en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李太江,男,1973年出生,硕士,研究员。主要研究方向为电站设备全寿命周期智能检测及延寿新技术。E-mail:litaijiang@tpri.com.cn

通讯作者:

孙琦,男,1991年出生,学士,工程师。主要研究方向为电站设备材料的腐蚀与防护。E-mail:sunqi@tpri.com.cn

中图分类号:TG178

DOI:10.11933/j.issn.1007−9289.20220215001

参考文献 1
夏婷,张木梓,陈杨,等.全球低风速风电发展现状与展望[J].水力发电,2022,48(6):105-108,118.XIA Ting,ZHANG Muzi,CHEN Yang,et al.Current status quo and future of global low wind speed power[J].Water Power,2022,48(6):105-108,118.(in Chinese)
参考文献 2
李博媛,任重远.亚太地区能源转型前景分析[J].国际石油经济,2022,30(3):52-59.LI Boyuan,REN Zhongyuan.The prospect of energy transformation in Asia-Pacific region[J].International Petroleum Economics,2022,30(3):52-59.(in Chinese)
参考文献 3
POTRČ SANJA,ČUČEK LIDIJA,MARTIN,MARIANO,et al.Sustainable renewable energy supply networks optimization — The gradual transition to a renewable energy system within the European Union by 2050[J].Renewable and Sustainable Energy Reviews,2021,146:111186.
参考文献 4
BASHIR Mohamed Bashir Ali.Principle parameters and environmental impacts that affect the performance of wind turbine:An overview[J].Arabian Journal for Science and Engineering,2021:1-19.
参考文献 5
夏云峰.2020 年欧洲新增风电装机 14.7 GW[J].风能,2021(3):36-43.XIA Yunfeng.14.7 GW of new wind power installed in Europe in 2020 [J].Wind Energy,2021(3):36-43.(in Chinese)
参考文献 6
李昊璋,刘苹元,王锦鸿,等.我国风电产业的发展现状分析及未来展望[J].机电信息,2020(21):91-94.LI Haozhang,LIU Pingyuan,WANG Jinhong,et al.Analysis of the development status and future prospects of my country’ s wind power industry[J].Mechanical and Electrical Information,2020(21):91-94.(in Chinese)
参考文献 7
WEI Youzhou,ZOU Qingping,LIN Xianghong.Evolution of price policy for offshore wind energy in China:Trilemma of capacity,price and subsidy[J].Renewable and Sustainable Energy Reviews,2021,136:110366.
参考文献 8
LI Jidong,CHEN Shijun,WU Yuqiang,et al.How to make better use of intermittent and variable energy?A review of wind and photovoltaic power consumption in China[J].Renewable and Sustainable Energy Reviews,2021,137:110626.
参考文献 9
彭光博,向月,陈文溆乐,等.“双碳”目标下电力系统风电装机与投资发展动力学推演及分析[J/OL].电力自动化设备[2022-09-15].https://doi.org/10.16081/j.epae.202205013.PENG Gangbo,XIANG Yue,CHEN Wenshule,et al.Analysis on the development trend of traditional fossil energy and new energy under “double carbon” goal[J/OL].Electric Power Automation Equipment[2022-09-15].https://doi.org/10.16081/j.epae.202205013.(in Chinese)
参考文献 10
殷仁豪.“双碳”背景下新能源基地规划发展趋势[J].上海节能,2022(3):265-271.YIN Renhao.Planning development trend of new energy base under “Dual Carbon” background[J].Shanghai Energy Conservation,2022(3):265-271.(in Chinese)
参考文献 11
张希良,黄晓丹,张达,等.碳中和目标下的能源经济转型路径与政策研究[J].管理世界,2022,38(1):35-66.ZHAN Xiliang,HUANG Xiaodan,ZHANG Da,et al.Research on the pathway and policies for china’s energy and economy transformation toward carbon neutrality[J].Management World,2022,38(1):35-66.(in Chinese)
参考文献 12
清洁能源低碳时代新动力[J].科学大观园,2021(19):10-11.Clean energy,a new driving force in the low-carbon era[J].Grand Garden of Science,2021(19):10-11.(in Chinese)
参考文献 13
2021 年上半年风电建设和运行情况[J].电力科技与环保,2021,37(4):19.Wind power construction and operation in the first half of 2021[J].Electric Power Technology and Environmental Protection,2021,37(4):19.(in Chinese)
参考文献 14
王芳.探索“双碳”目标下的“十四五”风电发展路径[J].风能,2021(4):42-45.WANG Fang.Explore the development path of wind power during the “14th Five-Year Plan” period under the “double carbon” goal[J].Wind Energy,2021(4):42-45.(in Chinese)
参考文献 15
DALILI N,EDRISY A,CARRIVEAU R.A review of surface engineering issues critical to wind turbine performance[J].Renew Sustain Energy Rev,2009,13(2):428-438.
参考文献 16
王风云,王辉.国内外海上风电场现状及其基础设施研究[J].中国造船,2011,52(A02):8.WANG Fengyun,WANG Hui.Research on the status and infrastructures of off-shore wind farm all over the world[J].Shipbuilding of China,2011,52(A02):8.(in Chinese)
参考文献 17
BEJGER A,FRANK E,BARTOSZKO P.Failure analysis of wind turbine planetary gear[J].Energies,2021,14:6768.
参考文献 18
王晶晶.风机塔筒的冲刷磨损和腐蚀行为研究及Fluent数值模拟[D].乌鲁木齐:新疆大学,2015.WANG Jingjing.A study on the erosion wear and corrosion behavior of wind turbine tower and numerical simulation by fluent[D].Urumchi:Xinjiang University,2015.(in Chinese)
参考文献 19
詹耀.海上风电机组的防腐技术与应用[J].现代涂料与涂装,2012,15(2):15-18.ZHAN Yao.Anticorrosion technology and application of offshore wind turbines[J].Modern Paint & Finishing,2012,15(2):15-18.(in Chinese)
参考文献 20
MOMBER A.Corrosion and corrosion protection of support structures for offshore wind energy devices(OWEA)[J].Materials and Corrosion,2011,62(5):391-404.
参考文献 21
胡苏杭,刘碧燕.海上风电防腐技术现状及研究方向[J].风能,2019(11):88-91.HU Suhang,LIU Biyan.Status quo and research direction of offshore wind power anticorrosion technology[J].Wind Energy,2019(11):88-91.(in Chinese)
参考文献 22
任伟,陈亚宾,徐华利,等.海上风电设备腐蚀机理及腐蚀现状研究[J].船舶工程,2021,43(S1):1-5.REN Wei,CHEN Yabin,XU Huali,et al.Study of corrosion mechanism and corrosion status of offshore wind power equipment[J].Ship Engineering,2021,43(S1):1-5.(in Chinese)
参考文献 23
刘雪键,程旭东,彭文山,等.海水泥沙含量对945钢冲刷腐蚀的影响[J].电镀与精饰,2019,41(6):11-17.LIU Xuejian,CHENG Xudong,PENG Wenshan,et al.Effect of sand content on erosion-corrosion behavior of 945 steel [J].Plating and Finishing,2019,41(6):11-17.(in Chinese)
参考文献 24
GIOURNTAS L,HODGKIESS T,GALLOWAY A M.Comparative study of erosion-corrosion performance on a range of stainless steels[J].Wear,2015,332-333:1051-1058.
参考文献 25
MENG H,HU X,NEVILLE A.A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design[J].Wear,2007,263(1-6):355-362.
参考文献 26
邓达纮,陆军.浅析海上风电施工与运维装备[J].机电工程技术,2019,48(8):45-47.DENG Dahong,LU Jun.Brief analysis of offshore wind power construction and maintenance equipment[J].Mechanical & Electrical Engineering Technology,2019,48(8):45-47.(in Chinese)
参考文献 27
刘永超,郭德瑞,李帅,等.风电机组高强度螺栓的失效形式分析[J].太阳能,2021(1):44-50.LIU Yongchao,GUO Derui,LI Shuai,et al.Failure form analysis of high-strength bolt in wind turbine[J].Solar Energy,2021(1):44-50.(in Chinese)
参考文献 28
赵迪,李云龙,张刚.风电机组高强度连接螺栓断裂原因分析及优化[J].装备制造技术,2020(3):198-200.ZHAO Di,LI Yunlong,ZHANG Gang.Analysis and optimization of high strength connecting bolt fracture of wind turbine[J].Equipment Manufacturing Technology Wind Turbine,2020(3):198-200.(in Chinese)
参考文献 29
王荣.风能发电机组结构件的失效分析与预防(待续)第1讲螺栓的失效分析与预防[J].理化检验(物理分册),2019,55(6):371-380.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(to be continued)lecture 1 failure analysis and prevention of bolts[J].Physical Testing and Chemical Analysis,2019,55(6):371-380.(in Chinese)
参考文献 30
LIN Y,TU L,LIU H,et al.Fault analysis of wind turbines in China[J].Renewable and Sustainable Energy Reviews,2016,55:482-490.
参考文献 31
吴智泉,陈亮,张新,等.风电塔筒高强度螺栓大面积腐蚀分析[J].热加工工艺,2019,48(10):253-259.WU Zhiquan,CHEN Liang,ZHANG Xin,et al.Analysis on large area corrosion of high strength bolts in wind power tower tube[J].Hot Working Technology,2019,48(10):253-259.(in Chinese)
参考文献 32
LACHOWICZ M B,LACHOWICZ M M.Influence of corrosion on fatigue of the fastening bolts[J].Materials,2021,14(6):1485.
参考文献 33
JIN Xin,CHEN Yiming,WANG Lei,et al.Failure prediction,monitoring and diagnosis methods for slewing bearings of large-scale wind turbine:A review[J].Measurement,2021,172:108855.
参考文献 34
王荣.风能发电机组结构件的失效分析与预防(续完)第3讲轴承的失效分析与预防[J].理化检验(物理分册),2019,55(12):815-823.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(Finished)lecture 3 Failure analysis and prevention of bearings[J].Physical Testing and Chemical Analysis,2019,55(12):815-823.(in Chinese)
参考文献 35
张富全,王伟.风电机组中的轴电流分析[J].风能,2017(6):64-67.ZHANG Fuquan,WANG Wei.Shaft current analysis in wind turbines[J].Wind Energy,2017(6):64-67.(in Chinese)
参考文献 36
姜锐,滕伟,刘潇波,等.风电机组发电机轴承电腐蚀故障的分析诊断[J].中国电力,2019,52(6):128-133.JIANG Rui,TENG Wei,LIU Xiaobo,et al.Analysis and diagnosis of electrical corrosion faults of wind turbine generator bearings[J].Electric Power,2019,52(6):128-133.(in Chinese)
参考文献 37
陈星,许峰.风力发电机轴承疲劳失效与电腐蚀故障的辨析[J].机械工程与自动化,2021(5):152-155.CHEN Xing,XU Feng.Differentiation and analysis of bearing fatigue failure and electric corrosion failure of wind turbine[J].Mechanical Engineering & Automation,2021(5):152-155.(in Chinese)
参考文献 38
罗振斌.风电机组发电机轴承电腐蚀故障研究[J].中国科技纵横,2020(1):160-161.LUO Zhenbin.Research on electrical corrosion faults of wind turbine generator bearings[J].Technology and Economic Guide,2020(1):160-161.(in Chinese)
参考文献 39
刘俊.大型风电机组齿轮箱故障诊断系统研究[D].广州:广东工业大学,2013.LIU Jun.Research on fault diagnosis system of gearbox in large wind turbines[D].Guangzhou:Guangdong University of Technology,2013.(in Chinese)
参考文献 40
SPINATO F,TAVNER P J,VAN BUSSEL G J W,et al.Reliability of wind turbine subassemblies[J].IET Renewable Power Generation,2009,3(4):387-401.
参考文献 41
BHARDWAJ U,TEIXEIRA A P,GUEDES SOARES C.Reliability prediction of an offshore wind turbine gearbox[J].Renewable Energy,2019,141:693-706.
参考文献 42
姜荣国,李若辉,张国辉,等.风电齿轮箱小齿轮断齿原因分析[J].失效分析与预防,2016,11(5):315-321.JIANG Rongguo,LI Ruohui,ZHANG Guohui,et al.Failure analysis of cracked gear in wind power gearbox[J].Failure Analysis and Prevention,2016,11(5):315-321.(in Chinese)
参考文献 43
王大伟,崔博,王明军.某风电场 1.5 MW 风电机组齿轮箱点蚀及断齿故障分析[J].风能,2014(5):92-95.WANG Dawei,CUN Bo,WANG Mingjun.Analysis of pitting corrosion and broken gear faults of 1.5mw wind turbine gearbox in a wind farm[J].Wind Energy,2014(5):92-95.(in Chinese)
参考文献 44
王荣.风能发电机组结构件的失效分析与预防(待续)第2讲齿轮的失效分析与预防[J].理化检验(物理分册),2019,55(10):667-675.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(to be continued)lecture 2 Failure analysis and prevention of gears[J].Physical Testing And Chemical Analysis,2019,55(10):667-675.(in Chinese)
参考文献 45
吴辉.风电叶片材料及其防护涂料的发展与应用[J].上海涂料,2015,53(8):26-29.WU Hui.The development and application of wind turbine blade material and protection coatings[J].Shanghai Coatings,2015,53(8):26-29.(in Chinese)
参考文献 46
朱平.对服役中风电叶片表面状态的调查以及对原厂涂装的反思[J].风能,2012(10):42-50.ZHU Ping.An investigation and reflection on the surface condition of wind blades in service[J].Wind Energy,2012(10):42-50.(in Chinese)
参考文献 47
