主要和 AlCr(Si)N 涂层与 TiAl 合金热膨胀系数相差较大有关(h-AlN 约为 3.5×10−6 K−1[28], c-CrN 约为 6×10−6 K−1[29],γ-TiAl 基合金约为 12× 10−6 K−1[30])。由于热膨胀系数不匹配,在热循环的升温过程中涂层中产生了较大的张应力,在张应力的作用下涂层开裂。综上所述,对于涂层设计不仅要考虑元素添加对涂层抗氧化性能的改善作用,还应兼顾其他性能才能适应实际服役过程中复杂的环境条件。对于 AlCrSiN 涂层(图4),Si 元素的添加似乎增大了涂层的脆性,循环氧化过程中涂层中形成大量贯穿性裂纹,氧和合金元素通过裂纹快速迁移,涂层表面形成了大量脊状氧化物,界面处合金基材的氧化也更严重,因而循环氧化过程中涂层氧化增重持续快速增加。循环氧化过程中,AlCrN 和 AlCrSiN 涂层与 TiAl 基合金基材都发生了互扩散,由于空气中氧沿着涂层中生成的裂纹内扩散导致界面处合金氧化较为严重,因此不能确定 ArCrSiN 中 Si 对涂层与合金互扩散行为的影响。

  • 900℃经过 300 周期的循环氧化,CrAlN 涂层表面形成了较薄的 Cr2O3 氧化膜,而在 Cr2O3 下方形成了内氧化区,其中分布着 Al2O3颗粒。BRAUN 等[31]研究了 CrAlN 涂层 850℃的氧化行为,发现经过 2 000 次的循环,CrAlN 涂层表面同样形成了薄而连续的 Cr2O3 氧化膜,而 Cr2O3 氧化膜下方的涂层完全氧化为由(Cr,Al)2O3和(Al,Cr,)2O3构成的混合氧化物。可见氧化过程中 CrAlN 涂层中 Al 含量不足以形成单一连续的 Al2O3 外氧化膜,而 Cr 的氧化物生长较快,氧化过程中 Cr 扩散的活化能较低[32],因此涂层表面迅速被一层 Cr2O3 外氧化膜覆盖。 CrAlSiN 涂层表面均形成了薄而致密的 Cr2O3 氧化膜,未形成内氧化区,说明 Si 的添加提高了涂层的抗氧化性。此外,氧化后 CrAlN 和 CrAlSiN 涂层都发生了分解。REITER 等[23]和 WILLMANN 等[24]对 Cr1-xAlxN(0<x<1)涂层的研究表明,对于 c-CrN 结构的 Cr1-xAlxN 涂层,950℃分解后生成 CrN、Cr2N、 Cr 和 h-AlN 相共存结构,而对于 h-AlN 结构的 Cr1-xAlxN 涂层,950℃分解后生成 Cr2N 和 h-AlN 相共存的结构,这些结果与本文中观察到的现象相一致。

  • 2.3 氧化后 CrAl(Si)N / TiAl 界面 IDZ 结构

  • 氧化后 CrAlN 涂层 / TiAl 合金及 CrAlSiN 涂层 / TiAl 合金界面处分别形成了厚度约为 10.17 μm 和 7.34 μm,具有分层结构的互扩散区(Interdiffusion zone,IDZ),IDZ 各层成分如表3 所示(表中 1~9位置如图6 所示)。对于 CrAlN 涂层 / TiAl 合金界面处 IDZ 分为 5 层,最外层富 Ti 和 N(1 层);紧邻 1 层富 Ti、Al 和 N(2 层),其下白亮层富 Al 和 Nb (3 层);白亮层之下的一层富 Al 和 Cr(4 层),靠近合金一侧富 Al(5 层)。CrAlSiN 涂层 / TiAl 合金界面处 IDZ 分为 4 层,同 CrAlN 涂层 / TiAl 合金界面处 IDZ 相比少了富 Al 和 Cr 的扩散层,在 Al 和 Nb 富集层(8 层)中有 Si 元素的富集。ZHANG 等[14]发现 Ti-48Al-2Cr-2Nb 合金表面沉积的 TiAlSiN 涂层在 900℃表现出优异的抗氧化性,为 TiAl 合金提供了良好的防护。其中 Si 的添加不仅促进了 Al 的选择性氧化,提高了涂层自身的抗氧化性,同时在涂层 / 合金界面形成了 Ti5Si3 层,阻碍了 N 向合金中的扩散[14]。然而从目前结果来看,CrAlSiN 涂层中Si的添加对于热暴露过程中阻碍涂层中的N相 TiAl 合金扩散的阻碍作用并不明显。

