en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李玥,女,1997年出生,硕士研究生。主要研究方向为表面改性。E-mail:liyue1908@nimte.ac.cn

通讯作者:

王永欣,男,1982年出生,博士,研究员。主要研究方向为抗腐蚀磨损涂层。E-mail:yxwang@nimte.ac.cn

中图分类号:TB324

DOI:10.11933/j.issn.1007−9289.20220408001

参考文献 1
MIALON L,PEMBA A G,MILLER S A.Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid[J].Green Chemistry,2010,12(10):1704-1706.
参考文献 2
YAO L,FANG X,GU W,et al.Fully transparent quantum dot light-emitting diode with a laminated top graphene anode[J].ACS Applied & Materials Interfaces,2017,9(28):24005-24010.
参考文献 3
EMAMIAN S,NARAKATHU B B,CHLAIHAWI A A,et al.Screen printing of flexible piezoelectric based device on polyethylene terephthalate(PET)and paper for touch and force sensing applications[J].Sensors and Actuators A:Physical,2017,263(15):639-647.
参考文献 4
刘月豹,巩燕龙,郑琦林,等.触摸屏用低方阻PET导电薄膜镀膜工艺研究[J].玻璃,2020,47(3):41-45.LIU Yuebao,GONG Yanlong,ZHENG Qilin,et al.Study on coating process of low square resistance pet conductive film for touch screen[J].Glass,2020,47(3):41-45.(in Chinese)
参考文献 5
LIU Z,YOU P,XIE C,et al.Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J].Nano Energy,2016,28:151-157.
参考文献 6
梁雅倩,武晓鹂,郑国源,等.柔性钙钛矿太阳能电池的研究进展[J].人工晶体学报,2017,46(4):634-640.LIANG Yaqian,WU Xiaoli,ZHENG Guoyuan,et al.Research progress of flexible perovskite solar cells[J].Journal of Synthetic Crystals,2017,46(4):634-640.(in Chinese)
参考文献 7
INDEST T,LAINE J,RIBITSCH V,et al.Adsorption of chitosan on PET films monitored by quartz crystal microbalance[J].Biomacromolecules,2008,9(8):2207-2214.
参考文献 8
BORCIA C,PUNGA I L,BORCIA G.Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma[J].Applied and Surface Science,2014,317:103-110.
参考文献 9
王贵美.低温等离子体在塑料聚合物材料表面改性中的应用[J].塑料科技,2020,48(5):125-128.WANG Guimei.Application of low temperature plasma in surface modification of plastic polymer materials[J].Plastic Science and Technology,2020,48(5):125-128.(in Chinese)
参考文献 10
李宏英,傅佳佳,王鸿博,等.利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J].材料导报,2018,32(4):626-630,649.LI Hongyin,FU Jiajia,WANG Hongbo,et al.Enhancing the hydrophilic modification on effect of electron beam(EB)irradiation up on PET fabrics by introducing plasma pretreatment[J].Materials Review,2018,32(4):626-630,649.(in Chinese)
参考文献 11
ZHU Y Z,ZHANG F,WANG D.A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency[J].Journal of Materials Chemistry A,2013,18:5758-5765.
参考文献 12
李春伟,曹奇,张义.离子注入聚合物表面改性的研究[J].化工新型材料,2013,41(3):139-142.LI Chunwei,CAO Qi,ZHANG Yi.Research of modification by ion implantation on polymer surface [J].New chemical materials,2013,41(3):139-142.(in Chinese)
参考文献 13
熊党生,张彦华,徐嘉东.氮离子注入超高分子量聚乙烯的生物摩擦学性能[J].中国生物医学工程学报,2001(4):380-386.XIONG Dangsheng,ZHANG Yanhua,XU Jiadong.Biotribological properties of ion implanted UHMWPE[J].Chinese Journal of Biomedical Engineering,2001(4):380-386.(in Chinese)
参考文献 14
NARAYANA V L,RAOL B.A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites[J].Materials Today:Proceedings,2021,44(1):1988-1994.
参考文献 15
VATANPOUR V,ZOQI N.Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes[J].Applied Surface Science,2017,396:1478-1489.
参考文献 16
KHONGNAKORN W,BOOTLUCK W,JUTAPORN P.Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling[J].Journal of Water Process Engineering,2020,38:101633.
参考文献 17
SUNDRIYAL P,SAHU M,PRAKASH O,et al.Long-term surface modification of PEEK polymer using plasma and PEG silane treatment[J].Surface and Interfaces,2021,25:101253.
参考文献 18
KULL K R,STEEN M S,FISHER E R.Surface modification with nitrogen-containing plasmas to produce hydrophilic,low-fouling membranes[J].Journal of Membrane Science,2005,246:203-215.
参考文献 19
SANCHIS M R,BLANES V,BLANES M,et al.Surface modification of low density polyethylene(LDPE)film by low pressure O2 plasma treatment[J].European Polymer Journal,2006,42(7):1558-1568.
参考文献 20
CATENA A,AGNELLO S,ROSKEN L M,et al.Characteristics of industrially manufactured amorphous hydrogenated carbon(a-C:H)depositions on high-density polyethylene[J].Carbon,2016,96:661-671.
参考文献 21
CATENA A,AGNELLO S,CANNAS M,et al.Evolution of the sp2 content and revealed multilayer growth of amorphous hydrogenated carbon(a-C:H)films on selected thermoplastic materials[J].Carbon,2017,117:351-359.
参考文献 22
CATENA A,GUO Q,KUNZE M R,et al.Morphological and chemical evolution of gradually deposited diamond-like carbon films on polyethylene terephthalate:from sub-plantation processes to structural reorganization by intrinsic stress release phenomena[J].ACS Applied Materials & Interfaces,2016,16(8):10636-10646.
参考文献 23
BOEVA Z A,CATENA A,HOFLER L,et al.Improved water barrier properties of polylactic acid films with an amorphous hydrogenated carbon(a-C:H)coating[J].Carbon,2017,120:157-164.
参考文献 24
GUAN W,WANG Y,FISCHER C B,et al.Novel strategy to improve the tribological property of polymer:in-situ growing amorphous carbon coating on the surface[J].Applied Surface Science,2020,505:144626.
参考文献 25
WANG Y,GUAN W,FISCHER CB,et al.Microstructures,mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces[J].Applied Surface Science,2021,563:150309.
参考文献 26
SU Y,WANG Y,WANG C,et al.In-situ growing amorphous carbon film with attractive mechanical and tribological adaptability on PEEK via continuous plasma-induced process[J].Vacuum,2021,187:110147.
参考文献 27
SVORCIK V,KOTAL V,SLEPICKA P,et al.Modification of surface properties of high and low density polyethylene by Ar plasma discharge[J].Polymer Degradation and Stability,2006,91(6):1219-1225.
参考文献 28
SVORCIK V,KOTAL V,SLEPICKA P,et al.Modification of surface properties of polyethylene by Ar plasma discharge[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2006,244(2):365-372.
参考文献 29
BOERIO F J,BAHLS K,MCGRAW G E.Vibrational analysis of polyethylene terephthalate and its deuterated derivatives[J].Journal of Polymer Science.Part A-2,Polymer Physics,1976,14:1029-1046.
参考文献 30
COSTA L,BRACCO P.26-mechanisms of cross-linking,oxidative degradation,and stabilization of UHMWPE [J].UHMWPE Biomaterials Handbook,2016,43:467-487.
参考文献 31
KIM S,KANG P H,NHO Y C,et al.Effect of electron beam irradiation on physical properties of ultrahigh molecular weight polyethylene [J].Journal of Applied Polymer Science,2005,97(1):103-116.
参考文献 32
HENG L P,GUO T Q,WANG B,et al.In situ electric-driven reversible switching of water-droplet adhesion on a superhydrophobic surface[J].Journal of Materials Chemistry,2020,83:430-437.
参考文献 33
YANG C,LU Y,CAO L,et al.Polymer degradation mechanism and chemical composition relationship of hot-poured asphaltic crack repair material during thermal aging exploiting fluorescence microscopy and gel permeation chromatography[J].Construction and Building Materials,2021,302:124412.
参考文献 34
LACKNER J,WALDHAUSER W,ALAMANOU A,et al.Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces[J].Bulletin of the Polish Academy of Sciences:Technical Sciences,2010,58(2):281-294.
目录contents

