en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曹枝军,男,1998年出生,硕士研究生。主要研究方向为热障涂层声发射表征与机器学习。E-mail:zjcao_siccas@126.com

袁建辉,男,1981年出生,博士,副教授。主要研究方向为表面涂层与激光加工。E-mail:yuanjh@sues.edu.cn

通讯作者:

王亮,男,1982年出生,博士,副研究员。主要研究方向为计算表面工程。E-mail:L.Wang@mail.sic.ac.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220728001

参考文献 1
PADTURE N P,GELL M,JORDAN E H.Materials science—Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
参考文献 2
徐滨士,李长久,刘世参,等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,(1):3-9,49.XU Binshi,LI Changjiu,LIU Shican,et al.Surface Engineering and thermal spraying technology and their developments[J].China Surface Engineering,1998(1):3-9,49.(in Chinese)
参考文献 3
李应红,魏悦广,周益春.航空发动机涡轮叶片热障涂层[J].湘潭大学学报(自然科学版),2019,41(6):2.LI Yinghong,WEI Yueguang,ZHOU Yichun.Thermal barrier coating for aero-engine turbine blades[J].Journal of Xiangtan University(Natural Science Edition),2019,41(6):2.(in Chinese)
参考文献 4
YANG L,ZHU W,LI C F,et al.Error and modification in thermal barrier coatings measurement using impedance spectroscopy[J].Ceramics International,2017,43(6):4976-4983.
参考文献 5
VOYER J,GITZHOFER F,BOULOS M I,et al.Acoustic emission studies of thermal barrier coatings during cyclic four point bend tests[C]//9th National Thermal Spray Canference & Expasition,Cincinnati,OH Oct 7-11,1996.Ohio:ASM International,1996.
参考文献 6
杨丽,周益春,朱旺.热障涂层失效的声发射实时表征技术研究进展[J].中国材料进展,2020,39(11):878-896.YANG Li,ZHOU Yichun,ZHU Wang.Research progress in the real-time acoustic emission characterization of failure in thermal barrier coatings[J].Materials China,2020,39(11):878-896.(in Chinese)
参考文献 7
RUDOLPHI M,GALETZ M C,SCHUTZE M.Mechanical stability diagrams for thermal barrier coating systems[J].J Therm Spray Techn,2021,30(3):694-707.
参考文献 8
ZHU W,ZHANG C X,YANG L,et al.Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock:An acoustic emission combined with digital image correlation method[J].Surf Coat Tech,2020,399:1-9.
参考文献 9
刘战伟,朱文颖,石文雄,等.热障涂层无损检测技术进展[J].航空制造技术,2016(4):43-47.LIU Zhanwei,ZHU Wenying,SHI Wengxiang,et al.Progress in the nondestructive testing of thermal barrier coatings[J].Aeronautical Manufacturing Technology,2016(4):43-47.(in Chinese)
参考文献 10
WEN M,JORDAN E H,GELL M.Evolution of photo-stimulated luminescence of EB-PVD/(Ni,Pt)Al thermal barrier coatings[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,398(1-2):99-107.
参考文献 11
CHRISTENSEN R J,LIPKIN D M,CLARKE D R,et al.Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy[J].Applied Physics Letters,1996,69(24):3754-3756.
参考文献 12
ROSSMANN L,NORTHAM M,SARLEY B,et al.Investigation of TGO stress in thermally cycled plasma-spray physical vapor deposition and electron-beam physical vapor deposition thermal barrier coatings via photoluminescence spectroscopy[J].Surf Coat Tech,2019,378:1-8.
参考文献 13
WEN M,JORDAN E H,GELL M.Analysis of localized damage in EB-PVD/(Ni,Pt)Al thermal barrier coatings[J].Surf Coat Tech,2006,200(18-19):5193-5202.
参考文献 14
WEN M,JORDAN E H,GELL M.Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements[J].Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2006,128(3):610-616.
参考文献 15
MEI W A,ERIC H J B,GELL M.Effect of temperature on rumpling and thermally grown oxide stress in an EB-PVD thermal barrier coating[J].Surf Coat Tech,2006,201(6):3289-3298.
参考文献 16
WANG X,WU R T,ATKINSON A.Characterisation of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy[J].Surf Coat Tech,2010,204(15):2472-2482.
参考文献 17
TANG Q J,GAO S S,LIU Y J,et al.Infrared image segmentation algorithm for defect detection based on FODPSO[J].Infrared Physics & Technology,2019,102:1-9.
参考文献 18
HALLOUA H,ELHASSNAOUI A,SAIFI A,et al.Neural networks and genetic algorithms for the evaluation of coatings thicknesses in thermal barriers by infrared thermography data[C]//Proceedings of the 2nd International Conference on Structural Integrity(ICSI),Funchal,Portugal,F Sep 04-07,2017.2017,5:997-1004.
参考文献 19
TANG Q J,DAI J M,LIU J Y,et al.Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology[J].Infrared Physics & Technology,2016,77:144-148.
参考文献 20
TANNO M,OGAWA K,SHOJI T.Influence of asymmetric electrode geometry on an impedance spectrum of a plasma-sprayed thermal barrier coating system[J].Surf Coat Tech,2010,204(15):2504-2509.
参考文献 21
OGAWA K,MINKOV D,SHOJI T,et al.NDE of degradation of thermal barrier coating by means of impedance spectroscopy[J].Ndt & E International,1999,32(3):177-185.
参考文献 22
SCHULZ U,KAYSSER W A,SIPS M,et al.Impedance spectroscopy of thermal barrier coatings as non-destructive evaluation tool for failure detection[J].Zeitschrift Fur Metallkunde,2005,96(7):725-730.
参考文献 23
LIU C,HUANG H,NI L Y,et al.Evaluation of thermal barrier coatings exposed to hot corrosion environment by impedance spectroscopy[J].Chinese Journal of Aeronautics,2011,24(4):514-519.
参考文献 24
CHEN W,LIU M,ZHANG J.Microstructure evolution and impedance spectroscopy analysis of 7YSZ thermal barrier coating during high-temperature oxidation process[J].China Surface Engineering,2016,29(3):48-56.
参考文献 25
CHEN W,LIU M,ZHANG J,et al.Impedance spectroscopy analysis of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition during the high-temperature oxidation process[J].Materials Review,2019,33(2B):602-606.
参考文献 26
CHEN W,LIU M,ZHANG J,et al.Microstructure evolution and impedance spectroscopy characterization of thermal barrier coating exposed to gas thermal-shock environment[J].Journal of Materials Engineering,2017,45(10):79-87.
参考文献 27
CHEN W L,LIU M,ZHANG J F,et al.High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition[J].Chinese Journal of Aeronautics,2018,31(8):1764-1773.
参考文献 28
郭磊,高远,叶福兴,等.航空发动机热障涂层的CMAS腐蚀行为与防护方法[J].金属学报,2021,57(9):1184-1198.GUO Lei,GAO Yuan,YE Fuxing,et al.CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine[J].Acta Metallurgica Sinica,2021,57(9):1184-1198.(in Chinese)
参考文献 29
WENG W X,CAO J L,LIN H L,et al.Acoustic emission and associated damage mechanism analysis in 8YSZ thermal barrier coatings under instrumented indentation[J].J Therm Spray Techn,2019,28(7):1651-1663.
参考文献 30
赵荻,安宇龙,赵晓琴,等.不同厚度8YSZ热障涂层的结构及性能表征[J].表面技术,2020,49(1):276-284.ZHAO Di,AN Yulong,ZHAO Xiaoqin,et al.Structure and properties of 8YSZ thermal barrier coatings with different thickness[J].Surface Technology,2020,49(1):276-284.(in Chinese)
参考文献 31
PARK J H,KIM J S,LEE K H,et al.Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ZrO2-8Wt%Y2O3 thermal barrier coating[J].Journal of Materials Processing Technology,2008,201(1-3):331-335.
参考文献 32
ITO K,KURIKI H,ARAKI H,et al.Evaluation of generation mechanism of vertical cracks in top coat of TBCs during APS deposition by laser AE method[J].J Therm Spray Techn,2015,24(5):848-856.
参考文献 33
TANIGUCHI K,ENOKI M,WATANABE M,et al.In situ monitoring of cracking behaviors of plasma-sprayed coatings by the laser acoustic emission technique[J].Journal of Materials Research,2009,24(10):3182-3189.
参考文献 34
TANIGUCHI K,NISHINOIRI S,ENOKI M,et al.Evaluation of effect of process conditions on microstructures in plasma sprayed coating by in situ laser AE[C]//1st International Conference on Advanced Nondestructive Evaluation,Cheju 1st,South Korea,Nov.07-09,2005.Switzerland:Trans Tech Publication Ltd,2006,321-323:1443-1446.
参考文献 35
ITO K,KURIKI H,ARAKI H,et al.Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method[J].Science and Technology of Advanced Materials,2014,15(3)1-12.
参考文献 36
胡忠超,王亮,庄铭翔,等.热障涂层裂纹扩展的数值模拟研究进展[J].中国材料进展,2020,39(10):740-753,738-739.(in Chinese)HU Zhongchao,WANG Liang,ZHUANG Mingxiang,et al.Research progress of crack growth of thermal barrier coatings via numerical simulation[J].Materials China,2020,39(10):740-753,738-739.
参考文献 37
ROBIN P,GITZHOFER F,FAUCHAIS P,et al.Remaining fatigue life assessment of plasma sprayed thermal barrier coatings[J].J Therm Spray Techn,2010,19(5):911-920.
参考文献 38
KHAZAEIAN M,NAKHODCHI S.The evolution of fracture process zones in as-received and oxidized air plasma sprayed TBCs[J].Surf Coat Tech,2019,377:1-11.
参考文献 39
WANG L,LIU C G,ZHONG X H,et al.Investigation of crack propagation behavior of atmospheric plasmasprayed thermal barrier coatings under uniaxial tension using the acoustic emission technique[J].J Therm Spray Techn,2015,24(3):296-308.
参考文献 40
YANG L,ZHONG Z C,YOU J,et al.Acoustic emission evaluation of fracture characteristics in thermal barrier coatings under bending[J].Surf Coat Tech,2013,232:710-718.
参考文献 41
MAO W G,WU D J,YAO W B,et al.Multiscale monitoring of interface failure of brittle coating/ductile substrate systems:A non-destructive evaluation method combined digital image correlation with acoustic emission[J].Journal of Applied Physics,2011,110(8):1-6.
参考文献 42
KIILAKOSKI J,MUSALEK R,LUKAC F,et al.Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ-and macroscopic bending[J].Journal of the European Ceramic Society,2018,38(4):1908-1918.
参考文献 43
WANG L,NI J X,SHAO F,et al.Failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings under three-point bending test via acoustic emission technique[J].J Therm Spray Techn,2017,26(1-2):116-131.
参考文献 44
RAY A K,ROY N,KAR A,et al.Mechanical property and characterization of a NiCoCrAlY type metallic bond coat used in turbine blade[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,505(1-2):96-104.
参考文献 45
TRUNOVA O,BEDNARZ P,HERZOG R,et al.Microstructural and acoustic damage analysis and finite element stress simulation of air plasma-sprayed thermal barrier coatings under thermal cycling[J].International Journal of Materials Research,2008,99(10):1129-1135.
参考文献 46
BECK T,TRUNOVA O,HERZOG R,et al.TBCs for gas turbines under thermomechanical loadings:failure behaviour and life prediction[C]//Proceedings of the 2nd European Energy Conference,Maastricht,Netherlands,F Apr 17-20,2012.
参考文献 47
ZHU W,LI Z Y,YANG L,et al.Real-time detection of CMAS corrosion failure in APS thermal barrier coatings under thermal shock[J].Experimental Mechanics,2020,60(6):775-785.
参考文献 48
李建超,何箐,吕玉芬,等.热障涂层无损检测技术研究进展[J].中国表面工程,2019,32(2):16-26.LI Jianchao,HE Qing,LÜ Yufen,et al.Research progress on non-destructive testing method of thermal barrier coatings[J].China Surface Engineering,2019,32(02):16-26.(in Chinese)
参考文献 49
ANDREWS D J,TAYLOR J A T.Nondestructive evaluation of plasma-sprayed thermal barrier coatings[J].Journal of Materials Engineering and Performance,1997,6(5):591-595.
参考文献 50
BIN ZAMAN S,HAZRATI J,DE ROOIJ M,et al.Investigating AlSi coating fracture at high temperatures using acoustic emission sensors[J].Surf Coat Tech,2021,423:1-13.
参考文献 51
李雪换,底月兰,王海斗,等.基于声发射技术的热障涂层损伤行为[J].材料导报,2018,32(19):3368-3374.LI Xuehuan,DI Yuelan,WANG Haidou,et al.Failure behavior of thermal barrier coatings based on acoustic emission technology[J].Materials Reports,2018,32(19):3368-3374.(in Chinese)
参考文献 52
TAKAGI K,KAWASAKI A,ITOH Y,et al.Testing method for heat resistance under temperature gradient[J].J Therm Spray Techn,2007,16(5-6):974-977.
参考文献 53
PARK J H,KIM J S,LEE K H.Acoustic emission characteristics for diagnosis of TBC damaged by high-temperature thermal fatigue[J].Journal of Materials Processing Technology,2007,187:537-541.
参考文献 54
KIM P H,KIM J S,PARK J H,et al.Classification of defects in a thermal barrier coating layer using the fuzzy C-means algorithm[J].International Journal of Precision Engineering and Manufacturing,2015,16(1):53-57.
参考文献 55
YANG L,ZHONG Z C,ZHOU Y C,et al.Quantitative assessment of the surface crack density in thermal barrier coatings[J].Acta Mechanica Sinica,2014,30(2):167-174.
参考文献 56
YANG L,ZHOU Y C,MAO W G,et al.Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bondcoating oxidation[J].Surface And Interface Analysis,2007,39(9):761-769.
参考文献 57
YANG L,ZHOU Y C,MAO W G,et al.Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings[J].Applied Physics Letters,2008,93(23):1-4.
参考文献 58
WANG L,MING C,ZHONG X H,et al.Microstructure and self-healing properties of multi-layered NiCoCrAlY/TAZ/YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J].Applied Surface Science,2019,488:246-260.
参考文献 59
YANG L,ZHOU Y C,LU C.Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling:An acoustic emission method[J].Acta Materialia,2011,59(17):6519-6529.
参考文献 60
ITO K,KURIKI H,ARAKI H,et al.Estimation of thermal cracking stress during spraying of thermal barrier coatings by laser AE method[C]//Proceedings of the 10th International Conference on Barkhausen and Micro-Magnetics(ICBM),Baltimore,MD,F Jul 21-26,2013.2013,1581:479-485.
参考文献 61
ITO K,KURIKI H,WATANABE M,et al.Detection of AE events due to cracks in TBC during spraying process[J].Materials Transactions,2012,53(4):671-675.
参考文献 62
TILLMANN W,WALTHER F,LUO W F,et al.In situ acoustic monitoring of thermal spray process using high-frequency impulse measurements[J].J Therm Spray Techn,2018,27(1-2):50-58.
参考文献 63
JING J N,DONG L H,WANG H D,et al.Application of acoustic emission technology for quantitative characterization of plasma-sprayed coatings subjected to bending fatigue tests[J].J Therm Spray Techn,2018,27(7):1090-1102.
参考文献 64
YAO W B,DAI C Y,MAO W G,et al.Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings[J].Surf Coat Tech,2012,206(18):3803-3807.
参考文献 65
YANG L,ZHONG Z C,ZHOU Y C,et al.Acoustic emission assessment of interface cracking in thermal barrier coatings[J].Acta Mechanica Sinica,2016,32(2):342-348.
参考文献 66
YANG L,ZHOU Y C.Wavelet analysis of acoustic emission signals from thermal barrier coatings[J].Transactions of Nonferrous Metals Society of China,2006,16:S270-S275.
参考文献 67
ZHOU F F,WANG Y,LIU M,et al.Acoustic emission monitoring of the tensile behavior of a HVOF-sprayed NiCoCrAlYCe coating[J].Applied Surface Science,2020,504:1-19.
参考文献 68
YANG L,KANG H S,ZHOU Y C,et al.Frequency as a key parameter in discriminating the failure types of thermal barrier coatings:Cluster analysis of acoustic emission signals[J].Surf Coat Tech,2015,264:97-104.
参考文献 69
YANG L,YANG T T,ZHOU Y C,et al.Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion[J].Surf Coat Tech,2016,304:272-282.
参考文献 70
LI C C,QIAO X,WANG T,et al.Damage evolution and failure mechanism of thermal barrier coatings under Vickers indentation by using acoustic emission technique[J].Progress In Natural Science-Materials International,2018,28(1):90-96.
参考文献 71
QIAO X,WENG W X,LI Q.Acoustic emission monitoring and failure behavior discrimination of 8YSZ thermal barrier coatings under Vickers indentation testing[J].Surf Coat Tech,2019,358:913-922.
参考文献 72
YANG L,KANG H S,ZHOU Y C,et al.Intelligent discrimination of failure modes in thermal barrier coatings:wavelet transform and neural network analysis of acoustic emission signals[J].Experimental Mechanics,2015,55(2):321-330.
参考文献 73
赵泓旭,邓春明,付朗,等.用于热障涂层的锆酸钆材料研究进展[J].表面技术,2022,51(2):116-128.ZHAO Hongxu,DENG Chunming,FU Lang,et al.Research progress on gadolinium zirconate materials for thermal barrier coatings[J].Suface Technology,2022,51(2):116-128.(in Chinese)
参考文献 74
ADAM M,KONTERMANN C,OECHSNER M.A study on failure of double-layer thermal barrier coatings subjected to uniaxial compression tests using acoustic emission analysis and digital image correlation[C]//Proceedings of the 22nd European Conference on Fracture(ECF)-Loading and Environmental Effects on Structural Integrity,Belgrade,SERBIA,F Aug 26-31,2018.2018,13:1226-1231.
参考文献 75
ALEKSANOGLU H,SCHOLZ A,OECHSNER M,et al.Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions[J].International Journal of Fatigue,2013,53:40-48.
参考文献 76
刘阳,蔡洪能,魏志远,等.等离子喷涂热障涂层内孔隙对其隔热性能的影响[J].材料保护,2021,54(11):1-9.LIU Yang,CAI Hongneny,WEI Zhiyuan,et al.Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J].Materials Protection,2021,54(11):1-9.(in chinese)
参考文献 77
CASU A,MARQUES J L,VASSEN R,et al.Modelling of crack growth near the metallic-ceramic interface during thermal cycling of air plasma sprayed thermal barrier coatings[C]//Proceedings of the Summer School on Layered,Functional Gradient Ceramics,and Thermal Barrier Coatings,Mao,SPAIN,F Jun 11-16,2006.2006,333:263-268.
参考文献 78
STIGER M J,MEIER G H,PETTIT F S,et al.Accelerated cyclic oxidation testing protocols for thermal barrier coatings and alumina-forming alloys and coatings[J].Materials and Corrosion-Werkstoffe Und Korrosion,2006,57(1):73-85.
参考文献 79
RENUSCH D,SCHUTZE M.Measuring and modeling the TBC damage kinetics by using acoustic emission analysis[J].Surf Coat Tech,2007,202(4-7):740-744.
目录contents

