en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马汝成,男,1996年出生,硕士。主要研究方向为增材制造与表面工程技术。E-mail:2710258491@qq.com

通讯作者:

贵永亮,1979年出生,博士,教授。主要研究方向为增材制造与表面工程技术。E-mail:gyl@ncst.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20220421002

参考文献 1
张津超,石世宏,龚燕琪,等.激光熔覆技术研究进展[J].表面技术,2020,49(10):1-11.ZHANG Jinchao,SHI Shihong,GONG Yanqi,et al.Research progress of laser cladding technology[J].Surface Technology,2020,49(10):1-11.(in Chinese)
参考文献 2
ZHU L,XUE P,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138(3):106915.
参考文献 3
张树玲,邱明坤,陈炜晔,等.耐磨涂层的制备技术[J].热加工工艺,2019,48(10):25-30.ZHANG Shuling,QIU Mingkun,CHEN Weiye,et al.Preparation technology of wear resistant coatings[J].Hot Working Technology,2019,48(10):25-30.(in Chinese)
参考文献 4
陈健,姚喆赫,姚建华,等.超声振动辅助激光熔覆技术研究进展综述[J].航空制造技术,2021,64(12):36-46.CHEN Jian,YAO Zhehe,YAO Jianhua,et al.State-of-art review on ultrasonic vibration-assisted laser cladding[J].Aeronautical Manufacturing Technology,2021,64(12):36-46.(in Chinese)
参考文献 5
徐维义,梁永红,左志超,等.冲击磨损工况下铁基耐磨材料的现状及发展[J].精密成形工程,2019,11(5):155-160.XU Weiyi,LIANG Yonghong,ZUO Zhichao,et al.Development and present situation of steel wear-resisting material under impact wear condition[J].Journal of Netshape Forming Engineering,2019,11(5):155-160.(in Chinese)
参考文献 6
HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions[J].Friction,2017,5(3):263-284.
参考文献 7
HU W,ROSTAMI J,FROUGH O J M M,et al.Assessing effectiveness of various wear-resistant materials used as hard facings in mining applications[J].2019,37(1):117-128.
参考文献 8
刘钊鹏,顾俊,王健超.激光熔覆技术在高速转子轴修复中的应用研究[J].应用激光,2019,39(5):750-755.LIU Zhaopeng,Gu Jun,WANG Jianchao.Application research of laser cladding technology in high speed rotor shaft repair[J].Applied Laser,2019,39(5):750-755.(in Chinese)
参考文献 9
CHEN D,COTE D,SCHADE C,et al.Oxidation behavior of Fe-Cr-(Si)-Y[J].2018,784(3):1344-1353.
参考文献 10
崔雪,张松,张春华,等.高性能梯度功能材料激光增材制造研究现状及展望[J].材料工程,2020,48(9):13-23.CUI Xue,ZHANG Song,ZHANG Chunhua,et al.Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials[J].Journal of Materials Engineering,2020,48(9):13-23.(in Chinese)
参考文献 11
袁源,王华明.铁基固溶体 α 弥散增韧Fe9Cr9Si2三元金属硅化物合金耐磨性[J].稀有金属材料与工程,2009,38(S1):321-324.YUAN Yuan,WANG Huaming.Sliding wear properties of dispersion-toughened Fe9Cr9Si2-based ternary metal silicide alloy[J].Rare Metal Materials and Engineering,2009,38(S1):321-324.(in Chinese)
参考文献 12
LEONG A,YANG Q,MCALPINE S W,et al.Oxidation behavior of Fe-Cr-2Si alloys in high temperature steam[J].Corrosion Science,2021,179(1-3):109114.
参考文献 13
IDCZAK R.High-temperature atmospheric corrosion of Fe-Cr-Si alloys studied by mössbauer spectroscopy[J].CORROSION,2018,74(10):1083-1092.
参考文献 14
李珂尧,周健松,王凌倩.B、Si 元素对激光熔覆 Fe-Cr-Mo-B-Si 非晶涂层的非晶形成能力及其摩擦学机理的影响[J].表面技术,2020,49(8):192-202.LI Keyao,ZHOU Jiansong,WANG Lingqian,et al.Effect of B and Si elements on the amorphous formation ability and tribological mechanism of Fe-Cr-Mo-B-Si amorphous coatings by laser cladding[J].Surface Technology,2020,49(8):192-202.(in Chinese)
参考文献 15
刘洪喜,陶喜德,张晓伟,等.机械振动辅助激光熔覆 Fe-Cr-Si-B-C 涂层的显微组织及界面分布形态[J].光学精密工程,2015,23(8):2192-2202.LIU Hongxi,TAO Xide,ZHANG Xiaowei,et al.Microstructure and interface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J].Optics and Precision Engineering,2015,23(8):2192-2202.(in Chinese)
参考文献 16
高炜,孙彬,王建明,等.含铬、硅合金钢在水蒸气气氛下高温氧化行为的研究进展[J].热加工工艺,2019,48(10):6-9.GAO Wei,SUN Bin,WANG Jianming,et al.Research progress on high temperature oxidation behavior of chromium and silicon steel in water vapor atmosphere[J].Hot Working Technology,2019,48(10):6-9.(in Chinese)
参考文献 17
李向波,李涛,石博文,等.基于齿面缺陷激光修复几何数学模型的齿轮修复[J].中国表面工程,2020,33(3):129-136.LI Xiangbo,LI Tao,SHI Bowen,et al.Gear repairing based on geometric mathematical model of tooth surface defects by laser[J].China Surface Engineering,2020,33(3):129-136.(in Chinese)
参考文献 18
王争强,李文戈,杜旭,等.激光熔覆技术在轴类零件再制造过程中的应用现状[J].机械工程材料,2020,44(11):35-40.WANG Zhengqiang,LI Wenge,DU Xu,et al.Applications of laser cladding technique in remanufacturing of shaft parts[J].Materials for Mechanical Engineering,2020,44(11):35-40.(in Chinese)
参考文献 19
LIZZUL L,SORGATO M,BERTOLINI R,et al.On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings[J].CIRP Journal of Manufacturing Science and Technology,2021,35(1):361-370.
参考文献 20
SONG B,YU T,JIANG X,et al.Evolution and convection mechanism of the melt pool formed by V-groove laser cladding[J].Optics & Laser Technology,2021,144(1):107443.
参考文献 21
褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel 625 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.CHU Qingkun,YU Chunfeng,DENG Zhaoyang,et al.Effect of TiC on microstructure and wear properties of inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)
参考文献 22
马清,张艳梅,卢冰文,等.激光熔覆硬质颗粒增强高熵合金复合涂层研究进展[J].材料研究与应用,2021,15(5):583-592.MA Qing,ZHANG Yanmei,LU Bingwen,et al.Research progress of hard particle reinforced high entropy alloy composite coatings fabricated by laser cladding[J].Materials Research and Application,2021,15(5):583-592.(in Chinese)
参考文献 23
常成,闫星辰,JULIEN G,等.激光选区熔化成形 nano-WC/CX 钢微观组织及机械性能初探[J].材料研究与应用,2021,15(4):309-317.CHANG Cheng,YAN Xingchen,GARDAN Julien,et al.Exploration on the microstructure and mechanical properties of the selective laser melted nano-WC/CX steel[J].Materials Research and Application,2021,15(4):309-317.(in Chinese)
参考文献 24
褚清坤,闫星辰,岳术俊,等.激光选区熔化成形 Ti-12Mo-6Zr-2Fe(TMZF)合金微观组织及力学性能的研究[J].材料研究与应用,2021,15(4):350-357.CHU Qingkun,YAN Xingchen,YUE Shujun,et al.Microstructure and mechanical properties of Ti-12Mo-6Zr-2Fe(TMZF)alloy formed by laser selective melting[J].Materials Research and Application,2021,15(4):350-357.(in Chinese)
参考文献 25
LIU H,WANG C,ZHANG X,et al.Improving the corrosion resistance and mechanical property of 45 steel surface by laser cladding with Ni60CuMoW alloy powder[J].Surface and Coatings Technology,2013,228(1):S296-S300.
目录contents