    摘要

    等离子体改性由于效果持久、环境友好而备受关注,其中碳等离子体改性不仅具有轰击效应,同时还具有沉积效应,然而碳等离子体对柔性聚对苯二甲酸乙二醇酯(PET)薄膜改性研究较少。柔性 PET 薄膜在使用过程中常因磨损和降解等原因,其光学透过性能以及力学性能受到影响。研究不同碳等离子体轰击电流(0.5 A、1.0 A、1.5 A、2.0 A)对柔性 PET 薄膜结构及性能的影响。通过 FTIR、Raman 光谱、双光束扫描电子显微镜(FIB-SEM)、扫描探针显微镜(SPM)、接触角测量仪、UV-Vis、氙灯老化试验箱、多功能摩擦磨损试验机等分析手段对薄膜的表截面结构、润湿性能、透光性、耐老化性、耐磨防护性及柔性的变化进行表征,并分析其生长机理。结果表明:低电流(0.5 A)下碳等离子体主要起到轰击效应,使得 PET 薄膜表面有机碳质结构发生断裂重排,样品透光率与基底相比仅下降 0.439%,同时该电流下制得的样品具有疏水性、耐老化性及韧性。而高电流下制得的样品的硬度显著提升,具有良好的耐磨性能,表面薄膜在弯曲过程中因应力的释放出现裂纹,但薄膜并未剥落。非晶碳薄膜与柔性 PET 薄膜具有良好结合力。通过碳等离子体诱导法生长的非晶碳薄膜可以有效延缓柔性 PET 薄膜在使用过程中的降解并提高其力学性能。

    Abstract

    Polyethylene terephthalate (PET) films are among the most commonly used synthetic polymers in light-emitting diodes, touch screens, solar cells, and other applications owing to their high tensile strength, flexibility, and corrosion resistance. However, there are functional groups on the surface of flexible PET films that lead to low surface free energy, poor wettability, and poor biocompatibility. The optical transmittance and mechanical properties of flexible PET films are also affected by abrasion and degradation while in use. Surface modifications can be performed to broaden the application field of PET films and improve their service life. Plasma modification methods have attracted much attention owing to their lasting effect and environment-friendliness. Among these, carbon plasma modification not only has a bombardment effect but also a deposition effect that can be used to prepare amorphous carbon films on the sample surface. However, studies on the carbon plasma modification of flexible PET films remain few. Therefore, the effects of different carbon plasma bombardment currents (0.5 A, 1.0 A, 1.5 A, and 2.0 A) on the structure and properties of flexible PET films are studied. The surface cross-sectional structure, wettability, transmittance, and aging resistance of the samples were characterized by Fourier-transform infrared spectroscopy, Raman spectroscopy, dual-beam scanning electron microscopy, scanning probe microscopy, contact angle measurement, UV-Vis spectroscopy, a xenon lamp aging test chamber, and a multifunctional friction and wear testing machine. The growth mechanism of amorphous carbon films on the surface of flexible PET films was also analyzed. The experimental results show that the growth of carbon plasma on the surface of flexible PET films has three parts: the bombardment of the plasma that causes the organic polymer chains on the polymer surface to randomly break and activate the sample surface; the random reaction of fractured living active chains with carbon radicals to form an in-situ transition layer in which organic and inorganic chains are connected; and the epitaxy-like growth of amorphous carbon films. At a low current (0.5 A), the main role played by the carbon plasma is bombardment, which results in the random fracture and rearrangement of the organic carbonaceous structures on the surface of the PET films. The transmittance at 550 nm of the sample prepared at this current was 87.077%, which is 0.439% lower than that of the substrate. In addition, the samples prepared at this current were hydrophobic, aging-resistant, and tough. The films neither peeled nor cracked during bending. In contrast, the samples prepared at a high current (1.0 A, 1.5 A, and 2.0 A) had significantly improved surface hardness and wear resistance. The increased thickness of the amorphous carbon films significantly reduced the light transmittance of the sample surface. At the same time, the stress in the films increased as the carbon plasma treatment current increased. Therefore, the amorphous carbon film on the sample surface released the stress during the bending process, which caused the films to crack but not peel off. In conclusion, the existence of the in-situ transformation layer improved the bonding force of the amorphous carbon films on the surface of flexible PET films. The amorphous carbon films grown by the carbon plasma induction method can delay the degradation of flexible PET films while in service, and improve their mechanical properties.

  • 0 前言

  • 聚对苯二甲酸乙二醇酯(PET)薄膜是最常用的合成聚合物之一,约占世界聚合物产量的 18%[1]。并且由于它具有较高的抗拉强度和透明度、较好的柔性以及耐腐蚀性等特点,广泛应用于发光二极管[2]、触摸屏[3-4]以及太阳能电池[5-6]等领域。但是 PET 聚合物表面官能团种类较少,导致表面自由能低、润湿性差以及生物相容性差[7],同时在使用过程中受到摩擦磨损以及老化等影响,使得其光学透过性以及力学性能受到影响。因此为了拓宽 PET 薄膜的应用领域并提高其使用寿命,可以对其进行表面改性。

