en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张硕,男,1998年出生,硕士研究生,主要研究方向为表面改性技术。E-mail:403286037@qq.com

通讯作者:

范其香,女,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为表面工程。E-mail:qxfan2015@163.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20220612001

参考文献 1
范其香,林静,王铁钢.刀具涂层材料的最新研究进展[J].表面技术,2022,51(2):1-19.FAN Qixiang,LIN Jing,WANG Tiegang.The latest research progress of tool coating materials[J].Surface Technology,2022,51(2):1-19.(in Chinese)
参考文献 2
付泽钰,王天国.TiAlCrN 涂层的研究现状及发展前景[J].世界有色金属,2021,1:176-177.FU Zeyu,WANG Tianguo.Research status and development prospects of TiAlCrN coatings[J].World Nonferrous Metals,2021,1:176-177.(in Chinese)
参考文献 3
REITER A E,DERFLINGER V H,HANSELMANN B,et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J].Surface Coatings Technology,2005,200:2114-2122.
参考文献 4
LIN J,MISHRA B,MOORE J J,et al.A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses[J].Surface Coatings Technology,2008,202:3272-3283.
参考文献 5
LIN J L,ZHANG X H,OU Y X,et al.The structure,oxidation resistance,mechanical and tribological properties of CrTiAlN coatings[J].Surface Coatings Technology,2015,277:58-66.
参考文献 6
FORSÉN R,JOHANSSON M P,ODÉN M,et al.Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance[J].Thin Solid Films,2013,534:394-402.
参考文献 7
YAMAMOTO K,SATO T,TAKAHARA K,et al.Properties of(Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode[J].Surface and Coatings Technology,2003,174-175:620-626.
参考文献 8
ZHANG G P,GAO G J,WANG X Q,et al.Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc[J].Applied Surface Science,2012,258(19):7274-7279.
参考文献 9
ROMERO J,GÓMEZ M A,ESTEVE J,et al.CrAlN coatings deposited by cathodic arc evaporation at different substrate bias[J].Thin Solid Films,2006,515(1):113-117.
参考文献 10
WANG D,LIN S S,LIU L Y,et al.Effect of bias voltage on microstructure and erosion resistance of CrAlN coatings deposited by arc ion plating[J].Rare Metal Materials and Engineering,2020,49(8):2583-2590.
参考文献 11
WANG Q Z,ZHOU F,YAN J W.Evaluating mechanical properties and crack resistance of CrN,CrTiN,CrAlN and CrTiAlN coatings by nanoindentation and scratch tests[J].Surface and Coatings Technology,2016,285:203-213.
参考文献 12
TOMAS P,ALBANO C.Structure and tribological properties of AlCrTiN coatings at elevated temperature[J].Surface Coatings Technology,2011,205:S107-S110.
参考文献 13
CHANG Y Y,YANG Y J,WENG S Y.Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings[J].Surface and Coatings Technology,2020,389:125637.
参考文献 14
贵宾华,周晖,郑军,等.脉冲峰值电流 HIPIMS/DCMS 共沉积制备AlCrTiN涂层性能的影响[J].中国表面工程,2016,29(5):56-65.GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Effects of peak target current on properties of AlCrTiN coatings prepared by HIPIMS/DCMS [J].China Surface Engineering,2016,29(5):56-65.(in Chinese)
参考文献 15
林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):115-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effect of deposition temperature on microstructure and properties of AlCrTiN coatings[J].China Surface Engineering,2021,34(6):115-123.(in Chinese)
参考文献 16
KELLY P J,HISEK J,ZHOU Y,et al.Advanced coatings through pulsed magnetron sputtering[J].Surface Engineering,2004,20(3):157-162.
参考文献 17
朱继国.直流脉冲磁控溅射制备Mo薄膜及其性能研究[D].大连:大连交通大学,2008.ZHU Jiguo.Preparation and properties of Mo films by DC pulsed magnetron sputtering[D].Dalian:Dalian Jiaotong University,2008:1-14.(in Chinese)
参考文献 18
郑军.四元AlCrTiN高温耐磨涂层制备及性能研究[D].兰州:兰州理工大学,2018.ZHENG Jun.The research on preparation and properties of quaternary AlCrTiN high temperature wear resistant coatings[D].Lanzhou:Lanzhou University of Technology,2018.(in Chinese)
参考文献 19
CHANG Y Y,CHAO L C.Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings[J].Vacuum,2021,190:110241.
参考文献 20
CHEN W L,ZHENG J,LIN Y,et al.Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels[J].Applied Surface Science,2015,332:525-532.
参考文献 21
LEE D N.A model for development of orientation of vapour deposits[J].Journal of Materials Science,1989,24(12):4375-4378.
参考文献 22
AOUADI K,TLILI B,NOUVEAU C,et al.Influence of substrate bias voltage on corrosion and wear behavior of physical vapor deposition CrN coatings[J].Journal of Materials Engineering and Performance,2019,28(5):2881-2891.
参考文献 23
梁杨梦甜,范其香,王欣,等.CrAlN 纳米梯度涂层的组织结构与性能研究[J].表面技术,2020,50(5):348-355.LIANG Yangmengtian,FAN Qixiang,WANG Xin,et al.Microstructure and properties of CrAlN nano gradient coatings[J].Surface Technology,2020,50(5):348-355.(in Chinese)
参考文献 24
谈淑咏,张旭海,李纪宏,等.基底负偏压对直流磁控溅射CrN薄膜择优取向及表面形貌的影响[J].功能材料,2010,41(6):1015-1018.TAN Shuyong,ZHANG Xuhai,LI Jihong,et al.Effect of substrate negative bias on preferred orientation and surface morphology of CrN thin films prepared by DC magnetron sputtering[J].Functional Materials,2010,41(6):1015-1018.(in Chinese)
参考文献 25
LEE J W,TIEN S K,KUO Y.The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering[J].Thin Solid Films,2006,494:161-167.
参考文献 26
SUNDGREN J E.Structure and properties of TiN Coatings[J].Thin Solid Films,1985,128:21-44.
参考文献 27
TSAI D C,LIANG S C,CHANG Z C,et al.Effects of substrate bias on structure and mechanical properties of(TiVCrZrHf)N coatings[J].Surface and Coatings Technology,2012,207:293-299.
参考文献 28
TSAI D C,HUANG Y L,LIN S R,et al.Structure and mechanical properties of(TiVCr)N coatings prepared by energetic bombardment sputtering with different nitrogen flow ratios[J].Journal of Alloys and Compounds,2011,509:3141-3147.
参考文献 29
RONG S Q,HE J,WANG H J,et al.Effects of bias voltage on the structure and mechanical properties of thick CrN coatings deposited by mid-frequency magnetron sputtering[J].Plasma Science and Technology,2009,11(1)38-41.
参考文献 30
TANG J F,LIN C Y,YANG F C,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2020,386:125484.
参考文献 31
WAN X S,ZHAO S S,YANG Y,et al.Effects of nitrogen pressure and pulse bias voltage on the properties of Cr–N coatings deposited by arc ion plating[J].Surface and Coatings Technology,2010,204(11):1800-1810.
参考文献 32
TIAN M B,LIU D L.Handbook of thin film science and technology[M].Beijing:China Machine Press,1991.
参考文献 33
LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:A nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1):11.
参考文献 34
CHEN X J,DU Y,CHUNG Y W.Commentary on using H/E and H/E as proxies for fracture toughness of hard coatings[J].Thin Solid Films,2019,688:37265.
参考文献 35
GHADAMI F,AGHDAM A S R,ZAKERI A,et al.Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF[J].Ceramics International,2020,46(4):4556-4567.
参考文献 36
SINGH A,GHOSH S,ARAVINDAN S.Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique[J].Applied Surface Science,2019,508:144812.
目录contents