  • 表3 CrAl(Si)N / TiAl 界面 IDZ 中各层的成分

  • Table3 Composition of IDZ at CrAl (Si) N / TiAl interface determined by EDS (at.%)

  • 图7 显示了 900℃循环氧化 300 周期之后 CrAlSiN / TiAl 界面处 STEM 明场像以及相对应的 EDS 元素面分布结果,表4 列出了图7 中各区域的 TEM / EDS 分析结果。

  • 图7 氧化后 CrAlSiN / TiAl 界面结构及元素分布 [(a)(b)(c)(d)为 STEM-BF 中 a、b、c、d 位置的选区衍射]

  • Fig.7 Structure and element mappings of CrAlSiN / TiAl interface after oxidation: (a) (b) (c) (d) is SAED patterns taken at regions a, b, c, d in STEM-BF pattern.

  • 表4 CrAlSiN / TiAl 界面 IDZ 中各层成分 TEM / EDS 分析结果

  • Table4 Composition of IDZ at CrAlSiN / TiAl interface determined by TEM / EDS (at.%)

  • 可以看到,IDZ 中紧邻 CrAlSiN 涂层的为 TiN 层,其下为 Ti2AlN 层,这两层主要由 N 元素从 CrAlSiN 涂层中扩散到 TiAl 合金中,与合金中 Ti 元素反应形成,而此时释放的 Al 从 TiN 和 Ti2AlN 层中扩散出来形成 TiAl2层。在 TiAl2层与氮化物层之间形成不连续的 Laves 相[33]、Ti5Si3 相及 Al3Nb 相。其中 Laves 相是根据 EDS 成分推测得到的,以 Al、Cr、Ti 和 Nb 为主,从成分上推测是 Nb 替代部分 Cr 形成 Laves 相 Ti(Cr,Al)2,故称作四元 Laves 相[22]。而 IDZ 中并未形成连续的 Ti5Si3层,可能因此它阻碍 N 向 TiAl 合金中扩散的作用不明显。

  • 3 结论

  • (1)900℃时 AlCr(Si)N 涂层抗热循环性能较差,TiAl 合金发生了严重氧化,而 CrAl(Si)N 涂层为 TiAl 合金提供了良好的防护,尤其是 CrAlSiN 涂层中 Si 的添加使得涂层抗氧化性得到进一步提升。研究结果为 TiAl 合金施加氮化物涂层高温防护提供了潜在可能。

  • (2)900℃氧化后,CrAl(Si)N 与 TiAl 合金互扩散严重,CrAlSiN / TiAl 和 CrAlN / TiAl 界面互扩散区结构相近,Si 的添加并没有明显抑制 CrAlSiN 涂层中氮元素向 TiAl 合金扩散。

  • 参考文献

    • [1] CLEMENS H,MAYER S.Design,processing,microstructure,properties,and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials,2013,15:191-215.

    • [2] YAMAGUCHI M,INUI H,ITO K.High temperature structural intermetallics[J].Acta Materialia,2000,48:307-322

    • [3] BEWLAY B P,WEIMER M,KELLY T,et al.The science,technology,and implementation of TiAl alloys in commercial aircraft engines[J].MRS Online Proceedings Library Archive,2013,1516:49-58.

    • [4] HABEL U,HEUTLING F,HELM D,et al.Forged intermetallic γ-TiAl based alloy low pressure turbine blade in the geared turbofan[C]//Proceedings of the 13th World Conference on Titanium,August 16-20,2015,The Minerals,Metals and Materials Society,San Diego,California.TMS,2016,1223-1227.

    • [5] KLEIN T,CLEMENS H,MAYER S.Advancement of compositional and microstructural design of intermetallic gamma-TiAl based alloys determined by atom probe tomography[J].Materials,2016,9:755

    • [6] RAHMEL A,QUADAKKERS W J,SCHUTZE M.Fundamentals of TiAl oxidation:A critical review[J].Materials and Corrosion,1995,46:271-285.

    • [7] KOFSTAD P.High temperature corrosion[M].New York:Elsevier Applied Science,1988.

    • [8] PFLUMM R,FRIEDLE S,SCHÜTZE M.Oxidation protection of γ-TiAl-based alloys — A review[J].Intermetallics,2015,56:1-14.