朱平,王建国,史秋生.解决风电叶片前缘磨蚀的一种方案-风电叶片保护膜[C]//2011防腐蚀涂料年会暨第28次全国涂料工业信息年会,武汉,2011-10-24.2011:146-149.ZHU Ping,WANG Jianguo,SHI Qiusheng.A solution to the erosion of the leading edge of wind turbine blades-wind turbine blade protective tape[C]//2011 Anti-Corrosion Coatings Annual Conference and the 28th National Coatings Industry Information Annual Conference,Wuhan,2011-10-24.2011:146-149.(in Chinese)
参考文献 48
MISHNAEVSKY JR L.Toolbox for optimizing antierosion protective coatings of wind turbine blades:overview of mechanisms and technical solutions[J].Wind Energy,2019,22(11):1636-1653.
参考文献 49
MISHNAEVSKY JR L,HASAGER C B,BAK C,et al.Leading edge erosion of wind turbine blades:Understanding,prevention and protection[J].Renewable Energy,2021,169:953-969.
参考文献 50
SAREEN A,SAPRE C A,SELIG M S.Effects of leading edge erosion on wind turbine blade performance[J].Wind Energy,2014,17(10):1531-1542.
参考文献 51
REMPEL Lisa.Rotor blade leading edge erosion-real life experiences[J].Wind Systems Magazine,2012,11:22-24.
参考文献 52
VERMA A S,JIANG Z,REN Z,et al.Effects of onshore and offshore environmental parameters on the leading edge erosion of wind turbine Blades:A comparative study[J].Journal of Offshore Mechanics and Arctic Engineering,2020,143(4):042001.
参考文献 53
KEEGAN M H,NASH D H,STACK M M.On erosion issues associated with the leading edge of wind turbine blades[J].Journal of Physics D:Applied Physics,2013,46(38):383001.
参考文献 54
ALAJMI Abdullah F,RAMULU M.Characterization of the leading-edge erosion of wind turbine blades by sand particles impingement[C]//Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition [2022-09-15].https://doi.org/10.1115/ZMECE2021-71685.
参考文献 55
AHUIR-TORRES J I,SIMANDJUNTAK S,BAUSCH N,et al.Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts(tower,foundation,and nacelle/gearbox)[J].Data in Brief,2019,25:104207.
参考文献 56
PRICE Seth J,FIGUEIRA Rita B.Corrosion protection systems and fatigue corrosion in offshore wind structures:current status and future perspectives[J].Coatings,2017,7(2):25.
参考文献 57
MOMBER Andreas,PLAGEMANN Peter,STENZEL Volkmar,et al.Assessment of corrosion protection systems for offshore wind energy towers-part 1:Introduction and test scenario[J].Stahlbau,2009,78(4):259-266.
参考文献 58
MOMBER Andreas,PLAGEMANN Peter,STENZEL Volkmar,et al.Assessment of corrosion protection systems for offshore wind energy towers—Part 2:Results and conclusions[J].Stahlbau,2009,78(6):394-401.
参考文献 59
詹耀.大型风力发电设备防腐技术及质量控制[J].现代涂料与涂装,2014,17(1):26-30.ZHAN Yao.Anti-corrosion technology and quality control of large wind power generation equipment[J].Modern Paint & Finishing,2014,17(1):26-30.(in Chinese)
参考文献 60
徐祥.沿海风机塔筒防腐蚀涂料的研制及其涂装工艺研究[D].长沙:长沙理工大学,2012.XU Xiang.Research of coastal wind turbine tower anticorrosion coatings and its coating process[D].Changsha:Changsha University of Science & Technology,2012.(in Chinese)
参考文献 61
詹耀.海上风电塔筒的防腐涂装及应用实例[J].上海涂料,2013,51(4):37-42.ZHAN Yao.Offshore wind power tower drum anticorrosion coating and application examples[J].Shanghai Coatings,2013,51(4):37-42.(in Chinese)
参考文献 62
陈川,黄海军,王俊,等.我国湿热海上风电大气区金属重防腐涂料的性能研究[J].装备环境工程,2015,12(4):89-94.CHEN Chuan,HUANG Haijun,WANG Jun,et al.Performance of metal heavy-duty coating in atmospheric zone of humid-hot sea[J].Equipment Environmental Engineering,2015,12(4):89-94.(in Chinese)
参考文献 63
彭儒,张贤惠.新型抗风沙涂料在风电塔筒上的应用[J].上海涂料,2019,57(3):20-22.PENG Ru,ZHANG Xianhu.Application of new anti-sandstorm coatings on wind tower cylinder[J].Shanghai Coatings,2019,57(3):20-22.(in Chinese)
参考文献 64
侯保荣,杨小刚,贾淑香.海洋浪溅区钢结构腐蚀与复层包覆防护实践[J].中国港湾建设,2012(2):70-72.HOU Baorong,YANG Xiaogang,JIA Shuxiang.Practice of corrosion protection and multi-layer covering technology for steel structure in splash zone[J].China Harbour Engineering,2012(2):70-72.(in Chinese)
参考文献 65
侯保荣.钢铁设施在海洋浪花飞溅区的腐蚀行为及其新型包覆防护技术[J].腐蚀与防护,2007(4):174-175,187.HOU Baorong.Corrosion behavior of steel facilities in ocean splash zone and its new coating protection technology [J].Corrosion & Protection,2007(4):174-175,187.(in Chinese)
参考文献 66
乐治济,林毅峰.海上风机基础钢结构防腐蚀设计[J].中国港湾建设,2013(4):18-22.YUE Zhiji,LIN Yifeng.Anticorrosive design for steel structured foundation for offshore wind turbine[J].China Harbour Engineering,2013(4):18-22.(in Chinese)
参考文献 67
高宏飙,陈强,王静,等.PTC 复层矿脂包覆防腐技术在海上风电的应用[J].中国涂料,2013,28(12):39-43.GAO Hongbiao,CHEN Qiang,WANG Jing,et al.Anticorrosion technology application of Petrolatum Tape and Covering(PTC)on offshore wind farm[J].China Coatings,2013,28(12):39-43.(in Chinese)
参考文献 68
高宏飙,诸浩君,钱正宏,等.海上风机单桩基础浪溅区腐蚀及复层包覆防护技术的应用[J].中国港湾建设,2014(5):57-61.GAO Hongbiao,ZHU Haojun,QIAN Zhenghong,et al.Application of corrosion and multi-layer covering protective technology on single piled foundation of offshore wind turbine in splash zone[J].China Harbour Engineering,2014(5):57-61.(in Chinese)
参考文献 69
潘杰,侯保荣,刘佳利,等.PTC 矿脂包覆防腐蚀技术在国内的应用进展[J].腐蚀与防护,2015,36(12):1170-1173.PAN Jie,HOU Baorong,LIU Jiali,et al.Advances in application of petrolatum tape cover anticorrosion technology in China[J].Corrosion & Protection,2015,36(12):1170-1173.(in Chinese)
参考文献 70
周晓天,钭锦周.江苏竹根沙海域海上风机单桩基础防腐技术[J].水电与新能源,2022,36(1):66-69.ZHOU Xiaotian,DOU Jinzhou.Anti-corrosion technology for monopile foundation of offshore wind turbine in jiangsu zhugensha sea area[J].Hydropower and New Energy,2022,36(1):66-69.(in Chinese)
参考文献 71
曾伟.海上风电防腐蚀设计[J].全面腐蚀控制,2020,34(6):97-102.ZENG Wei.Anti-corrosion design of offshore wind power[J].Total Corrosion Control,2020,34(6):97-102.(in Chinese)
参考文献 72
任伟,陈有登,谢志猛,等.海上风电防腐蚀研究现状与前景[J].应用能源技术,2022(2):49-52.REN Wei,CHEN Youdeng,XIE Zhimeng,et al.Research status and prospect of corrosion prevention for offshore wind power[J].Applied Energy Technology,2022(2):49-52.(in Chinese)
参考文献 73
高宏飙,刘碧燕.外加电流阴极保护系统(ICCP)在海上风电的应用[J].腐蚀与防护,2013,34(12):1108-1110.GAO Hongbiao,LIU Biyan.Application of impressed current cathodic protection system(ICCP)to offshore wind farms[J].Corrosion & Protection,2013,34(12):1108-1110.(in Chinese)
参考文献 74
Det Norske Veritas.DNV-RP-B401 — 2011.Cathodic protection design[S].Oslo:Det Norske Veritas,2011.
参考文献 75
NACE International.NACE SP0176—2007.Corrosion control of submerged areas of permanently installed steel offshore structures associated with petroleum production[S].Houston:NACE International,2007.
参考文献 76
DNVGL.DNVGL-OS-C101—2015.Design of offshore steel structures,general-LRFD method[S].Oslo:DNVGL,2015.
参考文献 77
中国国家标准化管理委员会.GB/T 33423—2016,沿海及海上风电机组防腐技术规范[S].北京:中国标准出版社,2016.Standardization Administration of China.GB/T 33423— 2016,Technical specification for anticorrosion of wind turbines in the coastal and offshore area[S].Beijing:Standards Press of China,2016.(in Chinese)
参考文献 78
国家能源局.NB/T 31133—2018,海上风电场风力发电机组混凝土基础防腐蚀技术规范[S].北京:中国电力出版社,2018.National Energy Administration.NB/T 31133—2018.Technical specification of anti-corrosion of offshore wind turbine concrete foundation [S].Beijing:China Electric Power Press,2018.(in Chinese)
参考文献 79
李承宇,王会阳,晁兵,等.风力发电设备防腐涂装[J].电镀与涂饰,2011,30(6):70-72.LI Chengyu,WAGN Huiyang,CHAO Bing,et al.Anti-corrosion coating of wind power equipment[J].Electroplating & Finishing,2011,30(6):70-72.(in Chinese)
参考文献 80
田兆会,李华明.风电装备腐蚀环境分析与涂料防护[J].中国涂料,2009,24(11):6-12.TIAN Zhaohui,LI Huaming.Analysis on corrosion environment of wind power equipment and summary on coatings protection [J].China Coatings,2009,24(11):6-12.(in Chinese)
参考文献 81
杨惠凡,刘丛庆,张鹏,等.海上风电机组叶片表面涂层材料的研制[J].风能,2012(3):76-79.YANG Huifan,LIU Congqing,ZHANG Peng,et al.Development of surface coating materials for offshore wind turbine blades[J].Wind Energy,2012(3):76-79.(in Chinese)
参考文献 82
刘义修.FEVE 风电叶片涂料的制备及性能研究[D].北京:北京化工大学,2013.LIU Yixiu.Preparation and properties of FEVE fluorocarbon resin-based wind turbine blade coatings[D].Beijing:Beijing University of Chemical Technology,2013.(in Chinese)
参考文献 83
刘正伟.风力发电机组风机叶片前缘保护涂料的研制[J].科学技术创新,2021(8):153-155.LIU Zhengwei.Development of protective coating for the leading edge of wind turbine blades[J].Scientific and Technological Innovation,2021(8):153-155.(in Chinese)
参考文献 84
FROST-JENSEN JOHANSEN N,MISHNAEVSKY L,DASHTKAR A,et al.Nanoengineered graphenereinforced coating for leading edge protection of wind turbine blades[J].Coatings,2021,11(9):1104.
参考文献 85
DASHTKAR A,FROST-JENSEN JOHANSEN N,MISHNAEVSKY L,et al.Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection:Properties and performance[J].Polymers and Polymer Composites,2022,30:1–18
参考文献 86
ARMADA S,BJØRGUM A,KNUDSEN O Ø,et al.Organic coatings reinforced with ceramic particles:an erosion study[J].European Wind Energy Conference and Exhibition(EWEC),2010,5:3611-3619.
参考文献 87
DASHTKAR A,HADAVINIA H,SAHINKAYA M N,et al.Rain erosion-resistant coatings for wind turbine blades:A review[J].Polymers and Polymer Composites,2019,27(8):443-475.
参考文献 88
VALAKER E A,ARMADA S,WILSON S.Droplet erosion protection coatings for offshore wind turbine blades[J].Energy Procedia,2015,80:263-275.
参考文献 89
SAREEN Agrim,SAPRE Chinmay A,SELIG Michael S.Effects of leading-edge protection tape on wind turbine blade performance[J].Wind Engineering,2012,36(5):525-534.
参考文献 90
HERRING Robbie,DYER Kirsten,MARTIN Ffion,et al.The increasing importance of leading edge erosion and a review of existing protection solutions[J].Renewable and Sustainable Energy Reviews,2019,115:109382.
参考文献 91
TANG Meiling,HUANG Lizhe,WANG Jianyu,et al.Research progress of blade coatings in wind turbines[J].IOP Conference Series:Materials Science and Engineering,2019,542:012061.
参考文献 92
卢家骐,牟书香,李权舟.风电叶片前缘防护技术进展[J].玻璃钢/复合材料,2015(7):91-95.LU Jiaqi,MOU Shuxiang,LI Quanzhou.Progress on leading edge protection technology of wind turbine blades[J].Composites Science and Engineering,2015(7):91-95.(in Chinese)
参考文献 93
梁自禄,雷志敏,宋杨,等.风机叶片用耐雨蚀涂料性能研究[J].涂料工业,2018,48(7):62-65.LIANG Zilu,LEI Zhimin,SONG Yang,et al.Properties of rain resistant coatings for wind turbine blade[J].Paint & Coatings Industry,2018,48(7):62-65.(in Chinese)
参考文献 94
SKRZYPIŃSKI W R,BECH J I,HASAGER C B,et al.Optimization of the erosion-safe operation of the IEA wind 15 mW reference wind turbine[J].Journal of Physics:Conference Series,2020,1618:052034.
目录contents