  • PET 薄膜表面改性主要包括等离子体处理[8-10]、表面接枝法[11]、离子注入法[12-13]及碱处理法[14]。其中等离子体处理由于环境友好、效果持久而受到广泛关注。对于传统等离子体改性,根据处理的前驱体不同主要分为等离子体聚合以及等离子体轰击。等离子体聚合的前驱体一般是有机单体,如聚乙二醇(PEG)[15-17],这种等离子体处理会在聚合物上生成不同功能的聚合物薄膜。而等离子体轰击的前驱体通常是无机气体,如氦、氮和氧[18-19],这种等离子体处理主要通过破坏表面分子结构,以赋予其不同的表面功能。近期有研究结果表明,碳等离子体处理不仅具有轰击效应,同时可以在表面沉积一层非晶碳(a-C)保护薄膜,以提高聚合物表面的硬度、耐磨性、耐腐蚀性和其他功能特性。科布伦茨-兰道大学的研究团队[20-22]通过射频等离子体增强化学气相沉积技术(RF-PECVD) 在高密度聚乙烯(HDPE)、聚甲醛(POM)以及 PET 等不同聚合物上制备了氢化无定形碳(a-C: H)薄膜,同时提出 a-C:H 薄膜在聚合物表面生长主要分为 3 个步骤:表面蚀刻、离子注入和再生过程。他们还通过射频等离子增强化学气相沉积技术在 50 μm 厚的聚乳酸(PLA)薄膜上沉积无定形氢化碳,发现较薄的非晶碳薄膜可以有效降低 PLA 的吸水率[23]。此外,非晶碳基薄膜还能有效提高聚合物基体表面的硬度和摩擦学性能。 GUAN 等[24]对乙烯丙烯共聚物(EPC)基材进行碳等离子体处理发现,碳等离子体可以诱导有机碳质结构向无机碳质结构转变,并且可以有效提高基体的摩擦学性能。进一步,在聚碳酸酯(PC)基体表面分别沉积纯 a-C 薄膜、a-C / Cr 薄膜和 a-C / Si薄膜,发现三种薄膜均提高了基材的硬度和弹性模量,Cr 和 Si 掺杂的涂层密度较高,但纯 a-C 涂层在滑动摩擦条件下对 PC 基体的保护效果最好,具有鳞片保护机制[25]。SU 等[26]通过通过连续乙炔等离子处理在聚醚醚酮(PEEK)基板上制备 a-C:H 薄膜及 Cr / a-C:H 薄膜,发现只镀有 a-C:H 薄膜的样品表面具有高硬度、韧性和黏附强度,在划痕和摩擦学测试中表现出更好的承载能力。提出了划痕试验的失效机理,分析了真空、空气和海水环境下的磨损机理。重要的是,这种新颖的等离子体诱导原位过渡层结构,是梯度涂层概念在聚合物应用中的进一步发展。

  • 在本试验中,选用透明 PET 薄膜作为基底,研究不同电流下碳等离子体的轰击诱导效应,系统讨论不同的碳等离子体处理电流大小对PET薄膜表面的显微结构、润湿性能、光学透过性能、耐老化性以及耐磨性能的研究。此外,还研究了 PET 薄膜表面类外延生长的非晶碳薄膜的柔性,开发了一种 PET 薄膜表面改性新方法。

  • 1 试验准备

  • 1.1 样品制备

  • 试验采用星弧磁控溅射系统( Stararc,Diamant-VI660),选用石墨靶(99.99 wt.%)为固态溅射源,工作气体为氩气(99.99 wt.%)。首先将 PET 薄膜(10 cm×10 cm×100 μm)放入乙醇溶液中超声 30 min,以去除 PET 薄膜表面的污染物。将超声后的样品取出吹干后用高温胶固定在样品架上,然后将样品架放入磁控溅射室,样品与石墨靶之间的间距为 10 cm。当室内真空度达到 7.0 mPa,引入了高纯度氩气。在辉光放电作用下激发氩等离子体轰击 PET 薄膜表面 20 min,以去除样品表面的吸附物质。其中氩离子刻蚀时,氩气流量为 30 cm3 / min,偏置电压为−400 V,此时腔内气压为 0.4 Pa。刻蚀结束后,以石墨靶为阴极,由直流电源供电。电子在电场作用下与氩原子碰撞,产生高能氩离子,在电场的作用下,氩离子加速飞向石墨靶材,以高能量轰击靶材表面,使靶材溅射产生碳等离子体,产生的高能碳等离子体将持续作用于 PET 薄膜表面。在溅射过程中,氩气气流量为 60 cm3 / min,偏置电压为−150 V,腔内气压为 0.8 Pa,碳等离子体溅射时间为 120 min。通过控制碳等离子体溅射电流大小(0.5 A、1.0 A、1.5 A、2.0 A),以调节碳等离子体的轰击能量。具体沉积参数如表1 所示。

  • 表1 非晶碳薄膜的沉积参数

  • Table1 Deposition parameters of the a-C films

  • 1.2 结构表征及性能测试

  • 通过显微红外光谱仪来测定碳等离子体处理后的样品的化学基团,在 4 000~400 cm−1 范围内的光谱重复扫描 32 次,分辨率为 4 cm−1。测试前需对背景进行校准,以减少环境中的 CO2以及 H2O 对样品结果的影响。通过共聚焦显微拉曼光谱仪对样品表面的原子杂化进行分析。通过扫描电子显微镜观察样品表面形貌,电镜的工作电压为 4 kV,电流为 7 μA。通过双光束扫描电子显微镜分析样品的横截面形貌。通过扫描探针显微镜分析样品表面的粗糙度,选区大小为 10 μm×10 μm 的正方形区域。

  • 采用接触角测量仪分析样品的表面润湿性,每个样品滴 5 个独立的水滴(去离子水,3 μL)。通过紫外可见近红外分光光度计分析样品表面的光学透过性能。通过氙灯老化试验箱用于模拟日常环境中的材料变化。根据 ASTM G155—2005A 标准,选择 340 nm 作为监测点,辐照度为 0.35 W /(m2 ·nm),黑标温度 63℃,气温 42℃,相对湿度 50%。干燥环境下辐照 102 min,喷水蒸汽下照射 18 min,2 h 为一个循环,总辐照时间为 336 h。通过多功能高温摩擦磨损试验机测量样品耐摩擦变形能力,由于基底较薄,极易变形,因此选用聚合物材质的对偶样与 PET 薄膜对磨。聚四氟乙烯(PTFE)属于热塑性材料,具有较高结晶度、化学稳定性、电绝缘性以及优异的耐候性等,同时具有其他塑料没有的自润滑性以及不粘等性能,因此选用 PTFE 作为对偶样进行摩擦的时候,其对基底影响较小。摩擦加载力为 1 N,摩擦频率为 2 Hz,往复摩擦长度为 5 mm,摩擦时间为 30 min,通过扫描电镜观察样品磨损后的表面形貌。将 0.5 A 以及 2.0 A 下制得的样品裁剪为尺寸大小为 20 mm×10 mm 矩形,将其往复弯折 100 次,观察其弯折后的表面形貌。取同样尺寸的 0.5 A 以及 2.0 A 样品,将样品的首尾用双面胶固定,保持该弧度 24 h,观察其弯折处形貌,通过往复弯折以及保持弧度来研究薄膜的柔性,其示意图如图1 所示。

  • 图1 样品往复弯折及保持弧度示意图

  • Fig.1 Schematic diagram of sample reciprocating bending and keeping the curvature

