en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王权,男,1997年出生,硕士研究生。主要研究方向为材料表面工程与摩擦学。E-mail:wq512075320@foxmail.com;

刘秀波(通信作者),男,1968年出生,博士,教授、博士研究生导师。主要研究方向为材料表面工程与摩擦学、激光加工。E-mail:liuxiubosz@163.com

中图分类号:TG146;TH117

DOI:10.11933/j.issn.1007−9289.20220428002

参考文献 1
雒建斌.影响制造业发展的新技术[J].中国市场监管研究,2020(10):12-14.LUO Jianbin.New technology affecting the development of manufacturing industry[J].Research on China Market Regulation,2020(10):12-14.(in Chinese)
参考文献 2
曹中炫.感应淬火处理45钢微观组织演变及摩擦磨损性能研究[D].常州:常州大学,2021.CAO Zhongxuan.Research on microstructure evolution and friction and wear properties of 45 steel by induction hardening[D].Changzhou:Changzhou University,2021.(in Chinese)
参考文献 3
张啸,刘敏,张小锋,等.等离子喷涂-物理气相沉积高温防护涂层研究进展[J].中国表面工程,2018,31(5):39-53.ZHANG Xiao,LIU Ming,ZHANG Xiaofeng,et.al.Research progress of high temperature protective coatings by plasma spray-physical vapor deposition[J].China Surface Engineering,2018,31(5):39-53.(in Chinese)
参考文献 4
QIAO L,WU Y P,HONG S,et al.Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying[J].Ceramics International,2021,47(2):1829-1836.
参考文献 5
LIU L M,XU H F,XIAO J K,et al.Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings[J].Surface and Coatings Technology,2017,325:548-554.
参考文献 6
何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progess in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)
参考文献 7
LI G J,LI J,LUO X.Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate[J].Materials Characterization,2014,98:83-92.
参考文献 8
ZHU Z C,Li J F,PENG Y X,et al.In-situ synthesized novel eyeball-like Al2O3/TiC composite ceramics reinforced Fe-based alloy coating produced by laser cladding[J].Surface and Coatings Technology,2020,391:125671.
参考文献 9
朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings prepared by laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)
参考文献 10
祝杨,庄宿国,刘秀波,等.Ti6Al4V 合金激光熔覆 Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J].摩擦学学报,2021,41(3):414-422.ZHU Yang,ZHUANG Suguo,LIU Xiubo.et al.Microstructure and tribological properties of Ti3SiC2 enhanced Ni60 composite coatings on Ti6Al4V alloy by laser cladding[J].Tribology,2021,41(3):414-422.(in Chinese)
参考文献 11
张诗怡,刘秀波,刘一帆,等.Ti6Al4V 合金激光熔覆 Co-Cu/Ti3SiC2复合涂层组织与摩擦学性能[J].中国表面工程,2021,34(6):124-133.ZHANG Shiyi,LIU Xiubo,LIU Yifan.et al.Microstructure and tribological properties of Co-Cu/Ti3SiC2 composite coatings on Ti6Al4V alloy by laser cladding[J].China Surface Engineering,2021,34(6):124-133.(in Chinese)
参考文献 12
LI B,GAO Y M,LI C,et al.Improved tribological performance of nickel based high temperature lubricating composites with addition of metallic oxides[J].Wear,2021,480:203938.
参考文献 13
DAVIS D,MARAPPAN G,SIVALINGAM Y,et al.Tribological behavior of NiMoAl-based self-lubricating composites[J].ACS Omega,2020,5(24):14669-14678.
参考文献 14
王勉,刘秀波,欧阳春生,等.304 不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J].材料工程,2021,49(1):133-143.WANG Mian,LIU Xiubo,OU-YANG Chunsheng,et al.Wide temperature range tribological performance of laser in-situ synthesized self-lubricating coating on 304 stainless steel[J],Journal of Materials Engineering,2021,49(1):133-143.(in Chinese)
参考文献 15
LIU Y F,ZHUANG S G,LIU X B,et al.Microstructure evolution and high-temperature tribological behavior of Ti3SiC2 reinforced Ni60 composite coatings on 304 stainless steel by laser cladding[J].Surface and Coatings Technology,2021,420:127335.
参考文献 16
ZHEN J M,CHENG J,TAN H,et al.Investigation of tribological characteristics of nickel alloy-based solid-lubricating composites at elevated temperatures under vacuum[J].Friction,2021,9(5):990-1001.
参考文献 17