    摘要

    随着风电事业的迅猛发展,风电机组关键部件磨蚀问题日益突出,而关于该问题的全面综述鲜有报道,亟须系统分析总结风电机组磨蚀问题及防治手段,为解决长期困扰风电行业的磨蚀难题提供参考和建议。首先,阐述陆上及海上风电机组金属部件腐蚀磨蚀现状,统计国内典型区域非金属部件的磨蚀现状,分析其产生磨蚀损伤的机理,指出塔筒等金属结构件腐蚀磨蚀问题突出,叠加所在地的特殊区域环境,出现加速失效;齿轮等金属零部件的磨蚀损伤是进一步失效的诱发因素,表现出与承担功能相关的特有失效形式;非金属部件以叶片前缘的磨蚀最为突出,引起持续的发电量损失和维修费用激增。其次,分别综述风电机组金属部件和非金属部件的磨蚀防护技术,指出塔筒等结构件在普遍应用传统涂层保护的基础上,仍须探索包覆技术和附加防护装置等新的防护方式;叶片本体涂料防护技术相对成熟,但涂料防护和贴膜防护均无法满足叶片前缘全周期防护的要求。最后,分析总结风电机组关键部件磨蚀防治存在的主要技术问题,对后续的研究方向进行了探讨和展望,填补了风电机组关键部件磨蚀防治领域的综述空白。

    Abstract

    Wind power is a new type of energy that differs from traditional fossil fuels. It has the advantages of environmental friendliness, convenience, cleanliness, and economic efficiency. An increasing number of countries have focused on wind power for future development. However, with the rapid development of the wind power industry, the erosion of critical components such as wind turbine towers, blades, bolts, and gears has become a major problem. Erosion of parts poses a serious threat to the safe and stable operation of wind turbines. However, comprehensive reviews of this topic have been rare. Therefore, systematic analysis and summaries of the erosion problems and preventative measures for critical wind turbine components are urgent, as these will provide references and basis for solving the problems that have long plagued the wind power industry. First, the erosion status of metal components of on- and offshore wind turbines is described. The erosion status of non-metal parts in typical regions in China and the mechanism responsible for erosion damage are analyzed. Previous studies have shown that the erosion of metal structural parts such as towers is a major problem, and the environmental effects derived from specific regions promote accelerated failure. The impact damage of the gas-solid two-phase flow in an onshore aeolian sand area and the synergistic coupling of multiple factors in sea-splash and tidal-range areas are the most critical and complex. Erosion damage to metal parts such as gears often induces further failure. Depending on their unique functions and the different service environments, metal parts exhibit unique failure behaviors. The erosion damage at the leading edge of the blade is the most prominent in non-metallic parts. This is because rain, sand, dust, and other particles contact the surface of the leading edge of a rapidly rotating blade, creating pressure waves. Continuous pressure wave damage causes cracking and shedding of the protective layer and damage of the basal body. The result is a continuous loss of power generation and a huge increase in maintenance costs. Second, the erosion protection technology of wind turbine metal parts is reviewed in terms of coating protection, covering system protection, and additional protection devices; that of non-metallic parts is reviewed in terms of coating and tape protection. Based on the general application of traditional coating protection for structural parts such as towers, covering system protection technology has been applied in some anti-corrosion demonstration projects of offshore wind power plants, and the impressed current cathodic protection has also achieved good results. However, new protective methods, such as covering system technology, and additional protective devices must be further explored. Blade body coating protection technology is relatively mature and can ensure long-term blade service. However, for the erosion of the leading edge of the blade, mainstream coating and tape protection cannot meet the full-cycle protection requirements of wind turbines. During service, the protective layer inevitably becomes damaged and degraded, thus requiring regular maintenance. Finally, the main technical problems in the prevention and control of erosion of the critical components of wind turbines are analyzed and summarized, and future research directions are discussed. This study fills a review gap in the areas of erosion prevention and the management of critical components of wind turbines.

    关键词

    塔筒叶片磨蚀现状及防治

  • 0 前言

  • 风力发电作为最有前途的可再生能源技术之一,因其具有资源丰富、清洁、安全、成本低和装机快等一系列优势,世界范围内均在大力发展风电,其发电量占比不断增加[1-4]。在欧洲一些国家(如丹麦、西班牙和德国等),风力发电已成为新型电力供应的重要组成部分[5]。随着我国经济不断发展,在能源上的消费势必会在相当长的一段时间内保持相对稳定的增长,风电也将是我国大力投资发展的领域之一[6-8]。近年来年国家陆续出台政策支持风电发展[9-11],随着我国“3060 战略”的提出,风力发电呈快速增长趋势。截至 2021 年 7 月底,全国风电装机容量 2.9 亿 kW,同比增长 34.4%,装机增速在核电、水电、太阳能等非化石能源发电类型中最快[12]。仅 2021 年 1—6 月,全国风电新增并网装机 1 084 万 kW [13]。经测算,在 “十四五”期间风电至少要新增装机 2.5 亿 kW,年均新增装机量达到 5 000 万 kW 以上[14]

  • 但是,风电机组大多分布在沙漠、高山、海上等环境恶劣的地域,塔筒、螺栓和叶片等风电机组关键部件腐蚀、磨损、冲刷等磨蚀问题突出,严重影响机组服役寿命。如果在风电场进行现场修复,严酷的现场环境将使施工过程非常困难。目前,风电设备制造商都在积极寻求这一问题的解决方案,尽量避免磨蚀后的修复问题。因此,采用何种防磨蚀手段,保证风电机组在严酷环境下顺利达到设计使用寿命,成为风电行业关注的焦点,表面工程技术已然成为高效、经济、持久解决风电机组磨蚀问题的必由之路[15]

  • 本文在分析总结目前风电机组关键部件磨蚀现状基础上,对当下主流风电机组磨蚀防护技术及防护材料进行探讨和展望。

  • 1 风电机组关键部件磨蚀现状

  • 风电机组一般由风轮(叶片、轮毂)、机舱、风轮轴、发电机、控制系统、调速装置、制动系统、液压系统、偏航系统、变桨系统、塔筒(架)和基础等部分组成,陆上及海上风电机组各类结构形式[16],如图1 所示;机舱内部结构及设备布置[17],如图2 所示。塔筒、齿轮和螺栓等使用碳钢、不锈钢、耐候钢、铝合金等金属材料制成,叶片通常使用玻璃钢、碳纤等非金属材料制成,下文针对风电机组主要的金属部件和非金属部件的磨蚀现状分别进行分析阐述。

  • 图1 海上及陆上风力发电机组结构示意图

  • Fig.1 Structure diagram of offshore and onshore wind turbines

  • 图2 风力发电机组机舱内部构造图[17]

  • Fig.2 View of the main wind turbine modules[17]

  • 1.1 金属部件磨蚀现状

  • 1.1.1 塔筒(及基础)磨蚀现状

  • 塔筒本体及支撑基础作为风电机组的关键结构部件,通常使用低碳钢 Q345 等材料制成,表面及内部涂装防腐涂料,设计寿命 20 年以上。塔筒的失效形式主要为大气腐蚀和特殊环境作用的叠加。

  • 平原、高山和沙漠等陆地环境中,以风沙地区中固体颗粒冲蚀塔筒表面引起的磨蚀损伤最为突出,例如在新疆、内蒙等西北沙漠戈壁区域,风沙环境引起的磨蚀问题严重影响风电机组塔筒涂层的完整性。塔筒涂层和基体在气固两相流作用下发生磨蚀行为,微观机理为固体颗粒对涂层的切削、撞击损伤。新疆大学王晶晶[18]采用正交试验的方法研究了风机塔筒涂层和基体在气固两相流下的磨损规律,气固冲刷试验结果表明风速为发生磨损的最主要因素,并且磨损和腐蚀之间存在明显的交互作用。

  • 与陆上风电机组不同,海上腐蚀磨蚀环境更为严苛和复杂,主要原因为沿海地区及近海的空气中含有大量随海水蒸发的盐分,会形成浓度很高的盐雾,海上盐雾沉降量为陆上的 20~80 倍,高盐雾浓度下金属的腐蚀速率非常高[19]。根据塔筒和基础的不同高度位置,自上而下,可分为大气区、飞溅区、潮差区、全浸区、海泥区,不同区域具有不同的腐蚀特点,腐蚀速率不尽相同,塔筒及基础结构与海洋环境接触面积最大,因此面临严重的海洋腐蚀问题[20],其典型腐蚀特征如图3 所示。

  • 图3 风电厂金属部件典型腐蚀图

  • Fig.3 Typical corrosion images of metal components in wind power plants

  • 海上塔筒及支撑基础的磨蚀损伤主要集中在飞溅区和潮差区,由于长期处于高盐高湿且干湿频繁交替的复杂海洋环境,常年经受飞溅浪花、裹挟泥沙、水流、浮冰以及高低温热应力循环载荷的协同耦合冲击作用,涂层及基体磨蚀损伤加剧,损伤机理如图4 所示。已有学者开展海水环境钢铁材料磨蚀损伤的模拟研究,结果显示材料种类和流速对磨蚀损伤影响较大[23-25],而实际工况下的复杂磨蚀机理仍需进一步研究。

  • 塔筒及支撑基础结构高大,服役期间发生磨蚀问题,不仅维修处理难度大、成本高、安全风险高,还存在较多不可达区域,导致后期的防腐维修存在盲点。因此,磨蚀问题给塔筒及基础的长期安全服役带来很大的挑战。根据广东精铟海洋工程股份有限公司邓达纮等[26]分析,海上风电专业运维服务目前存在很大缺口,相应运维费用也将大幅上升。海上风力资源丰富,近年来装机容量不断增大,由于海上强的腐蚀环境,海上风电的磨蚀防护仍将是研究的热点与重点。

  • 图4 海上风电机组塔筒磨蚀机理

  • Fig.4 Erosion mechanism of offshore wind turbine tower

  • 1.1.2 金属零部件磨蚀现状

  • 螺栓、轴承和齿轮是风力发电机组非常重要的机械部件,对于风电机组的安全稳定运行起到重要作用。

  • 风电机组大量使用高强度螺栓,如塔筒地脚螺栓、塔筒法兰螺栓、偏航系统螺栓、主轴螺栓、叶片螺栓,均发生过不同程度和类型的失效事件[27-30]。腐蚀失效原因通常为螺栓表面防护层自身存在缺陷或因外界原因被破坏,不能起到完整的防护作用,从而导致腐蚀在金属裸露部位产生并发展。国内某风电厂机组塔筒螺栓曾发生大面积腐蚀,如图5a 所示,原因为螺栓的定期检验破坏了螺栓的油漆和发黑处理表层,加之涂层存在自然脱落,最终导致塔筒螺栓大面积腐蚀[31]。国外某风电场螺栓在循环应力和腐蚀环境的共同作用下,导致螺栓产生疲劳裂纹而断裂,如图5b 所示,并最终引起严重的倒塔事故[32]

  • 图5 风电厂机组典型螺栓腐蚀失效照片

  • Fig.5 Typical bolt corrosion images of wind power plants

  • 风电机组使用的轴承为合金钢,轴承本身抗蚀性相对较高,腐蚀并非其最主要的失效形式[33],但腐蚀为进一步失效的诱发因素。某风电机组曾发生变桨轴承外圈在使用 2—3 年后断裂的事件,原因为在腐蚀坑处产生明显应力集中,诱发裂纹,最终发生疲劳断裂[34]。另外,风机转子支撑轴承的绝缘出现问题,将导致强电流流经轴承,容易出现较为严重的电腐蚀特征,破坏轴承表面状态,导致轴承失效。该类缺陷通常通过检测轴承振动频谱信号,及时分析处理绝缘和轴承的异常问题来解决[35-38]

  • 齿轮箱作为风电机组能量传递的关键部件,故障率很高[39-41],根据文献报道,风电机组齿轮以磨损、疲劳、断裂破坏形式为主[42-43]。其内部各种功能的齿轮在正常运行的情况下,齿面始终有一层油膜保护,加上持续的彼此接触和滑动,起到了隔绝氧的作用,相当于涂油保护,不易产生腐蚀[44]。但是需要关注的是,磨损起始阶段产生在齿面的点蚀坑,往往会叠加磨损和疲劳,成为微裂纹的来源。近期也有学者提出,点蚀坑在齿轮箱内部润滑油和杂散电流的作用下,会引起电化学腐蚀的加速,值得进一步关注和研究[17]

  • 1.2 非金属部件(叶片)磨蚀现状

  • 风电叶片的选材直接影响其成本和综合性能,已从传统的木质叶片发展为现在主流的复合材料[45],目前叶片存在的主要问题为叶片前缘磨蚀严重。统计国内各区域风电场环境特点及叶片前缘服役磨蚀情况,如表1 所示。未采取前缘附加防护措施的兆瓦级叶片普遍在服役 2—3 年后,叶片前缘出现磨蚀,局部损伤本体。采用特种涂料进行前缘保护,可延长防护周期 6—8 年,即使采用 3M 保护膜也无法达到设计 20 年以上的防护要求。

  • 表1 国内典型风电场环境下叶片前缘磨蚀情况统计[46-47]

  • Table1 Statistical table of blade leading edge erosion in domestic typical wind power plants environment

  • 风电机组的叶片长度一般为 50~80 m,而叶片尖端的线速度一般在 60~80 m / s,相当于 200~300 km / h 的时速,雨滴、砂砾和尘土等极易对叶片防护层造成磨蚀破坏,使叶片的基体结构暴露在环境中。风电叶片前缘作为迎风面,线速度大、受冲击和磨损也最为严重。磨蚀微观机理为:雨滴等粒子撞击叶片表面,导致表面产生接触压力,并触发压力波在保护层中传播,在压力波的作用下,导致保护层裂纹的产生,裂纹不断扩展,最终导致涂层开裂、脱离,基体材料也逐步出现裂纹并粗化[48-49],如图6 所示。