    摘要

    Si 含量对 Fe 基合金高温耐磨性能影响机理研究已有很多,但尚缺乏 Si 含量对 Fe 基涂层高温耐磨性能的研究。采用激光熔覆技术制备不同 Si 含量(5 wt.%、10 wt.%、15 wt.%)的 FeCrSixNiCoC 涂层,在温度为 500 ℃和载荷 200 N 的条件下,测试 FeCrSixNiCoC 涂层高温耐磨性能。结合 X 射线衍射仪(XRD)、金相显微镜(OM)、扫描电子显微镜(SEM)、能谱分析仪(EDS)分析涂层显微组织、相组成和磨损机理。结果表明:随着 Si 含量增加,涂层中 γ-Fe 相(Si 以固溶方式存在于 γ-Fe 相中)向金属硅化物 Fe3Si 相转变,显微组织也由树枝晶向等轴晶转变,涂层硬度由 312 ± 21.7 HV0.5 增加至 588 ± 31.3HV0.5。在温度 500 ℃和载荷 200 N 下的摩擦磨损试验中,Si 含量为 10%的涂层磨损率最低,高温耐磨性能最好,其磨损机理主要为黏着磨损和氧化磨损。通过优化 Fe 基合金中 Si 含量得到耐磨性能良好的涂层,可对该类涂层的开发、制备和应用提供一定的技术支持。

    Abstract

    Fe-based alloys are among the most important materials for engineering applications owing to their low cost and high hardness / strength, and wear and corrosion resistance. However, with the development of industry, the working conditions of mechanical parts have deteriorated. Therefore, it is essential to develop Fe-based alloy materials with enhanced wear and corrosion resistance, especially at high temperatures. The addition of alloying elements, such as Si, can significantly improve the high-temperature performance of Fe-based alloys. A typical example is high-silicon cast iron. Many studies have been conducted on the influence of the Si content on the high-temperature properties of Fe-based alloys. However, studies on the high-temperature properties of Fe-based repair coatings with Si content remain few. In this work, FeCrSixNiCoC coatings with different Si content (5 wt.%, 10 wt.%, and 15 wt.% Si, called Si5, Si10, and Si15, respectively) were prepared using laser cladding technology after a systematic study of laser parameters. The metallurgical bond, microstructure, phase, and hardness of the coatings were studied using X-ray diffraction, metallographic microscopy, scanning electron microscopy, and energy dispersive analysis. The high-temperature wear resistance of FeCrSixNiCoC coatings was tested at 500 °C and a load of 200 N. The results show that the FeCrSixNiCoC coatings had no cracks and formed good metallurgical bonds with the substrate. With the increase in the Si content, the γ-Fe phase in the coating (Si exists in the γ-Fe phase as a solid solution) transformed into the metal silicide Fe3Si phase, and the microstructure gradually changed from columnar dendrites to equiaxed grains. The hardness increased from 312 ± 21.7 HV0.5 to 588 ± 31.3HV0.5, which indicates that the increase in Si content has a significant impact on the phase, microstructure, and hardness of the coatings. In the friction and wear tests, the FeCrSixNiCoC coatings showed excellent high-temperature wear resistance, much better than that of the substrate. In addition, owing to the solid solution strengthening mechanism of Si addition, the Si10 coating exhibited the best high-temperature wear resistance among the three samples, with a wear rate of 28 μg / m. The grinding debris consisted mainly of fine powder and irregularly shaped particles, indicating that the main wear mechanisms are adhesive and oxidation wear. The Si15 coating contained a large amount of brittle phase Fe3Si, and produced a significant amount of large debris during wear, resulting in a high wear rate. However, no black oxides were observed on the surface of the Si15 coating, indicating its resistance to high-temperature oxidation. Therefore, it can be inferred that the appropriate amount of Si can significantly improve the high-temperature wear resistance of the coating. When the Si content is too high, the brittleness significantly increased despite the improvement in hardness and high-temperature oxidation resistance, which eventually decreased the high-temperature wear resistance. Therefore, solving the brittleness problem caused by the addition of Si needs to be further explored. In this study, FeCrSixNiCoC coatings with good wear resistance were obtained by optimizing the Si content, which can provide technical support for the development, preparation, and application of such coatings.