SIVA PRASAD H,BRUECKNER F,VOLPP J,et al.Laser metal deposition of copper on diverse metals using green laser sources[J].The International Journal of Advanced Manufacturing Technology,2020,107(3):1559-1568.
参考文献 18
YAO J H,YANG L J,BO L,et al.Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique[J].Materials & Design,2015,83(15):26-35.
参考文献 19
LIU K,LI Y J,WANG J,et al.In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser[J].Journal of Alloys and Compounds,2015,624:234-240.
参考文献 20
YE F X,LOU Z,WANG Y H,et al.Wear mechanism of Ag as solid lubricant for wide range temperature application in micro-beam plasma cladded Ni60 coatings[J].Tribology International,2022,167:107402.
参考文献 21
ZHAI Y J,LIU X B,QIAO S J,et al.Characteristics of laser clad α-Ti/TiC+(Ti,W)C1− x/Ti2SC+ TiS composite coatings on TA2 titanium alloy[J].Optics & Laser Technology,2017,89:97-107.
参考文献 22
HE B,ZHANG L J,ZHU Q H,et al.Effect of solution treated 316L layer fabricated by laser cladding on wear and corrosive wear resistance[J].Optics & Laser Technology,2020,121:105788.
参考文献 23
王勉.304 不锈钢激光制备自润滑复合涂层微观组织结构和力学性能[D].长沙:中南林业科技大学,2019.WANG Mian.Microstructure and mechanical properites of laser fabricated of self-lubricating composite coating on 304 stainless steel[D].Changsha:Central South University of Forestry and Technology,2019.(in Chinese)
参考文献 24
OH J,RHEE C.Tribological performance of Cu− Ni alloy nanoparticles synthesized using a pulsed-wire evaporation method[J].Metals and materials International,2008,14(4):425-432.
参考文献 25
AGUILAR-ORTIZ C O,CAMARILLO-GARCIA J P,VERGARA J,et al.Effect of solidification rate on martensitic transformation behavior and adiabatic magnetocaloric effect of Ni50Mn35In15 ribbons[J].Journal of Alloys and Compounds,2018,748:464-472.
参考文献 26
LIANG Y J,LI J,LI A,et al.Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions[J].Scripta Materialia,2017,127:58-62.
参考文献 27
方金祥,王玉江,董世运,等.激光熔覆Inconel718合金涂层与基体界面的组织及力学性能[J].中国机械工程,2019,30(17):2108-2113.FANG Jinxiang,WANG Yujiang,DONG Shiyun,et al.Microstructure and mechanics properties of interfaces between laser cladded Inconel718 coating and substrate[J].China Mechanical Engineering,2019,30(17):2108-2113.(in Chinese)
参考文献 28
HU M,ZHANG Y L,TANG L L,et al.Surface modifying of SiC particles and performance analysis of SiCp/Cu composites[J].Applied Surface Science,2015,332:720-725.
参考文献 29
刘聪聪.金属摩擦作用下单晶金刚石化学磨损的微观机理研究[D].天津:天津大学,2019.LIU Congcong.Microscopic mechanism of the chemical wear of monocrystalline diamond in sliding contact with pure metals[D].Tianjin:Tianjin University,2019.(in Chinese)
参考文献 30
ZHU R Y,ZHANG P L,YU Z S,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface and Coatings Technology,2020,383:125248.
参考文献 31
XIN B B,YU Y J,ZHOU J S,et al.Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures[J].Surface and Coatings Technology,2017,313:328-336.
参考文献 32
ZHANG S T,ZHOU J S,GUO B G,et al.Preparation and characterization of reactively sintered Ni3Al–hBN–Ag composite coating on Ni-based superalloy[J].Journal of Alloys and Compounds,2009,473(1-2):462-466.
参考文献 33
ZHAO Y,FENG K,YAO C W,et al.Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants[J].Surface and Coatings Technology,2019,359:485-494.
参考文献 34
ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear:A review[J].Tribology International,2021,155:106792.
参考文献 35
CUI G,HAN B,ZHAO J B,et al.Microstructure and tribological performance of sulfurizing layer prepared on the laser cladding Co-based alloy coating[J].Surface and Coatings Technology,2017,331:27-34.
参考文献 36
李建.NiCrW 基高温合金自润滑复合材料的制备及摩擦学性能研究[D].镇江:江苏大学,2020.LI Jian.Preparation and tribological properties of NiCrW-based superalloy self-lubricating composites[D].Zhenjiang:Jiangsu University,2020.(in Chinese)
目录contents