  • 目前,叶片前缘一般采用涂装涂料或张贴保护膜的方式保护,如果保护层发生磨蚀破坏,将破坏风电叶片的完整性;空气动力学要求叶片表面具有较高的平整度,磨蚀破坏也会导致气动性能和运行可靠性降低,即使较轻程度的前缘磨蚀也会对机组的年发电量产生较大的影响,根据 SAREEN 等[50] 的测试分析,年发电量损失可达 5%以上。另外,叶片磨蚀将引起维修成本大大增加,单次叶片的维修费需要花费 7.5 万美元以上[51-52],因此带来的停机费用更是难以估量。在风电叶片长度不断增加的趋势下,叶片前缘磨蚀防护的重要性日渐突出[53-54]

  • 图6 粒子与叶片作用示意图[48]

  • Fig.6 Schematic diagram of particle interaction with wind turbine blade[48]

  • 2 磨蚀防治技术研究探讨

  • 2.1 金属部件磨蚀防治技术

  • 针对大型风力发电设备金属部件的腐蚀防治技术,国内外已经开展了较为深入的研究, AHUIR-TORRE[55]、PRICE[56]和 MOMBER[57-58]等分别从风电结构件的电化学腐蚀数据、防护体系及评价方法等理论研究方面,做了较为系统的分析和研究。大型风力发电机组金属结构件防腐蚀措施以表面涂装防腐涂层为主,其他零部件应用有热浸锌及渗锌、电镀锌、喷锌(铝)和达克罗等技术。另外,设计上采用耐蚀性材料、改善设备运行环境、涂抹防锈油脂以及采用阴极保护等方法,也可以用来提高风力发电设备的腐蚀抗力[59]。近年来,为解决风电机组的海水及海洋大气腐蚀磨蚀问题,包覆防腐材料及其施工技术也逐步发展并得到工程示范应用。

  • 2.1.1 涂层防护技术

  • 目前涂层防护是风电机组部件最为普遍的防护技术,风电塔筒、轮毂、机舱、钢结构等设备部件均采用多道涂料进行重防腐施工,本文以塔筒为例重点论述,其他部位涂装工艺相同或类似。

  • 塔筒外壁通常采用“环氧(或无机)富锌底漆+ 环氧云铁中间漆+聚氨酯面漆”的涂层结构。多层涂料可以阻挡和隔绝水分子、Cl-离子等微粒,同时起到耐紫外线、风沙、雨雪侵蚀的长久耐候作用[2060]

  • 针对海上风力发电设备的塔筒外壁,底层还可采用电弧喷锌或锌 / 铝合金,面层采用耐候性优良的氟碳面漆,从而提高其应对恶劣海洋环境的防腐能力[5961-62]

  • 针对西北风沙恶劣环境中的塔筒磨蚀防护,厦门双瑞船舶涂料有限公司彭儒等[63]以改性聚天门冬氨酸树脂、聚脲树脂作基料树脂制备的抗风沙涂料,兼有聚氨酯涂料优良的附着力、耐候耐久性,也具备高恢复率及高抗风沙撞击性能,可以满足西北地区风电设备的防护要求。

  • 塔筒内壁为的封闭的内部空间,不直接接触阳光、海水、大气的侵蚀,可采用“环氧富锌底漆+ 环氧面漆”的两层防腐涂层结构,通常可以满足防腐设计要求。

  • 2.1.2 包覆防护技术

  • 海上风电机组处于强腐蚀环境,包覆防腐技术相较于普通涂层防护,具有其一定的优势,在桥梁、港口等海工结构上已有成熟应用。包覆防腐多以矿脂防蚀膏作为主要材料,施工在塔筒或钢桩基础上,通常由四层紧密贴合的保护层组成,分别为防蚀膏、防蚀带、衬里和防护保护罩[64],如图7 所示。

  • 图7 包覆防腐体系剖面示意图[64]

  • Fig.7 Cross-sectional schematic diagram of covering anti-corrosion system[64]

  • 每层材料具不同的技术特性,在防蚀膏与金属基体及腐蚀产物紧密接触包裹的基础上,通过多道屏障阻挡金属基体和腐蚀介质的接触,从而实现长效防腐的作用。包覆防护能够弥补浪溅区、潮差区涂层和阴极保护的不足,达到较好的防腐效果[2165-66]。包覆防护技术的另一大优势在于可以带水或水下施工,克服了现场施工中,涂层表面处理难以达标的问题。江苏龙源[67-69]和江苏竹根沙[70] 等风电厂塔筒钢桩基础已有工程示范应用。

  • 2.1.3 附加防护装置

  • 对于风电机组的腐蚀控制,需要在设计之初考虑增加适宜的附加防护装置,主要为环境控制系统和阴极保护系统。

  • 环境控制系统以调节机舱和塔筒内部的温度、湿度和含盐量为目的,通过过滤器、除湿机和风机等实现盐雾过滤、除湿和通风散热的功能,同时使塔筒和机舱内部保持微正压,大大改善内部设备的腐蚀环境,降低各类设备部件的腐蚀速率[71-72]

  • 阴极保护分为牺牲阳极法和外加电流法,牺牲阳极法安装及运营比较简单,为我国风电桩基的普遍防护方法。但是,其存在提前消耗、保护不足和保护电流不能调节的缺点。外加电流法从长久防护的角度考虑,是较为理想的方式,系统主要由恒电位仪、辅助阳极和参比电极等组成。根据具体塔架结构和环境,合理布置阳极,通过强制电流实现持续可靠、自动可调、远程监控的智能化防护。国内外均有个别电厂进行了试验安装[5673],国内外也制定了较为详细的指导标准[74-78],外加电流防护技术在风电领域将随着装机容量的增加和腐蚀问题的紧迫而越来越被推荐。

  • 2.1.4 其他防护技术

  • 对于风电机组其他金属零部件,在充分考虑选材(不锈钢、有色合金)的基础上,还可采用热浸锌、渗锌、喷锌等防腐技术。通常在严控施工质量的情况下,可以得到较好的长周期防腐效果。同时,风电机组设计是将机舱 / 轮毂内外隔离,将内部设计成一个尽可能密闭的空间[79],起到较好地保护内部设备的作用,减缓腐蚀发生。

  • 综上,关于风电机组金属部件防腐技术,塔筒及基础等结构件腐蚀问题较为突出,部分机组叠加所在地的特殊区域环境,如风沙磨蚀或海水腐蚀,会导致多种失效模式的相互作用,加速结构件的腐蚀失效。但是,目前塔筒等结构件仍以传统的涂层保护为主,涂料配套相对单一、多为进口。针对局部特殊腐蚀磨蚀环境,仍需进一步加强机理研究和涂料升级,推广包覆等长效防护技术。

  • 2.2 非金属部件(叶片)磨蚀防治技术

  • 2.2.1 涂层防护技术

  • 叶片涂料已经成为叶片防护的必要方式,典型的风电叶片防护涂料配套体系为腻子+底漆+聚氨酯面漆。国内新建风力发电机组目前主要以使用佐敦、PPG、麦加等进口涂料为主[80]。针对叶片前缘磨蚀区域,各涂料厂商还开发有前缘保护漆系列涂料,在叶片整体涂层施工完成后,在叶片前缘区域涂装多道前缘保护漆,厚度控制在 500 μm 左右。

  • 国内针对风电叶片涂料开展了大量的研究和开发。保定华翼风电叶片研究开发有限公司杨惠凡等[81]通过对羟基丙烯酸树脂冷拼线性饱和聚酯树脂的改性、选用 HDI 三聚体异氰酸酯固化剂、超细片状填料、有效的助剂,研制出的风电叶片涂料具有优异的附着力、柔韧性、耐水性、耐化学品性,耐人工加速老化可达 3 000 h,耐盐雾可达 3 000 h。

  • 北京化工大学刘义修[82]以氟碳树脂为基体,钛白粉为颜料,超细氧化铝粉体、绢云母为填料制备了一种适合我国内陆地区酸雨、风沙较多环境的风电叶片保护涂料。

  • 麦加芯彩新材料科技(上海)股份有限公司刘正伟[83]采用端羟基聚丁二烯 HTPB 与脂肪族聚异氰酸酯固化剂搭配制得一种高弹性、高耐雨蚀性能的聚氨酯风电叶片前缘保护涂料。试验表明该前缘保护涂料产品的基础性能达到目前风电行业的技术指标。

  • 针对磨蚀问题最为突出的叶片前缘部位,在现有聚氨酯涂料体系的基础上,研究人员主要是在引入新的颗粒增强相和应用新的涂层制备方法方面,不断探索新的叶片前缘磨蚀防护技术。通过添加增强相,通常为纳米耐磨颗粒,改善聚氨酯基体的刚度、硬度等性能,从而在更大面积上吸收外界冲击能量,提高涂层的耐磨蚀性能。FROST-JENSEN JOHANSEN 等[84]基于纳米工程,制备了纳米石墨烯和混合(石墨烯 / 二氧化硅)增强聚合物涂层,并使用单点冲击疲劳测试方法测试涂层的抗磨蚀性能,结果表明该纳米涂料使用寿命比非增强聚氨酯涂料长 13 倍。DASHTKAR[85] 和 ARMADA [86] 等还讨论了添加其他多种纳米级增强颗粒提高抗磨蚀涂层性能的情况。

  • 新的涂层制备技术,旨在突破传统喷涂、辊涂和刷涂工艺所能达到粘接结合力的极限,以期实现化学键等级的更强结合。DASHTKAR 等[87]提出了用溶胶-凝胶技术制备前缘耐磨蚀涂层,并分析其使用在风机叶片前缘的优缺点和发展潜力,但仍处于研究阶段。VALAKER 等[88]则使用了火焰喷涂的方式制备样品,对比测试了聚氨酯涂层、保护膜和自行开发的颗粒增强涂层的抗磨蚀性能。

  • 2.2.2 贴膜防护技术

  • 叶片前缘磨蚀与前缘部位的服役时间和线速度有关,服役时间越长,线速度越大,前缘磨蚀越严重。国内外的部分叶片厂商采用张贴保护膜的方法来防止线速度最大的区域发生严重的磨蚀损伤。对叶片尖端约 1 / 3 长度范围内的前缘区域,在涂层防护的基础上粘贴保护膜进行加强防护,如图8 所示。

  • 图8 叶片前缘贴膜防护

  • Fig.8 Protection tapes on the leading edge of the blade

  • 防护膜通常由高弹性的耐久聚氨酯弹性体制成,具有较高的延展性,能够吸收空气中微粒的冲击能量,缓解磨蚀损伤。SAREEN 等[89]对保护膜带来的阻力增加和电量损失进行了准确计算,年平均电量损失约为 0.38%,远小于叶片前缘磨蚀的损失和危害。此外,与涂层防护不同,防护膜施工工序单一便捷,受天气影响小,可作为一种更可靠的现场修复方案。叶片前缘保护膜最具代表性的品牌为美国 3M 公司,其产品 W8607 在国内外应用最为广泛。

  • 但是,叶片前缘保护膜的防护效果主要取决于保护膜与基体附着力的大小,贴膜施工工艺要求极其严格。保护膜容易因为内部的微小气泡、起皱,或运输和安装过程的磕碰损伤,导致保护膜过早剥落失效[90]

  • 综上,叶片涂料防护技术相对成熟,能够确保本体的长期服役。但是对于叶片前缘的磨蚀问题,无论是采用涂料防护和贴膜防护,均有其弊端所在。国内叶片前缘涂料防护的研究相对较多,但仍未见大面积应用,以国外厂商涂料为主,导致国内出现技术基础薄弱、经济成本高和污染浪费大的困境[91]。叶片前缘保护膜运行 4—5 年后不可避免地发生自然老化,出现起泡、边缘卷起、叶尖处保护膜风化移位等现象,须要重新更换,其维护成本较高[8892-93]。另外,叶片前缘加装或内置高强防护罩的方式,虽然在国外有相应的供应厂商,例如 Poly Tech 和 Armour Edge,受制于叶片的复杂几何型线、粘接脱落的风险,相关研究及工程应用仍较少。随着风电单机容量的提高,向 10 MW、15 MW 发展,对叶片前缘保护的需求将更加迫切[94]

  • 3 结论与展望

  • 3.1 结论

  • 随着国内外风电机组大量服役,越来越多的机组进入服役中年期,风机磨蚀问题日益突出,已经被越来越多的研究者所关注。在系统性阐述风电机组关键部件磨蚀现状和防治技术的基础上,主要得到如下结论:

  • (1)关于风电机组金属部件的磨蚀问题,塔筒及基础等结构件腐蚀磨蚀问题较为突出,叠加所在地的特殊区域环境,出现失效加速,以陆上风沙地区气固两相流的冲击损伤和海上飞溅区及潮差区多因素的协同耦合作用最为严重和复杂;对于螺栓、轴承和齿轮等金属零部件,磨蚀损伤往往作为进一步失效的诱发因素,依赖其承担的功能的不同和局部服役环境的差异,表现出特有的失效行为。

  • (2)关于风电机组非金属部件的磨蚀问题,以叶片前缘区域的磨蚀损伤最为突出,由此引起大量的发电量损失和维修费用增加,为国内外持续研究的重点领域。

  • (3)塔筒等结构件以传统的涂层保护为主,包覆防护技术已在海上风电厂实现示范性工程应用,外加电流阴极保护等附加防护装置也取得较好的成效,提升了风电厂腐蚀运维自动化和智能化水平。