  • 0 前言

  • 激光熔覆技术[1-2]是激光再造基础上发展起来的一种新型修复技术。利用高能激光束将熔覆材料熔化并凝固在基材表面形成涂层,与基材形成良好冶金结合,涂层具有晶粒细小、组织致密、稀释率低等优点,显著改善基材表面耐磨、耐蚀、耐热及抗氧化等性能[3]。因此激光熔覆技术成为当前表面修复的研究热点之一[4]

  • 磨损是工程材料最常遇到的失效方式之一,每年产成巨大的经济损失[5-6]。随着我国工业不断发展,机械零部件的服役环境越来越恶劣[7-8],如热风炉 TRT 叶片等机械零部件,亟待开发具有耐磨、耐腐蚀和抗高温性能的合金涂层材料[9-10]。有研究表明,Si 元素显著改善 Fe-Cr 基材料的耐磨、耐腐蚀和抗高温氧化性能[11-13]。袁源等[11]利用激光熔化沉积法制备 Fe-Cr-Si 合金,研究不同 Si 含量对涂层耐磨性影响,研究表明 Si 可以有效提高 Fe-Cr-Si 合金的耐磨性。LEONG 等[12]制备 Fe-Cr-2Si 合金试样,在 900℃的水蒸汽氛围中进行氧化测试,试样表面产生致密 Cr2O3、SiO2 氧化膜,有效防止合金内部氧化,表现出良好抗氧化性能。IDCZAK[13]制备 Fe-Cr-Si 合金,在 800℃和 1 000℃的大气氛围中进行氧化试验,发现 Fe 元素氧化随着样品中 Si 元素和 Cr 元素含量的增加而减慢,说明 Si 元素和 Cr 元素可以有效抵抗高温氧化腐蚀。

  • 综上所述,Fe-Cr-Si 系材料耐磨和抗高温领域中均具有良好表现,前人的研究已经充分证明 Si 元素可以有效提高 Fe-Cr-Si 系材料耐磨性和抗高温氧化性能[14],但目前 Fe-Cr-Si 系材料研究方向主要集中在合金的常温耐磨性或抗高温氧化性能[15-16],对 Fe-Cr-Si 系的高温耐磨方面研究较少[17-18]。因此本文利用激光熔覆技术制备 FeCrSixNiCoC 涂层,以及 Si 含量对 FeCrSixNiCoC 涂层高温耐磨性能的影响。

  • 1 材料与方法

  • 1.1 试样制备

  • 本研究所用粉末为高纯铁粉(纯度≥99 %),高纯铬粉(纯度≥99 %),高纯硅粉(纯度≥99 %),高纯镍粉(纯度≥99 %),高纯碳粉(纯度≥99 %),高纯钴粉(纯度≥99 %),粉末形貌见图1,为保证送粉效果,减少粉末流动性对涂层成形和性能的影响,所选上述粉末的粒径以 20~120 μm 为宜。图2a 为通过 Mastersizer 3000 型激光衍射粉末粒度仪测得的研究中所用粉末的粒度分布情况,粉末的具体粒径数值如表1 所示。使用 MAXN 型高精密度电子天平按照表2 配置粉末。由 5 wt.%Si 含量混合粉末制备的涂层试样命名为 Si5,由 10 wt.%Si 含量混合粉末制备的涂层试样命名为 Si10,由 15 wt.%Si 含量混合粉末制备的涂层试样命名为 Si15。混合粉末由 QM-3SP4 型行星球磨机制备,转速为 100 r / min,时间为 1 h,其中 FeCrSi10NiCoC 混合粉末形貌及元素分布如图2b 所示。本研究采用尺寸为 100 mm×100 mm×10 mm 的 TRT 叶片原材料 1Cr11Ni2W2MoV(1Cr11Ni)耐热钢板作为基材,表面用 WSM710-100 型角磨机进行抛光,然后用无水乙醇清洗。采用 TruDisk6006 型光纤激光器在 1Cr11Ni 耐热钢板进行试样制备。对激光参数进行系统研究后,激光熔覆工艺参数设定为:激光功率 1.8 kW,激光光斑直径 4 mm,激光扫描速度 480 mm / min,离焦量 17 mm,搭接率 50 %,采用氦气输送粉末,速度 11.5 g / min(7 r / min),保护气体为氩气。

  • 表1 不同粉末粒径分布值

  • Table1 Particle size distribution of different powders

  • 表2 FeCrSixNiCoC 涂层粉末成分

  • Table2 FeCrSixNiCoC coatings powder composition (wt. %)

  • 图1 原材料粉末形貌

  • Fig.1 Morphology of raw material powders

  • 图2 原材料粉末粒径分布和 FeCrSi10NiCoC 混合粉末形貌

  • Fig.2 Particle size distribution of raw powder and morphology of FeCrSi10NiCoC mixed powders