    摘要

    热障涂层(TBCs)具有优异的高温抗氧化、高温力学和抗热腐蚀性能而备受关注,广泛应用于航空发动机和燃气轮机热端部件中。热障涂层服役环境的恶劣和涂层体系结构的复杂,极易导致涂层发生界面分层或剥落失效,因此通过对热障涂层的裂纹萌生和扩展问题进行实时监测,对于失效机理研究显得尤为重要。简述光激发荧光压电光谱(PLPS)、红外热成像 (IRT)、阻抗谱(IS)的原理及其在热障涂层失效行为研究中的应用,重点介绍声发射技术在热障涂层失效机理方面的研究成果。基于声发射的热障涂层失效过程的信号分析和深度处理,结合声发射技术在热障涂层中的参数分析和波形分析,对热障涂层失效过程及失效形态进行模式识别,通过损伤程度的定量评估来进行热障涂层的寿命预测。对声发射技术在热障涂层失效预测及寿命评估指明了方向,并创新性地对未来声发射技术在热障涂层的疲劳损伤方面研究趋势提出展望。

    Abstract

    Thermal barrier coatings (TBCs) have attracted much attention because of their excellent high-temperature oxidation resistance and high-temperature mechanical and hot corrosion resistance. They are widely used in aero-engine and gas turbine hot-end components. Owing to the poor service environment and complex structure of TBCs, elastic–plastic deformation of the substrate, surface cracks, and interface cracks easily occur, leading to interface delamination or spalling failure. To understand the crack initiation and propagation in TBCs further, it is important to predict the cracking, delamination time, delamination or failure location, and damage mode of TBCs accurately. In this study, the principles of photo-stimulated luminescence piezo spectroscopy, infrared thermography, and impedance spectroscopy, as well as their applications in the study of the failure behavior of TBCs, are briefly reviewed, with emphasis on the application of acoustic emission (AE) technology as an important nondestructive testing method in the study of the failure behavior of TBCs. The research achievements of scholars worldwide in exploring the failure mechanisms of TBCs under tension, compression, three-point bending, high-temperature thermal shock, thermal shock, etc. are summarized. Based on the signal analysis and deep processing of the failure process of TBCs, the characteristics of AE signals are represented by waveform characteristic parameters (such as amplitude, energy, count, duration, rise time, peak frequency, and center frequency). Combined with parameter analysis and waveform analysis of AE technology in TBCs, the failure process and failure patterns of the TBCs are recognized based on AE signals. The service life of TBCs is predicted by a quantitative evaluation of the degree of damage. These results can provide a reference for the development of an AE monitoring platform for TBCs and promote the development of engineering applications. Although significant progress has been made in analyzing the degradation behavior and reliability of TBC systems in recent years, some shortcomings in the ability to predict damage evolution in terms of crack initiation and propagation remain. AE can be used for permanent structural-health monitoring of TBCs. For the damage evolution of microcracks and pores, adverse changes in the structure are detected and explained to improve reliability, and the elastic waves carrying the information about defects and potential defects are analyzed. In summary, AE technology plays an important role in the characterization, service status, and life prediction of TBCs. It is also an effective auxiliary method in the failure research of TBCs. Machine learning is a subset of artificial intelligence, and the application of nondestructive testing technology in TBCs using machine-learning methods is briefly described. Methods to realize intelligent recognition and life prediction of machine learning in TBCs based on AE technology are discussed. These research results not only enrich the understanding of AE technology but also indicate the direction for failure prediction and life assessment of TBCs. Finally, a future AE technology research trend in the fatigue damage of TBCs is proposed.

  • 0 前言

  • 随着航空涡轮发动机推重比和热机效率的提高,航空燃气涡轮发动机在国家科技与经济发展中扮演着越来越重要的角色。飞机和工业燃气轮机等苛刻的高温环境,会极大地影响发动机的使用寿命,而涡轮叶片作为燃气涡轮发动机的核心部件,最关键的是能否承受较高的热端部件温度。2002 年, PADTURE 等[1]指出数百种不同类型的涂层用于保护各种结构工程材料免受腐蚀、磨损和侵蚀,并提供润滑和隔热。热障涂层(Thermal barrier coatings, TBCs)由于具有优异的高温抗氧化、高温力学和抗热腐蚀性能而备受关注,广泛用于航空发动机热端部件中,与单晶高温合金技术、高效气膜冷却技术并列为航空发动机、燃气轮机和叶片等高温应用场合的三大隔热防护技术[2]

  • 热障涂层是为了提高高温合金基体表面性能而常用的陶瓷涂层,可以将涡轮和燃烧室发动机部件与热气流隔绝,并提高发动机的耐用性和能效[3]。热障涂层结构复杂,一般是由基底层、金属粘结层(Bond coating,BC)、表面陶瓷层(Top coating,TC)以及氧化层组成,这是一种复杂的多层结构材料,图1 所示为等离子喷涂热障涂层(APS–TBCs)横截面的扫描电镜(SEM)图片[4]。基底层的材料主要为高温合金基体,起着承受机械载荷的作用。金属粘结层的常用材料有 MCrAlY(其中 M:Ni 或 / 和 Co),起着增强基底层和陶瓷层粘结力的作用[5]。表面陶瓷层的材料一般为氧化钇部分稳定氧化锆(ZrO2-8%Y2O3,8YSZ),起着隔热防护,延缓热传导的作用。

  • 图1 等离子喷涂热障涂层横截面[4]

  • Fig.1 The cross-section image of the APS TBCs[4]

  • 热障涂层的使用寿命受微结构控制,了解其结构和性能在失效条件下发生的复杂变化,可以更好地预测涂层失效和剥落的时刻和位置[6]。在热障涂层系统中,RUDOLPHI 等[7]提出由于热老化和随后的陶瓷顶层剥落而造成的机械完整性损失是热障涂层系统的主要失效机制之一。涂层剥落会致使金属基体部分或者完全暴露在复杂的工作环境中,对基体造成损伤,最终影响着 TBCs 的服役寿命。因其复杂的内部结构和苛刻的工作环境,相比普通的陶瓷涂层和金属涂层会显得更加复杂,因此深入理解其失效机理对于研究涂层失效机理、监测涂层健康状态、预测涂层寿命、评估涂层高温真实隔热效果、设计新型热障涂层以及优化冷却系统将显得尤为重要。图2 所示为热障涂层损伤模式示意图[8],表面垂直裂纹是由陶瓷涂层中的拉应力 σ11 引起的,剪切型界面裂纹是由沿界面的剪应力 σ12引起的,张开型界面裂纹是由垂直于界面的拉应力 σ22引起的。

  • 图2 热障涂层损伤模式示意图[8]

  • Fig.2 Schematic illustration of failure modes of thermal barrier coatings[8]

  • 1 热障涂层失效的无损检测技术

  • 热障涂层在常温和高温条件下的失效是热障涂层研究永恒的命题,而开展热障涂层失效的无损检测研究是提前判断热障涂层失效和预测热障涂层服役寿命很重要的一种方法。目前,热障涂层的无损检测方法主要有光激发荧光压电光谱法、红外热成像法、阻抗谱法、声发射方法等,针对热障涂层的制备工艺优化和服役过程的实时结构健康监测,不同的无损检测技术具有不同的特点,其研究与应用主要集中在涂层失效分析、失效模式识别、服役寿命评估等[9]

  • 1.1 光激发荧光压电光谱技术

  • 光激发荧光压电光谱法( Photo-stimulated luminescence piezo spectroscopy,PLPS)是测定热生长氧化物(Thermally grown oxide,TGO)中某个单一离子(一般为 Cr3+)在经过光激发后而形成的荧光光谱,离子所受应力的水平状况会影响着光谱的特征峰发生蓝移或者红移,因此应力值可以通过特征频率的改变量计算得到,其原理如图3 所示[10]。基于这个原理,PLPS 用于对热障涂层经过热循环或者高温氧化后的应力分布的测定,通过测得热障涂层的残余应力,绘制样品的应力图,结合压电光谱和 TGO 形貌来实现涂层的损伤模式识别、寿命预测和系统建模。在 20 世纪 90 年代,CHRISTENSEN 等[11]首次利用 PLPS 技术对热障涂层粘结层的应力进行测量,随后学者们对 PLPS 技术在热障涂层无损检测领域进行了深入研究。ROSSMANN 等[12]利用 PLPS 技术绘制了样品的应力图,研究了 EB-PVD 和 PS-PVD 热生长氧化物在多次热循环下的残余应力,以评估这两种沉积方法对涂层寿命的影响,给寿命预测和监测氧化层微损伤区提供参考。基于 PLPS 技术进行热障涂层剩余寿命的机器学习研究,WEN 等[13-15]使用 PLPS 技术测量了 EB-PVD TBCs 中 TGO 的残余应力,研究 PLPS 光谱特性随热循环氧化次数的变化,得到涂层失效与应力之间的联系,对剩余寿命进行预测,并且用回归方法和神经网络方法对预测结果进行比较。结果表明,两种方法均能准确预测剩余寿命,但神经网络方法预测的均方根误差最小,最大绝对误差在 6%~8%,表明 PLPS 可以用于识别热障涂层(TBC)的损伤模式和评估剩余寿命。