  • (4)叶片本体涂料防护技术相对成熟,能够确保本体的长期服役。但是,对于叶片前缘磨蚀问题,主流的涂料防护和贴膜防护均无法满足风电机组全周期防护要求,服役过程中防护层不可避免地出现损伤和降级,需要定期维护。

  • 3.2 展望

  • 针对风电机组关键部件的磨蚀问题仍需深入研究和投入的方向,做如下展望:

  • (1)目前我国风电机组表面防护材料主要依赖进口品牌,国内虽然已针对主流防护材料进行了较为深入的性能研究,但相关产品国产化进程较慢,目前成功应用的仅局限为一些常规涂料。关键部件特殊区域的耐腐蚀涂料、前缘保护漆以及保护贴膜国产化开发相对滞后,目前鲜有报道。快速推进防护材料国产化,并在此基础上自主开发新型高效抗磨蚀涂料是我国风电自主发展的重要环节。

  • (2)在风电厂设计阶段或建设初期,进一步发展并应用适应性强的长效防护技术,如包覆防护和外加电流阴极保护技术,对于降低风电厂运维阶段的磨蚀防护压力,实现机组安全稳定经济运行,有着重要意义。

  • (3)随着在役风电机组进入检修高峰期,塔筒、叶片等风电关键部件防磨蚀涂层现场修复将是风电机组在役维护的重点内容,开展安全、高效、智能化的在役风电厂现场涂层修复技术研究也将是风电科研人不懈努力的方向。

  • 参考文献

    • [1] 夏婷,张木梓,陈杨,等.全球低风速风电发展现状与展望[J].水力发电,2022,48(6):105-108,118.XIA Ting,ZHANG Muzi,CHEN Yang,et al.Current status quo and future of global low wind speed power[J].Water Power,2022,48(6):105-108,118.(in Chinese)

    • [2] 李博媛,任重远.亚太地区能源转型前景分析[J].国际石油经济,2022,30(3):52-59.LI Boyuan,REN Zhongyuan.The prospect of energy transformation in Asia-Pacific region[J].International Petroleum Economics,2022,30(3):52-59.(in Chinese)

    • [3] POTRČ SANJA,ČUČEK LIDIJA,MARTIN,MARIANO,et al.Sustainable renewable energy supply networks optimization — The gradual transition to a renewable energy system within the European Union by 2050[J].Renewable and Sustainable Energy Reviews,2021,146:111186.

    • [4] BASHIR Mohamed Bashir Ali.Principle parameters and environmental impacts that affect the performance of wind turbine:An overview[J].Arabian Journal for Science and Engineering,2021:1-19.

    • [5] 夏云峰.2020 年欧洲新增风电装机 14.7 GW[J].风能,2021(3):36-43.XIA Yunfeng.14.7 GW of new wind power installed in Europe in 2020 [J].Wind Energy,2021(3):36-43.(in Chinese)

    • [6] 李昊璋,刘苹元,王锦鸿,等.我国风电产业的发展现状分析及未来展望[J].机电信息,2020(21):91-94.LI Haozhang,LIU Pingyuan,WANG Jinhong,et al.Analysis of the development status and future prospects of my country’ s wind power industry[J].Mechanical and Electrical Information,2020(21):91-94.(in Chinese)

    • [7] WEI Youzhou,ZOU Qingping,LIN Xianghong.Evolution of price policy for offshore wind energy in China:Trilemma of capacity,price and subsidy[J].Renewable and Sustainable Energy Reviews,2021,136:110366.

    • [8] LI Jidong,CHEN Shijun,WU Yuqiang,et al.How to make better use of intermittent and variable energy?A review of wind and photovoltaic power consumption in China[J].Renewable and Sustainable Energy Reviews,2021,137:110626.

    • [9] 彭光博,向月,陈文溆乐,等.“双碳”目标下电力系统风电装机与投资发展动力学推演及分析[J/OL].电力自动化设备[2022-09-15].https://doi.org/10.16081/j.epae.202205013.PENG Gangbo,XIANG Yue,CHEN Wenshule,et al.Analysis on the development trend of traditional fossil energy and new energy under “double carbon” goal[J/OL].Electric Power Automation Equipment[2022-09-15].https://doi.org/10.16081/j.epae.202205013.(in Chinese)

    • [10] 殷仁豪.“双碳”背景下新能源基地规划发展趋势[J].上海节能,2022(3):265-271.YIN Renhao.Planning development trend of new energy base under “Dual Carbon” background[J].Shanghai Energy Conservation,2022(3):265-271.(in Chinese)

    • [11] 张希良,黄晓丹,张达,等.碳中和目标下的能源经济转型路径与政策研究[J].管理世界,2022,38(1):35-66.ZHAN Xiliang,HUANG Xiaodan,ZHANG Da,et al.Research on the pathway and policies for china’s energy and economy transformation toward carbon neutrality[J].Management World,2022,38(1):35-66.(in Chinese)

    • [12] 清洁能源低碳时代新动力[J].科学大观园,2021(19):10-11.Clean energy,a new driving force in the low-carbon era[J].Grand Garden of Science,2021(19):10-11.(in Chinese)

    • [13] 2021 年上半年风电建设和运行情况[J].电力科技与环保,2021,37(4):19.Wind power construction and operation in the first half of 2021[J].Electric Power Technology and Environmental Protection,2021,37(4):19.(in Chinese)

    • [14] 王芳.探索“双碳”目标下的“十四五”风电发展路径[J].风能,2021(4):42-45.WANG Fang.Explore the development path of wind power during the “14th Five-Year Plan” period under the “double carbon” goal[J].Wind Energy,2021(4):42-45.(in Chinese)

    • [15] DALILI N,EDRISY A,CARRIVEAU R.A review of surface engineering issues critical to wind turbine performance[J].Renew Sustain Energy Rev,2009,13(2):428-438.

    • [16] 王风云,王辉.国内外海上风电场现状及其基础设施研究[J].中国造船,2011,52(A02):8.WANG Fengyun,WANG Hui.Research on the status and infrastructures of off-shore wind farm all over the world[J].Shipbuilding of China,2011,52(A02):8.(in Chinese)

    • [17] BEJGER A,FRANK E,BARTOSZKO P.Failure analysis of wind turbine planetary gear[J].Energies,2021,14:6768.

    • [18] 王晶晶.风机塔筒的冲刷磨损和腐蚀行为研究及Fluent数值模拟[D].乌鲁木齐:新疆大学,2015.WANG Jingjing.A study on the erosion wear and corrosion behavior of wind turbine tower and numerical simulation by fluent[D].Urumchi:Xinjiang University,2015.(in Chinese)

    • [19] 詹耀.海上风电机组的防腐技术与应用[J].现代涂料与涂装,2012,15(2):15-18.ZHAN Yao.Anticorrosion technology and application of offshore wind turbines[J].Modern Paint & Finishing,2012,15(2):15-18.(in Chinese)

    • [20] MOMBER A.Corrosion and corrosion protection of support structures for offshore wind energy devices(OWEA)[J].Materials and Corrosion,2011,62(5):391-404.

    • [21] 胡苏杭,刘碧燕.海上风电防腐技术现状及研究方向[J].风能,2019(11):88-91.HU Suhang,LIU Biyan.Status quo and research direction of offshore wind power anticorrosion technology[J].Wind Energy,2019(11):88-91.(in Chinese)

    • [22] 任伟,陈亚宾,徐华利,等.海上风电设备腐蚀机理及腐蚀现状研究[J].船舶工程,2021,43(S1):1-5.REN Wei,CHEN Yabin,XU Huali,et al.Study of corrosion mechanism and corrosion status of offshore wind power equipment[J].Ship Engineering,2021,43(S1):1-5.(in Chinese)

    • [23] 刘雪键,程旭东,彭文山,等.海水泥沙含量对945钢冲刷腐蚀的影响[J].电镀与精饰,2019,41(6):11-17.LIU Xuejian,CHENG Xudong,PENG Wenshan,et al.Effect of sand content on erosion-corrosion behavior of 945 steel [J].Plating and Finishing,2019,41(6):11-17.(in Chinese)

    • [24] GIOURNTAS L,HODGKIESS T,GALLOWAY A M.Comparative study of erosion-corrosion performance on a range of stainless steels[J].Wear,2015,332-333:1051-1058.

    • [25] MENG H,HU X,NEVILLE A.A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design[J].Wear,2007,263(1-6):355-362.

    • [26] 邓达纮,陆军.浅析海上风电施工与运维装备[J].机电工程技术,2019,48(8):45-47.DENG Dahong,LU Jun.Brief analysis of offshore wind power construction and maintenance equipment[J].Mechanical & Electrical Engineering Technology,2019,48(8):45-47.(in Chinese)

    • [27] 刘永超,郭德瑞,李帅,等.风电机组高强度螺栓的失效形式分析[J].太阳能,2021(1):44-50.LIU Yongchao,GUO Derui,LI Shuai,et al.Failure form analysis of high-strength bolt in wind turbine[J].Solar Energy,2021(1):44-50.(in Chinese)

    • [28] 赵迪,李云龙,张刚.风电机组高强度连接螺栓断裂原因分析及优化[J].装备制造技术,2020(3):198-200.ZHAO Di,LI Yunlong,ZHANG Gang.Analysis and optimization of high strength connecting bolt fracture of wind turbine[J].Equipment Manufacturing Technology Wind Turbine,2020(3):198-200.(in Chinese)

    • [29] 王荣.风能发电机组结构件的失效分析与预防(待续)第1讲螺栓的失效分析与预防[J].理化检验(物理分册),2019,55(6):371-380.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(to be continued)lecture 1 failure analysis and prevention of bolts[J].Physical Testing and Chemical Analysis,2019,55(6):371-380.(in Chinese)

    • [30] LIN Y,TU L,LIU H,et al.Fault analysis of wind turbines in China[J].Renewable and Sustainable Energy Reviews,2016,55:482-490.

    • [31] 吴智泉,陈亮,张新,等.风电塔筒高强度螺栓大面积腐蚀分析[J].热加工工艺,2019,48(10):253-259.WU Zhiquan,CHEN Liang,ZHANG Xin,et al.Analysis on large area corrosion of high strength bolts in wind power tower tube[J].Hot Working Technology,2019,48(10):253-259.(in Chinese)

    • [32] LACHOWICZ M B,LACHOWICZ M M.Influence of corrosion on fatigue of the fastening bolts[J].Materials,2021,14(6):1485.

    • [33] JIN Xin,CHEN Yiming,WANG Lei,et al.Failure prediction,monitoring and diagnosis methods for slewing bearings of large-scale wind turbine:A review[J].Measurement,2021,172:108855.

    • [34] 王荣.风能发电机组结构件的失效分析与预防(续完)第3讲轴承的失效分析与预防[J].理化检验(物理分册),2019,55(12):815-823.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(Finished)lecture 3 Failure analysis and prevention of bearings[J].Physical Testing and Chemical Analysis,2019,55(12):815-823.(in Chinese)

    • [35] 张富全,王伟.风电机组中的轴电流分析[J].风能,2017(6):64-67.ZHANG Fuquan,WANG Wei.Shaft current analysis in wind turbines[J].Wind Energy,2017(6):64-67.(in Chinese)

    • [36] 姜锐,滕伟,刘潇波,等.风电机组发电机轴承电腐蚀故障的分析诊断[J].中国电力,2019,52(6):128-133.JIANG Rui,TENG Wei,LIU Xiaobo,et al.Analysis and diagnosis of electrical corrosion faults of wind turbine generator bearings[J].Electric Power,2019,52(6):128-133.(in Chinese)

    • [37] 陈星,许峰.风力发电机轴承疲劳失效与电腐蚀故障的辨析[J].机械工程与自动化,2021(5):152-155.CHEN Xing,XU Feng.Differentiation and analysis of bearing fatigue failure and electric corrosion failure of wind turbine[J].Mechanical Engineering & Automation,2021(5):152-155.(in Chinese)

    • [38] 罗振斌.风电机组发电机轴承电腐蚀故障研究[J].中国科技纵横,2020(1):160-161.LUO Zhenbin.Research on electrical corrosion faults of wind turbine generator bearings[J].Technology and Economic Guide,2020(1):160-161.(in Chinese)

    • [39] 刘俊.大型风电机组齿轮箱故障诊断系统研究[D].广州:广东工业大学,2013.LIU Jun.Research on fault diagnosis system of gearbox in large wind turbines[D].Guangzhou:Guangdong University of Technology,2013.(in Chinese)

    • [40] SPINATO F,TAVNER P J,VAN BUSSEL G J W,et al.Reliability of wind turbine subassemblies[J].IET Renewable Power Generation,2009,3(4):387-401.

    • [41] BHARDWAJ U,TEIXEIRA A P,GUEDES SOARES C.Reliability prediction of an offshore wind turbine gearbox[J].Renewable Energy,2019,141:693-706.