  • 1.2 材料表征

  • 试样制备后,采用 DK7750 型线切割设备将试样切割成 10 mm×10 mm×10 mm 尺寸。对所有样品用不同目数的 SiC 砂纸进行打磨并抛光,然后在含有 10 mL HF、60 mL HNO3、70 mL H20 的腐蚀液中腐蚀 10~15 s。采用 Leica DmirmMW550 型金相显微镜和 Nova NanoSEM430 型场发射扫描电镜对试样的微观结构进行表征,并用扫描电镜自带的能谱仪分析各相化学成分。使用 Smartlab-9KW 型 X 射线衍射仪对涂层的相组成进行鉴定,测试电压为 40 kV,电流为 30 mA,扫描范围为 20°~110°。采用 Durascan-70G5 维氏显微硬度计测定 FeCrSixNiCoC 涂层纵向各区域的平均显微硬度,负载停留时间为 15 s,负载为 500 g,间隔为 0.2 mm,对每个测试样品进行 39 次测量后取平均值并记录。

  • 1.3 摩擦磨损性能

  • 在 MRH-1 型磨损试验机对试样进行高温磨损性能测试,摩擦磨损工作示意图如图3 所示。磨损试样切割成长宽高分别为 20 mm×10 mm× 10 mm 的长方体块,选择基材 1Cr11Ni 耐热钢作为对比试样。对磨圆盘由直径为 40 mm 的 2Cr13 不锈钢制成。磨损试验参数为:磨损温度 500℃、磨损时间为 60 min、载荷为 200 N、滑动速度为 0.209 m / s、总滑动距离为 753.6 m。磨损质量损失均采用 MAXN 高精密度电子天平测量。通过下式计算试样磨损率:

  • ω=mL
    (1)
  • 式中,ω 为磨损率(μg / m),m 为摩擦磨损前后质量损失(μg),L 为滑动距离(m)。

  • 图3 磨损试验机工作示意图

  • Fig.3 Schematic diagram of wear testing machine

  • 2 结果与讨论

  • 2.1 FeCrSixNiCoC 涂层宏观形貌

  • 图4 所示为不同 Si 含量的 FeCrSixNiCoC 涂层表面宏观形貌,表面无裂纹,涂层连续平整,熔道分布均匀。图5 为不同 Si 含量 FeCrSixNiCoC 涂层的纵向抛光 OM 图,涂层内部没有裂纹。涂层与基体之间有明显结合区,具有良好的冶金结合。 Si5、Si10、Si15 涂层高度分别约为 2.03 mm、 1.83 mm、1.76 mm,涂层高度随着 Si 粉增加呈现下降趋势。这是可能由于硅粉密度小,在送粉速度不变的情况下,随着 Si 含量的增加,送粉质量减少,导致涂层高度降低[19-20]

  • 图4 激光熔覆 FeCrSixNiCoC 涂层宏观形貌

  • Fig.4 Macromorphology of FeCrSixNiCoC coatings by laser cladding

  • 图5 FeCrSixNiCoC 涂层纵面抛光形貌

  • Fig.5 Longitudinal surface polishing morphology of FeCrSixNiCoC coatings

  • 2.2 物相分布

  • 对不同 Si 含量的 FeCrSixNiCoC 涂层进行 XRD 物相测试,如图6 所示,根据 XRD 能谱分析得出, Si5、Si10 涂层中 XRD 衍射峰相同,涂层物相由 γ-Fe 和 Fe-Cr 组成,而 Si15 涂层 XRD 衍射峰出现较大变化,涂层物相由 Fe3Si 和 Fe-Cr 组成。这是由于 Si5、 Si10 涂层的 Si 含量较少,Si 元素是以固溶方式存在于 γ-Fe 之中。Si15 涂层中 Si 元素含量较大,熔覆过程中,Fe 元素在熔化之后并未向 γ-Fe 转变,而是与 Si 元素结合生成 Fe3Si 相,说明 Si 元素增加会促进 Fe3Si 的产生,因此液相 FeCrSixNiCoC 涂层随着 Si 元素的增加,凝固物相形成过程能够推导如下式[21]

  • Lγ-Fe+Fe-CrFe3Si+Fe-Cr

  • 此外,随着 Si 含量增加,衍射峰逐渐宽化,说明 Si 元素在一定程度上促进晶粒的细化。由于 Si 原子半径比 Fe 原子小,各涂层的物相晶格点阵常数降低,引起晶格畸变,导致衍射峰的位置向高角度偏移[22-23]

  • 图6 FeCrSixNiCoC 涂层的 XRD 图谱

  • Fig.6 XRD patterns of the FeCrSixNiCoC coatings

  • 2.3 显微组织

  • 图7 所示为不同 Si 含量的 FeCrSixNiCoC 涂层纵向显微组织。如图7a,Si5 涂层组织主要由树枝晶和少量共晶组织组成,Si10 涂层晶粒具有明显树枝晶(箭头)和等轴晶特征,并有大量的共晶组织产生(图7b),Si15 涂层晶粒明显细化,主要由等轴晶组成(图7c),说明随着 Si 元素的增加,晶粒得到一定细化,这与 XRD 分析结果一致。

  • 图7 FeCrSixNiCoC 涂层微观组织

  • Fig.7 Microstructure of FeCrSixNiCoC coatings

  • 对不同涂层的晶界和晶粒进行 EDS 点扫检测 (晶粒区域:A1、B1、C1;晶界区域:A2、B2、 C2),表3 列出不同涂层的晶粒和晶界的元素含量,根据元素分布分析,Fe、Cr 和 Si 元素在晶粒和晶界分布不均匀,Si5、Si10、Si15 涂层晶粒内部富集大量的 Fe 元素以及一定量的 Cr 和 Si 元素,晶界中 Cr 元素含量高于晶粒内部。结合 XRD 分析,Si5 和 Si10 晶粒为固溶 Cr、Si 元素的 γ-Fe 相,晶界为 Fe-Cr 金属间化合物[24]。而 Si15 涂层晶粒为 Fe3Si 相,晶界为 Fe-Cr 金属间化合物。这说明 Si 元素促进 γ-Fe相向为 Fe3Si 相转变,这与 XRD 分析中的凝固物相形成过程推导结果一致。