    • [9] 彭小敏,夏长清,王志辉,等.TiAl 基合金高温氧化及防护的研究进展[J].中国有色金属学报,2010,20(6):1116-1130.PENG Xiaomin,XIA Changqing,WANG Zhihui,et al.Development of high temperature oxidation and protection of TiAl-based alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(6):1116-1130.(in Chinese)

    • [10] 党薇,李宏林,董贵荣,等.TiAl 合金高温抗氧化表面防护技术[J].表面工程与再制造,2019,19(4):34-38.DANG Wei,LI Honglin,DONG Guirong,et al.High temperature oxidation resistant surface protection technology of TiAl alloy[J].Surface Engineering & Remanufacturing,2019,19(4):34-38.(in Chinese)

    • [11] FRHLICH M,BRAUN R,LEYENS C.Oxidation resistant coatings in combination with thermal barrier coatings on γ-TiAl alloys for high temperature applications[J].Surface and Coatings Technology,2006,201:3911-3917.

    • [12] BRAUN R,ROVERE F,MAYRHOFER P H,et al.Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings[J].Intermetallics,2010,18(4):479-486.

    • [13] MOSER M,MAYRHOFER P H,CLEMENS H.On the influence of coating and oxidation on the mechanical properties of a γ-TiAl based alloy[J].Intermetallics,2008,16(10):1206-1211.

    • [14] ZHANG K,XIN L,LU Y L,et al.Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating:effects of silicon[J].Corrosion Science,2021(179):109151.

    • [15] KITAMIKA K,HASEGAWA H.Mechanical,tribological,and oxidation properties of Si-containing CrAlN films[J].Vacuum,2019,164:29-33.

    • [16] CHEN H W,CHAN Y C,LEE J W,et al.Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings[J].Surface and Coatings Technology,2010,205:1189-1194.

    • [17] LIU C B,PEI W,HUANG F,et al.Improved mechanical and thermal properties of CrAlN coatings by Si solid solution[J].Vacuum,2016,125:180-184.

    • [18] 陈建国,邝志辉,周志恒.CrAlSiN 涂层的制备及其性能研究[J].机电工程技术,2019,48(9):62-64.CHEN Jianguo,KUANG Zhihui,ZHOU Zhiheng.Research on preparation and properties of CrAlSiN coating[J].Mechanical & Electrical Engineering Technology,2019,48(9):62-64.

    • [19] 张济,房海波,黄曼,等.Si 含量对CrAlSiN薄膜抗氧化性能的影响[J].沈阳理工大学学报,2017,36(1):5-8.ZHANG Ji,FANG Haibo,HUANG Man,et al.Effect of Si content on oxidation properties of CrAlSiN coatings[J].Journal of Shenyang Ligong University,2017,36(1):5-8.(in Chinese)

    • [20] 张而耕,何澄,陈强.Si 元素掺杂CrAlSiN涂层的性能研究进展[J].中国陶瓷,2018,54(12):7-14.ZHANG Ergeng,HE Cheng,CHEN Qiang.Research progress on the properties of Si doped CrAlSiN coatings[J].China Ceramics,2018,54(12):7-14(in Chinese).

    • [21] 宋亮,马明庆,张罡,等.磁控溅射CrAlSiN硬质膜层的高温抗氧化性能[J].沈阳理工大学学报,2019,38(3):34-39.SONG Liang,MA Mingqing,ZHANG Gang,et al.High temperature oxidation resistance of magnetron sputtered CrAlSiN hard film[J].Journal of Shenyang Ligong University,2019,38(3):34-39.(in Chinese)

    • [22] 李娜,韩滨,左文彬,等.多弧离子镀制备 CrAlSiN/TiAlSiN 纳米涂层的结构和性能研究[J].表面技术,2017,46(7):1-6 LI Na,HAN Bin,ZUO Wenbin,et al.Structure and properties of CrAlSiN/TiAlSiN nano-coatings prepared by multi-arc plasma deposition[J].Surface Technology,2017,46(7):1-6(in Chinese).

    • [23] REITER A E,DERFLINGER V H,HANSELMANN B,et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J].Surface and Coatings Technology,2005,200(7):2114-2122.

    • [24] WILLMANN H,MAYRHOFER P H,PERSSON P O A,et al.Thermal stability of Al-Cr-N hard coatings[J].Scripta Materialia,2006,54:1847-1851.

    • [25] KAWATE M,KIMURA A,SUZUKI T.Microhardness and lattice parameter of Cr1-xAlxN films[J].Journal of Vacuum Science and Technology,A Vacuum Surfaces and Films,2002,20(2):569-571.

    • [26] KIMURA A,KAWATE M,HASEGAWA H,et al.Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films[J].Surface and Coatings Technology,2003,169-170:367-370.