    • [42] 姜荣国,李若辉,张国辉,等.风电齿轮箱小齿轮断齿原因分析[J].失效分析与预防,2016,11(5):315-321.JIANG Rongguo,LI Ruohui,ZHANG Guohui,et al.Failure analysis of cracked gear in wind power gearbox[J].Failure Analysis and Prevention,2016,11(5):315-321.(in Chinese)

    • [43] 王大伟,崔博,王明军.某风电场 1.5 MW 风电机组齿轮箱点蚀及断齿故障分析[J].风能,2014(5):92-95.WANG Dawei,CUN Bo,WANG Mingjun.Analysis of pitting corrosion and broken gear faults of 1.5mw wind turbine gearbox in a wind farm[J].Wind Energy,2014(5):92-95.(in Chinese)

    • [44] 王荣.风能发电机组结构件的失效分析与预防(待续)第2讲齿轮的失效分析与预防[J].理化检验(物理分册),2019,55(10):667-675.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(to be continued)lecture 2 Failure analysis and prevention of gears[J].Physical Testing And Chemical Analysis,2019,55(10):667-675.(in Chinese)

    • [45] 吴辉.风电叶片材料及其防护涂料的发展与应用[J].上海涂料,2015,53(8):26-29.WU Hui.The development and application of wind turbine blade material and protection coatings[J].Shanghai Coatings,2015,53(8):26-29.(in Chinese)

    • [46] 朱平.对服役中风电叶片表面状态的调查以及对原厂涂装的反思[J].风能,2012(10):42-50.ZHU Ping.An investigation and reflection on the surface condition of wind blades in service[J].Wind Energy,2012(10):42-50.(in Chinese)

    • [47] 朱平,王建国,史秋生.解决风电叶片前缘磨蚀的一种方案-风电叶片保护膜[C]//2011防腐蚀涂料年会暨第28次全国涂料工业信息年会,武汉,2011-10-24.2011:146-149.ZHU Ping,WANG Jianguo,SHI Qiusheng.A solution to the erosion of the leading edge of wind turbine blades-wind turbine blade protective tape[C]//2011 Anti-Corrosion Coatings Annual Conference and the 28th National Coatings Industry Information Annual Conference,Wuhan,2011-10-24.2011:146-149.(in Chinese)

    • [48] MISHNAEVSKY JR L.Toolbox for optimizing antierosion protective coatings of wind turbine blades:overview of mechanisms and technical solutions[J].Wind Energy,2019,22(11):1636-1653.

    • [49] MISHNAEVSKY JR L,HASAGER C B,BAK C,et al.Leading edge erosion of wind turbine blades:Understanding,prevention and protection[J].Renewable Energy,2021,169:953-969.

    • [50] SAREEN A,SAPRE C A,SELIG M S.Effects of leading edge erosion on wind turbine blade performance[J].Wind Energy,2014,17(10):1531-1542.

    • [51] REMPEL Lisa.Rotor blade leading edge erosion-real life experiences[J].Wind Systems Magazine,2012,11:22-24.

    • [52] VERMA A S,JIANG Z,REN Z,et al.Effects of onshore and offshore environmental parameters on the leading edge erosion of wind turbine Blades:A comparative study[J].Journal of Offshore Mechanics and Arctic Engineering,2020,143(4):042001.

    • [53] KEEGAN M H,NASH D H,STACK M M.On erosion issues associated with the leading edge of wind turbine blades[J].Journal of Physics D:Applied Physics,2013,46(38):383001.

    • [54] ALAJMI Abdullah F,RAMULU M.Characterization of the leading-edge erosion of wind turbine blades by sand particles impingement[C]//Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition [2022-09-15].https://doi.org/10.1115/ZMECE2021-71685.

    • [55] AHUIR-TORRES J I,SIMANDJUNTAK S,BAUSCH N,et al.Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts(tower,foundation,and nacelle/gearbox)[J].Data in Brief,2019,25:104207.

    • [56] PRICE Seth J,FIGUEIRA Rita B.Corrosion protection systems and fatigue corrosion in offshore wind structures:current status and future perspectives[J].Coatings,2017,7(2):25.

    • [57] MOMBER Andreas,PLAGEMANN Peter,STENZEL Volkmar,et al.Assessment of corrosion protection systems for offshore wind energy towers-part 1:Introduction and test scenario[J].Stahlbau,2009,78(4):259-266.

    • [58] MOMBER Andreas,PLAGEMANN Peter,STENZEL Volkmar,et al.Assessment of corrosion protection systems for offshore wind energy towers—Part 2:Results and conclusions[J].Stahlbau,2009,78(6):394-401.

    • [59] 詹耀.大型风力发电设备防腐技术及质量控制[J].现代涂料与涂装,2014,17(1):26-30.ZHAN Yao.Anti-corrosion technology and quality control of large wind power generation equipment[J].Modern Paint & Finishing,2014,17(1):26-30.(in Chinese)

    • [60] 徐祥.沿海风机塔筒防腐蚀涂料的研制及其涂装工艺研究[D].长沙:长沙理工大学,2012.XU Xiang.Research of coastal wind turbine tower anticorrosion coatings and its coating process[D].Changsha:Changsha University of Science & Technology,2012.(in Chinese)

    • [61] 詹耀.海上风电塔筒的防腐涂装及应用实例[J].上海涂料,2013,51(4):37-42.ZHAN Yao.Offshore wind power tower drum anticorrosion coating and application examples[J].Shanghai Coatings,2013,51(4):37-42.(in Chinese)

    • [62] 陈川,黄海军,王俊,等.我国湿热海上风电大气区金属重防腐涂料的性能研究[J].装备环境工程,2015,12(4):89-94.CHEN Chuan,HUANG Haijun,WANG Jun,et al.Performance of metal heavy-duty coating in atmospheric zone of humid-hot sea[J].Equipment Environmental Engineering,2015,12(4):89-94.(in Chinese)

    • [63] 彭儒,张贤惠.新型抗风沙涂料在风电塔筒上的应用[J].上海涂料,2019,57(3):20-22.PENG Ru,ZHANG Xianhu.Application of new anti-sandstorm coatings on wind tower cylinder[J].Shanghai Coatings,2019,57(3):20-22.(in Chinese)

    • [64] 侯保荣,杨小刚,贾淑香.海洋浪溅区钢结构腐蚀与复层包覆防护实践[J].中国港湾建设,2012(2):70-72.HOU Baorong,YANG Xiaogang,JIA Shuxiang.Practice of corrosion protection and multi-layer covering technology for steel structure in splash zone[J].China Harbour Engineering,2012(2):70-72.(in Chinese)

    • [65] 侯保荣.钢铁设施在海洋浪花飞溅区的腐蚀行为及其新型包覆防护技术[J].腐蚀与防护,2007(4):174-175,187.HOU Baorong.Corrosion behavior of steel facilities in ocean splash zone and its new coating protection technology [J].Corrosion & Protection,2007(4):174-175,187.(in Chinese)

    • [66] 乐治济,林毅峰.海上风机基础钢结构防腐蚀设计[J].中国港湾建设,2013(4):18-22.YUE Zhiji,LIN Yifeng.Anticorrosive design for steel structured foundation for offshore wind turbine[J].China Harbour Engineering,2013(4):18-22.(in Chinese)

    • [67] 高宏飙,陈强,王静,等.PTC 复层矿脂包覆防腐技术在海上风电的应用[J].中国涂料,2013,28(12):39-43.GAO Hongbiao,CHEN Qiang,WANG Jing,et al.Anticorrosion technology application of Petrolatum Tape and Covering(PTC)on offshore wind farm[J].China Coatings,2013,28(12):39-43.(in Chinese)

    • [68] 高宏飙,诸浩君,钱正宏,等.海上风机单桩基础浪溅区腐蚀及复层包覆防护技术的应用[J].中国港湾建设,2014(5):57-61.GAO Hongbiao,ZHU Haojun,QIAN Zhenghong,et al.Application of corrosion and multi-layer covering protective technology on single piled foundation of offshore wind turbine in splash zone[J].China Harbour Engineering,2014(5):57-61.(in Chinese)

    • [69] 潘杰,侯保荣,刘佳利,等.PTC 矿脂包覆防腐蚀技术在国内的应用进展[J].腐蚀与防护,2015,36(12):1170-1173.PAN Jie,HOU Baorong,LIU Jiali,et al.Advances in application of petrolatum tape cover anticorrosion technology in China[J].Corrosion & Protection,2015,36(12):1170-1173.(in Chinese)

    • [70] 周晓天,钭锦周.江苏竹根沙海域海上风机单桩基础防腐技术[J].水电与新能源,2022,36(1):66-69.ZHOU Xiaotian,DOU Jinzhou.Anti-corrosion technology for monopile foundation of offshore wind turbine in jiangsu zhugensha sea area[J].Hydropower and New Energy,2022,36(1):66-69.(in Chinese)

    • [71] 曾伟.海上风电防腐蚀设计[J].全面腐蚀控制,2020,34(6):97-102.ZENG Wei.Anti-corrosion design of offshore wind power[J].Total Corrosion Control,2020,34(6):97-102.(in Chinese)

    • [72] 任伟,陈有登,谢志猛,等.海上风电防腐蚀研究现状与前景[J].应用能源技术,2022(2):49-52.REN Wei,CHEN Youdeng,XIE Zhimeng,et al.Research status and prospect of corrosion prevention for offshore wind power[J].Applied Energy Technology,2022(2):49-52.(in Chinese)

    • [73] 高宏飙,刘碧燕.外加电流阴极保护系统(ICCP)在海上风电的应用[J].腐蚀与防护,2013,34(12):1108-1110.GAO Hongbiao,LIU Biyan.Application of impressed current cathodic protection system(ICCP)to offshore wind farms[J].Corrosion & Protection,2013,34(12):1108-1110.(in Chinese)

    • [74] Det Norske Veritas.DNV-RP-B401 — 2011.Cathodic protection design[S].Oslo:Det Norske Veritas,2011.

    • [75] NACE International.NACE SP0176—2007.Corrosion control of submerged areas of permanently installed steel offshore structures associated with petroleum production[S].Houston:NACE International,2007.

    • [76] DNVGL.DNVGL-OS-C101—2015.Design of offshore steel structures,general-LRFD method[S].Oslo:DNVGL,2015.

    • [77] 中国国家标准化管理委员会.GB/T 33423—2016,沿海及海上风电机组防腐技术规范[S].北京:中国标准出版社,2016.Standardization Administration of China.GB/T 33423— 2016,Technical specification for anticorrosion of wind turbines in the coastal and offshore area[S].Beijing:Standards Press of China,2016.(in Chinese)

    • [78] 国家能源局.NB/T 31133—2018,海上风电场风力发电机组混凝土基础防腐蚀技术规范[S].北京:中国电力出版社,2018.National Energy Administration.NB/T 31133—2018.Technical specification of anti-corrosion of offshore wind turbine concrete foundation [S].Beijing:China Electric Power Press,2018.(in Chinese)

    • [79] 李承宇,王会阳,晁兵,等.风力发电设备防腐涂装[J].电镀与涂饰,2011,30(6):70-72.LI Chengyu,WAGN Huiyang,CHAO Bing,et al.Anti-corrosion coating of wind power equipment[J].Electroplating & Finishing,2011,30(6):70-72.(in Chinese)

    • [80] 田兆会,李华明.风电装备腐蚀环境分析与涂料防护[J].中国涂料,2009,24(11):6-12.TIAN Zhaohui,LI Huaming.Analysis on corrosion environment of wind power equipment and summary on coatings protection [J].China Coatings,2009,24(11):6-12.(in Chinese)

    • [81] 杨惠凡,刘丛庆,张鹏,等.海上风电机组叶片表面涂层材料的研制[J].风能,2012(3):76-79.YANG Huifan,LIU Congqing,ZHANG Peng,et al.Development of surface coating materials for offshore wind turbine blades[J].Wind Energy,2012(3):76-79.(in Chinese)

    • [82] 刘义修.FEVE 风电叶片涂料的制备及性能研究[D].北京:北京化工大学,2013.LIU Yixiu.Preparation and properties of FEVE fluorocarbon resin-based wind turbine blade coatings[D].Beijing:Beijing University of Chemical Technology,2013.(in Chinese)

    • [83] 刘正伟.风力发电机组风机叶片前缘保护涂料的研制[J].科学技术创新,2021(8):153-155.LIU Zhengwei.Development of protective coating for the leading edge of wind turbine blades[J].Scientific and Technological Innovation,2021(8):153-155.(in Chinese)

    • [84] FROST-JENSEN JOHANSEN N,MISHNAEVSKY L,DASHTKAR A,et al.Nanoengineered graphenereinforced coating for leading edge protection of wind turbine blades[J].Coatings,2021,11(9):1104.

    • [85] DASHTKAR A,FROST-JENSEN JOHANSEN N,MISHNAEVSKY L,et al.Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection:Properties and performance[J].Polymers and Polymer Composites,2022,30:1–18

    • [86] ARMADA S,BJØRGUM A,KNUDSEN O Ø,et al.Organic coatings reinforced with ceramic particles:an erosion study[J].European Wind Energy Conference and Exhibition(EWEC),2010,5:3611-3619.

    • [87] DASHTKAR A,HADAVINIA H,SAHINKAYA M N,et al.Rain erosion-resistant coatings for wind turbine blades:A review[J].Polymers and Polymer Composites,2019,27(8):443-475.

    • [88] VALAKER E A,ARMADA S,WILSON S.Droplet erosion protection coatings for offshore wind turbine blades[J].Energy Procedia,2015,80:263-275.

    • [89] SAREEN Agrim,SAPRE Chinmay A,SELIG Michael S.Effects of leading-edge protection tape on wind turbine blade performance[J].Wind Engineering,2012,36(5):525-534.

    • [90] HERRING Robbie,DYER Kirsten,MARTIN Ffion,et al.The increasing importance of leading edge erosion and a review of existing protection solutions[J].Renewable and Sustainable Energy Reviews,2019,115:109382.

    • [91] TANG Meiling,HUANG Lizhe,WANG Jianyu,et al.Research progress of blade coatings in wind turbines[J].IOP Conference Series:Materials Science and Engineering,2019,542:012061.