  • 表3 FeCrSixNiCoC 涂层晶粒和晶间元素成分

  • Table3 Element composition of grains and inter crystals of FeCrSixNiCoC coatings (at. %)

  • 2.4 显微硬度

  • 图8 为不同 Si 含量 FeCrSixNiCoC 涂层顶部至基体的显微硬度分布。Si5、Si10 和 Si15 涂层平均显微硬度分别为 312±21.7HV0.5、459±26.5HV0.5 和 588±31.3HV0.5。随着 Si 元素增加,涂层硬度明显得到上升。Si5 和 Si10 涂层硬度较低,这是由于其物相主要由低硬度的 γ-Fe 相组成,Si10涂层中 Si 含量较高,对涂层有更强固溶强化的作用,Si10 涂层硬度高于 Si5 涂层。而 Si15 涂层产生具有高硬度的金属硅化物 Fe3Si 相,使得涂层硬度得到较大提升。Si5、 Si10 和 Si15 涂层都超过基体 1Cr11Ni 耐热钢,因此在图8 中可以观察到涂层与基体交界处的显微硬度出现明显陡降(箭头)。值得注意的是,涂层交界的基体硬度有稍微变化(方框),可能是在激光熔覆过程中,熔覆粉末中元素在熔池中向基体方向扩散,导致结合区基体硬度有稍微波动[25]

  • 图8 FeCrSixNiCoC 涂层纵向硬度分布

  • Fig.8 Longitudinal hardness distribution of FeCrSixNiCoC coatings

  • 2.5 Si 元素含量对摩擦磨损性能影响

  • 图9 为 FeCrSixNiCoC 涂层和对比式样 1Cr11Ni 耐热钢磨损试样的摩擦因数-距离曲线。从图9 可以看出,所有样品在经历典型磨合阶段后,样品摩擦因数逐渐趋于相对稳定,进入稳定磨损阶段,因此, 1Cr11Ni 耐热钢、Si5、Si10、Si15 涂层样品界面在稳定磨损阶段(即从 150 m 到 753.6 m 磨损距离)的平均摩擦因数可分别计算为 0.53、0.64、0.45 和 0.50 (见表4)。Si5、Si10、Si15涂层摩擦因数在稳定磨损阶段仍处于不同发展方向,可能是涂层硬度差别和磨损机制不同导致的。

  • 图9 1Cr11Ni 耐热钢和涂层试样的摩擦因数

  • Fig.9 Friction factor of 1Cr11Ni heat-resistant steel and coatings

  • 表4 1Cr11Ni 耐热钢和 FeCrSixNiCoC 涂层的平均摩擦因数和磨损率

  • Table4 Average friction factor and wear rate of 1Cr11Ni heat-resistant steel and FeCrSixNiCoC coatings

  • 图10 显示了激光熔覆磨损试样以及从相应磨损轨迹部分测量的典型磨损形态。如图10a 所示, 1Cr11Ni 耐热钢磨损面积明显大于 Si5、Si10、Si15涂层磨损面积。其中 1Cr11Ni 耐热钢、Si5和 Si10 磨损界面有大量黑色氧化物并失去金属光泽,而 Si15 仍具有明显的金属光泽。1Cr11Ni 和 Si5、Si10、Si15 涂层样品磨损率分别为 98 μg / m、28 μg / m、13 μg / m、 34 μg / m(相应统计结果列于表4),这是由于 1Cr11Ni 耐热钢具有较低硬度(189±5 HV0.5),在载荷 200 N 和温度 500℃的磨损条件中发生较大塑性变形,容易产生高磨损率以及超大磨损深度 (251.82 μm),其磨损率分别为 Si5、Si10、Si15 涂层的 3.50、7.53 和 2.88 倍。Si5、Si10中 Si 元素固溶强化以及 Si15 涂层中形成高硬度金属硅化物使得涂层磨损深度较小,因此,FeCrSixNiCoC 涂层高温磨损性能明显优于基体 1Cr11Ni 耐热钢,其中 Si10涂层磨损轨迹深度和磨损率最小(图10b)。因此在温度 500℃和载荷 200 N 的磨损条件下,Si10 涂层耐磨性能最好。

  • 2.6 摩擦磨损机理分析

  • 图11 所示为不同 Si 含量的 FeCrSixNiCoC 涂层磨损形貌及三维轮廓图。如图11a~11c 所示,Si5 涂层磨损表面产生大量氧化物碎片,有一定粘结现象,磨损表面产生大量犁沟。这是由于 Si5涂层硬度较低,涂层表面通过微切削机制被去除,导致摩擦因数较高。因此 Si5涂层的磨损机制主要是磨粒磨损和黏着磨损。如图11d、11e,随着 Si 元素增加,Si10 涂层 Si 元素固溶强化作用更强,硬度较高,磨损表面犁沟较少,较为平整(图11f),有氧化物碎屑黏在表面,微切削程度降低,磨损率和摩擦因数降低,因此 Si10 涂层的磨损机制以黏着磨损和氧化磨损为主。如图11g~11i 所示,涂层磨损表面产生大量凸起和裂纹,并有脱落的趋势,这是由于 Si15 涂层物相主要为 Fe3Si,Fe3Si 具有一定脆性,在较大载荷磨损的情况下,涂层表面易发生断裂(图11h),这也是其磨损率高的主要原因,因此 Si15 涂层磨损机制以剥落磨损为主。