    • [27] POLCAR T,CAVALEIRO A.High temperature properties of CrAlN,CrAlSiN and AlCrSiN coatings-structure and oxidation[J].Materials Chemistry and Physics,2011,129(1-2):195-201.

    • [28] LIU Y Q,CONG H T,CHENG H M.Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles[J].Journal of Materials Research,2009,24:24-31.

    • [29] KIRCHLECHNER C,MARTINSCHITZ K J,DANIEL R,et al.Residual stresses in thermally cycled CrN coatings on steel[J].Thin Solid Films,2008,517(3):1167-1171.

    • [30] KIM D J,SEO D Y,HUANG X,et al.Cyclic oxidation behavior of a beta gamma powder metallurgy TiAl-4Nb-3Mn alloy coated with a NiCrAlY coating[J].Surface and Coatings Technology,2012,206(13):3048-3054.

    • [31] BRAUN R,ROVERE F,MAYRHOFER P H,et al.Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings[J].Intermetallics,2010,18(4):479-486.

    • [32] GASKELL D R.Introduction to the thermodynamics of materials[M].4th eds.New York:Taylor & Francis,2003.

    • [33] FRHLICH M,BRAUN R,LEYENS C.Oxidation resistant coatings in combination with thermal barrier coatings on γ-TiAl alloys for high temperature applications[J].Surface and Coatings Technology,2006,201:3911-3917.

  • 参考文献

    • [1] CLEMENS H,MAYER S.Design,processing,microstructure,properties,and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials,2013,15:191-215.

    • [2] YAMAGUCHI M,INUI H,ITO K.High temperature structural intermetallics[J].Acta Materialia,2000,48:307-322

    • [3] BEWLAY B P,WEIMER M,KELLY T,et al.The science,technology,and implementation of TiAl alloys in commercial aircraft engines[J].MRS Online Proceedings Library Archive,2013,1516:49-58.

    • [4] HABEL U,HEUTLING F,HELM D,et al.Forged intermetallic γ-TiAl based alloy low pressure turbine blade in the geared turbofan[C]//Proceedings of the 13th World Conference on Titanium,August 16-20,2015,The Minerals,Metals and Materials Society,San Diego,California.TMS,2016,1223-1227.

    • [5] KLEIN T,CLEMENS H,MAYER S.Advancement of compositional and microstructural design of intermetallic gamma-TiAl based alloys determined by atom probe tomography[J].Materials,2016,9:755

    • [6] RAHMEL A,QUADAKKERS W J,SCHUTZE M.Fundamentals of TiAl oxidation:A critical review[J].Materials and Corrosion,1995,46:271-285.

    • [7] KOFSTAD P.High temperature corrosion[M].New York:Elsevier Applied Science,1988.

    • [8] PFLUMM R,FRIEDLE S,SCHÜTZE M.Oxidation protection of γ-TiAl-based alloys — A review[J].Intermetallics,2015,56:1-14.

    • [9] 彭小敏,夏长清,王志辉,等.TiAl 基合金高温氧化及防护的研究进展[J].中国有色金属学报,2010,20(6):1116-1130.PENG Xiaomin,XIA Changqing,WANG Zhihui,et al.Development of high temperature oxidation and protection of TiAl-based alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(6):1116-1130.(in Chinese)

    • [10] 党薇,李宏林,董贵荣,等.TiAl 合金高温抗氧化表面防护技术[J].表面工程与再制造,2019,19(4):34-38.DANG Wei,LI Honglin,DONG Guirong,et al.High temperature oxidation resistant surface protection technology of TiAl alloy[J].Surface Engineering & Remanufacturing,2019,19(4):34-38.(in Chinese)

    • [11] FRHLICH M,BRAUN R,LEYENS C.Oxidation resistant coatings in combination with thermal barrier coatings on γ-TiAl alloys for high temperature applications[J].Surface and Coatings Technology,2006,201:3911-3917.

    • [12] BRAUN R,ROVERE F,MAYRHOFER P H,et al.Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings[J].Intermetallics,2010,18(4):479-486.

    • [13] MOSER M,MAYRHOFER P H,CLEMENS H.On the influence of coating and oxidation on the mechanical properties of a γ-TiAl based alloy[J].Intermetallics,2008,16(10):1206-1211.

    • [14] ZHANG K,XIN L,LU Y L,et al.Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating:effects of silicon[J].Corrosion Science,2021(179):109151.

    • [15] KITAMIKA K,HASEGAWA H.Mechanical,tribological,and oxidation properties of Si-containing CrAlN films[J].Vacuum,2019,164:29-33.