    摘要

    沉积偏压对涂层的结构与性能具有重要影响,为研究其对 AlCrTiN 纳米复合涂层成分、组织结构、力学与抗高温氧化性能的影响规律,采用磁控溅射技术,改变沉积偏压(−30、−60、−90、−120 V)制备四种 AlCrTiN 纳米复合涂层。利用 X 射线衍射仪、扫描电子显微镜、纳米压痕仪等仪器表征涂层的组织结构、成分、力学性能和抗高温氧化性能。研究结果表明:不同偏压下制备的 AlCrTiN 纳米复合涂层均为 NaCl 型 fcc-(Al,Cr,Ti)N 相结构。随着沉积偏压增大,涂层由沿(111)晶面择优生长转变为无明显的择优生长取向,晶粒尺寸降低,残余应力和硬度增大。偏压为−90 V 与−120 V 时,涂层表面更加致密,具有更高的硬度和弹性模量。在 800 ℃与 900 ℃氧化 1 h 后,所有涂层表面均生成一层连续致密的 Al2O3 膜。随着沉积偏压增加,氧化膜厚度逐渐降低,表明抗高温氧化性能逐渐增强,这是因为高偏压下涂层组织更致密,且晶粒更细小。研究成果对 AlCrTiN 纳米复合涂层的综合性能提升与工程化应用具有一定指导意义。

    Abstract

    The bias voltage has a significant influence on the microstructure and properties of coatings deposited by physical vapor deposition. To investigate the effects of bias voltage on the chemical composition, microstructure, mechanical properties, and high-temperature oxidation resistance of AlCrTiN nanocomposite coatings, four different coatings were deposited by direct current and radio frequency magnetron sputtering at different bias voltages (−30, −60, −90, and −120 V). The coatings were characterized using X-ray diffraction, scanning electron microscopy, and nanoindentation techniques. The results show that all the AlCrTiN nanocomposite coatings possess NaCl-type fcc-(Al,Cr,Ti)N phase structure. The bias voltage considerably affects the preferred orientation and surface morphology of the AlCrTiN coatings. At −30 and −60 V, the preferential growth of the coating is along the (111) crystal plane. Furthermore, convex V-shaped columnar particles are formed on the surfaces of these coatings, with distinct voids at the particle boundaries. When the bias voltage is increased to −90 and −120 V, the diffraction peaks of the (111) crystal plane weaken, and the coatings exhibit no preferred orientation. Fine elliptical particles replace the V-shaped columnar particles, and no obvious pores are observed on the coating surface, indicating that the coating surface becomes smoother at higher bias voltages. The grain size decreases with increase in the bias voltage because of enhanced ion bombardment and formation of more defects. These defects hinder grain growth or serve as nucleation sites, resulting in a decreased grain size. The deposition rate also decreases with increase in the bias voltage because of possible resputtering of Al, Cr, or Ti atoms that arrive at the substrate surface with high kinetic energy. In contrast, the residual stress, hardness, and elastic modulus of the coatings rise with increase in the bias voltage. The improvement in hardness is attributed to the higher residual stress generated in the coating and the smaller grain size, which hinders the movement of dislocations. After oxidation at 800 and 900 °C for 1 h, a continuous and dense oxide film, predominately consisting of Al2O3, is formed on the surfaces of all the four coatings. Owing to the relatively high Al content (approximately 31 at%) of the coatings and the low Gibbs free energy of formation of Al2O3 (compared to that of Cr2O3 and TiO2), Al is preferentially oxidized at high temperatures. The dense oxide film effectively reduces the inward diffusion of oxygen and outward diffusion of the coating elements; this significantly decreases the oxidation rate of the coatings. The fcc-(Al,Cr,Ti)N phase is retained even after oxidation at 800 and 900 °C for 1 h, implying that all the four coatings possess good high-temperature oxidation resistance. The thickness of the oxide film decreases gradually with increase in the bias voltage, which indicates that the high-temperature oxidation resistance is enhanced at higher bias voltages. On the one hand, the voids formed on the surfaces of the coatings at low bias voltages (−30 and −60 V) provide a diffusion path for inward diffusion of oxygen and accelerate the oxidation of the coatings. On the other hand, the coatings deposited at higher bias voltages (−90 and −120 V) possess smaller grain sizes and more grain boundaries, which accelerate the formation of a protective oxide layer on the coating surface. Thus, the findings of this study are significant for improving the properties and applications of AlCrTiN nanocomposite coatings.