  • 2 结果与讨论

  • 2.1 微观结构分析

  • 图2 为不同电流大小下碳等离子体轰击聚合物表面制得的样品的红外(FTIR)谱图。从图中可以看出,经过碳等离子体处理的样品表面并无新的官能团出现,同时由于所制得的薄膜厚度为纳米级,而红外测量深度为微米级,样品的 FTIR 结果依然会受到基底官能团的影响。还可以看出,碳等离子体处理电流为 0.5 A 时所制得的样品的峰强明显增强,而 1 710 cm−1 左右的-C=O-的伸缩振动在 0.5 A 时发生微弱蓝移,随着电流的增大又发生红移,当处理电流为 2.0 A 时,再次发生蓝移。红外峰强的变化主要与原子电负性、振动发声、分子对称性等有关,而这里红外峰波数的偏移主要与分子内部结构有关,可能发生诱导效应、共轭效应以及氢键作用等。峰强的变化可能是碳等离子体的轰击使得聚合物表面的高分子链发生随机断裂反应重排,分子对称性变差[27-28]。而 C=O 峰在 0.5 A 处的蓝移则可能是碳等离子体的轰击使得表面的官能团发生脱氢效应,同时碳自由基与活性自由基反应,产生诱导效应,吸电子基使邻近基团吸收波数增大。而随着处理电流的增大,C=O 可能与部分双键官能团发生 π-π 共轭,双键为给电子基团,使得波数减小。当处理电流达到 2.0 A 时,部分双键可能发生随机断裂,给电子基团减少,吸收峰波数增加。根据红外结果可以看出,碳等离子体的持续轰击使得聚合物表面的有机官能团发生断裂重排。

  • 图2 不同等离子体处理电流下制得的 PET薄膜的红外结果

  • Fig.2 FTIR of PET films prepared under different plasma treatment currents

  • 通过 Raman 光谱对碳结构中相键合状态进行了分析。从图3 中可以看出,PET 薄膜在 858 cm−1 、 1 290 cm−1 、1 615 cm−1 和 1 727 cm−1 处存在峰分别对应于 C-C / C(O)-O 弯曲模式、-CH2的弯曲模式、 C-C / C=C 拉伸模式和 C=O 拉伸模式[29]。随着碳等离子体处理电流的增大,基底特征峰逐渐减弱,同时在 1 350 cm−1 以及 1 580 cm−1 附近出现两个峰,分别对应于 D 峰(芳环的呼吸振动模式)与 G 峰(sp 2 C-C 键的伸缩振动)。由于低电流下碳等离子体主要起到轰击作用,部分活性聚合物链会与碳自由基发生随机反应,生成的非晶碳薄膜较薄,表面仍处于有机-无机的混合机构,因此拉曼结果会受到聚合物基底的特征峰的影响。由光致发光(PL)背景因聚合物的散射而严重失真,从而掩盖了 D 峰和 G 峰任何可能的信号[17]。而随着处理电流的增大,D 峰和 G 峰仍然不明显,但是可以看出对于 2.0 A 以及 1.5 A 下制得的样品在 1 300~1 400 cm−1 以及 1 500~1 600 cm−1 处存在两个突起的峰,分别对应于非晶碳结构的两个特征峰,D 峰(1 380 cm−1)和 G 峰(1 580 cm−1)。为凸显两个特征峰的存在,在拉曼图中添加了 2.0 A 以及 1.5 A 下样品的拉曼插图,并添加了 1 380 cm−1 以及 1 580 cm−1 的辅助线。可以看出样品存在非晶碳的特征峰、D 峰以及 G 峰,说明表面生成了非晶碳薄膜。

  • 图3 不同等离子体处理电流下制得的 PET 薄膜的拉曼结果

  • Fig.3 Raman spectra of PET films under different carbon plasma treatment currents

  • 图4 为不同电流大小下碳等离子体轰击聚合物表面制得的样品的扫描电镜图。对样品表面进行形貌分析前,需对样品表面沉积一层 Pt 以增加样品的导电性。从低倍数图中(a1~e1)可以看出,未镀膜样品表面存在白色小颗粒,这可能是由长期暴露在环境中使得表面的部分聚合物链发生降解团聚所致。而对于 0.5 A 及 1.0 A 电流大小下等离子体轰击样品表面存在等离子体轰击的痕迹,同时 0.5 A 样品表面的非晶碳结构不明显,存在一些细小颗粒,这些颗粒可能是碳颗粒,也可能是断裂的聚合物链与碳自由基反应生成的复合结构。随着碳等离子体处理电流的增大,聚合物表面的颗粒逐渐聚集长大,在 PET 薄膜表面类外延生长非晶碳薄膜。从高倍数形貌(a2~e2)下可以看出,随着碳等离子体处理电流的增大,样品表面出现岛状结构,这可能是由于 PET 薄膜是柔性材料,而非晶碳薄膜是硬质材料,两者之间渗透性差,后续轰击的碳原子容易相互结合,最后非晶碳在样品表面呈岛状结构生长。

  • 图4 不同等离子体处理电流下制得的 PET 薄膜的表面形貌

  • Fig.4 SEM morphologies of PET films with different carbon plasma treating currents: (a1) ~ (e1) ×10 000, (a2) ~ (e2) ×50 000

  • 图5 为不同电流大小下碳等离子体轰击聚合物表面制得的样品的 FIB 截面形貌图。切割前需先在样品表面通过电子束沉积一层 Pt 保护层,以保护薄膜在离子束下产生的损伤,同时还需通过离子束沉积一层较厚(0.3 μm)的 Pt 保护层,以保护其在切割过程中的损伤,而 0.5 A 样品由于薄膜较薄,为减少损伤在表面沉积 C 保护层。由于 0.5 A 下制得的样品表面可能仍然处于有机-无机的原位转变层结构,非晶碳薄膜较薄,在双束扫描电镜下无法观察到明显膜厚。但是从图5a 中可以看出,白亮层下方的基底衬度发生了明显变化,说明 PET 薄膜表层以及亚表层的结构可能发生了变化。而对于其他三个样品,其薄膜厚度分别为 49 nm(1.0 A)、106 nm (1.5 A)、151 nm(2.0 A)。从图4 可以看出,靠近薄膜的基底的衬度发生明显变化,说明该部分样品的聚合物链结构可能发生了变化。这可能是由于碳等离子体的轰击是的聚合物基底亚表层聚合物链发生随机断裂,断裂后的活性聚合物链会重新反应。此外,可以看出非晶碳薄膜与 PET 薄膜之间存在明显白亮层,这可能是由于等离子体轰击造成样品亚表层聚合物链断裂重排,同时部分活性聚合物链会溢出基底表面,与碳自由基发生随机反应生成交联结构,从而诱导聚合物表面的有机碳质结构向无机非晶碳结构转变。而对于 0.5 A 下制得的样品薄膜厚度不明显可以说明低电流下碳等离子体主要起到轰击作用,薄膜表面结构主要是基底断裂的活性聚合物链之间的相互反应,只有少部分碳自由基参与反应。