    • [16] CHEN H W,CHAN Y C,LEE J W,et al.Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings[J].Surface and Coatings Technology,2010,205:1189-1194.

    • [17] LIU C B,PEI W,HUANG F,et al.Improved mechanical and thermal properties of CrAlN coatings by Si solid solution[J].Vacuum,2016,125:180-184.

    • [18] 陈建国,邝志辉,周志恒.CrAlSiN 涂层的制备及其性能研究[J].机电工程技术,2019,48(9):62-64.CHEN Jianguo,KUANG Zhihui,ZHOU Zhiheng.Research on preparation and properties of CrAlSiN coating[J].Mechanical & Electrical Engineering Technology,2019,48(9):62-64.

    • [19] 张济,房海波,黄曼,等.Si 含量对CrAlSiN薄膜抗氧化性能的影响[J].沈阳理工大学学报,2017,36(1):5-8.ZHANG Ji,FANG Haibo,HUANG Man,et al.Effect of Si content on oxidation properties of CrAlSiN coatings[J].Journal of Shenyang Ligong University,2017,36(1):5-8.(in Chinese)

    • [20] 张而耕,何澄,陈强.Si 元素掺杂CrAlSiN涂层的性能研究进展[J].中国陶瓷,2018,54(12):7-14.ZHANG Ergeng,HE Cheng,CHEN Qiang.Research progress on the properties of Si doped CrAlSiN coatings[J].China Ceramics,2018,54(12):7-14(in Chinese).

    • [21] 宋亮,马明庆,张罡,等.磁控溅射CrAlSiN硬质膜层的高温抗氧化性能[J].沈阳理工大学学报,2019,38(3):34-39.SONG Liang,MA Mingqing,ZHANG Gang,et al.High temperature oxidation resistance of magnetron sputtered CrAlSiN hard film[J].Journal of Shenyang Ligong University,2019,38(3):34-39.(in Chinese)

    • [22] 李娜,韩滨,左文彬,等.多弧离子镀制备 CrAlSiN/TiAlSiN 纳米涂层的结构和性能研究[J].表面技术,2017,46(7):1-6 LI Na,HAN Bin,ZUO Wenbin,et al.Structure and properties of CrAlSiN/TiAlSiN nano-coatings prepared by multi-arc plasma deposition[J].Surface Technology,2017,46(7):1-6(in Chinese).

    • [23] REITER A E,DERFLINGER V H,HANSELMANN B,et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J].Surface and Coatings Technology,2005,200(7):2114-2122.

    • [24] WILLMANN H,MAYRHOFER P H,PERSSON P O A,et al.Thermal stability of Al-Cr-N hard coatings[J].Scripta Materialia,2006,54:1847-1851.

    • [25] KAWATE M,KIMURA A,SUZUKI T.Microhardness and lattice parameter of Cr1-xAlxN films[J].Journal of Vacuum Science and Technology,A Vacuum Surfaces and Films,2002,20(2):569-571.

    • [26] KIMURA A,KAWATE M,HASEGAWA H,et al.Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films[J].Surface and Coatings Technology,2003,169-170:367-370.

    • [27] POLCAR T,CAVALEIRO A.High temperature properties of CrAlN,CrAlSiN and AlCrSiN coatings-structure and oxidation[J].Materials Chemistry and Physics,2011,129(1-2):195-201.

    • [28] LIU Y Q,CONG H T,CHENG H M.Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles[J].Journal of Materials Research,2009,24:24-31.

    • [29] KIRCHLECHNER C,MARTINSCHITZ K J,DANIEL R,et al.Residual stresses in thermally cycled CrN coatings on steel[J].Thin Solid Films,2008,517(3):1167-1171.

    • [30] KIM D J,SEO D Y,HUANG X,et al.Cyclic oxidation behavior of a beta gamma powder metallurgy TiAl-4Nb-3Mn alloy coated with a NiCrAlY coating[J].Surface and Coatings Technology,2012,206(13):3048-3054.

    • [31] BRAUN R,ROVERE F,MAYRHOFER P H,et al.Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings[J].Intermetallics,2010,18(4):479-486.

    • [32] GASKELL D R.Introduction to the thermodynamics of materials[M].4th eds.New York:Taylor & Francis,2003.

    • [33] FRHLICH M,BRAUN R,LEYENS C.Oxidation resistant coatings in combination with thermal barrier coatings on γ-TiAl alloys for high temperature applications[J].Surface and Coatings Technology,2006,201:3911-3917.

  • 手机扫一扫看