  • 0 前言

  • 刀具作为切削加工中的核心部件,其硬度、韧性、耐磨性与抗高温氧化性能对切削寿命具有重要影响[1]。氮化物涂层因其具有硬度高、耐磨性好和抗氧化性能优良等优点,广泛应用于切削刀具、模具等领域[2]。与 CrN、TiN 二元氮化物涂层相比,掺 Al后的AlCrN和AlTiN涂层具有更优异的力学性能与抗氧化性能,涂覆于刀具上,可应用在更加严苛的加工工况中。AlTiN 涂层在高温环境中易生成疏松多孔的 TiO2,抗高温氧化性能差;而 AlCrN 涂层在高温下表面能生成致密连续的 Al2O3 和 Cr2O3 混合氧化膜,阻止 O 元素向涂层内扩散及涂层内元素向涂层外扩散,因而 AlCrN 涂层比 AlTiN 涂层具有更优异的抗高温氧化性能[3-4]。但 AlCrN 涂层在高温下相结构不稳定,易发生 CrN→Cr2N→Cr 相转变使红硬性降低;AlTiN 涂层在高温下相结构更稳定,其红硬性优于 AlCrN 涂层。

  • 为进一步提高 AlCrN 和 AlTiN 涂层的高温红硬性和抗高温氧化性能,研究者们尝试在 AlCrN 和 AlTiN 涂层中分别掺杂 Ti 和 Cr 元素,形成 AlCrTiN 四元涂层,均取得较好的研究效果。LIN 等[5]研究发现,在 CrAlN 涂层中掺杂 5%~10%的 Ti 元素后,CrTiAlN 涂层在室温及高温下的力学性能、抗氧化性能和耐磨性能均优于 CrAlN 涂层。FORSÉN 等[6] 研究了Ti含量对AlCrN涂层的热稳定性和抗高温氧化性能的影响,发现掺入少量的 Ti 能抑制 hcp-AlN 相的形成与生长,增强立方结构相的稳定性,提升涂层的高温力学性能。YAMAMOTO 等[7]发现掺杂 Cr 的 TiCrAlN 涂层比 TiAlN 涂层具有更高的硬度,以及更优异的抗高温氧化性能和铣削性能。由此可见,四元 AlCrTiN 涂层可综合 AlCrN 优异的抗高温氧化性能和 AlTiN 良好的高温红硬性,表现出更优异的力学性能、耐磨性和抗氧化性能。

  • 在溅射过程中,偏压影响离子能量的大小,而不同能量的离子对基底表面轰击程度不同,因而沉积偏压对涂层的组织结构、微观形貌和择优生长取向等具有重要影响,进一步影响涂层的各项性能。 ZHANG 等[8]研究了偏压(0 至−800 V)对 TiAlN 涂层微观结构和力学性能的影响。结果表明,随着偏压升高,TiAlN 涂层晶粒由等轴晶向柱状晶转变,涂层的择优生长取向发生改变;在−200 V 偏压下制备的 TiAlN 涂层的硬度与临界载荷达到最佳值。 ROMERO等[9]使用阴极电弧法在−50至−400 V偏压下制备了不同的 CrAlN 涂层,当偏压增大时涂层的沉积速率从 4.9 μm / h 下降到 2.5 μm / h,择优取向由(111)向(220)晶面转变,在−300 V 偏压下涂层硬度达到最大值 39.9 GPa。WANG 等[10]采用电弧离子镀在钛合金表面沉积 CrAlN 涂层,研究偏压(0 至−200 V) 对涂层微观结构与力学性能的影响。研究表明,随着偏压增大,CrAlN 涂层的择优生长取向由(200)晶面向(111)晶面转变,表面的大颗粒与针孔数量减少,当偏压为−150 V 时硬度达到最大值 20 GPa。

  • 为优化 AlCrTiN 涂层的综合性能,研究者采用闭场不平衡磁控溅射(CFUBMS)[11],真空阴极电弧沉积(CAD) [12-13],高功率脉冲磁控溅射(HIPIMS) 与直流磁控溅射(DCMS)复合沉积[14],电弧离子镀(AIP)与脉冲直流磁控溅射(DC-PMS)复合沉积[15]等技术制备 AlCrTiN 涂层,不同方法制备的涂层性能有一定的差异。脉冲直流磁控溅射技术具有脉冲峰值功率高的特点,且高离子化的束流中不包含大颗粒,能有效降低涂层表面粗糙度,提升涂层的致密度,同时基底温度不会显著升高[16]。射频磁控溅射技术适用于沉积金属和非金属在内的几乎所有材料,且其制备的涂层致密,纯度高,膜基结合力强[17]。采用脉冲直流磁控溅射与射频磁控溅射复合技术,有助于结合两种技术的优点,拓宽涂层材料成分的选择范围。因此,作为后续研究非金属掺杂元素对 AlCrTiN 涂层组织结构和性能影响的前期研究基础,本文采用脉冲直流磁控溅射和射频直流磁控溅射复合技术,改变沉积偏压,沉积系列 AlCrTiN 纳米复合涂层,通过分析不同偏压下 AlCrTiN 纳米复合涂层的组织结构、力学性能和抗高温氧化性能,探索偏压对涂层微观结构和性能的影响规律。

  • 1 试验准备

  • 1.1 涂层制备

  • 本实验选用磁控溅射镀膜仪(TRP450),改变沉积偏压,在(100)单晶 Si 片和 304 不锈钢片上沉积了四组 AlCrTiN 纳米复合涂层。靶材选用两块相同的 AlCrTi 合金靶(原子比为 50∶30∶20,纯度为 99.8%),分别与直流电源和射频电源连接。镀膜前,所有试样在丙酮、酒精和去离子水溶液中依次进行超声清洗,随后烘干。将清洗后的样片固定在样品台上后,关闭炉门。采用机械泵和分子泵抽真空,待炉内真空度达到 0.5 mPa 时,打开加热电阻,设置样品台旋转速度为 15 r / min。当炉内温度达到 300℃且真空度再次达到 0.5 mPa 时通入 Ar 气(60 mL / min),调整节流阀使炉内压强保持为 1 Pa,施加−250 V 偏压,对基片进行辉光清洗,时长为 15 min。辉光清洗结束后,开启直流脉冲电源,设置 AlCrTi 靶功率为 100 W,偏压为−60 V,降低压强至 0.5 Pa,沉积 AlCrTi 过渡层,沉积时间为 10 min。随后,保持 AlCrTi 靶功率不变,打开射频电源,功率为 100 W;同时通入 20 mL / min 的 N2,使 N2∶Ar 为 1∶3,压强保持为 0.5 Pa;设置偏压为−30、−60、−90 与−120 V 分别沉积四组 AlCrTiN 纳米复合涂层,镀膜时间均为 180 min。

  • 1.2 AlCrTiN 纳米复合涂层的结构与性能表征

  • 采用 X 射线衍射仪(D8 Advance,Bruker)分析 AlCrTiN 纳米复合涂层的相结构。X 射线衍射仪采用 CuKα 射线(λ=0.154 nm),电压为 40 kV,电流为 40 mA,衍射角范围为 30°~50°,步长为 0.02°。采用扫描电镜(Sigma300,Zeiss)观察涂层的表面和截面形貌,使用该设备附带的能谱仪(EDS,Oxford) 分析涂层的成分。采用纳米压痕仪(TTX-NHT,CSM) 测量涂层的硬度与弹性模量,加载载荷为 10 mN,保压时间为 10 s,每个样品测量 10 次求平均值。根据硬度值与弹性模量计算涂层的 H / E*H3 / E*2 值。采用热处理炉(N13 / H / C440,Nabertherm Gmbh)开展涂层的氧化试验,氧化温度为 800℃与 900℃,保温 1 h 后随炉冷却至室温。利用 X 射线衍射仪(D8 Advance, Bruker)和扫描电镜(Sigma300,Zeiss)分析涂层氧化后的相结构与微观形貌。