  • 图5 不同等离子体处理电流下制得的 PET 薄膜的 FIB 截面形貌

  • Fig.5 FIB-SEM morphologies of PET films with different carbon plasma treating currents

  • 根据上述试验结果可以推测,碳等离子体轰击聚合物表面主要包括三个步骤:等离子体的轰击使得聚合物表面的高分子链发生断裂活化;断裂后的聚合物链与碳自由基反应生成有机链与无机链相连的原位转变层;类外延生长出非晶碳薄膜。碳等离子体轰击 PET 薄膜表面的生长原理如图6 所示。在样品制备过程中,首先对其进行氩等离子体刻蚀,氩等离子体的轰击使得PET薄膜表面上的聚合物链发生小程度上的断裂活化,C-C 以及 C-H 发生随机断裂。第二阶段里,在电场作用下,氩等离子体与石墨靶发生碰撞产生大量的碳等离子体以及碳自由基,碳等离子体作用于 PET 薄膜更深表面,使得其亚表层的聚合物链发生断裂。随着碳等离子体能量的持续增大,PET 薄膜中更多的 C-H、C-C、C-O 及 C=O 发生随机断裂,当轰击能量进一步增大时,结构中的芳环也可能会发生随机断裂。断裂后的活性聚合物链一方面会自身发生随机反应生成交联结构(H 型或 Y 型交联)[30-31],另一方面则会与碳自由基发生随机反应生成交联或者支化结构。同时,分子量较小的活性聚合物链还会溢出PET薄膜表面与碳自由基发生反应,形成有机-无机的复合结构。随着反应的持续进行,交联结构密度达到一定程度,阻碍基底官能团继续溢出表面发生反应。最后表面只剩下碳自由基之间的随机反应,在 PET 薄膜表面生成非晶碳薄膜,外层的非晶碳薄膜类似于晶体的外延生长一般在聚合物表面生长。在这一过程中,碳等离子体的轰击诱导效应使得聚合物表面的有机碳质结构向无机非晶碳结构发生转变,形成了有机-无机碳链的复合结构,即原位转变层,在此基础上类外延生长出非晶碳薄膜。

  • 图6 碳等离子体轰击 PET 薄膜的原位生长机制

  • Fig.6 In-situ growth mechanism of a-C films on PET films

  • 2.2 润湿性能分析

  • 图7 显示了不同电流大小下碳等离子体轰击聚合物表面制得的样品的接触角大小,其中插图是样品的表面粗糙度结果。从图中可以看出,随着处理电流的增大,样品表面的接触角呈现先增后减的趋势(0.0 A:87.4°,0.5 A:97.9°,1.0 A:91.1°,1.5 A:90.3°,2.0 A:80.5°)。样品表面润湿性能主要由表面粗糙度以及表面化学成分决定[32]。从表面粗糙度结果可以看出,随着碳等离子体轰击电流的增大,薄膜表面粗糙度出现先增后减再增的趋势。对于 0.5 A 下制得的样品,碳等离子体的轰击使得聚合物表层以及亚表层的有机高分子发生随机断裂,形成活性自由基(苯环、羧基、酯基、甲基、氢自由基等),这些活性自由基会溢出基底表面与碳自由基反应形成交联结构。氢自由基的溢出可能在表面形成了 CH2 键,使得悬空碳键变得越来越饱和,氢化表面,同时表面粗糙度增大,使得样品表面疏水,接触角达到了 97.9 °。当处理电流进一步增大时,交联结构密度增大,活性自由基无法溢出表面,只有碳自由基之间的反应,形成非晶碳薄膜,样品表面转变为亲水表面。同时样品表面的碳颗粒发生聚集长大,薄膜粗糙度增大,表面越亲水。大电流下,碳等离子体的持续轰击可能会使得表面官能团中的氢离子发生断裂生成 H2溢出表面,发生脱氢反应,未配对的 sp 2 键合碳原子会连接在一起形成 6 重环,以最大限度的减少薄膜内能[19],从而使得薄膜表面更加亲水。

  • 图7 不同碳等离子体电流下制得的样品的润湿性能

  • Fig.7 Wetting properties of samples prepared under different carbon plasma currents

  • 2.3 光学透过性分析

  • PET 薄膜由于具有良好的光学透过性而广泛应用于电子机械领域,因此测量了经过碳等离子体处理样品的透光性能。图8 为不同电流大小下碳等离子体轰击聚合物表面制得的样品的透光率,其中插图为样品的实物图。从图中可以看出,未经处理的 PET 薄膜在 550 nm 处的透过率为 87.461%。对于 0.5 A 下制得的样品在该处的透过率为 87.077%,仅下降了 0.439%,仍然表面出良好的光学透过性。随着处理电流的进一步增大,样品的透过率逐渐降低 (1.0 A:83.816%,1.5 A:65.095%,2.0 A:55.336%)。这是由于随着碳等离子体处理电流的增大,样品表面的非晶碳薄膜厚度越厚,碳化程度增大。而对于低电流下制得的样品,碳等离子体主要起到轰击作用,表面的非晶碳薄膜较薄。

  • 图8 不同碳等离子体轰击电流下制得的样品的透光率

  • Fig.8 Light transmittance of samples prepared under different carbon plasma bombardment currents

  • 2.4 耐老化性能分析

  • 在 ASTM G155-2005A 标准下,干湿交替照射 336 h,观察其表面形貌。结果氙灯照射的样品表面颜色均变浅,同时对于镀有非晶碳薄膜的样品表面薄膜发生部分剥落。图9 为经过氙灯照射后不同碳等离子体处理电流大小下 PET 薄膜的表面形貌图。从图中可以看出,未经处理的 PET 薄膜以及低电流 (0.5 A、1.0 A)下的样品表面在氙灯照射下表面产生了老化,且存在白色小颗粒。这些白色小颗粒可能与PET薄膜表面的不饱和双键、羧基和羰基有关,在氙灯照射下,这些官能团容易发生降解从而导致聚合物链断裂,断裂后的聚合物链相互反应,团聚成小颗粒[2133]。对于 0.5 A 下制得的样品老化前后表面无明显变化,而碳等离子体电流大小为 1.0 A、 1.5 A 及 2.0 A 下制得的样品则发生了不同程度的较为明显的老化损伤。对于 1.0 A 下制得的样品,由于该电流下制得的非晶碳薄膜较薄,薄膜的亚表层主要是聚合物链结构和无机碳结构的混合物,有很多羰基和末端羟基,在氙灯的照射下容易发生降解。而对于1.5 A及2.0 A的样品则出现了开裂甚至剥落的现象。由图4 可以看出经过碳等离子体处理的样品表面存在溅射所造成的痕迹,在氙灯的照射下,薄膜中的应力会沿着溅射痕迹释放,从而导致薄膜开裂。2.0 A 的样品存在较高的薄膜内部压应力以及较差的膜-基韧性匹配,从而导致非晶碳薄膜出现了 “鼓包”现象,同时氙灯老化使得不饱和双键发生降解,薄膜发生剥落。进一步我们观察了剥落后样品表面形貌,可以看出非晶碳薄膜仍然存在,说明可能存在两层碳质结构,证实了原位转变层的存在。