  • 图3 光致发光压电谱技术示意图和含 Cr3+的 α-Al2O3层内无应力和有应力的典型 R1 / R2荧光光谱[10]

  • Fig.3 Schematic illustration of the photo-stimulated luminescence piezo-spectroscopy technique and typical R1 / R2 fluorescence spectra for chromiumcontaining stress-free and stressed α-Al2O3 [10]

  • 应力是决定涂层开裂的关键因素,光激发荧光压电光谱技术(PLPS)通过低功率激光聚焦在物质表面进行化学识别和应力测量,为热障涂层 TGO 的测定和分布提供了依据。未来可以通过提高光谱测试精度、过滤其他噪声干扰、提高激光功率、降低激光入射距离等方法来提高结果的可靠性,定量分析光谱形状的演变过程,将其与 TBCs 体系的降解过程进行关联,结合试验验证不同类型界面裂纹响应的特征谱变化,光谱形状演化与界面退化之间的相关性为热障涂层的退化研究和寿命评估提供了新方向[16]

  • 1.2 红外热成像

  • 红外热成像技术(Infrared thermography,IRT) 是基于热辐射的普朗克定律理论基础的,而红外热成像的物理基础则是通过热像仪扫描记录或观察试件表面缺陷和材料特性而出现的温度变化,其原理如图4 所示[17]。在红外热成像中,当被测物体经过热激发时,其内部将进行热量传递。如果被测物体内部有缺陷,则会改变被测物体表面的热传导特性,热分布也会因为热传导特性的改变而发生变化,导致被测物体表面的温度出现差异,通过物体表面温差进而判断缺陷位置存在的情况。目前来看,红外热成像技术主要用于检测热障涂层厚度、分层、裂纹和脱粘,学者们基于红外热成像技术,结合机器学习和神经网络对其进行处理,并进行评价和预测。在涂层厚度方面,HALLOUA 等[18]利用神经网络对激光脉冲热成像数据进行处理,建立了热响应与涂层厚度之间的关系模型,该方法利用主成分分析 (Principal components analysis,PCA)对数据进行预处理,以优化网络输入的数量,并利用遗传算法来确定网络训练中的最优初始权值,两种算法的复合使得厚度评价的偏差小于 5%。对于涂层结构脱粘缺陷进行检测应用方面,TANG 等[1719]利用脉冲红外热像技术对热障涂层脱粘缺陷的直径和深度进行了定量检测,将主成分分析与神经网络理论相结合,提出了 PCA-BP 算法。该预测模型以热波信号特征的主成分为输入,以缺陷深度和直径为输出,选取热障涂层的脉冲红外热像试验数据作为训练和测试样本,对缺陷深度和直径进行了准确识别,验证了该方法在 TBCs 脱粘缺陷定量检测中的有效性[15]

  • 图4 红外热成像系统原理图[17]

  • Fig.4 Schematic illustration of infrared thermal imaging system[17]

  • IRT 技术通过获取热障涂层热辐射的形式来得到表面温度分布,具有非接触、检测效率高、检测范围广等优点,但也存在一些瓶颈问题,IRT 技术检测热障涂层结构缺陷时,会出现采集的红外图像噪声高、边缘模糊等问题,未来可以通过过滤噪声干扰、提高成像质量、提高传感器精度等手段来提高 IRT 技术的检测精度,通过设计新的机器学习算法可以有效地克服传统算法易陷入局部最优、收敛速度慢的缺点,实现热障涂层红外热成像技术的定性和定量检测结合,达到对于热障涂层的定性评价和寿命评估。

  • 1.3 阻抗谱法

  • 阻抗谱技术(Impedance spectroscopy,IS)是根据材料或者被检物体阻抗的交流频率响应来检测材料损伤和破坏的一种电化学测试技术,通常应用于测定固态电解质电导率和研究电极表面现象等方面,其原理如图5 所示[20]。通过研究热障涂层在失效过程中会出现的物理化学变化,如界面处的微观形貌、裂纹萌生与扩展、TGO 形成与增厚等,近年来该方法已广泛应用于热障涂层的失效过程和失效机理研究。在 20 世纪 90 年代末,OGAWA 等[21]首次利用阻抗谱(IS)技术研究热障涂层热时效过程中反应层的形成动力学和物理性质,利用阻抗的变化来评价反应层的物理性质和厚度。随后该技术在 TBCs 无损检测领域开展深入研究,目前 IS技术可以通过测量 TBCs 的电学性能,然后建立其与 TGO 厚度和 TBCs 微观结构的映射关系。SCHULZ 等[22] 对 EB-PVD 热障涂层用阻抗谱进行测量,对相角、总阻抗、实部和虚部等参数进行分析,发现阻抗谱的变化与所测得的 TGO 厚度之间存在着直接的相关性。LIU 等[23]用阻抗谱(IS)无损检测了 TBCs 在 25wt.%NaCl 和 75wt.%Na2SO4混合溶液中的热腐蚀行为,内部裂纹的形成和扩展增加了表面层的电阻,等效电路中的参数可以用来表征热障涂层微观结构的退化行为。CHEN 等[24-27]利用阻抗谱技术研究了热障涂层的恒温、高温氧化,以及热循环过程中 TGO 生长与 YSZ 陶瓷层的微结构演变,通过对其测量电阻进行等效电路拟合来表征 TGO 厚度,阻抗分析表明氧化过程中烧结产生的微裂纹是导致 YSZ 晶界电容增加、电阻降低的主要原因。

  • 图5 阻抗谱测量系统示意图[20]

  • Fig.5 Schematic illustration of an Impedance Spectroscopy measurement system[20]

  • 阻抗谱技术(IS)通过检测获得热障涂层的电学性能,在热障涂层无损检测方面具有检测范围广、检测时间短、可定量分析、检测体系无损等特点。由于应用 IS 技术得到的是热障涂层的平均阻抗响应,而热障涂层结构复杂,因此 IS 数据与微观结构之间的映射关系将显得尤为重要。提高热障涂层阻抗谱测试精度,采用科学处理方法,未来将是 IS 技术的重要发展方向。

  • 2 热障涂层无损检测方法的发展:声发射技术

  • 2.1 声发射技术

  • 声发射(Acoustic emission,AE)是指被检构件物体或者材料内部的某局域源受到外部因素或者是内力作用时,发生变形或生成裂纹时快速释放能量,并且产生瞬态弹性波的物理现象,其产生的声波极其微弱,并且会导致内部结构的应力实现重新分布。声发射技术是一种采用电子仪器对于声发射信号进行采集、分析的动态无损检测技术,用电子学的方法接收发射出来的应力波,进行处理和分析以评价缺陷发生、发展规律和寻找缺陷位置,具有对于被检物体的接触性要求不高、能够连续实时监测、对于被检目标的外形不敏感等特点,能够在被检构件出现微损伤或者是损伤处于连续变化过程中实现动态无损检测。声发射技术兼具原位、无损、实时和连续监测的特点,对于破坏过程机理的研究是十分合适的。因为材料特性和声发射源的位置、特性不同,缺陷处或结构异常部位因应力集中而产生塑性变形的弹性波也会存在明显差异,对于在外力载荷或者温度作用下材料内部微损伤萌生或者是扩展时收集到的弹性波,根据声波中的声发射信号推断声发射源的缺陷部位、损伤模式,对于检测对象的结构完整性评价、结构健康监测和结构破坏全过程分析具有十分重要的意义。

  • 热障涂层在失效过程中,无论是在常温条件下的失效(承受拉伸还是弯曲),还是在高温服役条件下(如高温热震、高温氧化、高温冲蚀等条件下),热障涂层的失效形式通常表现为龟裂、分层、翘曲或剥落,但是无论哪种形式的失效,涂层的失效归根结底是由裂纹的萌生,扩展和传播造成的[28]。通过声发射技术则能够检测到这一过程,当涂层内部或界面处承受较大的应变以至于有裂纹萌生时,会发出一个应力波信号,该应力波信号被声发射仪器的传感器采集到,然后经过信号放大过程,再经过信号采集与处理系统,最后显示到记录与显示系统中,对信号经过加工和处理就能得到需要的裂纹扩展的信息,包括裂纹扩展的时间定位、空间定位等一些裂纹扩展的动态信息。图6所示为声发射在热障涂层的检测示意图。

  • 图6 热障涂层声发射信号检测示意图[29]

  • Fig.6 Schematic illustration of detection of acoustic emission signals of TBCs[29]

  • 2.2 声发射技术在热障涂层失效检测技术中的应用

  • 声发射技术由于具有无损检测的特点,并且能够快速地对裂纹源进行空间和时间上的准确定位,因此已经在热障涂层的失效方面得到了广泛应用[30]。声发射技术在热障涂层体系研究中的应用主要是在拉伸、压缩、弯曲、高温等试验条件下检测热障涂层声发射信号的变化,继而得到热障涂层失效裂纹类型和裂纹源信息,最后总结得出热障涂层的失效模式。PARK 等[31]对 TBCs 进行激光处理,根据声发射信号分析的结果,随着激光功率的增加,声发射的撞击数和能量呈现增加的趋势,通过对其微观结构和表面形貌进行分析,发现涂层表面出现重熔涂层,表面出现垂直裂纹,证明了裂纹跟声发射参数信号存在着相关性。ITO 等[32]结合声发射和温度监测结果,评价涂层开裂与热应力的关系,声发射结果表明垂直裂纹是由顶层温差而产生的拉应力引起的。由于传统的接触式声发射技术在高温下的应用受到了限制,而激光声发射技术具有非接触式测量、适用于恶劣环境等优点,为此 TANIGUCHI 等[33-34] 开发并应用了四台激光干涉仪对等离子喷涂过程中的声发射(AE)进行多通道测量,通过瞬态热应力分析和获得的声发射事件,计算了沉积过程中产生的最大主应力。从应力分布和断口形貌两个方面了解涂层的断裂历程,认为声发射信号是由顶层裂纹引起的。在此基础上,ITO 等[35] 以激光干涉仪为传感器,采用激光声发射(AE) 技术,实现了 APS 制备 TBCs 过程的实时监控,如图7 所示,利用该技术可以成功地检测到声发射事件。

  • 图7 APS 和激光声发射监测试验装置[35]

  • Fig.7 Experimental equipment of APS and laser AE monitoring[35]

  • 由于声发射表征作用有限,通常结合有限元模拟和其他表征技术来对于热障涂层的破坏机理进行分析[36]。ROBIN 等[37]强调将声发射短期监测与有限元建模(FEM)相结合来预测热障涂层在热循环载荷作用下的性能的有效性。KHAZAEIAN 等[38]将数字图像相关(DIC)、声发射(AE)、有限元分析(FEA) 和扫描电子显微镜(SEM)等多种技术结合起来,深入了解 TBC 构件在均匀弯曲应力场下的破坏机理。在加载过程中对试件的两侧进行同步监测,当基底屈服时,认为每个局部区域的分离是由材料的微观结构特征控制的内应力而不是外加载荷所控制的。试验、模拟和多种表征技术相结合可以更好地分析失效机制,WANG 等[39]采用声发射技术、X 射线衍射分析、扫描电镜和有限元模拟,研究大气等离子喷涂热障涂层在单轴拉伸试验过程中的裂纹萌生和扩展行为。把声发射信号分为三个典型阶段,对应于单轴拉伸下应力-应变曲线的三个阶段,对故障行为相关的声发射信号进行了详细分析。试验结果表明,裂纹萌生位置一般位于陶瓷层内,裂纹倾向于沿拉伸方向扩展,一些关键裂纹到达金属层 / 陶瓷层界面,最终在粘结层 / 顶层界面处失效。用有限元方法模拟了陶瓷层关键裂纹在拉伸过程中的动态扩展规律,有限元模拟结果进一步印证了试验结果得出的结论。湘潭大学团队[840-41]采用声发射(AE)、红外热成像技术(IRT)和数字图像相关 (Digital image correlation,DIC)相结合的方法,对热障涂层在三点弯曲、热冲击条件下的失效过程和内部损伤进行了监测,如图8 所示为 TBCs 在热冲击下的示意图,用 IRT 记录了 TBCs 的温度分布,声发射分析了损伤模式,DIC 测量涂层中应变的演化,并结合扫描电子显微镜(Scanning electron microscope,SEM)观察得到的热障涂层的断口特征,结果发现涂层失效释放的能量与声发射信号的能量呈线性关系,其斜率取决于 TBCs 的断裂模式和性能,涂覆在涡轮叶片上的 EB-PVD 热障涂层在热冲击作用下随着热震循环次数的增加,热障涂层表面的主应变逐渐由压应变转变为拉应变。

  • 图8 声发射、红外热成像和数字图像相关法检测示意图[8]

  • Fig.8 Schematic illustration of acoustic emission, infrared thermal imaging and DIC method[8]