  • 2 结果与讨论

  • 2.1 AlCrTiN 纳米复合涂层组织结构与形貌

  • 图1为不同偏压下AlCrTiN纳米复合涂层的XRD 衍射图谱。从图中可以看出,所有AlCrTiN涂层为NaCl 型 fcc-(Al,Cr,Ti)N 相结构,衍射峰位于 fcc-AlN(ICCD 25-1495)、fcc-CrN(ICCD 11-0065)与 fcc-TiN(ICCD 38-1420)标准衍射峰位的中间,表现为(111)和(200) 晶面。Al 原子在 fcc-CrN 与 fcc-TiN 中的理论固溶度为 66~77at.%,且 fcc-CrN 与 fcc-TiN 具有接近的晶格常数,因而 Al 以溶质原子固溶在 fcc-CrN 与 fcc-TiN 中,形成fcc-(Al,Cr,Ti)N固溶相[18-20]。当偏压为−30 V与−60 V 时,涂层的择优生长取向为(111)晶面,而当偏压为−90 V 与−120 V 时,涂层的(111)峰强度降低,没有明显的择优生长取向。涂层的择优生长取向与自由能(表面能+应变能)大小有关,通常沿自由能最小的方向择优生长[21];在氮化物涂层中,(200)晶面具有最低的表面能,(111)晶面具有最低的应变能[22]。偏压为−30 V与−60 V时,AlCrTiN涂层中的生长应力、热应力和 Al 原子固溶在 fcc-CrN 与 fcc-TiN 中造成的畸变能共同作用下,使得应变能在自由能中占据主导地位[23]。当偏压增加到−90 V 与−120 V 时,在高偏压作用下溅射离子能量增强,此时表面遭受更为强烈的轰击;过度轰击导致涂层内缺陷增加,破坏晶体结构中原有的长程有序性,晶粒取向被破坏,(111)晶面峰强度降低至与(200)晶面峰强相近,此时涂层的择优生长不明显[24]

  • 图1 不同偏压下 AlCrTiN 纳米复合涂层的 XRD 衍射图谱

  • Fig.1 XRD patterns of AlCrTiN nanocomposite coatings under different bias voltages

  • 采用 Scherrer 公式计算了不同偏压下 AlCrTiN 纳米复合涂层的晶粒尺寸与晶格常数,如图2 所示。偏压为−30 V 与−60 V 时,涂层的晶粒尺寸接近,分别为 54.66 nm 与 54.98 nm。而当偏压进一步增加时,晶粒尺寸减小,当偏压为−120 V 时涂层晶粒尺寸减小至 11.26 nm。这是由于增大偏压会加强离子轰击与再溅射效应,被轰击的表面形成更多的缺陷。一方面,缺陷会阻碍晶界迁移;另一方面,缺陷增加了优先成核位点,原子迁移率提高而最终导致晶粒尺寸减小[25-26]。与晶粒尺寸随偏压变化的规律相反,涂层的晶面间距随偏压增大逐渐增大,由 4.126 5 Å 增大到 4.184 7 Å,这是因为偏压导致涂层内缺陷增加,从而使晶面间距增大。

  • 图2 不同偏压下AlCrTiN纳米复合涂层的晶粒尺寸与晶格常数

  • Fig.2 Grain size and lattice constant of AlCrTiN nanocomposite coatings under different bias voltages

  • 图3 为不同偏压下制备的 AlCrTiN 纳米复合涂层的表面和截面形貌图。当偏压为−30 V 与−60 V 时,涂层表面形貌放大后呈现明显的凸起 V 形柱状结构,且相邻的凸起 V 形柱状结构之间存在孔隙,表面不够致密,这意味着涂层在沉积过程中出现了过度生长机制[27]。由于不同晶格面之间发生竞争性生长,具有最高生长速率的晶格面的晶粒会过度生长,形成如图3 a 和3b 放大图中凸起的 V 形柱状结构[28]。随着偏压增加至−90 V 与−120 V 时,再溅射效应与再形核机制逐渐主导沉积过程,AlCrTiN 涂层表面由凸起 V 形柱状结构向不规则的椭圆颗粒发生转变,颗粒间无明显孔隙,表面较为致密。这与 XRD 衍射图谱中结果相对应:随偏压增大,涂层(111)衍射峰强度逐渐降低,与(200)晶面峰强相近,此时涂层的择优生长不明显。另一方面,偏压的增加使涂层晶粒细化,表面更加致密。从截面形貌图可以看出,各偏压下制备的涂层均表现为柱状晶结构。

  • 图3 不同偏压下 AlCrTiN 纳米复合涂层的表面和截面形貌图

  • Fig.3 Surface and cross-sectional morphologies of AlCrTiN nanocomposite coatings under different bias voltages

  • 图4 为不同偏压下制备的 AlCrTiN 纳米复合涂层的厚度与沉积速率图。当偏压为−30、−60、 −90 和−120 V 时,AlCrTiN 涂层的厚度分别为 1.6、 1.6、1.5 和 1.4 μm。随着偏压增大,AlCrTiN 涂层的沉积速率逐渐降低,这是因为低偏压下的原子能量较低,更容易沉积在基体表面,但随着偏压的增高,从溅射靶材到达基底的 Al、Cr、Ti 原子具有更高的动能,表面更多的原子会被再次溅射而抑制薄膜的生长[929-30]。如图5 所示,随着偏压的增大, Al、Cr、Ti 原子含量波动不大。四种涂层中 Al含量为 31.36 at.%±1.31 at.%,Ti 含量为 6.69 at.% ±0.41 at.%,Cr 含量为 11.50 at.% ± 0.38 at.%,N 原子随偏压增大呈先减小后增大的趋势。总体而言,偏压对 AlCrTiN 纳米复合涂层的元素含量影响较小。

  • 图4 不同偏压下 AlCrTiN 纳米复合涂层的厚度与沉积速率

  • Fig.4 Thickness and deposition rate of AlCrTiN nanocomposite coatings under different bias voltages