  • 图10 FeCrSixNiCoC 涂层磨损试样和磨损测面形态

  • Fig.10 Wear samples and wear surface morphology of the FeCrSixNiCoC coatings

  • 图11 FeCrSixNiCoC 涂层磨损三维形貌

  • Fig.11 Tribological morphology of FeCrSixNiCoC coatings

  • 为深入研究磨损机理,试验结束时收集高温磨损过程中产生的碎屑。图12 所示为 Si5、Si10、Si15 涂层磨损碎屑的 SEM 图像。磨损碎屑呈现出从微小粉末和不规则形状的颗粒到大片状碎屑。如图12a、 12b,Si5、Si10 涂层磨损碎屑为微小粉末和不规则形状的颗粒,EDS 分析其富含 Fe、Cr 元素,其来源于涂层和对磨圆盘在磨损中脱落并反复碾磨的产物。如图12c,Si15 涂层磨损碎屑中伴有大量大片状碎屑,其 Si 元素成分较高,主要来源于涂层的剥落。由此可以判断出 Si5 和 Si10涂层的剥落程度较小,而 Si15 涂层大片状碎屑最大最多,其剥落磨损程度最大。另外,由于 Si15 涂层中 Fe3Si 相抗氧化性能较好,加上剥落程度较大,Si15 涂层磨损表面仍呈现为光亮的金属颜色。

  • 图12 FeCrSixNiCoC 涂层磨损碎屑

  • Fig.12 Wear debris of FeCrSixNiCoC coatings

  • 3 结论

  • (1)通过激光熔覆技术成功制备出具有良好冶金结合、无裂纹的不同 Si 含量的 FeCrSixNiCoC 涂层。随着 Si 元素的增加,涂层产生金属硅化物,显微组织得到细化,硬度也得到较大提高。

  • (2)FeCrSixNiCoC 涂层表现出比 1Cr11Ni 耐热钢更高的硬度和更优良的高温耐磨性能。随着 Si 元素的增加,涂层的磨损率出现先降低后增加的趋势,其中 Si10 涂层表现出了良好的高温耐磨性能,其磨损机理主要为黏着磨损和氧化磨损。Si15 涂层由于脆性问题导致磨损率较高,但表现出较好的抗高温性能,说明 Si 元素可以显著改善涂层的高温性能。

  • (3)研究结果可为 Fe-Cr-Si 系涂层发展提供一定的技术支持,但是 Si 元素在涂层中的最佳添加量以及如何解决Si元素添加所出现的脆性问题仍需要进一步探索。

  • 参考文献

    • [1] 张津超,石世宏,龚燕琪,等.激光熔覆技术研究进展[J].表面技术,2020,49(10):1-11.ZHANG Jinchao,SHI Shihong,GONG Yanqi,et al.Research progress of laser cladding technology[J].Surface Technology,2020,49(10):1-11.(in Chinese)

    • [2] ZHU L,XUE P,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138(3):106915.

    • [3] 张树玲,邱明坤,陈炜晔,等.耐磨涂层的制备技术[J].热加工工艺,2019,48(10):25-30.ZHANG Shuling,QIU Mingkun,CHEN Weiye,et al.Preparation technology of wear resistant coatings[J].Hot Working Technology,2019,48(10):25-30.(in Chinese)

    • [4] 陈健,姚喆赫,姚建华,等.超声振动辅助激光熔覆技术研究进展综述[J].航空制造技术,2021,64(12):36-46.CHEN Jian,YAO Zhehe,YAO Jianhua,et al.State-of-art review on ultrasonic vibration-assisted laser cladding[J].Aeronautical Manufacturing Technology,2021,64(12):36-46.(in Chinese)

    • [5] 徐维义,梁永红,左志超,等.冲击磨损工况下铁基耐磨材料的现状及发展[J].精密成形工程,2019,11(5):155-160.XU Weiyi,LIANG Yonghong,ZUO Zhichao,et al.Development and present situation of steel wear-resisting material under impact wear condition[J].Journal of Netshape Forming Engineering,2019,11(5):155-160.(in Chinese)

    • [6] HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions[J].Friction,2017,5(3):263-284.

    • [7] HU W,ROSTAMI J,FROUGH O J M M,et al.Assessing effectiveness of various wear-resistant materials used as hard facings in mining applications[J].2019,37(1):117-128.

    • [8] 刘钊鹏,顾俊,王健超.激光熔覆技术在高速转子轴修复中的应用研究[J].应用激光,2019,39(5):750-755.LIU Zhaopeng,Gu Jun,WANG Jianchao.Application research of laser cladding technology in high speed rotor shaft repair[J].Applied Laser,2019,39(5):750-755.(in Chinese)

    • [9] CHEN D,COTE D,SCHADE C,et al.Oxidation behavior of Fe-Cr-(Si)-Y[J].2018,784(3):1344-1353.

    • [10] 崔雪,张松,张春华,等.高性能梯度功能材料激光增材制造研究现状及展望[J].材料工程,2020,48(9):13-23.CUI Xue,ZHANG Song,ZHANG Chunhua,et al.Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials[J].Journal of Materials Engineering,2020,48(9):13-23.(in Chinese)

    • [11] 袁源,王华明.铁基固溶体 α 弥散增韧Fe9Cr9Si2三元金属硅化物合金耐磨性[J].稀有金属材料与工程,2009,38(S1):321-324.YUAN Yuan,WANG Huaming.Sliding wear properties of dispersion-toughened Fe9Cr9Si2-based ternary metal silicide alloy[J].Rare Metal Materials and Engineering,2009,38(S1):321-324.(in Chinese)

    • [12] LEONG A,YANG Q,MCALPINE S W,et al.Oxidation behavior of Fe-Cr-2Si alloys in high temperature steam[J].Corrosion Science,2021,179(1-3):109114.

    • [13] IDCZAK R.High-temperature atmospheric corrosion of Fe-Cr-Si alloys studied by mössbauer spectroscopy[J].CORROSION,2018,74(10):1083-1092.