  • 目前对热障涂层失效的声发射研究工作主要集中在常温条件下,对高温环境下的研究较少。在常温环境下,KIILAKOSKI 等[42]用原位声发射对于三点弯曲和四点弯曲试验进行监测,测得涂层的应变容限和评价了涂层的韧性。在现场试验中,可以检测到单个裂纹的开始,发现声发射方法对涂层失效很敏感,产生的声能足以达到预定的阈值能量。 WANG 等[43]利用 AE 和线性定位法对 APS-TBCs 在三点弯曲(3PB)试验条件下的动态破坏过程进行监测,发现声发射参数(声发射事件数、声发射幅度和声发射能量)的变化与加载过程的应力-应变曲线变化有很好的对应关系。声发射信号来自两个方面:基底的塑性变形和涂层中裂纹的萌生和扩展,认为在 3PB 试验下 APS-TBCs 的实际失效机理是涂层在弯曲作用下沿基体和粘结层界面的剥离和水平裂纹的扩展。学者们对高温环境下的情况也陆续进行了深入研究,RAY 等[44]在高温拉伸试验中,利用声发射技术确定热障涂层粘结层的韧脆转变温度,对粘结层的显微组织、残余应力、剪切强度、硬度等方面进行评价。TRUNOVA 等[45]采用显微结构和声发射分析方法研究大气等离子喷涂热障涂层在热循环过程中的退化演化和失效机理。观察到的微裂纹演化表明,热障涂层的损伤主要发生在冷却过程中,这是由陶瓷界面的热膨胀失配产生的残余应力造成的。BECK 等[46]利用红外脉冲热成像(IRT)、声发射(AE)分析和扫描电子显微镜(SEM)研究了高温时间、最高和最低温度对等离子喷涂热障涂层热循环过程中裂纹扩展动力学的影响。AE 分析表明,裂纹扩展主要发生在 BC 韧脆转变温度以下的冷却过程中,叠加的机械载荷循环加速了分层裂纹的扩展,足够高的机械载荷会导致基底过早出现疲劳破坏。ZHU 等[47]提出一种声发射与红外热成像相结合的方法来研究热障涂层在 CMAS 腐蚀作用下的失效机理。图9 所示有CMAS 和没有 CMAS 的热障涂层的声发射事件计数随热冲击次数的增加而增加,然后趋于稳定。与表面垂直裂纹和开口界面裂纹的声发射信号相比,滑动界面裂纹的声发射信号在热障涂层破坏过程中占主导地位,因此,滑动界面裂纹是涂层失效的主要原因,在 40 次热冲击下,涂覆 CMAS 的热障涂层的声发射事件数与未被 CMAS 腐蚀的热障涂层在 350 次热冲击下的声发射事件数接近,这表明在高温热冲击试验过程中,被 CMAS 腐蚀的热障涂层比未被 CMAS 腐蚀的热障涂层更容易发生分层。

  • 图9 TBCs 声发射事件随热冲击次数的变化[47]

  • Fig.9 Variation of acoustic emission events of TBCs with the number of thermal shocks [47]

  • 2.3 声发射技术与其他热障涂层无损检测方法比较

  • 当前,无损检测技术不能实现对 TBCs 的结构进行全面、准确的检测,针对不同无损检测方法的优势,对 TBCs 的结构完整性评估在特定的检测对象上可以选择不同的方法,对于不同无损检测方法的检测能力进行了总结,如表1 所示[48]

  • 表1 不同热障涂层无损检测方法检测能力

  • Table1 testing capability of different NDT methods for thermal barrier coatings

  • 3 基于声发射的热障涂层失效过程的信号分析和深度处理

  • 3.1 基于声发射信号的热障涂层失效过程参数分析

  • 目前使用最广泛的就是参数分析方法,通过对复杂的参数分析来对热障涂层内部结构进行表征。参数分析一般是通过多个简化的波形特征参数来表示声发射信号的特征,声发射特征参数主要包括幅值、能量、持续时间、上升时间、计数、中心频率、峰值频率等[49]。图10 所示为声发射波形的典型表示和信号参数量化方法。

  • 图10 声发射波形的典型表示和信号量化方法[50]

  • Fig.10 Typical representation and signal quantifying approaches of an AE waveform [50]

  • 不同的力学失效机制,声发射参数的特征不同,声发射响应与涂层的断裂行为密切相关,并取决于涂层的微观结构的变化[51]。声发射(AE)方法是一种原位无损的检测技术,适合于检测裂纹的产生和扩展,然而,试样由于不同环境下产生的巨大声发射噪声阻碍了声发射监测。TAKAGI 等[52]利用有效导热系数和声发射撞击计数的分析,揭示了 TBCs 的失效机理。PARK 等[53]在四点弯曲试验和热循环试验过程中测量了声发射信号。根据热疲劳循环次数对声发射事件、幅度、累积能量和计数进行分析。声发射测试表明,声发射源是由 TGO 的应力和微裂纹引起的。KIM 等[54]采用均方根值为 100~400 kHz 的声发射信号分析方法,对 TGO 的缺陷进行检测和评价。发现随着 TGO 厚度的增加,RMS(均方根) 值几乎呈线性下降,直至 TBC 失效,且当 TGO 被分层时,声发射信号的幅值也会急剧下降。YANG 等[55-57]对常规声发射参数进行分析,对热障涂层的拉伸破坏过程进行了实时研究,根据热障涂层的声发射特性和应变演化特征,可以判别热障涂层的表面开裂过程。分析了事件、计数、幅度、能量和频谱等声发射参数,以获得有关 TBCs 断裂行为的信息。图11 所示给出了不同失效模式声发射事件数随时间的分布和应变-应力曲线,热障涂层的失效起源于表面垂直开裂,继而出现界面开裂,且声发射撞击数随拉伸载荷的增加而呈幂指数增加。

  • 图11 不同破坏模式的声发射事件数随时间的分布及热障涂层在拉伸试验中的应力-应变曲线[57]

  • Fig.11 The distribution of AE signals induced by different failure modes vs time and its stress-strain behavior during the tensile test of TBCs[57]

  • 3.2 基于声发射信号的热障涂层失效过程波形分析

  • 快速傅里叶变换(Fast Fourier Transform,FFT) 是一种非常重要的信号处理技术,能够实现时频域之间的相互转换。快速傅里叶变换可以定义为能将满足一定条件的某个函数分解成不同频率的正弦波的叠加。学者们通过对热障涂层声发射信号的时频域来进行滤波处理和傅里叶变换分析提取缺陷特征信息,来实现对于热障涂层的定量评估,是目前可行的办法之一。ITO 等[60-61]通过应用改进的 FFT 噪声滤波和多阈值事件检测,对连续记录的声发射波形采用了软阈值和硬阈值等降噪方法,获得更多数量的声发射事件,分析等离子体喷涂的预热温度和扫描速度对裂纹发展的影响,指出裂纹的密度与声发射事件的数量有一定的相关性。TILLMANN 等[62] 采用高频脉冲测量技术,通过实时傅里叶分析将裂纹形成的特征信号可视化,从而实现不同声源的分离,声发射分析可以获得裂纹形成过程的整体信息。 JING 等[63]利用声发射方法监测等离子喷涂涂层在三点弯曲试验下的损伤演化行为,通过提取声发射事件的原始信号,并利用快速傅里叶变换算法进行频谱分析,结果验证了许多声发射事件是多种失效模式综合作用的结果,但在某一时刻,某种失效模式占主导地位。

  • 通过对波形进行傅里叶变换提取特征值,比较失效过程中不同撞击点波形的特征来揭示失效机理。WANG 等[58]通过比较 BRT 过程中第 159 和 160 次(自愈前后)热循环期间涂层失效的声发射信号波形和相应的快速傅里叶变换频谱,发现自修复前后相应峰值频率的位置发生了变化,一些高频信号被抑制甚至消失,低频信号的强度也有一定程度的降低,表明涂层内部确实发生了自修复行为。YAO 等[64]采用快速傅里叶变换对声发射信号进行提取和预处理,得到其特征频谱和主导频段,揭示断裂模式。通过扫描电镜观察,确定了基体变形、表面垂直开裂和界面分层的三个不同特征频带。YANG 等[65]认为弯曲形变、界面分层和层裂等界面失效过程可以通过其声发射特征来识别。利用快速傅里叶变换可以计算声发射信号的特征频谱,如图12 所示显示了在压缩状态下 TBCs 的 AE 信号的四个典型频谱,基体变形的频率为 0.13 MHz,表面垂直裂纹的特征频率为 0.21 MHz,而剪切型界面裂纹和滑移型界面裂纹的特征频率分别为 0.43 MHz 和 0.29 MHz。

  • 图12 TBC 试件压缩试验四种破坏模式的典型频谱[56]

  • Fig.12 Typical frequency spectra of four failure modes from compression of a TBC specimen[56]

  • 小波变换在时频域具有较好的局部分析特征,因此小波变换和傅里叶变换一样适合处理声发射信号特征。学者们对于小波分析在声发射中的应用已经进行了大量的分析,利用小波变换可以分析涂层的失效模式。YANG 等[66]应用小波变换对 TBC 拉伸试验过程中采集的声发射信号进行分析。利用 Daubechies 离散小波对声发射信号进行去噪,将其分解成不同的小波级。每个波形被检查其特定的频率范围,不同级别的能量与总能量的比值提供了与 TBCs 系统相关的失效模式(涂层失效和基体失效) 的信息。在此基础上,ZHOU 等[67]对 TBCs 拉伸试验过程分为两个阶段,运用 db8 小波将原始信号分解成不同频率的信号,从小波变换的角度来看,在 Ⅱ阶段,d3、d2 和 d1 分量在高频部分的信号衰减比第 I 阶段快,表明Ⅱ阶段裂纹扩展速度比第 I 阶段增加得更快,最终导致涂层失效。WENG 等[29] 借助于声发射参数分析和小波包分解,对 8YSZ 的损伤演化过程进行了信号特征分析。结果表明,涂层首先发生弹塑性变形,微裂纹在压痕周围逐渐扩展,然后发生分层,断口由一些较长的裂纹和几十个微裂纹组成。涂层变形、微裂纹形成和长裂纹产生的声发射信号具有不同的幅值和频率。如图13 所示,为微裂纹信号的 db8 小波变换图,涂层的变形可能会产生低幅值、低峰值频率的 a0 分量。a2、 a3 和 a4 分量表现出幅值在 10~20 mV、频率在 200~400 kHz 的跳跃特征。其中 a3 的幅度最高,频率范围为 250~300 kHz,相比分层产生的高幅值信号,可以把这个幅值较小的声发射信号归因于微裂纹的形成或裂纹的萌生。总结得出弹塑性变形产生的声发射信号是连续的,幅值低于 55dB,频率在 35~40 kHz。微裂纹产生的声发射信号表现出幅值低于 55 dB、频率具有 200~400 kHz 的跳跃特征。同时,较长的裂纹产生幅值高于 55dB,信号的频率处于 500~700 kHz 范围。这些结果表明,不同的力学失效机制的声发射参数的特征是不同的,并且与涂层的断裂行为密切相关。

  • 图13 微裂纹声发射信号的 WPD 典型波形和结果[29]

  • Fig.13 Typical waveform and the results of WPD of induced by the micro-crack acoustic emission signal[29]

  • 3.3 基于声发射信号的热障涂层失效机制模式识别

  • 通过对声发射信号的分析,可以得到裂纹扩展模式。采用滤波技术排除试样加载过程中噪声的干扰,获取真实有效的声发射信号,反映涂层系统的裂纹扩展和基体变形。根据有效声发射信号的特征参数和波形,采用模式识别确定涂层损伤破坏模式下参数的关键分布范围。JING 等[63]采用参数化、傅里叶分析和小波分析相结合的方法对涂层中的损伤模式进行识别。分析结果揭示了两种不同峰值频率的裂纹模式(表面垂直裂纹和界面裂纹)。由于声发射特征参数较多,为了证明频率是热障涂层失效过程中裂纹模式识别的重要参数,通过聚类分析这一无监督机器学习方法,为此采用基于最小距离的分类标准的k-means聚类分析算法来处理声发射信号,建立声发射损伤模式与声发射信号特征参数之间的联系。YANG 等[5968-69] 利用 k-means 聚类分析方法分析声发射信号,确定其破坏机制有表面垂直裂纹、开口界面裂纹、滑动界面裂纹、基底变形和宏观解理或层裂等 5 种类型。通过提取 TBCs 信号的声发射幅度、峰值频率、能量、上升时间和持续时间作为特征参数,经过归一化处理,然后对这些数据进行聚类分析,轮廓值 k 超过 0.6 即认为是有效的分类。对拉伸试验声发射信号进行聚类分析时,发现当将声发射信号分为四类时,轮廓值达到最大值 0.627 8,如图14a 所示。因此拉伸试验下的最优分类数 k 为 4,表明有四种失效类型,如图14b 所示,在幅值与峰频的分布图中,存在三个明显的频段, A 类信号(260~350 kHz),B 类信号(170~250 kHz),C 类信号(40~150 kHz),分别在频段范围内呈现出各自不同的频率分布,D 类信号幅值较 A、B、C 更大,但是频率分布在所有的频率段,可以认为 D 类信号是不同于其他类信号的其他信号。除后一类外,其余三类的峰值频率分布均能清晰地区分开来,然而 AE 信号在幅度、能量、上升时间和持续时间等参数分布上彼此重叠,说明频率是识别热障涂层中的声发射源机制的重要参数。

  • 图14 热障涂层拉伸试验的聚类分析结果[68]

  • Fig.14 Cluster analysis results of thermal barrier coatings under the tension[68]

  • TBCs 在压缩试验中进行聚类分析,如图15a 所示,最大轮廓值为 0.651 2,因此压缩时的 TBCs 声发射信号的最佳分类数 k 为 5,表明有 5 种失效类型,如图所示 15b,在幅值与峰频的分布图中,存在 4 个明显的频段,A′类信号(260~350 kHz), B′类信号(170~250 kHz),C′类信号(0~150 kHz),E′类信号(400~450 kHz),它们分别在频段范围内呈现出各自不同的频率分布,D′类信号幅值较 A′、 B′、C′、E′更大,但是频率分布较广,在 50~450 kHz,可以认为 D 类信号是不同于其他类信号的信号。除后一类外,其余 4 类的峰值频率分布均能清晰地区分开来,AE 信号在幅度、能量、上升时间和持续时间等参数分布中彼此重叠,进一步说明频率是识别热障涂层中的声发射源机制的重要参数。