  • 图5 不同偏压下 AlCrTiN 纳米复合涂层的成分

  • Fig.5 Chemical compositions of AlCrTiN nanocomposite coatings under different bias voltages

  • 2.2 AlCrTiN 纳米复合涂层的力学性能

  • 表1 为各偏压下AlCrTiN 纳米复合涂层的HE*H / E*H3 / E*2We(%)和 σ 值。从表中可以看出:当偏压为−30 V 与−60 V 时,AlCrTiN 涂层的硬度与弹性模量较低;硬度值分别为 10.65 GPa 与 10.59 GPa;弹性模量分别为 265.18 GPa 和 285.58 GPa。涂层较低的硬度主要归因于大的晶粒尺寸(55 nm 左右)与不致密的微观结构。当偏压增加到−90 V 和−120 V 时,涂层的晶粒尺寸减小,分别为 15.72 nm 和 11.26 nm,晶界随晶粒尺寸减小逐渐增多,有效阻碍位错运动,从而提高强度,此时涂层硬度分别达到 27.9 GPa 和 30.81 GPa,弹性模量分别为 386.59 GPa 和 398 GPa。涂层的硬度主要受微观结构和内应力影响。一方面,由于偏压升高使入射粒子能量增强,涂层表面受到高能离子与中性原子轰击,使涂层中的原子离开晶格点位并进入晶隙,产生喷丸效应,一部分原子挤入晶格产生内应力,增强硬度[31-32]。另一方面, AlCrTiN 涂层晶粒取向的改变与晶粒细化也有助于提高涂层的硬度;晶体结构相同但不同生长取向的晶粒相遇会形成晶界,晶界与晶粒间的滑移面不连续将阻碍位错运动与滑移,达到提高硬度的效果[28]H / E*表征材料的抗弹性变形能力[33]H3 / E*2 则用来表征材料的抗塑性变形能力,H3 / E*2 值越大材料的韧性越好[34]We(%)值表征材料在外力卸载后该物体的弹性变形恢复能力[11]。当偏压为−120 V 时,AlCrTiN 涂层具有最高的 H / E*H3 / E*2 以及 We(%)值,说明该偏压下制备的涂层具有最好的抗弹性和塑性变形能力。

  • 表1 不同偏压下 AlCrTiN 纳米复合涂层的力学性能值

  • Table1 Mechanical properties of AlCrTiN nanocomposite coatings under different bias voltages

  • 在不同偏压下 AlCrTiN 涂层的残余应力均为压应力。偏压为−30 V 与−60 V 时,AlCrTiN 涂层的残余应力无明显变化,残余应力值分别为−0.186 GPa 与−0.174 GPa。偏压为−90 V 与−120 V 时,AlCrTiN涂层的残余应力则随偏压的增大而增大。残余应力主要受热膨胀系数、各晶粒间的取向和晶粒大小等因素影响。当偏压为−90 V 与−120 V 时,沉积粒子对涂层表面的轰击效应逐渐增强,涂层内形成更多的缺陷;同时,晶粒细化后内部存在应力,导致 AlCrTiN 涂层残余应力增加。

  • 2.3 AlCrTiN 纳米复合涂层的抗高温氧化性能

  • 图6 为 AlCrTiN 纳米复合涂层在 800℃和 900℃ 氧化 1 h 后的 XRD 衍射图谱。从图中可以看出:各偏压下制备的 AlCrTiN 纳米复合涂层在 800℃和 900℃ 氧化后的相结构均为 fcc-(Al,Cr,Ti)N 相和 α-Al2O3(ICCD51-0769)相。在偏压−30 V 与−60 V 制备的 AlCrTiN 涂层仍沿(111)晶面择优生长,偏压为 −90 V 与−120 V 时制备的涂层依旧表现为没有明显的择优生长取向。与氧化前的 XRD 衍射图谱(图1)进行比较可以发现:氧化后涂层的衍射峰整体向高角度偏移,这可能是由于在高温下涂层内部微观晶格上的缺陷愈合,缺陷产生的微观应力得到释放。所有涂层在高温氧化后,依旧以 fcc-(Al,Cr,Ti)N 相为主,表明涂层具有优异的抗高温氧化性能。

  • 图6 不同偏压下 AlCrTiN 纳米复合涂层氧化 1 h 后的 XRD 衍射图谱

  • Fig.6 XRD patterns of AlCrTiN nanocomposite coatings under different bias voltages after oxidation for 1 h

  • 图7为AlCrTiN纳米复合涂层在800℃和900℃ 氧化 1 h 后的成分。AlCrTiN 纳米复合涂层在 800℃ 与 900℃氧化 1 h 后,涂层表面的 O 含量迅速增加, N 含量显著降低,Al、Cr、Ti 含量略微下降。这主要是因为涂层中元素与 O 元素发生反应形成氧化膜。结合 XRD 衍射图谱图6 可知涂层表面氧化膜主要由 Al2O3 组成。涂层中并未检测到 Cr2O3 相与 TiO2 相,这是因为涂层中 Al 含量较高,且高温下 Al2O3 的吉布斯自由能比 Cr2O3 与 TiO2 更低,即 Al 元素更容易与 O 发生反应生成 Al2O3。值得注意的是,偏压为−30 V 与−60 V 时 AlCrTiN 涂层表面的 O 含量高于−90 V 与−120 V 偏压下制备涂层表面的 O 含量,这可能是因为偏压为−30 V 与−60 V 时 AlCrTiN 涂层的表面存在孔隙,在高温下这些孔隙可作为 O 的扩散通道进入涂层内部加速涂层的氧化。而当偏压为−90 V 与−120 V 时 AlCrTiN 涂层的表面更加致密,表现出更优异的抗高温氧化性能。

  • 图7 不同偏压下 AlCrTiN 纳米复合涂层氧化后表面的成分

  • Fig.7 Chemical compositions on the surface of AlCrTiN nanocomposite coatings under different bias voltages after oxidation

  • 图8 为 AlCrTiN 纳米复合涂层在 800℃和 900℃ 氧化 1 h 后的表面形貌图。在 800℃高温氧化 1 h 后,偏压为−30 V 与−60 V 时制备的涂层表面 V 形柱状结构在高温作用后向不规则圆形颗粒转变,颗粒间依然存在孔隙,O 可通过这些孔隙扩散进入涂层内部与涂层元素发生反应。当偏压为−90 V 和−120 V 时,涂层表面呈现较为致密的颗粒状氧化物;偏压为−120 V 的涂层表面氧化物颗粒更加细小。在 900℃高温氧化 1 h后,所有 AlCrTiN 涂层表面的氧化物颗粒进一步生长,尺寸增大。对比不同偏压下制备 AlCrTiN 涂层的表面形貌图可以发现:随着偏压增大,涂层表面形成的氧化膜更加致密,晶粒更加细小,这主要是因为高偏压下制备的涂层在氧化前更致密,晶粒更细小。在−90 V 与−120 V偏压下制备的涂层表面生成了更致密的氧化膜,该氧化膜能阻止氧向涂层内部扩散以及内部元素向外扩散。