  • 图9 不同碳等离子体轰击电流下制得的样品老化后的表面形貌

  • Fig.9 Surface morphologies of samples prepared under different carbon plasma bombardment currents after aging

  • 2.5 耐磨性能分析

  • 将样品(30 mm×20 mm)用双面胶固定在钢片上,再将钢片固定在摩擦机上,选取聚四氟乙烯(PTFE)聚合物为对磨样品,在样品中间位置 (无双面胶)处进行往复摩擦。观察摩擦后样品的磨痕形貌,其结果如图10 所示,可以看出随着处理电流的增大,表面的非晶碳薄膜增厚,样品表面的磨痕宽度逐渐减小。图10b 为 PET 薄膜与 PTFE 摩擦后的表面形貌图,可以看出由于 PET 薄膜较软,在摩擦过程中容易发生塑性变形,同时其磨痕边缘存在明显的挤压变形。对于 0.5 A 电流下制得的样品,其划痕宽度与未镀膜样品相差不大,这是由于低电流下碳等离子体主要起到轰击效应,类外延生长的非晶碳薄膜较薄,表面仍然存在有机-无机混合结构,即 C-O 以及 C-H 键等。在与 PTFE 的摩擦过程中,由于受到摩擦力的作用,表面的 C-H、C-C 以及 C-O 键可能发生断裂,使得表面产生悬键,引起摩擦副与样品之间的黏着作用。此外,对于 0.5 A 下制得的样品磨痕边缘挤压变形明显减少。而随着碳等离子体处理电流的增大,样品表面的磨痕宽度逐渐减小,同时其磨痕边缘的变形明显减少。这可能是由于碳等离子体处理电流增大,类外延生长出非晶碳薄膜,表面主要是碳自由基之间的反应,生成环形结构以及双键等,在摩擦过程中,只有少部分 C-C 键发生断裂,黏着作用减弱。进一步观察经过摩擦后的样品磨痕处形貌,可以看出经过摩擦后的样品表面仍然存在明显碳颗粒,即非晶碳薄膜没有发生剥落,但是在磨痕处部分样品表面出现了微裂纹,这是由于碳基材料属于易碎的硬质材料,在摩擦过程中,软质基底发生塑性变形,而碳基薄膜则产生微裂纹。这一结果不仅说明类外延生长的非晶碳薄膜能增强样品表面硬度,提高其耐磨性,减缓其在使用过程中的变形损伤,对 PET 薄膜具有较强的防护作用,同时也表明非晶碳薄膜与 PET 薄膜较强结合力。

  • 图10 薄膜样品与 PTFE 对磨后磨痕形貌图

  • Fig.10 Morphology of wear scar after grinding between samples and PTFE

  • 2.6 柔性分析

  • PET 薄膜在应用过程中具有柔性及透明性的优点,而在柔性聚合物表面制备硬质涂层,它在使用过程中表面防护薄膜的柔性也备受关注。在这里选取0.5 A及2.0 A下制得的样品将其往复弯折并保持一定弧度后,观察其弯折处的形貌。图11a、c 为往复弯折后的形貌,图11b、11d 为保持弧度后折痕处的形貌。可以看出 0.5 A 下制得的样品在反复弯折以及弯曲后表面薄膜没有出现裂纹(表面痕迹是溅射过程中产生如图3 所示),而 2.0 A 下制得的样品表面则出现了明显的裂纹,同时这些裂纹均平行于折痕出现。这主要是由于在低电流下,碳等离子体主要起到轰击效应,诱导聚合物表面有机高分子碳质结构向无机非晶碳转变,类外延生长的非晶碳薄膜较薄,应力较低。随着处理电流的增大,表面薄膜厚度增厚,碳等离子体的轰击能量增强,薄膜中应力随之增大[34],在弯曲过程中应力会沿着裂纹释放。对于往复弯折的样品,薄膜受力弯曲使得其在裂纹处受到挤压,因此裂纹明显(图11c),而将样品保持弧度静置,其应力缓慢从裂纹处释放,表面裂纹并不明显(图11d)。尽管薄膜表面出现了明显的裂纹,但原位转变层的存在,提高了非晶碳薄膜与 PET 薄膜之间的结合力,从而使得表面薄膜没有出现大面积剥落。

  • 图11 往复弯折以及保持弧度后样品表面形貌

  • Fig.11 Surface morphology of samples after reciprocating bending and keeping the curvature

  • 3 结论

  • (1)碳等离子体在柔性 PET 薄膜表面的生长主要分为三个过程:等离子体轰击活化;活性自由基与碳自由基之间随机反应,形成原位转变层;类外延生长出非晶碳薄膜。

  • (2)通过磁控溅射将碳等离子体持续作用于柔性 PET 薄膜表面,可以诱导聚合物表面有机高分子碳质结构向无机非晶碳质结构转变,形成有机-无机的原位转变层,从而在表面类外延生长出非晶碳薄膜。由于原位转变层的存在,非晶碳薄膜与柔性 PET 间存在较强结合力,在弯曲使用过程中不会发生剥落,具有一定的柔性。

  • (3)低电流下制得的样品的透光率与基底相比下降较小,具有较高的光学透过率,同时还具有疏水性、耐老化性能以及柔性。而高电流下制得的样品表面硬度显著提升,具有耐磨防护性能。

  • 参考文献

    • [1] MIALON L,PEMBA A G,MILLER S A.Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid[J].Green Chemistry,2010,12(10):1704-1706.

    • [2] YAO L,FANG X,GU W,et al.Fully transparent quantum dot light-emitting diode with a laminated top graphene anode[J].ACS Applied & Materials Interfaces,2017,9(28):24005-24010.

    • [3] EMAMIAN S,NARAKATHU B B,CHLAIHAWI A A,et al.Screen printing of flexible piezoelectric based device on polyethylene terephthalate(PET)and paper for touch and force sensing applications[J].Sensors and Actuators A:Physical,2017,263(15):639-647.

    • [4] 刘月豹,巩燕龙,郑琦林,等.触摸屏用低方阻PET导电薄膜镀膜工艺研究[J].玻璃,2020,47(3):41-45.LIU Yuebao,GONG Yanlong,ZHENG Qilin,et al.Study on coating process of low square resistance pet conductive film for touch screen[J].Glass,2020,47(3):41-45.(in Chinese)

    • [5] LIU Z,YOU P,XIE C,et al.Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J].Nano Energy,2016,28:151-157.

    • [6] 梁雅倩,武晓鹂,郑国源,等.柔性钙钛矿太阳能电池的研究进展[J].人工晶体学报,2017,46(4):634-640.LIANG Yaqian,WU Xiaoli,ZHENG Guoyuan,et al.Research progress of flexible perovskite solar cells[J].Journal of Synthetic Crystals,2017,46(4):634-640.(in Chinese)

    • [7] INDEST T,LAINE J,RIBITSCH V,et al.Adsorption of chitosan on PET films monitored by quartz crystal microbalance[J].Biomacromolecules,2008,9(8):2207-2214.