  • 图15 热障涂层压缩试验的聚类分析结果[68]

  • Fig.15 Cluster analysis results of thermal barrier coatings under the compression[68]

  • 在拉伸和压缩作用下,分别有 4、5 种不同热障涂层的声发射源失效机制。结合失效特征进行分析,发现在不同的外载作用下,相同的破坏机理在峰值频率分布上呈现出相同的特征,发现声发射信号与外部载荷类型无关。结果表明,频率参数可用于识别热障涂层中的声发射源机制,为利用声发射信号的频率成分识别热障涂层中的裂纹类型提供了一种新思路。在此基础上,ZHU 等[47]认为声发射信号频谱仅取决于热障涂层的破坏模式,根据热冲击下热障涂层的声发射信号轮廓值与分类数 k 的关系,如图16a 所示将其破坏模式分为 5 类信号,并在 16b 中给出了 5 组声发射信号(幅度和峰值频率)的分布,确定了表面垂直裂纹、滑移型界面裂纹、剪切型界面裂纹、基体变形和噪声的分布范围,进一步验证了声发射信号与外部载荷类型无关,只与声发射源失效机制有关。

  • 图16 热冲击下热障涂层的数据聚类结果[47]

  • Fig.16 Cluster analysis results of thermal barrier coatings under the thermal shock [47]

  • 当前对于声发射在热障涂层失效过程中的模式识别也用到了机器学习和神经网络等。QIAO 和 LI 等[70-71]等采用声发射技术对 8YSZ 热障涂层在维氏压痕试验下的不同失效模式进行了检测和分类研究。利用聚类分析和小波包变换包对压痕测试过程中热障涂层的声发射信号进行表征。利用反向传播 (Back propagation,BP)神经网络研究热时效处理对 8YSZ 涂层损伤演化的影响。聚类分析结果表明,在维氏压痕试验中,8YSZ 热障涂层有 3 种不同失效模式的声发射信号。基于小波包变换,这三类信号的主频带分别集中在 0~156.25 kHz、156.25~234.375 kHz 和 312.5~390.625 kHz。结合维氏压痕的 SEM,得出 8YSZ 涂层在压痕试验过程中经历了弹塑性变形、微裂纹扩展和失效剥离 3 个过程。BP 神经网络识别结果表明,经过高温热时效处理后, 8YSZ 热障涂层的应变容限和使用耐久性降低,而在压痕过程中产生了更多的断裂信号。YANG 等[72] 为了识别热障涂层的失效模式,提出一种基于小波包变换和神经网络的声发射信号处理方法。结果表明,热障涂层有 4 种典型的失效模式,分别为表面裂纹、滑动界面裂纹、开口界面裂纹和基底变形。这些故障模式可以通过对其特征频带进行参数化的小波能量系数来区分,如图17 所示为 4 种失效模式的小波能谱系数分布情况,直观地给出各种失效模式的声发射信号在不同频率段上的分布,发现可以通过把小波能量系数作为声发射信号的特征值,再对其进行模式识别和分类。BP 神经网络具有自学习能力,能够对具有相同阶次特征的信号进行分类,通过将小波能量系数作为 BP 神经网络模式识别的输入向量对信号进行智能识别。如表2 所示,所有故障模式的识别率在98%以上,表明用BP 神经网络对 TBCs 进行故障模式识别是有效的[72]

  • 图17 小波能谱系数分布情况[72]

  • Fig.17 Typical distribution histograms of energy coefficicents for different wavelet levels[72]

  • 表2 BP 神经网络对 TBCs 四种失效模式的识别结果[72]

  • Table2 The recognition results of four failure modes in TBCs by using the back-propagation neural network[72]

  • 3.4 基于声发射信号的热障涂层寿命评估方法

  • 对热障涂层服役寿命的预测,可以大大提高热障涂层系统的可靠性。基于声发射信号的热障涂层失效机制的模式识别是通过声发射特征参数来预测声发射损伤模式类别,为此采用机器学习中的分类模型,而基于声发射信号的热障涂层寿命评估预测是通过声发射参数结合热障涂层损伤演化建立相关的定量关系,为此采用机器学习中的回归模型。许多学者提出了寿命评估模型,主要是从声发射参数与裂纹信息相关联,包括应力应变、裂纹类型、裂纹密度或长度以及临界断裂时间、声发射波形等来进行预测的,如图18 所示[59]

  • 图18 用声发射方法预测热障涂层损伤演化和断裂时间的研究过程[59]

  • Fig.18 Illustration of the research process on the damage evolution and rupture time prediction in TBCs by an AE method [59]

  • 确定临界应变来预测涂层服役寿命,进行寿命评估[73]。ADAM 等[74]通过 DIC 和 AE 揭示了应力应变作为寿命预测模型的关键部分,而且还提供了损伤和演化方面的重要信息,结果表明单轴形式的临界应变模型可以在多轴度方面进行改进,以便更加充分地评估燃气轮机叶片等实际部件形状的寿命。ALEKSANOGLU 等[75]通过确定临界应变,即裂纹产生的应变,来分析热障涂层(TBC)系统的裂纹网络演化。将声发射(AE)获得的信号与(微) 裂纹的演化联系起来,用标准金相方法对试样进行切片和研究。所测得的临界应变作为基于应变寿命模型的数据基础,用于等温、循环氧化和热机械加载模型。RUDOLPHI 等[7]针对一种新型双层热障系统,提出一种基于应变的寿命评估模型。由该模型生成的机械稳定性图,从即将发生的热障涂层的机械损伤的区域中划定了安全操作的区域。通过四点弯曲试验和现场声发射测量,确定了破坏的临界应变,最后将结果用于生成热障涂层的机械稳定性图。从机械稳定性图来评估和定义操作极限(根据应变),并估计热障涂层的机械寿命。

  • 通过裂纹扩展和声发射参数来预测涂层寿命,进行涂层的寿命评估[76]。CASU 等[77]认为热障涂层粘结层在热循环下的寿命取决于两种涂层界面附近微裂纹的亚临界扩展。STIGER 等[78]认为燃气轮机陶瓷热障涂层(TBCs)的一个主要问题是在使用过程中失去附着力,导致涂层剥落。预测合金和金属涂层的循环氧化行为,将声发射数据纳入该模型,来完成可靠的加速测试和寿命预测协议,并用该模型来预测这些合金和涂层在 1 100℃的循环氧化时的寿命。RENUSCH [79]用声发射分析方法测量了热障涂层在 1 100℃和 1 050℃循环氧化过程中的损伤累积,获得了层裂前和层裂过程中的累计声发射能量。图19 显示了在 1 050℃下 TBCs 的损伤累计随热循环氧化时间的变化。可以看出,在小于层裂开始的时间内,样品通过稳态微裂纹损伤积累。层裂开始后,样品损伤累积的速度要快得多,这是由于宏观开裂造成的,根据实际测量得到的累积声发射能量,模拟了热障涂层损伤动力学随时间和温度的变化关系,进而预测涂层寿命。

  • 图19 在 1 050℃下的热循环氧化过程中对 TBC 和 TGO 的损伤累积的计算和建模[79]]

  • Fig.19 Calculation and modeling of damage accumulation in TBC and TGO during thermal cyclic oxidation at 1 050 °C[79]

  • YANG 等[59]认为热障涂层损伤演化的实时检测和定量评估是可取的,采用声发射方法对热障涂层在循环加热和循环冷却作用下的断裂过程进行了监测。结果表明,由于热应力的作用,在加热阶段容易产生垂直裂纹,在冷却阶段容易产生界面裂纹。计算表面裂纹密度和界面裂纹长度,得到损伤演化与声发射参数之间的定量关系。表面垂直裂纹密度和累积声发射事件与循环次数的计算裂纹数据与试验数据之间的关系如图20a 所示,裂纹密度与声发射事件之间的关系如图20b 所示。结果表明,由剪切滞后模型确定的裂纹密度与声发射活动之间的相关性,对于定量评估热障涂层的损伤演化和寿命预测是可靠和准确的,由此可以得出裂纹密度与声发射事件之间的线性相关关系。在计算界面裂纹扩展时,根据试验结果,界面裂纹长度的计算和试验数据与声发射事件的关系如图20c 所示。声发射事件和界面长度随着循环次数的增加而增加,但没有明显的线性或其他趋势可以建立。由理论估计和试验观测确定的界面裂纹长度与声发射事件的相关性如图20d 所示,可以量化界面裂纹的损伤演化。这些结果表明,如果考虑分层损伤动力学,则认为声发射信号事件将与裂纹长度线性相关。图20e 和 20f 显示了拟合加热、冷却和整个热循环阶段的累积声发射事件及其相应的累积幅度。结果表明,无论是声发射事件的数目还是幅度,拟合曲线与加热阶段的试验数据吻合较好。冷却和循环数据呈周期性波动,发现预测具有可靠性。由显微组织观察表明,陶瓷涂层和陶瓷 / 粘结界面分别发生了大量的解理和剥离,热障涂层中所有的失效类型可能导致临界损伤。这些结果表明,陶瓷 / 粘结界面的分层损伤比陶瓷涂层中的解理损伤对热障涂层寿命的影响更大。通过对声发射信号的统计分析,可以预测热障涂层的断裂时间。由理论模型估计的表面裂纹密度和界面裂纹长度等定量参数与每种失效模式下的声发射事件具有很好的相关性,这为定量评估热障涂层的损伤演化和预测服役寿命提供了潜在的可能性。

  • 图20 热障涂层损伤演化与声发射参数之间的定量关系[59]

  • Fig.20 Quantitative relationship between damage evolution and acoustic emission parameters of TBCs[59]

  • 4 结论

  • 热障涂层(TBCs)由于具有优异的高温抗氧化、高温力学和抗热腐蚀性能而备受关注,广泛应用于航空发动机和燃气轮机热端部件中。因为热障涂层服役环境的恶劣和涂层体系结构的复杂,极易产生基体弹塑性变形、表面裂纹和界面裂纹等,导致涂层容易发生界面分层或剥落失效,用原位、实时、无损的声发射技术来对于涂层制备、服役状态下的质量评估具有尤为重要的意义。为了进一步理解热障涂层的裂纹萌生和扩展问题,如何对涂层开裂、分层时间、分层或失效位置以及损伤模式进行准确预测显得尤为重要。将声发射与中红外热成像、阻抗谱技术、数字图像相关、光激发荧光压电光谱等无损检测技术结合起来,一旦积累足够的数据,就能够构建涂层结构健康状态评估模型和涂层寿命预测模型。声发射技术目前还存在数据量巨大、基础模型不完善、如何针对高温燃气等恶劣环境下的检测、如何识别复杂的裂纹模式,以及如何采用正确的数据处理算法等问题,因此对于声发射技术在热障涂层中的应用还须进行更深层次的研究。机器学习是一类重要的人工智能的实现手段,机器学习按照学习任务主要分为三类问题,分别为聚类问题、分类问题和回归问题。在热障涂层损伤失效的声发射信号数据机器学习方面,不知道损伤失效类别时选择聚类模型,如 k-means 聚类算法等;在知道损伤失效类别后,须对新的声发射信号样本进行预测时选择分类模型,如 K-近邻算法,贝叶斯分类,决策树、随机森林,逻辑回归和神经网络等;在基于声发射信号进行热障涂层寿命评估预测时,选择的是回归模型,如线性回归和岭回归等。因此基于热障涂层损伤失效的声发射信号数据,针对不同的应用须要选择合适的机器学习算法。

  • 本文首先简要综述光激发荧光压电光谱技术 (PLPS)、红外热成像技术(IRT)、阻抗谱技术(IS) 的原理及其在热障涂层失效行为研究中的应用,重点介绍声发射技术(AE)作为一种重要的无损检测手段在热障涂层失效行为研究中的应用,总结了学者们在运用声发射技术探究热障涂层在拉伸、压缩、三点弯、高温热震、热冲击等试验下失效机理方面的研究成果。基于声发射的热障涂层失效过程的信号分析和深度处理,通过波形特征参数(如幅值、能量、计数、持续时间、上升时间、峰频、中心频率等)来表示声发射信号特征,结合声发射技术在热障涂层中的参数分析和波形分析,基于声发射信号来进行热障涂层失效过程及失效形态的模式识别,通过损伤程度的定量评估来进行热障涂层的寿命预测,为开发热障涂层声发射监测平台提供参考,并推动相关的工程化应用发展。简要叙述运用机器学习方法实现 PLPS、IRT 和 IS 等无损检测技术在热障涂层中的应用,并重点阐述基于声发射技术 (AE)如何实现机器学习在热障涂层中的智能识别和寿命预测。这些研究成果不仅丰富了声发射技术的内涵,而且进一步为热障涂层失效预测及寿命评估指明了方向。

  • 5 展望

  • 对于原位声发射在热障涂层损伤模式的识别、声发射源的定位、损伤程度的定量评估以及寿命预测,关键是知道要寻找什么变化以及如何识别它们和如何定性评价,因此最重要的是对于声发射信号的频率如何进行分析以及确定涂层损伤的程度。尽管近年来在分析热障涂层系统的退化行为和可靠性方面取得了巨大的进展,但在裂纹萌生和扩展方面预测损伤演化的能力仍存在一些不足。使用声发射可以对于热障涂层进行永久性结构健康监测。对于微观裂纹、孔隙的损伤演化,检测和解释结构中不利变化以提高其可靠性,对材料中传播的携带已发生缺陷和潜在缺陷信息的弹性波进行分析。综上所述,声发射技术对于热障涂层表征、服役状态和寿命预测起着至关重要的作用,也是热障涂层失效研究中的有效辅助手段。通过对于声发射技术在热障涂层应用的总结,对未来热障涂层声发射技术研究和应用发展主要有以下几个方面:

  • (1)涂层制备工艺优化和实时结构健康监测。运用声发射对于热障涂层厚度、微观结构、弹性模量、应力应变等关键特征参数的监测,使这些工艺参数可以达到闭环控制。材料的性能取决于材料的微观结构,弯曲变形和裂纹的存在会缩短热障涂层的服役寿命。确定合适的陶瓷层厚度可以起到减小热障涂层的饱和裂纹密度的作用,并进一步影响到表面裂纹和界面裂纹的萌生和扩展。在涂层制备和服役过程中陶瓷层容易出现裂纹,裂纹会向 TC / TGO 界面处扩展,水平方向的裂纹沿着界面方向扩展并最终延伸到涂层的边缘处,导致涂层失效。垂直裂纹从热障涂层表面向界面处扩展,在还没有到达界面处时,相近的垂直裂纹会产生水平方向的裂纹。随着水平裂纹和垂直裂纹的扩展,将会出现裂纹桥接的情况。由于裂纹的扩展是动态的发展过程,通过声发射技术可以对涂层的内部结构健康状态进行监测,有利于实时获得涂层内裂纹的扩展信息,对于涂层制备工艺优化和实时结构健康状态监测提供参考和补充。

  • (2)评估热障涂层服役状态和构建寿命预测模型。目前,学者们对于热障涂层裂纹动态模拟研究较多,基于声发射技术可以为模拟研究提供可靠的试验依据,由于热障涂层复杂的多层结构,对于热障涂层服役状态模型须要重复进行验证,这种重复验证并不是单一的模拟和试验就能解决的,须要多次相互交叉进行,为构建寿命预测模型提供新思路。基体形变、塑性变形、表面裂纹、界面裂纹等产生的声发射信号频率较高,受振动信号、环境噪声等低频信号的影响较小。对于热障涂层服役状态中的声发射信号进行降噪可以采取多种比较成熟的信号处理办法,也可以创新性地将小波变换、独立分量分析、经验模态分解等声发射降噪信号方法进行融合。对降噪后的声发射信号来评估热障涂层的服役状态,构建热障涂层的寿命预测模型。综合考虑热障涂层在服役过程中的宏观和微观变化,通过计算热障涂层服役寿命、性能变化和声发射信号参数(幅值、能量、持续时间、上升时间、计数、中心频率、峰值频率等)对应的关系,推动声发射技术在涂层制备、服役状态评估中的应用。

  • (3)发展声发射信号与处理系统和构建声发射数据库。现有的声发射信号与处理技术理论体系还不成熟,还需加强基础理论研究,完善理论方法和技术手段。虽然声发射技术在热障涂层无损检测领域已经取得了一些研究成果,但是其研究的广度和深度远远不够。比如对声发射信号如何进行噪声滤波以及怎样区分裂纹种类之间的声发射信号等,这一系列的问题的解决需要用到系统工程的思想来对热障涂层声发射信号产生机理和传播规律进行更高层次的研究。传统的热障涂层裂纹声发射信号源识别方法主要应用于表面声源识别和噪声源识别,无法对于内部的声源进行准确定位和识别,且其识别精度低和测试成本高。而基于声发射数字信号与处理系统的识别方法对于热障涂层声源识别精度高,适应性强,稳定性好。通过对收集到的声发射数据进行保存,构建声发射数据库,为以后的声发射工程应用提供参考,解决影响工程应用中的瓶颈问题。

  • (4)研发高性能传感器和研究多传感器融合技术。开发高精度、高效率的声发射技术,为工程应用提供良好的基础。利用声发射可以对材料表面进行接触应力检测,捕捉到各种条件下力学响应演化的重要信息。提升声发射传感器的灵敏度,优化相关技术,以达到表征测试的精度;采用各类传感器进行检测,对多类声发射传感器融合、集成技术进行研究,给热障涂层监测提供多样性选择。由于热障涂层复杂的多层结构,使得声发射监测系统监测到的结果与实际情况会存在一定的差距,因此须要寻找热障涂层微观结构、性能和声发射信号之间的关联和规律,开发热障涂层声发射监测平台,并推动相关的工程化应用发展。

  • (5)实现热障涂层声发射技术的智能化,利用机器学习和神经网络等技术,达到实现对于热障涂层异常信号的自动识别和筛选。通过对采集到的声发射信号进行解耦,然后对解耦后的声发射信号进行特征识别。由于特征识别需要对于热障涂层材料或者结构的失效机理进行全面准确地分析,提取具有代表性的特征样本进行神经网络以及机器学习运算,进而提高声发射无损检测的准确率。开发基于原位声发射的信号与处理技术在热障涂层中的应用,运用互联网大数据分析和处理,优化相关算法,通过提取模式来自动获取信息,结合数据科学和统计技术,在热障涂层材料研发和涂层无损检测领域发展更大的作用,解决热障涂层大数据的计算问题,来达到对于热障涂层性能表征的评价。

  • 参考文献

    • [1] PADTURE N P,GELL M,JORDAN E H.Materials science—Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.

    • [2] 徐滨士,李长久,刘世参,等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,(1):3-9,49.XU Binshi,LI Changjiu,LIU Shican,et al.Surface Engineering and thermal spraying technology and their developments[J].China Surface Engineering,1998(1):3-9,49.(in Chinese)

    • [3] 李应红,魏悦广,周益春.航空发动机涡轮叶片热障涂层[J].湘潭大学学报(自然科学版),2019,41(6):2.LI Yinghong,WEI Yueguang,ZHOU Yichun.Thermal barrier coating for aero-engine turbine blades[J].Journal of Xiangtan University(Natural Science Edition),2019,41(6):2.(in Chinese)

    • [4] YANG L,ZHU W,LI C F,et al.Error and modification in thermal barrier coatings measurement using impedance spectroscopy[J].Ceramics International,2017,43(6):4976-4983.

    • [5] VOYER J,GITZHOFER F,BOULOS M I,et al.Acoustic emission studies of thermal barrier coatings during cyclic four point bend tests[C]//9th National Thermal Spray Canference & Expasition,Cincinnati,OH Oct 7-11,1996.Ohio:ASM International,1996.

    • [6] 杨丽,周益春,朱旺.热障涂层失效的声发射实时表征技术研究进展[J].中国材料进展,2020,39(11):878-896.YANG Li,ZHOU Yichun,ZHU Wang.Research progress in the real-time acoustic emission characterization of failure in thermal barrier coatings[J].Materials China,2020,39(11):878-896.(in Chinese)

    • [7] RUDOLPHI M,GALETZ M C,SCHUTZE M.Mechanical stability diagrams for thermal barrier coating systems[J].J Therm Spray Techn,2021,30(3):694-707.

    • [8] ZHU W,ZHANG C X,YANG L,et al.Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock:An acoustic emission combined with digital image correlation method[J].Surf Coat Tech,2020,399:1-9.

    • [9] 刘战伟,朱文颖,石文雄,等.热障涂层无损检测技术进展[J].航空制造技术,2016(4):43-47.LIU Zhanwei,ZHU Wenying,SHI Wengxiang,et al.Progress in the nondestructive testing of thermal barrier coatings[J].Aeronautical Manufacturing Technology,2016(4):43-47.(in Chinese)

    • [10] WEN M,JORDAN E H,GELL M.Evolution of photo-stimulated luminescence of EB-PVD/(Ni,Pt)Al thermal barrier coatings[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,398(1-2):99-107.

    • [11] CHRISTENSEN R J,LIPKIN D M,CLARKE D R,et al.Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy[J].Applied Physics Letters,1996,69(24):3754-3756.

    • [12] ROSSMANN L,NORTHAM M,SARLEY B,et al.Investigation of TGO stress in thermally cycled plasma-spray physical vapor deposition and electron-beam physical vapor deposition thermal barrier coatings via photoluminescence spectroscopy[J].Surf Coat Tech,2019,378:1-8.

    • [13] WEN M,JORDAN E H,GELL M.Analysis of localized damage in EB-PVD/(Ni,Pt)Al thermal barrier coatings[J].Surf Coat Tech,2006,200(18-19):5193-5202.

    • [14] WEN M,JORDAN E H,GELL M.Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements[J].Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2006,128(3):610-616.

    • [15] MEI W A,ERIC H J B,GELL M.Effect of temperature on rumpling and thermally grown oxide stress in an EB-PVD thermal barrier coating[J].Surf Coat Tech,2006,201(6):3289-3298.

    • [16] WANG X,WU R T,ATKINSON A.Characterisation of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy[J].Surf Coat Tech,2010,204(15):2472-2482.

    • [17] TANG Q J,GAO S S,LIU Y J,et al.Infrared image segmentation algorithm for defect detection based on FODPSO[J].Infrared Physics & Technology,2019,102:1-9.

    • [18] HALLOUA H,ELHASSNAOUI A,SAIFI A,et al.Neural networks and genetic algorithms for the evaluation of coatings thicknesses in thermal barriers by infrared thermography data[C]//Proceedings of the 2nd International Conference on Structural Integrity(ICSI),Funchal,Portugal,F Sep 04-07,2017.2017,5:997-1004.

    • [19] TANG Q J,DAI J M,LIU J Y,et al.Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology[J].Infrared Physics & Technology,2016,77:144-148.

    • [20] TANNO M,OGAWA K,SHOJI T.Influence of asymmetric electrode geometry on an impedance spectrum of a plasma-sprayed thermal barrier coating system[J].Surf Coat Tech,2010,204(15):2504-2509.

    • [21] OGAWA K,MINKOV D,SHOJI T,et al.NDE of degradation of thermal barrier coating by means of impedance spectroscopy[J].Ndt & E International,1999,32(3):177-185.

    • [22] SCHULZ U,KAYSSER W A,SIPS M,et al.Impedance spectroscopy of thermal barrier coatings as non-destructive evaluation tool for failure detection[J].Zeitschrift Fur Metallkunde,2005,96(7):725-730.

    • [23] LIU C,HUANG H,NI L Y,et al.Evaluation of thermal barrier coatings exposed to hot corrosion environment by impedance spectroscopy[J].Chinese Journal of Aeronautics,2011,24(4):514-519.

    • [24] CHEN W,LIU M,ZHANG J.Microstructure evolution and impedance spectroscopy analysis of 7YSZ thermal barrier coating during high-temperature oxidation process[J].China Surface Engineering,2016,29(3):48-56.

    • [25] CHEN W,LIU M,ZHANG J,et al.Impedance spectroscopy analysis of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition during the high-temperature oxidation process[J].Materials Review,2019,33(2B):602-606.

    • [26] CHEN W,LIU M,ZHANG J,et al.Microstructure evolution and impedance spectroscopy characterization of thermal barrier coating exposed to gas thermal-shock environment[J].Journal of Materials Engineering,2017,45(10):79-87.

    • [27] CHEN W L,LIU M,ZHANG J F,et al.High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition[J].Chinese Journal of Aeronautics,2018,31(8):1764-1773.

    • [28] 郭磊,高远,叶福兴,等.航空发动机热障涂层的CMAS腐蚀行为与防护方法[J].金属学报,2021,57(9):1184-1198.GUO Lei,GAO Yuan,YE Fuxing,et al.CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine[J].Acta Metallurgica Sinica,2021,57(9):1184-1198.(in Chinese)

    • [29] WENG W X,CAO J L,LIN H L,et al.Acoustic emission and associated damage mechanism analysis in 8YSZ thermal barrier coatings under instrumented indentation[J].J Therm Spray Techn,2019,28(7):1651-1663.

    • [30] 赵荻,安宇龙,赵晓琴,等.不同厚度8YSZ热障涂层的结构及性能表征[J].表面技术,2020,49(1):276-284.ZHAO Di,AN Yulong,ZHAO Xiaoqin,et al.Structure and properties of 8YSZ thermal barrier coatings with different thickness[J].Surface Technology,2020,49(1):276-284.(in Chinese)

    • [31] PARK J H,KIM J S,LEE K H,et al.Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ZrO2-8Wt%Y2O3 thermal barrier coating[J].Journal of Materials Processing Technology,2008,201(1-3):331-335.

    • [32] ITO K,KURIKI H,ARAKI H,et al.Evaluation of generation mechanism of vertical cracks in top coat of TBCs during APS deposition by laser AE method[J].J Therm Spray Techn,2015,24(5):848-856.

    • [33] TANIGUCHI K,ENOKI M,WATANABE M,et al.In situ monitoring of cracking behaviors of plasma-sprayed coatings by the laser acoustic emission technique[J].Journal of Materials Research,2009,24(10):3182-3189.

    • [34] TANIGUCHI K,NISHINOIRI S,ENOKI M,et al.Evaluation of effect of process conditions on microstructures in plasma sprayed coating by in situ laser AE[C]//1st International Conference on Advanced Nondestructive Evaluation,Cheju 1st,South Korea,Nov.07-09,2005.Switzerland:Trans Tech Publication Ltd,2006,321-323:1443-1446.

    • [35] ITO K,KURIKI H,ARAKI H,et al.Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method[J].Science and Technology of Advanced Materials,2014,15(3)1-12.

    • [36] 胡忠超,王亮,庄铭翔,等.热障涂层裂纹扩展的数值模拟研究进展[J].中国材料进展,2020,39(10):740-753,738-739.(in Chinese)HU Zhongchao,WANG Liang,ZHUANG Mingxiang,et al.Research progress of crack growth of thermal barrier coatings via numerical simulation[J].Materials China,2020,39(10):740-753,738-739.

    • [37] ROBIN P,GITZHOFER F,FAUCHAIS P,et al.Remaining fatigue life assessment of plasma sprayed thermal barrier coatings[J].J Therm Spray Techn,2010,19(5):911-920.

    • [38] KHAZAEIAN M,NAKHODCHI S.The evolution of fracture process zones in as-received and oxidized air plasma sprayed TBCs[J].Surf Coat Tech,2019,377:1-11.

    • [39] WANG L,LIU C G,ZHONG X H,et al.Investigation of crack propagation behavior of atmospheric plasmasprayed thermal barrier coatings under uniaxial tension using the acoustic emission technique[J].J Therm Spray Techn,2015,24(3):296-308.