  • 图8 不同偏压下 AlCrTiN 纳米复合涂层 800℃与 900℃氧化后的表面微观形貌图

  • Fig.8 Surface morphologies of AlCrTiN nanocomposite coatings under different bias voltages after oxidation at 800℃ and 900℃

  • 图9 为不同偏压下制备的 AlCrTiN 纳米复合涂层在 800℃与 900℃氧化后的截面形貌图和 EDS 线扫图。从图中可以看出:所有 AlCrTiN 涂层氧化后表面均形成一层薄而致密的氧化膜,氧化膜下方的涂层依然表现为柱状晶结构。在同一温度下,随着偏压增加,涂层表面的氧化膜厚度降低,这说明涂层的氧化速率降低。这一方面因为高偏压下制备的涂层表面更加致密,涂层表面与内部无孔隙产生,涂层在高温下表面迅速形成致密连续的氧化膜,可阻碍 O 元素向内扩散;而低偏压下制备的涂层表面存在细微孔隙,这为 O 进入涂层内部提供了扩散通道,增大了涂层的氧化速率。另一方面因为涂层的晶粒尺寸随着偏压的增大逐渐降低。有研究表明:在高温下晶界可作为扩散通道使涂层表面快速形成致密的 Al2O3膜,阻碍 O 元素向涂层内扩散,降低氧化速率[35]

  • 图9 不同偏压下 AlCrTiN 纳米复合涂层在 800℃与 900℃氧化后的截面形貌和 EDS 线扫图

  • Fig.9 Cross-sectional morphologies and EDS line scans of AlCrTiN nanocomposite coatings under different bias voltages after oxidation at 800℃ and 900℃

  • 此外,随着氧化温度升高,涂层的氧化厚度逐渐增大。偏压为−30 V 和−60 V 时,这种现象更明显。氧化温度升高将使 O 加速向涂层内扩散,且涂层元素加速向外扩散,从而增大氧化速率。有研究表明:涂层氧化层的厚度随着氧化时间与氧化温度增加而增大[36]。在高温氧化初期,涂层元素 Al、Cr 与 Ti 均可与 O 反应,形成 Al2O3,Cr2O3与 Ti2O,释放出 N2,如式(1)~(3)所示。但由于 Al2O3 的吉布斯自由能比 Cr2O3 与 TiO2 的低,且涂层中 Al 含量高于 Cr 和 Ti 含量,因而随着氧化的持续进行,涂层表面逐渐发生 Al 的选择性氧化,形成以 Al2O3 为主的氧化膜。从 EDS 线扫图中可以看出,涂层表层 O 和 Al 含量较高,这与 XRD 结果一致,涂层氧化后仅检测到 Al2O3 的衍射峰。涂层表面的 Al2O3 膜可以阻碍 O 元素向内扩散与内部元素向外扩散,对氧化膜下方的涂层起到一定的保护作用。

  • 2AlN(s)+32O2=Al2O3(s)+N2(g)
    (1)
  • 2CrN(s)+32O2=Cr2O3(s)+N2(g)
    (2)
  • TiN(s)+O2=TiO2(s)+N2(g)
    (3)
  • 3 结论

  • 采用脉冲直流磁控溅射和射频直流磁控溅射复合技术,改变沉积偏压制备了四种 AlCrTiN 纳米复合涂层,研究沉积偏压对涂层微观结构、力学与抗高温氧化性能的影响。主要结论如下:

  • (1)随着偏压增大,AlCrTiN 纳米复合涂层的相结构始终为 fcc-(Al,Cr,Ti)N,但择优取向发生改变,沉积速率降低,晶粒尺寸减小,结构更加致密。因而在−90 V 与−120 V 偏压下制备的涂层具有更高的硬度和弹性模量,表现出更好的力学性能。

  • (2)在 800℃和 900℃,四种 AlCrTiN 纳米复合涂层表面均生成一层连续致密的保护性氧化铝膜,表现出良好的抗高温氧化性能。随着偏压增大,涂层表面氧化膜厚度逐渐降低,抗高温氧化性能逐渐增强。

  • (3)研究成果丰富了高性能纳米复合涂层的制备技术与理论研究,同时可应用于切削刀具上,有望提升刀具的抗氧化磨损和抗扩散磨损性能,延长刀具的使用寿命。

  • 参考文献

    • [1] 范其香,林静,王铁钢.刀具涂层材料的最新研究进展[J].表面技术,2022,51(2):1-19.FAN Qixiang,LIN Jing,WANG Tiegang.The latest research progress of tool coating materials[J].Surface Technology,2022,51(2):1-19.(in Chinese)

    • [2] 付泽钰,王天国.TiAlCrN 涂层的研究现状及发展前景[J].世界有色金属,2021,1:176-177.FU Zeyu,WANG Tianguo.Research status and development prospects of TiAlCrN coatings[J].World Nonferrous Metals,2021,1:176-177.(in Chinese)

    • [3] REITER A E,DERFLINGER V H,HANSELMANN B,et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J].Surface Coatings Technology,2005,200:2114-2122.

    • [4] LIN J,MISHRA B,MOORE J J,et al.A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses[J].Surface Coatings Technology,2008,202:3272-3283.

    • [5] LIN J L,ZHANG X H,OU Y X,et al.The structure,oxidation resistance,mechanical and tribological properties of CrTiAlN coatings[J].Surface Coatings Technology,2015,277:58-66.

    • [6] FORSÉN R,JOHANSSON M P,ODÉN M,et al.Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance[J].Thin Solid Films,2013,534:394-402.

    • [7] YAMAMOTO K,SATO T,TAKAHARA K,et al.Properties of(Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode[J].Surface and Coatings Technology,2003,174-175:620-626.

    • [8] ZHANG G P,GAO G J,WANG X Q,et al.Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc[J].Applied Surface Science,2012,258(19):7274-7279.

    • [9] ROMERO J,GÓMEZ M A,ESTEVE J,et al.CrAlN coatings deposited by cathodic arc evaporation at different substrate bias[J].Thin Solid Films,2006,515(1):113-117.