    • [92] 卢家骐,牟书香,李权舟.风电叶片前缘防护技术进展[J].玻璃钢/复合材料,2015(7):91-95.LU Jiaqi,MOU Shuxiang,LI Quanzhou.Progress on leading edge protection technology of wind turbine blades[J].Composites Science and Engineering,2015(7):91-95.(in Chinese)

    • [93] 梁自禄,雷志敏,宋杨,等.风机叶片用耐雨蚀涂料性能研究[J].涂料工业,2018,48(7):62-65.LIANG Zilu,LEI Zhimin,SONG Yang,et al.Properties of rain resistant coatings for wind turbine blade[J].Paint & Coatings Industry,2018,48(7):62-65.(in Chinese)

    • [94] SKRZYPIŃSKI W R,BECH J I,HASAGER C B,et al.Optimization of the erosion-safe operation of the IEA wind 15 mW reference wind turbine[J].Journal of Physics:Conference Series,2020,1618:052034.

  • 参考文献

    • [1] 夏婷,张木梓,陈杨,等.全球低风速风电发展现状与展望[J].水力发电,2022,48(6):105-108,118.XIA Ting,ZHANG Muzi,CHEN Yang,et al.Current status quo and future of global low wind speed power[J].Water Power,2022,48(6):105-108,118.(in Chinese)

    • [2] 李博媛,任重远.亚太地区能源转型前景分析[J].国际石油经济,2022,30(3):52-59.LI Boyuan,REN Zhongyuan.The prospect of energy transformation in Asia-Pacific region[J].International Petroleum Economics,2022,30(3):52-59.(in Chinese)

    • [3] POTRČ SANJA,ČUČEK LIDIJA,MARTIN,MARIANO,et al.Sustainable renewable energy supply networks optimization — The gradual transition to a renewable energy system within the European Union by 2050[J].Renewable and Sustainable Energy Reviews,2021,146:111186.

    • [4] BASHIR Mohamed Bashir Ali.Principle parameters and environmental impacts that affect the performance of wind turbine:An overview[J].Arabian Journal for Science and Engineering,2021:1-19.

    • [5] 夏云峰.2020 年欧洲新增风电装机 14.7 GW[J].风能,2021(3):36-43.XIA Yunfeng.14.7 GW of new wind power installed in Europe in 2020 [J].Wind Energy,2021(3):36-43.(in Chinese)

    • [6] 李昊璋,刘苹元,王锦鸿,等.我国风电产业的发展现状分析及未来展望[J].机电信息,2020(21):91-94.LI Haozhang,LIU Pingyuan,WANG Jinhong,et al.Analysis of the development status and future prospects of my country’ s wind power industry[J].Mechanical and Electrical Information,2020(21):91-94.(in Chinese)

    • [7] WEI Youzhou,ZOU Qingping,LIN Xianghong.Evolution of price policy for offshore wind energy in China:Trilemma of capacity,price and subsidy[J].Renewable and Sustainable Energy Reviews,2021,136:110366.

    • [8] LI Jidong,CHEN Shijun,WU Yuqiang,et al.How to make better use of intermittent and variable energy?A review of wind and photovoltaic power consumption in China[J].Renewable and Sustainable Energy Reviews,2021,137:110626.

    • [9] 彭光博,向月,陈文溆乐,等.“双碳”目标下电力系统风电装机与投资发展动力学推演及分析[J/OL].电力自动化设备[2022-09-15].https://doi.org/10.16081/j.epae.202205013.PENG Gangbo,XIANG Yue,CHEN Wenshule,et al.Analysis on the development trend of traditional fossil energy and new energy under “double carbon” goal[J/OL].Electric Power Automation Equipment[2022-09-15].https://doi.org/10.16081/j.epae.202205013.(in Chinese)

    • [10] 殷仁豪.“双碳”背景下新能源基地规划发展趋势[J].上海节能,2022(3):265-271.YIN Renhao.Planning development trend of new energy base under “Dual Carbon” background[J].Shanghai Energy Conservation,2022(3):265-271.(in Chinese)

    • [11] 张希良,黄晓丹,张达,等.碳中和目标下的能源经济转型路径与政策研究[J].管理世界,2022,38(1):35-66.ZHAN Xiliang,HUANG Xiaodan,ZHANG Da,et al.Research on the pathway and policies for china’s energy and economy transformation toward carbon neutrality[J].Management World,2022,38(1):35-66.(in Chinese)

    • [12] 清洁能源低碳时代新动力[J].科学大观园,2021(19):10-11.Clean energy,a new driving force in the low-carbon era[J].Grand Garden of Science,2021(19):10-11.(in Chinese)

    • [13] 2021 年上半年风电建设和运行情况[J].电力科技与环保,2021,37(4):19.Wind power construction and operation in the first half of 2021[J].Electric Power Technology and Environmental Protection,2021,37(4):19.(in Chinese)

    • [14] 王芳.探索“双碳”目标下的“十四五”风电发展路径[J].风能,2021(4):42-45.WANG Fang.Explore the development path of wind power during the “14th Five-Year Plan” period under the “double carbon” goal[J].Wind Energy,2021(4):42-45.(in Chinese)

    • [15] DALILI N,EDRISY A,CARRIVEAU R.A review of surface engineering issues critical to wind turbine performance[J].Renew Sustain Energy Rev,2009,13(2):428-438.

    • [16] 王风云,王辉.国内外海上风电场现状及其基础设施研究[J].中国造船,2011,52(A02):8.WANG Fengyun,WANG Hui.Research on the status and infrastructures of off-shore wind farm all over the world[J].Shipbuilding of China,2011,52(A02):8.(in Chinese)

    • [17] BEJGER A,FRANK E,BARTOSZKO P.Failure analysis of wind turbine planetary gear[J].Energies,2021,14:6768.

    • [18] 王晶晶.风机塔筒的冲刷磨损和腐蚀行为研究及Fluent数值模拟[D].乌鲁木齐:新疆大学,2015.WANG Jingjing.A study on the erosion wear and corrosion behavior of wind turbine tower and numerical simulation by fluent[D].Urumchi:Xinjiang University,2015.(in Chinese)

    • [19] 詹耀.海上风电机组的防腐技术与应用[J].现代涂料与涂装,2012,15(2):15-18.ZHAN Yao.Anticorrosion technology and application of offshore wind turbines[J].Modern Paint & Finishing,2012,15(2):15-18.(in Chinese)

    • [20] MOMBER A.Corrosion and corrosion protection of support structures for offshore wind energy devices(OWEA)[J].Materials and Corrosion,2011,62(5):391-404.

    • [21] 胡苏杭,刘碧燕.海上风电防腐技术现状及研究方向[J].风能,2019(11):88-91.HU Suhang,LIU Biyan.Status quo and research direction of offshore wind power anticorrosion technology[J].Wind Energy,2019(11):88-91.(in Chinese)

    • [22] 任伟,陈亚宾,徐华利,等.海上风电设备腐蚀机理及腐蚀现状研究[J].船舶工程,2021,43(S1):1-5.REN Wei,CHEN Yabin,XU Huali,et al.Study of corrosion mechanism and corrosion status of offshore wind power equipment[J].Ship Engineering,2021,43(S1):1-5.(in Chinese)

    • [23] 刘雪键,程旭东,彭文山,等.海水泥沙含量对945钢冲刷腐蚀的影响[J].电镀与精饰,2019,41(6):11-17.LIU Xuejian,CHENG Xudong,PENG Wenshan,et al.Effect of sand content on erosion-corrosion behavior of 945 steel [J].Plating and Finishing,2019,41(6):11-17.(in Chinese)

    • [24] GIOURNTAS L,HODGKIESS T,GALLOWAY A M.Comparative study of erosion-corrosion performance on a range of stainless steels[J].Wear,2015,332-333:1051-1058.

    • [25] MENG H,HU X,NEVILLE A.A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design[J].Wear,2007,263(1-6):355-362.

    • [26] 邓达纮,陆军.浅析海上风电施工与运维装备[J].机电工程技术,2019,48(8):45-47.DENG Dahong,LU Jun.Brief analysis of offshore wind power construction and maintenance equipment[J].Mechanical & Electrical Engineering Technology,2019,48(8):45-47.(in Chinese)

    • [27] 刘永超,郭德瑞,李帅,等.风电机组高强度螺栓的失效形式分析[J].太阳能,2021(1):44-50.LIU Yongchao,GUO Derui,LI Shuai,et al.Failure form analysis of high-strength bolt in wind turbine[J].Solar Energy,2021(1):44-50.(in Chinese)

    • [28] 赵迪,李云龙,张刚.风电机组高强度连接螺栓断裂原因分析及优化[J].装备制造技术,2020(3):198-200.ZHAO Di,LI Yunlong,ZHANG Gang.Analysis and optimization of high strength connecting bolt fracture of wind turbine[J].Equipment Manufacturing Technology Wind Turbine,2020(3):198-200.(in Chinese)

    • [29] 王荣.风能发电机组结构件的失效分析与预防(待续)第1讲螺栓的失效分析与预防[J].理化检验(物理分册),2019,55(6):371-380.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(to be continued)lecture 1 failure analysis and prevention of bolts[J].Physical Testing and Chemical Analysis,2019,55(6):371-380.(in Chinese)

    • [30] LIN Y,TU L,LIU H,et al.Fault analysis of wind turbines in China[J].Renewable and Sustainable Energy Reviews,2016,55:482-490.

    • [31] 吴智泉,陈亮,张新,等.风电塔筒高强度螺栓大面积腐蚀分析[J].热加工工艺,2019,48(10):253-259.WU Zhiquan,CHEN Liang,ZHANG Xin,et al.Analysis on large area corrosion of high strength bolts in wind power tower tube[J].Hot Working Technology,2019,48(10):253-259.(in Chinese)

    • [32] LACHOWICZ M B,LACHOWICZ M M.Influence of corrosion on fatigue of the fastening bolts[J].Materials,2021,14(6):1485.

    • [33] JIN Xin,CHEN Yiming,WANG Lei,et al.Failure prediction,monitoring and diagnosis methods for slewing bearings of large-scale wind turbine:A review[J].Measurement,2021,172:108855.

    • [34] 王荣.风能发电机组结构件的失效分析与预防(续完)第3讲轴承的失效分析与预防[J].理化检验(物理分册),2019,55(12):815-823.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(Finished)lecture 3 Failure analysis and prevention of bearings[J].Physical Testing and Chemical Analysis,2019,55(12):815-823.(in Chinese)

    • [35] 张富全,王伟.风电机组中的轴电流分析[J].风能,2017(6):64-67.ZHANG Fuquan,WANG Wei.Shaft current analysis in wind turbines[J].Wind Energy,2017(6):64-67.(in Chinese)

    • [36] 姜锐,滕伟,刘潇波,等.风电机组发电机轴承电腐蚀故障的分析诊断[J].中国电力,2019,52(6):128-133.JIANG Rui,TENG Wei,LIU Xiaobo,et al.Analysis and diagnosis of electrical corrosion faults of wind turbine generator bearings[J].Electric Power,2019,52(6):128-133.(in Chinese)

    • [37] 陈星,许峰.风力发电机轴承疲劳失效与电腐蚀故障的辨析[J].机械工程与自动化,2021(5):152-155.CHEN Xing,XU Feng.Differentiation and analysis of bearing fatigue failure and electric corrosion failure of wind turbine[J].Mechanical Engineering & Automation,2021(5):152-155.(in Chinese)

    • [38] 罗振斌.风电机组发电机轴承电腐蚀故障研究[J].中国科技纵横,2020(1):160-161.LUO Zhenbin.Research on electrical corrosion faults of wind turbine generator bearings[J].Technology and Economic Guide,2020(1):160-161.(in Chinese)

    • [39] 刘俊.大型风电机组齿轮箱故障诊断系统研究[D].广州:广东工业大学,2013.LIU Jun.Research on fault diagnosis system of gearbox in large wind turbines[D].Guangzhou:Guangdong University of Technology,2013.(in Chinese)

    • [40] SPINATO F,TAVNER P J,VAN BUSSEL G J W,et al.Reliability of wind turbine subassemblies[J].IET Renewable Power Generation,2009,3(4):387-401.

    • [41] BHARDWAJ U,TEIXEIRA A P,GUEDES SOARES C.Reliability prediction of an offshore wind turbine gearbox[J].Renewable Energy,2019,141:693-706.

    • [42] 姜荣国,李若辉,张国辉,等.风电齿轮箱小齿轮断齿原因分析[J].失效分析与预防,2016,11(5):315-321.JIANG Rongguo,LI Ruohui,ZHANG Guohui,et al.Failure analysis of cracked gear in wind power gearbox[J].Failure Analysis and Prevention,2016,11(5):315-321.(in Chinese)

    • [43] 王大伟,崔博,王明军.某风电场 1.5 MW 风电机组齿轮箱点蚀及断齿故障分析[J].风能,2014(5):92-95.WANG Dawei,CUN Bo,WANG Mingjun.Analysis of pitting corrosion and broken gear faults of 1.5mw wind turbine gearbox in a wind farm[J].Wind Energy,2014(5):92-95.(in Chinese)

    • [44] 王荣.风能发电机组结构件的失效分析与预防(待续)第2讲齿轮的失效分析与预防[J].理化检验(物理分册),2019,55(10):667-675.WANG Rong.Failure analysis and prevention of structural parts of wind turbine generator systems(to be continued)lecture 2 Failure analysis and prevention of gears[J].Physical Testing And Chemical Analysis,2019,55(10):667-675.(in Chinese)

    • [45] 吴辉.风电叶片材料及其防护涂料的发展与应用[J].上海涂料,2015,53(8):26-29.WU Hui.The development and application of wind turbine blade material and protection coatings[J].Shanghai Coatings,2015,53(8):26-29.(in Chinese)

    • [46] 朱平.对服役中风电叶片表面状态的调查以及对原厂涂装的反思[J].风能,2012(10):42-50.ZHU Ping.An investigation and reflection on the surface condition of wind blades in service[J].Wind Energy,2012(10):42-50.(in Chinese)

    • [47] 朱平,王建国,史秋生.解决风电叶片前缘磨蚀的一种方案-风电叶片保护膜[C]//2011防腐蚀涂料年会暨第28次全国涂料工业信息年会,武汉,2011-10-24.2011:146-149.ZHU Ping,WANG Jianguo,SHI Qiusheng.A solution to the erosion of the leading edge of wind turbine blades-wind turbine blade protective tape[C]//2011 Anti-Corrosion Coatings Annual Conference and the 28th National Coatings Industry Information Annual Conference,Wuhan,2011-10-24.2011:146-149.(in Chinese)

    • [48] MISHNAEVSKY JR L.Toolbox for optimizing antierosion protective coatings of wind turbine blades:overview of mechanisms and technical solutions[J].Wind Energy,2019,22(11):1636-1653.