    • [40] YANG L,ZHONG Z C,YOU J,et al.Acoustic emission evaluation of fracture characteristics in thermal barrier coatings under bending[J].Surf Coat Tech,2013,232:710-718.

    • [41] MAO W G,WU D J,YAO W B,et al.Multiscale monitoring of interface failure of brittle coating/ductile substrate systems:A non-destructive evaluation method combined digital image correlation with acoustic emission[J].Journal of Applied Physics,2011,110(8):1-6.

    • [42] KIILAKOSKI J,MUSALEK R,LUKAC F,et al.Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ-and macroscopic bending[J].Journal of the European Ceramic Society,2018,38(4):1908-1918.

    • [43] WANG L,NI J X,SHAO F,et al.Failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings under three-point bending test via acoustic emission technique[J].J Therm Spray Techn,2017,26(1-2):116-131.

    • [44] RAY A K,ROY N,KAR A,et al.Mechanical property and characterization of a NiCoCrAlY type metallic bond coat used in turbine blade[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,505(1-2):96-104.

    • [45] TRUNOVA O,BEDNARZ P,HERZOG R,et al.Microstructural and acoustic damage analysis and finite element stress simulation of air plasma-sprayed thermal barrier coatings under thermal cycling[J].International Journal of Materials Research,2008,99(10):1129-1135.

    • [46] BECK T,TRUNOVA O,HERZOG R,et al.TBCs for gas turbines under thermomechanical loadings:failure behaviour and life prediction[C]//Proceedings of the 2nd European Energy Conference,Maastricht,Netherlands,F Apr 17-20,2012.

    • [47] ZHU W,LI Z Y,YANG L,et al.Real-time detection of CMAS corrosion failure in APS thermal barrier coatings under thermal shock[J].Experimental Mechanics,2020,60(6):775-785.

    • [48] 李建超,何箐,吕玉芬,等.热障涂层无损检测技术研究进展[J].中国表面工程,2019,32(2):16-26.LI Jianchao,HE Qing,LÜ Yufen,et al.Research progress on non-destructive testing method of thermal barrier coatings[J].China Surface Engineering,2019,32(02):16-26.(in Chinese)

    • [49] ANDREWS D J,TAYLOR J A T.Nondestructive evaluation of plasma-sprayed thermal barrier coatings[J].Journal of Materials Engineering and Performance,1997,6(5):591-595.

    • [50] BIN ZAMAN S,HAZRATI J,DE ROOIJ M,et al.Investigating AlSi coating fracture at high temperatures using acoustic emission sensors[J].Surf Coat Tech,2021,423:1-13.

    • [51] 李雪换,底月兰,王海斗,等.基于声发射技术的热障涂层损伤行为[J].材料导报,2018,32(19):3368-3374.LI Xuehuan,DI Yuelan,WANG Haidou,et al.Failure behavior of thermal barrier coatings based on acoustic emission technology[J].Materials Reports,2018,32(19):3368-3374.(in Chinese)

    • [52] TAKAGI K,KAWASAKI A,ITOH Y,et al.Testing method for heat resistance under temperature gradient[J].J Therm Spray Techn,2007,16(5-6):974-977.

    • [53] PARK J H,KIM J S,LEE K H.Acoustic emission characteristics for diagnosis of TBC damaged by high-temperature thermal fatigue[J].Journal of Materials Processing Technology,2007,187:537-541.

    • [54] KIM P H,KIM J S,PARK J H,et al.Classification of defects in a thermal barrier coating layer using the fuzzy C-means algorithm[J].International Journal of Precision Engineering and Manufacturing,2015,16(1):53-57.

    • [55] YANG L,ZHONG Z C,ZHOU Y C,et al.Quantitative assessment of the surface crack density in thermal barrier coatings[J].Acta Mechanica Sinica,2014,30(2):167-174.

    • [56] YANG L,ZHOU Y C,MAO W G,et al.Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bondcoating oxidation[J].Surface And Interface Analysis,2007,39(9):761-769.

    • [57] YANG L,ZHOU Y C,MAO W G,et al.Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings[J].Applied Physics Letters,2008,93(23):1-4.

    • [58] WANG L,MING C,ZHONG X H,et al.Microstructure and self-healing properties of multi-layered NiCoCrAlY/TAZ/YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J].Applied Surface Science,2019,488:246-260.

    • [59] YANG L,ZHOU Y C,LU C.Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling:An acoustic emission method[J].Acta Materialia,2011,59(17):6519-6529.

    • [60] ITO K,KURIKI H,ARAKI H,et al.Estimation of thermal cracking stress during spraying of thermal barrier coatings by laser AE method[C]//Proceedings of the 10th International Conference on Barkhausen and Micro-Magnetics(ICBM),Baltimore,MD,F Jul 21-26,2013.2013,1581:479-485.

    • [61] ITO K,KURIKI H,WATANABE M,et al.Detection of AE events due to cracks in TBC during spraying process[J].Materials Transactions,2012,53(4):671-675.

    • [62] TILLMANN W,WALTHER F,LUO W F,et al.In situ acoustic monitoring of thermal spray process using high-frequency impulse measurements[J].J Therm Spray Techn,2018,27(1-2):50-58.

    • [63] JING J N,DONG L H,WANG H D,et al.Application of acoustic emission technology for quantitative characterization of plasma-sprayed coatings subjected to bending fatigue tests[J].J Therm Spray Techn,2018,27(7):1090-1102.

    • [64] YAO W B,DAI C Y,MAO W G,et al.Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings[J].Surf Coat Tech,2012,206(18):3803-3807.

    • [65] YANG L,ZHONG Z C,ZHOU Y C,et al.Acoustic emission assessment of interface cracking in thermal barrier coatings[J].Acta Mechanica Sinica,2016,32(2):342-348.

    • [66] YANG L,ZHOU Y C.Wavelet analysis of acoustic emission signals from thermal barrier coatings[J].Transactions of Nonferrous Metals Society of China,2006,16:S270-S275.

    • [67] ZHOU F F,WANG Y,LIU M,et al.Acoustic emission monitoring of the tensile behavior of a HVOF-sprayed NiCoCrAlYCe coating[J].Applied Surface Science,2020,504:1-19.

    • [68] YANG L,KANG H S,ZHOU Y C,et al.Frequency as a key parameter in discriminating the failure types of thermal barrier coatings:Cluster analysis of acoustic emission signals[J].Surf Coat Tech,2015,264:97-104.

    • [69] YANG L,YANG T T,ZHOU Y C,et al.Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion[J].Surf Coat Tech,2016,304:272-282.

    • [70] LI C C,QIAO X,WANG T,et al.Damage evolution and failure mechanism of thermal barrier coatings under Vickers indentation by using acoustic emission technique[J].Progress In Natural Science-Materials International,2018,28(1):90-96.

    • [71] QIAO X,WENG W X,LI Q.Acoustic emission monitoring and failure behavior discrimination of 8YSZ thermal barrier coatings under Vickers indentation testing[J].Surf Coat Tech,2019,358:913-922.

    • [72] YANG L,KANG H S,ZHOU Y C,et al.Intelligent discrimination of failure modes in thermal barrier coatings:wavelet transform and neural network analysis of acoustic emission signals[J].Experimental Mechanics,2015,55(2):321-330.

    • [73] 赵泓旭,邓春明,付朗,等.用于热障涂层的锆酸钆材料研究进展[J].表面技术,2022,51(2):116-128.ZHAO Hongxu,DENG Chunming,FU Lang,et al.Research progress on gadolinium zirconate materials for thermal barrier coatings[J].Suface Technology,2022,51(2):116-128.(in Chinese)

    • [74] ADAM M,KONTERMANN C,OECHSNER M.A study on failure of double-layer thermal barrier coatings subjected to uniaxial compression tests using acoustic emission analysis and digital image correlation[C]//Proceedings of the 22nd European Conference on Fracture(ECF)-Loading and Environmental Effects on Structural Integrity,Belgrade,SERBIA,F Aug 26-31,2018.2018,13:1226-1231.

    • [75] ALEKSANOGLU H,SCHOLZ A,OECHSNER M,et al.Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions[J].International Journal of Fatigue,2013,53:40-48.

    • [76] 刘阳,蔡洪能,魏志远,等.等离子喷涂热障涂层内孔隙对其隔热性能的影响[J].材料保护,2021,54(11):1-9.LIU Yang,CAI Hongneny,WEI Zhiyuan,et al.Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J].Materials Protection,2021,54(11):1-9.(in chinese)

    • [77] CASU A,MARQUES J L,VASSEN R,et al.Modelling of crack growth near the metallic-ceramic interface during thermal cycling of air plasma sprayed thermal barrier coatings[C]//Proceedings of the Summer School on Layered,Functional Gradient Ceramics,and Thermal Barrier Coatings,Mao,SPAIN,F Jun 11-16,2006.2006,333:263-268.

    • [78] STIGER M J,MEIER G H,PETTIT F S,et al.Accelerated cyclic oxidation testing protocols for thermal barrier coatings and alumina-forming alloys and coatings[J].Materials and Corrosion-Werkstoffe Und Korrosion,2006,57(1):73-85.

    • [79] RENUSCH D,SCHUTZE M.Measuring and modeling the TBC damage kinetics by using acoustic emission analysis[J].Surf Coat Tech,2007,202(4-7):740-744.

  • 参考文献

    • [1] PADTURE N P,GELL M,JORDAN E H.Materials science—Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.

    • [2] 徐滨士,李长久,刘世参,等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,(1):3-9,49.XU Binshi,LI Changjiu,LIU Shican,et al.Surface Engineering and thermal spraying technology and their developments[J].China Surface Engineering,1998(1):3-9,49.(in Chinese)

    • [3] 李应红,魏悦广,周益春.航空发动机涡轮叶片热障涂层[J].湘潭大学学报(自然科学版),2019,41(6):2.LI Yinghong,WEI Yueguang,ZHOU Yichun.Thermal barrier coating for aero-engine turbine blades[J].Journal of Xiangtan University(Natural Science Edition),2019,41(6):2.(in Chinese)

    • [4] YANG L,ZHU W,LI C F,et al.Error and modification in thermal barrier coatings measurement using impedance spectroscopy[J].Ceramics International,2017,43(6):4976-4983.

    • [5] VOYER J,GITZHOFER F,BOULOS M I,et al.Acoustic emission studies of thermal barrier coatings during cyclic four point bend tests[C]//9th National Thermal Spray Canference & Expasition,Cincinnati,OH Oct 7-11,1996.Ohio:ASM International,1996.

    • [6] 杨丽,周益春,朱旺.热障涂层失效的声发射实时表征技术研究进展[J].中国材料进展,2020,39(11):878-896.YANG Li,ZHOU Yichun,ZHU Wang.Research progress in the real-time acoustic emission characterization of failure in thermal barrier coatings[J].Materials China,2020,39(11):878-896.(in Chinese)

    • [7] RUDOLPHI M,GALETZ M C,SCHUTZE M.Mechanical stability diagrams for thermal barrier coating systems[J].J Therm Spray Techn,2021,30(3):694-707.

    • [8] ZHU W,ZHANG C X,YANG L,et al.Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock:An acoustic emission combined with digital image correlation method[J].Surf Coat Tech,2020,399:1-9.

    • [9] 刘战伟,朱文颖,石文雄,等.热障涂层无损检测技术进展[J].航空制造技术,2016(4):43-47.LIU Zhanwei,ZHU Wenying,SHI Wengxiang,et al.Progress in the nondestructive testing of thermal barrier coatings[J].Aeronautical Manufacturing Technology,2016(4):43-47.(in Chinese)

    • [10] WEN M,JORDAN E H,GELL M.Evolution of photo-stimulated luminescence of EB-PVD/(Ni,Pt)Al thermal barrier coatings[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,398(1-2):99-107.

    • [11] CHRISTENSEN R J,LIPKIN D M,CLARKE D R,et al.Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy[J].Applied Physics Letters,1996,69(24):3754-3756.

    • [12] ROSSMANN L,NORTHAM M,SARLEY B,et al.Investigation of TGO stress in thermally cycled plasma-spray physical vapor deposition and electron-beam physical vapor deposition thermal barrier coatings via photoluminescence spectroscopy[J].Surf Coat Tech,2019,378:1-8.

    • [13] WEN M,JORDAN E H,GELL M.Analysis of localized damage in EB-PVD/(Ni,Pt)Al thermal barrier coatings[J].Surf Coat Tech,2006,200(18-19):5193-5202.

    • [14] WEN M,JORDAN E H,GELL M.Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements[J].Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2006,128(3):610-616.

    • [15] MEI W A,ERIC H J B,GELL M.Effect of temperature on rumpling and thermally grown oxide stress in an EB-PVD thermal barrier coating[J].Surf Coat Tech,2006,201(6):3289-3298.

    • [16] WANG X,WU R T,ATKINSON A.Characterisation of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy[J].Surf Coat Tech,2010,204(15):2472-2482.

    • [17] TANG Q J,GAO S S,LIU Y J,et al.Infrared image segmentation algorithm for defect detection based on FODPSO[J].Infrared Physics & Technology,2019,102:1-9.

    • [18] HALLOUA H,ELHASSNAOUI A,SAIFI A,et al.Neural networks and genetic algorithms for the evaluation of coatings thicknesses in thermal barriers by infrared thermography data[C]//Proceedings of the 2nd International Conference on Structural Integrity(ICSI),Funchal,Portugal,F Sep 04-07,2017.2017,5:997-1004.

    • [19] TANG Q J,DAI J M,LIU J Y,et al.Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology[J].Infrared Physics & Technology,2016,77:144-148.

    • [20] TANNO M,OGAWA K,SHOJI T.Influence of asymmetric electrode geometry on an impedance spectrum of a plasma-sprayed thermal barrier coating system[J].Surf Coat Tech,2010,204(15):2504-2509.