    • [10] WANG D,LIN S S,LIU L Y,et al.Effect of bias voltage on microstructure and erosion resistance of CrAlN coatings deposited by arc ion plating[J].Rare Metal Materials and Engineering,2020,49(8):2583-2590.

    • [11] WANG Q Z,ZHOU F,YAN J W.Evaluating mechanical properties and crack resistance of CrN,CrTiN,CrAlN and CrTiAlN coatings by nanoindentation and scratch tests[J].Surface and Coatings Technology,2016,285:203-213.

    • [12] TOMAS P,ALBANO C.Structure and tribological properties of AlCrTiN coatings at elevated temperature[J].Surface Coatings Technology,2011,205:S107-S110.

    • [13] CHANG Y Y,YANG Y J,WENG S Y.Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings[J].Surface and Coatings Technology,2020,389:125637.

    • [14] 贵宾华,周晖,郑军,等.脉冲峰值电流 HIPIMS/DCMS 共沉积制备AlCrTiN涂层性能的影响[J].中国表面工程,2016,29(5):56-65.GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Effects of peak target current on properties of AlCrTiN coatings prepared by HIPIMS/DCMS [J].China Surface Engineering,2016,29(5):56-65.(in Chinese)

    • [15] 林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):115-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effect of deposition temperature on microstructure and properties of AlCrTiN coatings[J].China Surface Engineering,2021,34(6):115-123.(in Chinese)

    • [16] KELLY P J,HISEK J,ZHOU Y,et al.Advanced coatings through pulsed magnetron sputtering[J].Surface Engineering,2004,20(3):157-162.

    • [17] 朱继国.直流脉冲磁控溅射制备Mo薄膜及其性能研究[D].大连:大连交通大学,2008.ZHU Jiguo.Preparation and properties of Mo films by DC pulsed magnetron sputtering[D].Dalian:Dalian Jiaotong University,2008:1-14.(in Chinese)

    • [18] 郑军.四元AlCrTiN高温耐磨涂层制备及性能研究[D].兰州:兰州理工大学,2018.ZHENG Jun.The research on preparation and properties of quaternary AlCrTiN high temperature wear resistant coatings[D].Lanzhou:Lanzhou University of Technology,2018.(in Chinese)

    • [19] CHANG Y Y,CHAO L C.Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings[J].Vacuum,2021,190:110241.

    • [20] CHEN W L,ZHENG J,LIN Y,et al.Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels[J].Applied Surface Science,2015,332:525-532.

    • [21] LEE D N.A model for development of orientation of vapour deposits[J].Journal of Materials Science,1989,24(12):4375-4378.

    • [22] AOUADI K,TLILI B,NOUVEAU C,et al.Influence of substrate bias voltage on corrosion and wear behavior of physical vapor deposition CrN coatings[J].Journal of Materials Engineering and Performance,2019,28(5):2881-2891.

    • [23] 梁杨梦甜,范其香,王欣,等.CrAlN 纳米梯度涂层的组织结构与性能研究[J].表面技术,2020,50(5):348-355.LIANG Yangmengtian,FAN Qixiang,WANG Xin,et al.Microstructure and properties of CrAlN nano gradient coatings[J].Surface Technology,2020,50(5):348-355.(in Chinese)

    • [24] 谈淑咏,张旭海,李纪宏,等.基底负偏压对直流磁控溅射CrN薄膜择优取向及表面形貌的影响[J].功能材料,2010,41(6):1015-1018.TAN Shuyong,ZHANG Xuhai,LI Jihong,et al.Effect of substrate negative bias on preferred orientation and surface morphology of CrN thin films prepared by DC magnetron sputtering[J].Functional Materials,2010,41(6):1015-1018.(in Chinese)

    • [25] LEE J W,TIEN S K,KUO Y.The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering[J].Thin Solid Films,2006,494:161-167.

    • [26] SUNDGREN J E.Structure and properties of TiN Coatings[J].Thin Solid Films,1985,128:21-44.

    • [27] TSAI D C,LIANG S C,CHANG Z C,et al.Effects of substrate bias on structure and mechanical properties of(TiVCrZrHf)N coatings[J].Surface and Coatings Technology,2012,207:293-299.

    • [28] TSAI D C,HUANG Y L,LIN S R,et al.Structure and mechanical properties of(TiVCr)N coatings prepared by energetic bombardment sputtering with different nitrogen flow ratios[J].Journal of Alloys and Compounds,2011,509:3141-3147.

    • [29] RONG S Q,HE J,WANG H J,et al.Effects of bias voltage on the structure and mechanical properties of thick CrN coatings deposited by mid-frequency magnetron sputtering[J].Plasma Science and Technology,2009,11(1)38-41.

    • [30] TANG J F,LIN C Y,YANG F C,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2020,386:125484.

    • [31] WAN X S,ZHAO S S,YANG Y,et al.Effects of nitrogen pressure and pulse bias voltage on the properties of Cr–N coatings deposited by arc ion plating[J].Surface and Coatings Technology,2010,204(11):1800-1810.

    • [32] TIAN M B,LIU D L.Handbook of thin film science and technology[M].Beijing:China Machine Press,1991.

    • [33] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:A nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1):11.

    • [34] CHEN X J,DU Y,CHUNG Y W.Commentary on using H/E and H/E as proxies for fracture toughness of hard coatings[J].Thin Solid Films,2019,688:37265.

    • [35] GHADAMI F,AGHDAM A S R,ZAKERI A,et al.Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF[J].Ceramics International,2020,46(4):4556-4567.

    • [36] SINGH A,GHOSH S,ARAVINDAN S.Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique[J].Applied Surface Science,2019,508:144812.

  • 参考文献

    • [1] 范其香,林静,王铁钢.刀具涂层材料的最新研究进展[J].表面技术,2022,51(2):1-19.FAN Qixiang,LIN Jing,WANG Tiegang.The latest research progress of tool coating materials[J].Surface Technology,2022,51(2):1-19.(in Chinese)

    • [2] 付泽钰,王天国.TiAlCrN 涂层的研究现状及发展前景[J].世界有色金属,2021,1:176-177.FU Zeyu,WANG Tianguo.Research status and development prospects of TiAlCrN coatings[J].World Nonferrous Metals,2021,1:176-177.(in Chinese)

    • [3] REITER A E,DERFLINGER V H,HANSELMANN B,et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J].Surface Coatings Technology,2005,200:2114-2122.

    • [4] LIN J,MISHRA B,MOORE J J,et al.A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses[J].Surface Coatings Technology,2008,202:3272-3283.