    • [14] 李珂尧,周健松,王凌倩.B、Si 元素对激光熔覆 Fe-Cr-Mo-B-Si 非晶涂层的非晶形成能力及其摩擦学机理的影响[J].表面技术,2020,49(8):192-202.LI Keyao,ZHOU Jiansong,WANG Lingqian,et al.Effect of B and Si elements on the amorphous formation ability and tribological mechanism of Fe-Cr-Mo-B-Si amorphous coatings by laser cladding[J].Surface Technology,2020,49(8):192-202.(in Chinese)

    • [15] 刘洪喜,陶喜德,张晓伟,等.机械振动辅助激光熔覆 Fe-Cr-Si-B-C 涂层的显微组织及界面分布形态[J].光学精密工程,2015,23(8):2192-2202.LIU Hongxi,TAO Xide,ZHANG Xiaowei,et al.Microstructure and interface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J].Optics and Precision Engineering,2015,23(8):2192-2202.(in Chinese)

    • [16] 高炜,孙彬,王建明,等.含铬、硅合金钢在水蒸气气氛下高温氧化行为的研究进展[J].热加工工艺,2019,48(10):6-9.GAO Wei,SUN Bin,WANG Jianming,et al.Research progress on high temperature oxidation behavior of chromium and silicon steel in water vapor atmosphere[J].Hot Working Technology,2019,48(10):6-9.(in Chinese)

    • [17] 李向波,李涛,石博文,等.基于齿面缺陷激光修复几何数学模型的齿轮修复[J].中国表面工程,2020,33(3):129-136.LI Xiangbo,LI Tao,SHI Bowen,et al.Gear repairing based on geometric mathematical model of tooth surface defects by laser[J].China Surface Engineering,2020,33(3):129-136.(in Chinese)

    • [18] 王争强,李文戈,杜旭,等.激光熔覆技术在轴类零件再制造过程中的应用现状[J].机械工程材料,2020,44(11):35-40.WANG Zhengqiang,LI Wenge,DU Xu,et al.Applications of laser cladding technique in remanufacturing of shaft parts[J].Materials for Mechanical Engineering,2020,44(11):35-40.(in Chinese)

    • [19] LIZZUL L,SORGATO M,BERTOLINI R,et al.On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings[J].CIRP Journal of Manufacturing Science and Technology,2021,35(1):361-370.

    • [20] SONG B,YU T,JIANG X,et al.Evolution and convection mechanism of the melt pool formed by V-groove laser cladding[J].Optics & Laser Technology,2021,144(1):107443.

    • [21] 褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel 625 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.CHU Qingkun,YU Chunfeng,DENG Zhaoyang,et al.Effect of TiC on microstructure and wear properties of inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)

    • [22] 马清,张艳梅,卢冰文,等.激光熔覆硬质颗粒增强高熵合金复合涂层研究进展[J].材料研究与应用,2021,15(5):583-592.MA Qing,ZHANG Yanmei,LU Bingwen,et al.Research progress of hard particle reinforced high entropy alloy composite coatings fabricated by laser cladding[J].Materials Research and Application,2021,15(5):583-592.(in Chinese)

    • [23] 常成,闫星辰,JULIEN G,等.激光选区熔化成形 nano-WC/CX 钢微观组织及机械性能初探[J].材料研究与应用,2021,15(4):309-317.CHANG Cheng,YAN Xingchen,GARDAN Julien,et al.Exploration on the microstructure and mechanical properties of the selective laser melted nano-WC/CX steel[J].Materials Research and Application,2021,15(4):309-317.(in Chinese)

    • [24] 褚清坤,闫星辰,岳术俊,等.激光选区熔化成形 Ti-12Mo-6Zr-2Fe(TMZF)合金微观组织及力学性能的研究[J].材料研究与应用,2021,15(4):350-357.CHU Qingkun,YAN Xingchen,YUE Shujun,et al.Microstructure and mechanical properties of Ti-12Mo-6Zr-2Fe(TMZF)alloy formed by laser selective melting[J].Materials Research and Application,2021,15(4):350-357.(in Chinese)

    • [25] LIU H,WANG C,ZHANG X,et al.Improving the corrosion resistance and mechanical property of 45 steel surface by laser cladding with Ni60CuMoW alloy powder[J].Surface and Coatings Technology,2013,228(1):S296-S300.

  • 参考文献

    • [1] 张津超,石世宏,龚燕琪,等.激光熔覆技术研究进展[J].表面技术,2020,49(10):1-11.ZHANG Jinchao,SHI Shihong,GONG Yanqi,et al.Research progress of laser cladding technology[J].Surface Technology,2020,49(10):1-11.(in Chinese)

    • [2] ZHU L,XUE P,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138(3):106915.

    • [3] 张树玲,邱明坤,陈炜晔,等.耐磨涂层的制备技术[J].热加工工艺,2019,48(10):25-30.ZHANG Shuling,QIU Mingkun,CHEN Weiye,et al.Preparation technology of wear resistant coatings[J].Hot Working Technology,2019,48(10):25-30.(in Chinese)

    • [4] 陈健,姚喆赫,姚建华,等.超声振动辅助激光熔覆技术研究进展综述[J].航空制造技术,2021,64(12):36-46.CHEN Jian,YAO Zhehe,YAO Jianhua,et al.State-of-art review on ultrasonic vibration-assisted laser cladding[J].Aeronautical Manufacturing Technology,2021,64(12):36-46.(in Chinese)

    • [5] 徐维义,梁永红,左志超,等.冲击磨损工况下铁基耐磨材料的现状及发展[J].精密成形工程,2019,11(5):155-160.XU Weiyi,LIANG Yonghong,ZUO Zhichao,et al.Development and present situation of steel wear-resisting material under impact wear condition[J].Journal of Netshape Forming Engineering,2019,11(5):155-160.(in Chinese)

    • [6] HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions[J].Friction,2017,5(3):263-284.

    • [7] HU W,ROSTAMI J,FROUGH O J M M,et al.Assessing effectiveness of various wear-resistant materials used as hard facings in mining applications[J].2019,37(1):117-128.