    • [8] BORCIA C,PUNGA I L,BORCIA G.Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma[J].Applied and Surface Science,2014,317:103-110.

    • [9] 王贵美.低温等离子体在塑料聚合物材料表面改性中的应用[J].塑料科技,2020,48(5):125-128.WANG Guimei.Application of low temperature plasma in surface modification of plastic polymer materials[J].Plastic Science and Technology,2020,48(5):125-128.(in Chinese)

    • [10] 李宏英,傅佳佳,王鸿博,等.利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J].材料导报,2018,32(4):626-630,649.LI Hongyin,FU Jiajia,WANG Hongbo,et al.Enhancing the hydrophilic modification on effect of electron beam(EB)irradiation up on PET fabrics by introducing plasma pretreatment[J].Materials Review,2018,32(4):626-630,649.(in Chinese)

    • [11] ZHU Y Z,ZHANG F,WANG D.A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency[J].Journal of Materials Chemistry A,2013,18:5758-5765.

    • [12] 李春伟,曹奇,张义.离子注入聚合物表面改性的研究[J].化工新型材料,2013,41(3):139-142.LI Chunwei,CAO Qi,ZHANG Yi.Research of modification by ion implantation on polymer surface [J].New chemical materials,2013,41(3):139-142.(in Chinese)

    • [13] 熊党生,张彦华,徐嘉东.氮离子注入超高分子量聚乙烯的生物摩擦学性能[J].中国生物医学工程学报,2001(4):380-386.XIONG Dangsheng,ZHANG Yanhua,XU Jiadong.Biotribological properties of ion implanted UHMWPE[J].Chinese Journal of Biomedical Engineering,2001(4):380-386.(in Chinese)

    • [14] NARAYANA V L,RAOL B.A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites[J].Materials Today:Proceedings,2021,44(1):1988-1994.

    • [15] VATANPOUR V,ZOQI N.Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes[J].Applied Surface Science,2017,396:1478-1489.

    • [16] KHONGNAKORN W,BOOTLUCK W,JUTAPORN P.Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling[J].Journal of Water Process Engineering,2020,38:101633.

    • [17] SUNDRIYAL P,SAHU M,PRAKASH O,et al.Long-term surface modification of PEEK polymer using plasma and PEG silane treatment[J].Surface and Interfaces,2021,25:101253.

    • [18] KULL K R,STEEN M S,FISHER E R.Surface modification with nitrogen-containing plasmas to produce hydrophilic,low-fouling membranes[J].Journal of Membrane Science,2005,246:203-215.

    • [19] SANCHIS M R,BLANES V,BLANES M,et al.Surface modification of low density polyethylene(LDPE)film by low pressure O2 plasma treatment[J].European Polymer Journal,2006,42(7):1558-1568.

    • [20] CATENA A,AGNELLO S,ROSKEN L M,et al.Characteristics of industrially manufactured amorphous hydrogenated carbon(a-C:H)depositions on high-density polyethylene[J].Carbon,2016,96:661-671.

    • [21] CATENA A,AGNELLO S,CANNAS M,et al.Evolution of the sp2 content and revealed multilayer growth of amorphous hydrogenated carbon(a-C:H)films on selected thermoplastic materials[J].Carbon,2017,117:351-359.

    • [22] CATENA A,GUO Q,KUNZE M R,et al.Morphological and chemical evolution of gradually deposited diamond-like carbon films on polyethylene terephthalate:from sub-plantation processes to structural reorganization by intrinsic stress release phenomena[J].ACS Applied Materials & Interfaces,2016,16(8):10636-10646.

    • [23] BOEVA Z A,CATENA A,HOFLER L,et al.Improved water barrier properties of polylactic acid films with an amorphous hydrogenated carbon(a-C:H)coating[J].Carbon,2017,120:157-164.

    • [24] GUAN W,WANG Y,FISCHER C B,et al.Novel strategy to improve the tribological property of polymer:in-situ growing amorphous carbon coating on the surface[J].Applied Surface Science,2020,505:144626.

    • [25] WANG Y,GUAN W,FISCHER CB,et al.Microstructures,mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces[J].Applied Surface Science,2021,563:150309.

    • [26] SU Y,WANG Y,WANG C,et al.In-situ growing amorphous carbon film with attractive mechanical and tribological adaptability on PEEK via continuous plasma-induced process[J].Vacuum,2021,187:110147.

    • [27] SVORCIK V,KOTAL V,SLEPICKA P,et al.Modification of surface properties of high and low density polyethylene by Ar plasma discharge[J].Polymer Degradation and Stability,2006,91(6):1219-1225.

    • [28] SVORCIK V,KOTAL V,SLEPICKA P,et al.Modification of surface properties of polyethylene by Ar plasma discharge[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2006,244(2):365-372.

    • [29] BOERIO F J,BAHLS K,MCGRAW G E.Vibrational analysis of polyethylene terephthalate and its deuterated derivatives[J].Journal of Polymer Science.Part A-2,Polymer Physics,1976,14:1029-1046.

    • [30] COSTA L,BRACCO P.26-mechanisms of cross-linking,oxidative degradation,and stabilization of UHMWPE [J].UHMWPE Biomaterials Handbook,2016,43:467-487.

    • [31] KIM S,KANG P H,NHO Y C,et al.Effect of electron beam irradiation on physical properties of ultrahigh molecular weight polyethylene [J].Journal of Applied Polymer Science,2005,97(1):103-116.

    • [32] HENG L P,GUO T Q,WANG B,et al.In situ electric-driven reversible switching of water-droplet adhesion on a superhydrophobic surface[J].Journal of Materials Chemistry,2020,83:430-437.

    • [33] YANG C,LU Y,CAO L,et al.Polymer degradation mechanism and chemical composition relationship of hot-poured asphaltic crack repair material during thermal aging exploiting fluorescence microscopy and gel permeation chromatography[J].Construction and Building Materials,2021,302:124412.

    • [34] LACKNER J,WALDHAUSER W,ALAMANOU A,et al.Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces[J].Bulletin of the Polish Academy of Sciences:Technical Sciences,2010,58(2):281-294.

  • 参考文献

    • [1] MIALON L,PEMBA A G,MILLER S A.Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid[J].Green Chemistry,2010,12(10):1704-1706.

    • [2] YAO L,FANG X,GU W,et al.Fully transparent quantum dot light-emitting diode with a laminated top graphene anode[J].ACS Applied & Materials Interfaces,2017,9(28):24005-24010.

    • [3] EMAMIAN S,NARAKATHU B B,CHLAIHAWI A A,et al.Screen printing of flexible piezoelectric based device on polyethylene terephthalate(PET)and paper for touch and force sensing applications[J].Sensors and Actuators A:Physical,2017,263(15):639-647.