    • [5] LIN J L,ZHANG X H,OU Y X,et al.The structure,oxidation resistance,mechanical and tribological properties of CrTiAlN coatings[J].Surface Coatings Technology,2015,277:58-66.

    • [6] FORSÉN R,JOHANSSON M P,ODÉN M,et al.Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance[J].Thin Solid Films,2013,534:394-402.

    • [7] YAMAMOTO K,SATO T,TAKAHARA K,et al.Properties of(Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode[J].Surface and Coatings Technology,2003,174-175:620-626.

    • [8] ZHANG G P,GAO G J,WANG X Q,et al.Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc[J].Applied Surface Science,2012,258(19):7274-7279.

    • [9] ROMERO J,GÓMEZ M A,ESTEVE J,et al.CrAlN coatings deposited by cathodic arc evaporation at different substrate bias[J].Thin Solid Films,2006,515(1):113-117.

    • [10] WANG D,LIN S S,LIU L Y,et al.Effect of bias voltage on microstructure and erosion resistance of CrAlN coatings deposited by arc ion plating[J].Rare Metal Materials and Engineering,2020,49(8):2583-2590.

    • [11] WANG Q Z,ZHOU F,YAN J W.Evaluating mechanical properties and crack resistance of CrN,CrTiN,CrAlN and CrTiAlN coatings by nanoindentation and scratch tests[J].Surface and Coatings Technology,2016,285:203-213.

    • [12] TOMAS P,ALBANO C.Structure and tribological properties of AlCrTiN coatings at elevated temperature[J].Surface Coatings Technology,2011,205:S107-S110.

    • [13] CHANG Y Y,YANG Y J,WENG S Y.Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings[J].Surface and Coatings Technology,2020,389:125637.

    • [14] 贵宾华,周晖,郑军,等.脉冲峰值电流 HIPIMS/DCMS 共沉积制备AlCrTiN涂层性能的影响[J].中国表面工程,2016,29(5):56-65.GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Effects of peak target current on properties of AlCrTiN coatings prepared by HIPIMS/DCMS [J].China Surface Engineering,2016,29(5):56-65.(in Chinese)

    • [15] 林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):115-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effect of deposition temperature on microstructure and properties of AlCrTiN coatings[J].China Surface Engineering,2021,34(6):115-123.(in Chinese)

    • [16] KELLY P J,HISEK J,ZHOU Y,et al.Advanced coatings through pulsed magnetron sputtering[J].Surface Engineering,2004,20(3):157-162.

    • [17] 朱继国.直流脉冲磁控溅射制备Mo薄膜及其性能研究[D].大连:大连交通大学,2008.ZHU Jiguo.Preparation and properties of Mo films by DC pulsed magnetron sputtering[D].Dalian:Dalian Jiaotong University,2008:1-14.(in Chinese)

    • [18] 郑军.四元AlCrTiN高温耐磨涂层制备及性能研究[D].兰州:兰州理工大学,2018.ZHENG Jun.The research on preparation and properties of quaternary AlCrTiN high temperature wear resistant coatings[D].Lanzhou:Lanzhou University of Technology,2018.(in Chinese)

    • [19] CHANG Y Y,CHAO L C.Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings[J].Vacuum,2021,190:110241.

    • [20] CHEN W L,ZHENG J,LIN Y,et al.Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels[J].Applied Surface Science,2015,332:525-532.

    • [21] LEE D N.A model for development of orientation of vapour deposits[J].Journal of Materials Science,1989,24(12):4375-4378.

    • [22] AOUADI K,TLILI B,NOUVEAU C,et al.Influence of substrate bias voltage on corrosion and wear behavior of physical vapor deposition CrN coatings[J].Journal of Materials Engineering and Performance,2019,28(5):2881-2891.

    • [23] 梁杨梦甜,范其香,王欣,等.CrAlN 纳米梯度涂层的组织结构与性能研究[J].表面技术,2020,50(5):348-355.LIANG Yangmengtian,FAN Qixiang,WANG Xin,et al.Microstructure and properties of CrAlN nano gradient coatings[J].Surface Technology,2020,50(5):348-355.(in Chinese)

    • [24] 谈淑咏,张旭海,李纪宏,等.基底负偏压对直流磁控溅射CrN薄膜择优取向及表面形貌的影响[J].功能材料,2010,41(6):1015-1018.TAN Shuyong,ZHANG Xuhai,LI Jihong,et al.Effect of substrate negative bias on preferred orientation and surface morphology of CrN thin films prepared by DC magnetron sputtering[J].Functional Materials,2010,41(6):1015-1018.(in Chinese)

    • [25] LEE J W,TIEN S K,KUO Y.The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering[J].Thin Solid Films,2006,494:161-167.

    • [26] SUNDGREN J E.Structure and properties of TiN Coatings[J].Thin Solid Films,1985,128:21-44.

    • [27] TSAI D C,LIANG S C,CHANG Z C,et al.Effects of substrate bias on structure and mechanical properties of(TiVCrZrHf)N coatings[J].Surface and Coatings Technology,2012,207:293-299.

    • [28] TSAI D C,HUANG Y L,LIN S R,et al.Structure and mechanical properties of(TiVCr)N coatings prepared by energetic bombardment sputtering with different nitrogen flow ratios[J].Journal of Alloys and Compounds,2011,509:3141-3147.

    • [29] RONG S Q,HE J,WANG H J,et al.Effects of bias voltage on the structure and mechanical properties of thick CrN coatings deposited by mid-frequency magnetron sputtering[J].Plasma Science and Technology,2009,11(1)38-41.

    • [30] TANG J F,LIN C Y,YANG F C,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2020,386:125484.

    • [31] WAN X S,ZHAO S S,YANG Y,et al.Effects of nitrogen pressure and pulse bias voltage on the properties of Cr–N coatings deposited by arc ion plating[J].Surface and Coatings Technology,2010,204(11):1800-1810.

    • [32] TIAN M B,LIU D L.Handbook of thin film science and technology[M].Beijing:China Machine Press,1991.

    • [33] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:A nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1):11.

    • [34] CHEN X J,DU Y,CHUNG Y W.Commentary on using H/E and H/E as proxies for fracture toughness of hard coatings[J].Thin Solid Films,2019,688:37265.

    • [35] GHADAMI F,AGHDAM A S R,ZAKERI A,et al.Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF[J].Ceramics International,2020,46(4):4556-4567.

    • [36] SINGH A,GHOSH S,ARAVINDAN S.Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique[J].Applied Surface Science,2019,508:144812.

  • 手机扫一扫看