    • [8] 刘钊鹏,顾俊,王健超.激光熔覆技术在高速转子轴修复中的应用研究[J].应用激光,2019,39(5):750-755.LIU Zhaopeng,Gu Jun,WANG Jianchao.Application research of laser cladding technology in high speed rotor shaft repair[J].Applied Laser,2019,39(5):750-755.(in Chinese)

    • [9] CHEN D,COTE D,SCHADE C,et al.Oxidation behavior of Fe-Cr-(Si)-Y[J].2018,784(3):1344-1353.

    • [10] 崔雪,张松,张春华,等.高性能梯度功能材料激光增材制造研究现状及展望[J].材料工程,2020,48(9):13-23.CUI Xue,ZHANG Song,ZHANG Chunhua,et al.Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials[J].Journal of Materials Engineering,2020,48(9):13-23.(in Chinese)

    • [11] 袁源,王华明.铁基固溶体 α 弥散增韧Fe9Cr9Si2三元金属硅化物合金耐磨性[J].稀有金属材料与工程,2009,38(S1):321-324.YUAN Yuan,WANG Huaming.Sliding wear properties of dispersion-toughened Fe9Cr9Si2-based ternary metal silicide alloy[J].Rare Metal Materials and Engineering,2009,38(S1):321-324.(in Chinese)

    • [12] LEONG A,YANG Q,MCALPINE S W,et al.Oxidation behavior of Fe-Cr-2Si alloys in high temperature steam[J].Corrosion Science,2021,179(1-3):109114.

    • [13] IDCZAK R.High-temperature atmospheric corrosion of Fe-Cr-Si alloys studied by mössbauer spectroscopy[J].CORROSION,2018,74(10):1083-1092.

    • [14] 李珂尧,周健松,王凌倩.B、Si 元素对激光熔覆 Fe-Cr-Mo-B-Si 非晶涂层的非晶形成能力及其摩擦学机理的影响[J].表面技术,2020,49(8):192-202.LI Keyao,ZHOU Jiansong,WANG Lingqian,et al.Effect of B and Si elements on the amorphous formation ability and tribological mechanism of Fe-Cr-Mo-B-Si amorphous coatings by laser cladding[J].Surface Technology,2020,49(8):192-202.(in Chinese)

    • [15] 刘洪喜,陶喜德,张晓伟,等.机械振动辅助激光熔覆 Fe-Cr-Si-B-C 涂层的显微组织及界面分布形态[J].光学精密工程,2015,23(8):2192-2202.LIU Hongxi,TAO Xide,ZHANG Xiaowei,et al.Microstructure and interface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J].Optics and Precision Engineering,2015,23(8):2192-2202.(in Chinese)

    • [16] 高炜,孙彬,王建明,等.含铬、硅合金钢在水蒸气气氛下高温氧化行为的研究进展[J].热加工工艺,2019,48(10):6-9.GAO Wei,SUN Bin,WANG Jianming,et al.Research progress on high temperature oxidation behavior of chromium and silicon steel in water vapor atmosphere[J].Hot Working Technology,2019,48(10):6-9.(in Chinese)

    • [17] 李向波,李涛,石博文,等.基于齿面缺陷激光修复几何数学模型的齿轮修复[J].中国表面工程,2020,33(3):129-136.LI Xiangbo,LI Tao,SHI Bowen,et al.Gear repairing based on geometric mathematical model of tooth surface defects by laser[J].China Surface Engineering,2020,33(3):129-136.(in Chinese)

    • [18] 王争强,李文戈,杜旭,等.激光熔覆技术在轴类零件再制造过程中的应用现状[J].机械工程材料,2020,44(11):35-40.WANG Zhengqiang,LI Wenge,DU Xu,et al.Applications of laser cladding technique in remanufacturing of shaft parts[J].Materials for Mechanical Engineering,2020,44(11):35-40.(in Chinese)

    • [19] LIZZUL L,SORGATO M,BERTOLINI R,et al.On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings[J].CIRP Journal of Manufacturing Science and Technology,2021,35(1):361-370.

    • [20] SONG B,YU T,JIANG X,et al.Evolution and convection mechanism of the melt pool formed by V-groove laser cladding[J].Optics & Laser Technology,2021,144(1):107443.

    • [21] 褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel 625 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.CHU Qingkun,YU Chunfeng,DENG Zhaoyang,et al.Effect of TiC on microstructure and wear properties of inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)

    • [22] 马清,张艳梅,卢冰文,等.激光熔覆硬质颗粒增强高熵合金复合涂层研究进展[J].材料研究与应用,2021,15(5):583-592.MA Qing,ZHANG Yanmei,LU Bingwen,et al.Research progress of hard particle reinforced high entropy alloy composite coatings fabricated by laser cladding[J].Materials Research and Application,2021,15(5):583-592.(in Chinese)

    • [23] 常成,闫星辰,JULIEN G,等.激光选区熔化成形 nano-WC/CX 钢微观组织及机械性能初探[J].材料研究与应用,2021,15(4):309-317.CHANG Cheng,YAN Xingchen,GARDAN Julien,et al.Exploration on the microstructure and mechanical properties of the selective laser melted nano-WC/CX steel[J].Materials Research and Application,2021,15(4):309-317.(in Chinese)

    • [24] 褚清坤,闫星辰,岳术俊,等.激光选区熔化成形 Ti-12Mo-6Zr-2Fe(TMZF)合金微观组织及力学性能的研究[J].材料研究与应用,2021,15(4):350-357.CHU Qingkun,YAN Xingchen,YUE Shujun,et al.Microstructure and mechanical properties of Ti-12Mo-6Zr-2Fe(TMZF)alloy formed by laser selective melting[J].Materials Research and Application,2021,15(4):350-357.(in Chinese)

    • [25] LIU H,WANG C,ZHANG X,et al.Improving the corrosion resistance and mechanical property of 45 steel surface by laser cladding with Ni60CuMoW alloy powder[J].Surface and Coatings Technology,2013,228(1):S296-S300.

  • 手机扫一扫看