    • [49] MISHNAEVSKY JR L,HASAGER C B,BAK C,et al.Leading edge erosion of wind turbine blades:Understanding,prevention and protection[J].Renewable Energy,2021,169:953-969.

    • [50] SAREEN A,SAPRE C A,SELIG M S.Effects of leading edge erosion on wind turbine blade performance[J].Wind Energy,2014,17(10):1531-1542.

    • [51] REMPEL Lisa.Rotor blade leading edge erosion-real life experiences[J].Wind Systems Magazine,2012,11:22-24.

    • [52] VERMA A S,JIANG Z,REN Z,et al.Effects of onshore and offshore environmental parameters on the leading edge erosion of wind turbine Blades:A comparative study[J].Journal of Offshore Mechanics and Arctic Engineering,2020,143(4):042001.

    • [53] KEEGAN M H,NASH D H,STACK M M.On erosion issues associated with the leading edge of wind turbine blades[J].Journal of Physics D:Applied Physics,2013,46(38):383001.

    • [54] ALAJMI Abdullah F,RAMULU M.Characterization of the leading-edge erosion of wind turbine blades by sand particles impingement[C]//Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition [2022-09-15].https://doi.org/10.1115/ZMECE2021-71685.

    • [55] AHUIR-TORRES J I,SIMANDJUNTAK S,BAUSCH N,et al.Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts(tower,foundation,and nacelle/gearbox)[J].Data in Brief,2019,25:104207.

    • [56] PRICE Seth J,FIGUEIRA Rita B.Corrosion protection systems and fatigue corrosion in offshore wind structures:current status and future perspectives[J].Coatings,2017,7(2):25.

    • [57] MOMBER Andreas,PLAGEMANN Peter,STENZEL Volkmar,et al.Assessment of corrosion protection systems for offshore wind energy towers-part 1:Introduction and test scenario[J].Stahlbau,2009,78(4):259-266.

    • [58] MOMBER Andreas,PLAGEMANN Peter,STENZEL Volkmar,et al.Assessment of corrosion protection systems for offshore wind energy towers—Part 2:Results and conclusions[J].Stahlbau,2009,78(6):394-401.

    • [59] 詹耀.大型风力发电设备防腐技术及质量控制[J].现代涂料与涂装,2014,17(1):26-30.ZHAN Yao.Anti-corrosion technology and quality control of large wind power generation equipment[J].Modern Paint & Finishing,2014,17(1):26-30.(in Chinese)

    • [60] 徐祥.沿海风机塔筒防腐蚀涂料的研制及其涂装工艺研究[D].长沙:长沙理工大学,2012.XU Xiang.Research of coastal wind turbine tower anticorrosion coatings and its coating process[D].Changsha:Changsha University of Science & Technology,2012.(in Chinese)

    • [61] 詹耀.海上风电塔筒的防腐涂装及应用实例[J].上海涂料,2013,51(4):37-42.ZHAN Yao.Offshore wind power tower drum anticorrosion coating and application examples[J].Shanghai Coatings,2013,51(4):37-42.(in Chinese)

    • [62] 陈川,黄海军,王俊,等.我国湿热海上风电大气区金属重防腐涂料的性能研究[J].装备环境工程,2015,12(4):89-94.CHEN Chuan,HUANG Haijun,WANG Jun,et al.Performance of metal heavy-duty coating in atmospheric zone of humid-hot sea[J].Equipment Environmental Engineering,2015,12(4):89-94.(in Chinese)

    • [63] 彭儒,张贤惠.新型抗风沙涂料在风电塔筒上的应用[J].上海涂料,2019,57(3):20-22.PENG Ru,ZHANG Xianhu.Application of new anti-sandstorm coatings on wind tower cylinder[J].Shanghai Coatings,2019,57(3):20-22.(in Chinese)

    • [64] 侯保荣,杨小刚,贾淑香.海洋浪溅区钢结构腐蚀与复层包覆防护实践[J].中国港湾建设,2012(2):70-72.HOU Baorong,YANG Xiaogang,JIA Shuxiang.Practice of corrosion protection and multi-layer covering technology for steel structure in splash zone[J].China Harbour Engineering,2012(2):70-72.(in Chinese)

    • [65] 侯保荣.钢铁设施在海洋浪花飞溅区的腐蚀行为及其新型包覆防护技术[J].腐蚀与防护,2007(4):174-175,187.HOU Baorong.Corrosion behavior of steel facilities in ocean splash zone and its new coating protection technology [J].Corrosion & Protection,2007(4):174-175,187.(in Chinese)

    • [66] 乐治济,林毅峰.海上风机基础钢结构防腐蚀设计[J].中国港湾建设,2013(4):18-22.YUE Zhiji,LIN Yifeng.Anticorrosive design for steel structured foundation for offshore wind turbine[J].China Harbour Engineering,2013(4):18-22.(in Chinese)

    • [67] 高宏飙,陈强,王静,等.PTC 复层矿脂包覆防腐技术在海上风电的应用[J].中国涂料,2013,28(12):39-43.GAO Hongbiao,CHEN Qiang,WANG Jing,et al.Anticorrosion technology application of Petrolatum Tape and Covering(PTC)on offshore wind farm[J].China Coatings,2013,28(12):39-43.(in Chinese)

    • [68] 高宏飙,诸浩君,钱正宏,等.海上风机单桩基础浪溅区腐蚀及复层包覆防护技术的应用[J].中国港湾建设,2014(5):57-61.GAO Hongbiao,ZHU Haojun,QIAN Zhenghong,et al.Application of corrosion and multi-layer covering protective technology on single piled foundation of offshore wind turbine in splash zone[J].China Harbour Engineering,2014(5):57-61.(in Chinese)

    • [69] 潘杰,侯保荣,刘佳利,等.PTC 矿脂包覆防腐蚀技术在国内的应用进展[J].腐蚀与防护,2015,36(12):1170-1173.PAN Jie,HOU Baorong,LIU Jiali,et al.Advances in application of petrolatum tape cover anticorrosion technology in China[J].Corrosion & Protection,2015,36(12):1170-1173.(in Chinese)

    • [70] 周晓天,钭锦周.江苏竹根沙海域海上风机单桩基础防腐技术[J].水电与新能源,2022,36(1):66-69.ZHOU Xiaotian,DOU Jinzhou.Anti-corrosion technology for monopile foundation of offshore wind turbine in jiangsu zhugensha sea area[J].Hydropower and New Energy,2022,36(1):66-69.(in Chinese)

    • [71] 曾伟.海上风电防腐蚀设计[J].全面腐蚀控制,2020,34(6):97-102.ZENG Wei.Anti-corrosion design of offshore wind power[J].Total Corrosion Control,2020,34(6):97-102.(in Chinese)

    • [72] 任伟,陈有登,谢志猛,等.海上风电防腐蚀研究现状与前景[J].应用能源技术,2022(2):49-52.REN Wei,CHEN Youdeng,XIE Zhimeng,et al.Research status and prospect of corrosion prevention for offshore wind power[J].Applied Energy Technology,2022(2):49-52.(in Chinese)

    • [73] 高宏飙,刘碧燕.外加电流阴极保护系统(ICCP)在海上风电的应用[J].腐蚀与防护,2013,34(12):1108-1110.GAO Hongbiao,LIU Biyan.Application of impressed current cathodic protection system(ICCP)to offshore wind farms[J].Corrosion & Protection,2013,34(12):1108-1110.(in Chinese)

    • [74] Det Norske Veritas.DNV-RP-B401 — 2011.Cathodic protection design[S].Oslo:Det Norske Veritas,2011.

    • [75] NACE International.NACE SP0176—2007.Corrosion control of submerged areas of permanently installed steel offshore structures associated with petroleum production[S].Houston:NACE International,2007.

    • [76] DNVGL.DNVGL-OS-C101—2015.Design of offshore steel structures,general-LRFD method[S].Oslo:DNVGL,2015.

    • [77] 中国国家标准化管理委员会.GB/T 33423—2016,沿海及海上风电机组防腐技术规范[S].北京:中国标准出版社,2016.Standardization Administration of China.GB/T 33423— 2016,Technical specification for anticorrosion of wind turbines in the coastal and offshore area[S].Beijing:Standards Press of China,2016.(in Chinese)

    • [78] 国家能源局.NB/T 31133—2018,海上风电场风力发电机组混凝土基础防腐蚀技术规范[S].北京:中国电力出版社,2018.National Energy Administration.NB/T 31133—2018.Technical specification of anti-corrosion of offshore wind turbine concrete foundation [S].Beijing:China Electric Power Press,2018.(in Chinese)

    • [79] 李承宇,王会阳,晁兵,等.风力发电设备防腐涂装[J].电镀与涂饰,2011,30(6):70-72.LI Chengyu,WAGN Huiyang,CHAO Bing,et al.Anti-corrosion coating of wind power equipment[J].Electroplating & Finishing,2011,30(6):70-72.(in Chinese)

    • [80] 田兆会,李华明.风电装备腐蚀环境分析与涂料防护[J].中国涂料,2009,24(11):6-12.TIAN Zhaohui,LI Huaming.Analysis on corrosion environment of wind power equipment and summary on coatings protection [J].China Coatings,2009,24(11):6-12.(in Chinese)

    • [81] 杨惠凡,刘丛庆,张鹏,等.海上风电机组叶片表面涂层材料的研制[J].风能,2012(3):76-79.YANG Huifan,LIU Congqing,ZHANG Peng,et al.Development of surface coating materials for offshore wind turbine blades[J].Wind Energy,2012(3):76-79.(in Chinese)

    • [82] 刘义修.FEVE 风电叶片涂料的制备及性能研究[D].北京:北京化工大学,2013.LIU Yixiu.Preparation and properties of FEVE fluorocarbon resin-based wind turbine blade coatings[D].Beijing:Beijing University of Chemical Technology,2013.(in Chinese)

    • [83] 刘正伟.风力发电机组风机叶片前缘保护涂料的研制[J].科学技术创新,2021(8):153-155.LIU Zhengwei.Development of protective coating for the leading edge of wind turbine blades[J].Scientific and Technological Innovation,2021(8):153-155.(in Chinese)

    • [84] FROST-JENSEN JOHANSEN N,MISHNAEVSKY L,DASHTKAR A,et al.Nanoengineered graphenereinforced coating for leading edge protection of wind turbine blades[J].Coatings,2021,11(9):1104.

    • [85] DASHTKAR A,FROST-JENSEN JOHANSEN N,MISHNAEVSKY L,et al.Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection:Properties and performance[J].Polymers and Polymer Composites,2022,30:1–18

    • [86] ARMADA S,BJØRGUM A,KNUDSEN O Ø,et al.Organic coatings reinforced with ceramic particles:an erosion study[J].European Wind Energy Conference and Exhibition(EWEC),2010,5:3611-3619.

    • [87] DASHTKAR A,HADAVINIA H,SAHINKAYA M N,et al.Rain erosion-resistant coatings for wind turbine blades:A review[J].Polymers and Polymer Composites,2019,27(8):443-475.

    • [88] VALAKER E A,ARMADA S,WILSON S.Droplet erosion protection coatings for offshore wind turbine blades[J].Energy Procedia,2015,80:263-275.

    • [89] SAREEN Agrim,SAPRE Chinmay A,SELIG Michael S.Effects of leading-edge protection tape on wind turbine blade performance[J].Wind Engineering,2012,36(5):525-534.

    • [90] HERRING Robbie,DYER Kirsten,MARTIN Ffion,et al.The increasing importance of leading edge erosion and a review of existing protection solutions[J].Renewable and Sustainable Energy Reviews,2019,115:109382.

    • [91] TANG Meiling,HUANG Lizhe,WANG Jianyu,et al.Research progress of blade coatings in wind turbines[J].IOP Conference Series:Materials Science and Engineering,2019,542:012061.

    • [92] 卢家骐,牟书香,李权舟.风电叶片前缘防护技术进展[J].玻璃钢/复合材料,2015(7):91-95.LU Jiaqi,MOU Shuxiang,LI Quanzhou.Progress on leading edge protection technology of wind turbine blades[J].Composites Science and Engineering,2015(7):91-95.(in Chinese)

    • [93] 梁自禄,雷志敏,宋杨,等.风机叶片用耐雨蚀涂料性能研究[J].涂料工业,2018,48(7):62-65.LIANG Zilu,LEI Zhimin,SONG Yang,et al.Properties of rain resistant coatings for wind turbine blade[J].Paint & Coatings Industry,2018,48(7):62-65.(in Chinese)

    • [94] SKRZYPIŃSKI W R,BECH J I,HASAGER C B,et al.Optimization of the erosion-safe operation of the IEA wind 15 mW reference wind turbine[J].Journal of Physics:Conference Series,2020,1618:052034.

  • 手机扫一扫看