    • [21] OGAWA K,MINKOV D,SHOJI T,et al.NDE of degradation of thermal barrier coating by means of impedance spectroscopy[J].Ndt & E International,1999,32(3):177-185.

    • [22] SCHULZ U,KAYSSER W A,SIPS M,et al.Impedance spectroscopy of thermal barrier coatings as non-destructive evaluation tool for failure detection[J].Zeitschrift Fur Metallkunde,2005,96(7):725-730.

    • [23] LIU C,HUANG H,NI L Y,et al.Evaluation of thermal barrier coatings exposed to hot corrosion environment by impedance spectroscopy[J].Chinese Journal of Aeronautics,2011,24(4):514-519.

    • [24] CHEN W,LIU M,ZHANG J.Microstructure evolution and impedance spectroscopy analysis of 7YSZ thermal barrier coating during high-temperature oxidation process[J].China Surface Engineering,2016,29(3):48-56.

    • [25] CHEN W,LIU M,ZHANG J,et al.Impedance spectroscopy analysis of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition during the high-temperature oxidation process[J].Materials Review,2019,33(2B):602-606.

    • [26] CHEN W,LIU M,ZHANG J,et al.Microstructure evolution and impedance spectroscopy characterization of thermal barrier coating exposed to gas thermal-shock environment[J].Journal of Materials Engineering,2017,45(10):79-87.

    • [27] CHEN W L,LIU M,ZHANG J F,et al.High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition[J].Chinese Journal of Aeronautics,2018,31(8):1764-1773.

    • [28] 郭磊,高远,叶福兴,等.航空发动机热障涂层的CMAS腐蚀行为与防护方法[J].金属学报,2021,57(9):1184-1198.GUO Lei,GAO Yuan,YE Fuxing,et al.CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine[J].Acta Metallurgica Sinica,2021,57(9):1184-1198.(in Chinese)

    • [29] WENG W X,CAO J L,LIN H L,et al.Acoustic emission and associated damage mechanism analysis in 8YSZ thermal barrier coatings under instrumented indentation[J].J Therm Spray Techn,2019,28(7):1651-1663.

    • [30] 赵荻,安宇龙,赵晓琴,等.不同厚度8YSZ热障涂层的结构及性能表征[J].表面技术,2020,49(1):276-284.ZHAO Di,AN Yulong,ZHAO Xiaoqin,et al.Structure and properties of 8YSZ thermal barrier coatings with different thickness[J].Surface Technology,2020,49(1):276-284.(in Chinese)

    • [31] PARK J H,KIM J S,LEE K H,et al.Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ZrO2-8Wt%Y2O3 thermal barrier coating[J].Journal of Materials Processing Technology,2008,201(1-3):331-335.

    • [32] ITO K,KURIKI H,ARAKI H,et al.Evaluation of generation mechanism of vertical cracks in top coat of TBCs during APS deposition by laser AE method[J].J Therm Spray Techn,2015,24(5):848-856.

    • [33] TANIGUCHI K,ENOKI M,WATANABE M,et al.In situ monitoring of cracking behaviors of plasma-sprayed coatings by the laser acoustic emission technique[J].Journal of Materials Research,2009,24(10):3182-3189.

    • [34] TANIGUCHI K,NISHINOIRI S,ENOKI M,et al.Evaluation of effect of process conditions on microstructures in plasma sprayed coating by in situ laser AE[C]//1st International Conference on Advanced Nondestructive Evaluation,Cheju 1st,South Korea,Nov.07-09,2005.Switzerland:Trans Tech Publication Ltd,2006,321-323:1443-1446.

    • [35] ITO K,KURIKI H,ARAKI H,et al.Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method[J].Science and Technology of Advanced Materials,2014,15(3)1-12.

    • [36] 胡忠超,王亮,庄铭翔,等.热障涂层裂纹扩展的数值模拟研究进展[J].中国材料进展,2020,39(10):740-753,738-739.(in Chinese)HU Zhongchao,WANG Liang,ZHUANG Mingxiang,et al.Research progress of crack growth of thermal barrier coatings via numerical simulation[J].Materials China,2020,39(10):740-753,738-739.

    • [37] ROBIN P,GITZHOFER F,FAUCHAIS P,et al.Remaining fatigue life assessment of plasma sprayed thermal barrier coatings[J].J Therm Spray Techn,2010,19(5):911-920.

    • [38] KHAZAEIAN M,NAKHODCHI S.The evolution of fracture process zones in as-received and oxidized air plasma sprayed TBCs[J].Surf Coat Tech,2019,377:1-11.

    • [39] WANG L,LIU C G,ZHONG X H,et al.Investigation of crack propagation behavior of atmospheric plasmasprayed thermal barrier coatings under uniaxial tension using the acoustic emission technique[J].J Therm Spray Techn,2015,24(3):296-308.

    • [40] YANG L,ZHONG Z C,YOU J,et al.Acoustic emission evaluation of fracture characteristics in thermal barrier coatings under bending[J].Surf Coat Tech,2013,232:710-718.

    • [41] MAO W G,WU D J,YAO W B,et al.Multiscale monitoring of interface failure of brittle coating/ductile substrate systems:A non-destructive evaluation method combined digital image correlation with acoustic emission[J].Journal of Applied Physics,2011,110(8):1-6.

    • [42] KIILAKOSKI J,MUSALEK R,LUKAC F,et al.Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ-and macroscopic bending[J].Journal of the European Ceramic Society,2018,38(4):1908-1918.

    • [43] WANG L,NI J X,SHAO F,et al.Failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings under three-point bending test via acoustic emission technique[J].J Therm Spray Techn,2017,26(1-2):116-131.

    • [44] RAY A K,ROY N,KAR A,et al.Mechanical property and characterization of a NiCoCrAlY type metallic bond coat used in turbine blade[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,505(1-2):96-104.

    • [45] TRUNOVA O,BEDNARZ P,HERZOG R,et al.Microstructural and acoustic damage analysis and finite element stress simulation of air plasma-sprayed thermal barrier coatings under thermal cycling[J].International Journal of Materials Research,2008,99(10):1129-1135.

    • [46] BECK T,TRUNOVA O,HERZOG R,et al.TBCs for gas turbines under thermomechanical loadings:failure behaviour and life prediction[C]//Proceedings of the 2nd European Energy Conference,Maastricht,Netherlands,F Apr 17-20,2012.

    • [47] ZHU W,LI Z Y,YANG L,et al.Real-time detection of CMAS corrosion failure in APS thermal barrier coatings under thermal shock[J].Experimental Mechanics,2020,60(6):775-785.

    • [48] 李建超,何箐,吕玉芬,等.热障涂层无损检测技术研究进展[J].中国表面工程,2019,32(2):16-26.LI Jianchao,HE Qing,LÜ Yufen,et al.Research progress on non-destructive testing method of thermal barrier coatings[J].China Surface Engineering,2019,32(02):16-26.(in Chinese)

    • [49] ANDREWS D J,TAYLOR J A T.Nondestructive evaluation of plasma-sprayed thermal barrier coatings[J].Journal of Materials Engineering and Performance,1997,6(5):591-595.

    • [50] BIN ZAMAN S,HAZRATI J,DE ROOIJ M,et al.Investigating AlSi coating fracture at high temperatures using acoustic emission sensors[J].Surf Coat Tech,2021,423:1-13.

    • [51] 李雪换,底月兰,王海斗,等.基于声发射技术的热障涂层损伤行为[J].材料导报,2018,32(19):3368-3374.LI Xuehuan,DI Yuelan,WANG Haidou,et al.Failure behavior of thermal barrier coatings based on acoustic emission technology[J].Materials Reports,2018,32(19):3368-3374.(in Chinese)

    • [52] TAKAGI K,KAWASAKI A,ITOH Y,et al.Testing method for heat resistance under temperature gradient[J].J Therm Spray Techn,2007,16(5-6):974-977.

    • [53] PARK J H,KIM J S,LEE K H.Acoustic emission characteristics for diagnosis of TBC damaged by high-temperature thermal fatigue[J].Journal of Materials Processing Technology,2007,187:537-541.

    • [54] KIM P H,KIM J S,PARK J H,et al.Classification of defects in a thermal barrier coating layer using the fuzzy C-means algorithm[J].International Journal of Precision Engineering and Manufacturing,2015,16(1):53-57.

    • [55] YANG L,ZHONG Z C,ZHOU Y C,et al.Quantitative assessment of the surface crack density in thermal barrier coatings[J].Acta Mechanica Sinica,2014,30(2):167-174.

    • [56] YANG L,ZHOU Y C,MAO W G,et al.Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bondcoating oxidation[J].Surface And Interface Analysis,2007,39(9):761-769.

    • [57] YANG L,ZHOU Y C,MAO W G,et al.Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings[J].Applied Physics Letters,2008,93(23):1-4.

    • [58] WANG L,MING C,ZHONG X H,et al.Microstructure and self-healing properties of multi-layered NiCoCrAlY/TAZ/YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J].Applied Surface Science,2019,488:246-260.

    • [59] YANG L,ZHOU Y C,LU C.Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling:An acoustic emission method[J].Acta Materialia,2011,59(17):6519-6529.

    • [60] ITO K,KURIKI H,ARAKI H,et al.Estimation of thermal cracking stress during spraying of thermal barrier coatings by laser AE method[C]//Proceedings of the 10th International Conference on Barkhausen and Micro-Magnetics(ICBM),Baltimore,MD,F Jul 21-26,2013.2013,1581:479-485.

    • [61] ITO K,KURIKI H,WATANABE M,et al.Detection of AE events due to cracks in TBC during spraying process[J].Materials Transactions,2012,53(4):671-675.

    • [62] TILLMANN W,WALTHER F,LUO W F,et al.In situ acoustic monitoring of thermal spray process using high-frequency impulse measurements[J].J Therm Spray Techn,2018,27(1-2):50-58.

    • [63] JING J N,DONG L H,WANG H D,et al.Application of acoustic emission technology for quantitative characterization of plasma-sprayed coatings subjected to bending fatigue tests[J].J Therm Spray Techn,2018,27(7):1090-1102.

    • [64] YAO W B,DAI C Y,MAO W G,et al.Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings[J].Surf Coat Tech,2012,206(18):3803-3807.

    • [65] YANG L,ZHONG Z C,ZHOU Y C,et al.Acoustic emission assessment of interface cracking in thermal barrier coatings[J].Acta Mechanica Sinica,2016,32(2):342-348.

    • [66] YANG L,ZHOU Y C.Wavelet analysis of acoustic emission signals from thermal barrier coatings[J].Transactions of Nonferrous Metals Society of China,2006,16:S270-S275.

    • [67] ZHOU F F,WANG Y,LIU M,et al.Acoustic emission monitoring of the tensile behavior of a HVOF-sprayed NiCoCrAlYCe coating[J].Applied Surface Science,2020,504:1-19.

    • [68] YANG L,KANG H S,ZHOU Y C,et al.Frequency as a key parameter in discriminating the failure types of thermal barrier coatings:Cluster analysis of acoustic emission signals[J].Surf Coat Tech,2015,264:97-104.

    • [69] YANG L,YANG T T,ZHOU Y C,et al.Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion[J].Surf Coat Tech,2016,304:272-282.

    • [70] LI C C,QIAO X,WANG T,et al.Damage evolution and failure mechanism of thermal barrier coatings under Vickers indentation by using acoustic emission technique[J].Progress In Natural Science-Materials International,2018,28(1):90-96.

    • [71] QIAO X,WENG W X,LI Q.Acoustic emission monitoring and failure behavior discrimination of 8YSZ thermal barrier coatings under Vickers indentation testing[J].Surf Coat Tech,2019,358:913-922.

    • [72] YANG L,KANG H S,ZHOU Y C,et al.Intelligent discrimination of failure modes in thermal barrier coatings:wavelet transform and neural network analysis of acoustic emission signals[J].Experimental Mechanics,2015,55(2):321-330.

    • [73] 赵泓旭,邓春明,付朗,等.用于热障涂层的锆酸钆材料研究进展[J].表面技术,2022,51(2):116-128.ZHAO Hongxu,DENG Chunming,FU Lang,et al.Research progress on gadolinium zirconate materials for thermal barrier coatings[J].Suface Technology,2022,51(2):116-128.(in Chinese)

    • [74] ADAM M,KONTERMANN C,OECHSNER M.A study on failure of double-layer thermal barrier coatings subjected to uniaxial compression tests using acoustic emission analysis and digital image correlation[C]//Proceedings of the 22nd European Conference on Fracture(ECF)-Loading and Environmental Effects on Structural Integrity,Belgrade,SERBIA,F Aug 26-31,2018.2018,13:1226-1231.

    • [75] ALEKSANOGLU H,SCHOLZ A,OECHSNER M,et al.Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions[J].International Journal of Fatigue,2013,53:40-48.

    • [76] 刘阳,蔡洪能,魏志远,等.等离子喷涂热障涂层内孔隙对其隔热性能的影响[J].材料保护,2021,54(11):1-9.LIU Yang,CAI Hongneny,WEI Zhiyuan,et al.Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J].Materials Protection,2021,54(11):1-9.(in chinese)

    • [77] CASU A,MARQUES J L,VASSEN R,et al.Modelling of crack growth near the metallic-ceramic interface during thermal cycling of air plasma sprayed thermal barrier coatings[C]//Proceedings of the Summer School on Layered,Functional Gradient Ceramics,and Thermal Barrier Coatings,Mao,SPAIN,F Jun 11-16,2006.2006,333:263-268.

    • [78] STIGER M J,MEIER G H,PETTIT F S,et al.Accelerated cyclic oxidation testing protocols for thermal barrier coatings and alumina-forming alloys and coatings[J].Materials and Corrosion-Werkstoffe Und Korrosion,2006,57(1):73-85.

    • [79] RENUSCH D,SCHUTZE M.Measuring and modeling the TBC damage kinetics by using acoustic emission analysis[J].Surf Coat Tech,2007,202(4-7):740-744.

  • 手机扫一扫看