    • [4] 刘月豹,巩燕龙,郑琦林,等.触摸屏用低方阻PET导电薄膜镀膜工艺研究[J].玻璃,2020,47(3):41-45.LIU Yuebao,GONG Yanlong,ZHENG Qilin,et al.Study on coating process of low square resistance pet conductive film for touch screen[J].Glass,2020,47(3):41-45.(in Chinese)

    • [5] LIU Z,YOU P,XIE C,et al.Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J].Nano Energy,2016,28:151-157.

    • [6] 梁雅倩,武晓鹂,郑国源,等.柔性钙钛矿太阳能电池的研究进展[J].人工晶体学报,2017,46(4):634-640.LIANG Yaqian,WU Xiaoli,ZHENG Guoyuan,et al.Research progress of flexible perovskite solar cells[J].Journal of Synthetic Crystals,2017,46(4):634-640.(in Chinese)

    • [7] INDEST T,LAINE J,RIBITSCH V,et al.Adsorption of chitosan on PET films monitored by quartz crystal microbalance[J].Biomacromolecules,2008,9(8):2207-2214.

    • [8] BORCIA C,PUNGA I L,BORCIA G.Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma[J].Applied and Surface Science,2014,317:103-110.

    • [9] 王贵美.低温等离子体在塑料聚合物材料表面改性中的应用[J].塑料科技,2020,48(5):125-128.WANG Guimei.Application of low temperature plasma in surface modification of plastic polymer materials[J].Plastic Science and Technology,2020,48(5):125-128.(in Chinese)

    • [10] 李宏英,傅佳佳,王鸿博,等.利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J].材料导报,2018,32(4):626-630,649.LI Hongyin,FU Jiajia,WANG Hongbo,et al.Enhancing the hydrophilic modification on effect of electron beam(EB)irradiation up on PET fabrics by introducing plasma pretreatment[J].Materials Review,2018,32(4):626-630,649.(in Chinese)

    • [11] ZHU Y Z,ZHANG F,WANG D.A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency[J].Journal of Materials Chemistry A,2013,18:5758-5765.

    • [12] 李春伟,曹奇,张义.离子注入聚合物表面改性的研究[J].化工新型材料,2013,41(3):139-142.LI Chunwei,CAO Qi,ZHANG Yi.Research of modification by ion implantation on polymer surface [J].New chemical materials,2013,41(3):139-142.(in Chinese)

    • [13] 熊党生,张彦华,徐嘉东.氮离子注入超高分子量聚乙烯的生物摩擦学性能[J].中国生物医学工程学报,2001(4):380-386.XIONG Dangsheng,ZHANG Yanhua,XU Jiadong.Biotribological properties of ion implanted UHMWPE[J].Chinese Journal of Biomedical Engineering,2001(4):380-386.(in Chinese)

    • [14] NARAYANA V L,RAOL B.A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites[J].Materials Today:Proceedings,2021,44(1):1988-1994.

    • [15] VATANPOUR V,ZOQI N.Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes[J].Applied Surface Science,2017,396:1478-1489.

    • [16] KHONGNAKORN W,BOOTLUCK W,JUTAPORN P.Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling[J].Journal of Water Process Engineering,2020,38:101633.

    • [17] SUNDRIYAL P,SAHU M,PRAKASH O,et al.Long-term surface modification of PEEK polymer using plasma and PEG silane treatment[J].Surface and Interfaces,2021,25:101253.

    • [18] KULL K R,STEEN M S,FISHER E R.Surface modification with nitrogen-containing plasmas to produce hydrophilic,low-fouling membranes[J].Journal of Membrane Science,2005,246:203-215.

    • [19] SANCHIS M R,BLANES V,BLANES M,et al.Surface modification of low density polyethylene(LDPE)film by low pressure O2 plasma treatment[J].European Polymer Journal,2006,42(7):1558-1568.

    • [20] CATENA A,AGNELLO S,ROSKEN L M,et al.Characteristics of industrially manufactured amorphous hydrogenated carbon(a-C:H)depositions on high-density polyethylene[J].Carbon,2016,96:661-671.

    • [21] CATENA A,AGNELLO S,CANNAS M,et al.Evolution of the sp2 content and revealed multilayer growth of amorphous hydrogenated carbon(a-C:H)films on selected thermoplastic materials[J].Carbon,2017,117:351-359.

    • [22] CATENA A,GUO Q,KUNZE M R,et al.Morphological and chemical evolution of gradually deposited diamond-like carbon films on polyethylene terephthalate:from sub-plantation processes to structural reorganization by intrinsic stress release phenomena[J].ACS Applied Materials & Interfaces,2016,16(8):10636-10646.

    • [23] BOEVA Z A,CATENA A,HOFLER L,et al.Improved water barrier properties of polylactic acid films with an amorphous hydrogenated carbon(a-C:H)coating[J].Carbon,2017,120:157-164.

    • [24] GUAN W,WANG Y,FISCHER C B,et al.Novel strategy to improve the tribological property of polymer:in-situ growing amorphous carbon coating on the surface[J].Applied Surface Science,2020,505:144626.

    • [25] WANG Y,GUAN W,FISCHER CB,et al.Microstructures,mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces[J].Applied Surface Science,2021,563:150309.

    • [26] SU Y,WANG Y,WANG C,et al.In-situ growing amorphous carbon film with attractive mechanical and tribological adaptability on PEEK via continuous plasma-induced process[J].Vacuum,2021,187:110147.

    • [27] SVORCIK V,KOTAL V,SLEPICKA P,et al.Modification of surface properties of high and low density polyethylene by Ar plasma discharge[J].Polymer Degradation and Stability,2006,91(6):1219-1225.

    • [28] SVORCIK V,KOTAL V,SLEPICKA P,et al.Modification of surface properties of polyethylene by Ar plasma discharge[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2006,244(2):365-372.

    • [29] BOERIO F J,BAHLS K,MCGRAW G E.Vibrational analysis of polyethylene terephthalate and its deuterated derivatives[J].Journal of Polymer Science.Part A-2,Polymer Physics,1976,14:1029-1046.

    • [30] COSTA L,BRACCO P.26-mechanisms of cross-linking,oxidative degradation,and stabilization of UHMWPE [J].UHMWPE Biomaterials Handbook,2016,43:467-487.

    • [31] KIM S,KANG P H,NHO Y C,et al.Effect of electron beam irradiation on physical properties of ultrahigh molecular weight polyethylene [J].Journal of Applied Polymer Science,2005,97(1):103-116.

    • [32] HENG L P,GUO T Q,WANG B,et al.In situ electric-driven reversible switching of water-droplet adhesion on a superhydrophobic surface[J].Journal of Materials Chemistry,2020,83:430-437.

    • [33] YANG C,LU Y,CAO L,et al.Polymer degradation mechanism and chemical composition relationship of hot-poured asphaltic crack repair material during thermal aging exploiting fluorescence microscopy and gel permeation chromatography[J].Construction and Building Materials,2021,302:124412.

    • [34] LACKNER J,WALDHAUSER W,ALAMANOU A,et al.Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces[J].Bulletin of the Polish Academy of Sciences:Technical Sciences,2010,58(2):281-294.

  • 手机扫一扫看