    摘要

    为改进 45#钢表面硬度低、耐磨性差的缺点,拓宽其在工业生产中应用范围,选择激光熔覆技术在其表面制备 Ni60(N1)、 Ni60-10%Cu(N2)、Ni60-20%Cu(N3)(wt.%)三种耐磨复合涂层,研究三种涂层的微观组织、显微硬度及摩擦学性能。结果表明: N1 涂层主要包括 γ-Ni 固溶体、Cr7C3 硬质相、FeNi3 金属间化合物,N2、N3 涂层额外含有固体润滑相 Cu。性能上 N1(730.41 HV0.5)、N2(653.04 HV0.5)和 N3(592.29 HV0.5)涂层的显微硬度均高于基体,分别达到基体(299.20HV0.5)的 2.44、2.18 和 1.98 倍;室温下 N3 涂层表现出优异的减摩性能,摩擦因数比 N1 涂层降低 8.5%,N2 涂层表现出优异的耐磨性能,磨损率为 1.74×10−5 mm3 (N·m),而添加 20%Cu 后,涂层对硬质相的支撑下降,导致硬质相剥离涂层,进而破坏润滑膜,导致磨损率上升。然而在 600 ℃下,N1 涂层的减摩性能最佳,摩擦因数比基体下降 50.7%,N2 涂层耐磨性最高,磨损率为 5.99×10−5 mm3 (N·m),低于 N3 涂层的磨损率 9.02×10−5 mm3 (N·m),这是因为添加固体润滑相 Cu 对涂层的保护作用不足以抵消涂层硬度下降的负面影响。为固体润滑相 Cu 改进 Ni60 复合粉末,进而制备成自润滑复合涂层提供了添加量参考范围。

    Abstract

    To improve the low surface hardness and poor wear resistance of 45 # steel and broaden its application range in industrial production, three kinds of wear-resistant composite coatings of Ni60, Ni60-10%Cu and Ni60-20%Cu (wt.%) are prepared on the its surface by laser cladding technology. The microstructure, microhardness and tribological properties of the three coatings are investigated. The results show that the N1 coating mainly includes γ-Ni solid solution, Cr7C3 hard phase and FeNi3 intermetallic compound, and the N2 and N3 coatings contain extra solid lubricant Cu. In terms of performance, the microhardness of N1 (730.41 HV0.5 ), N2 (653.04 HV0.5 ) and N3 (592.29 HV0.5 ) coatings is higher than that of the substrate, which is 2.44, 2.18 and 1.98 times higher than that of the substrate ( 299.20 HV0.5 ), respectively. At room temperature, the N3 coating shows excellent friction reduction performance, and the friction coefficient is 8.5 % lower than that of the N1 coating. The N2 coating shows excellent wear resistance, and the wear rate is 1.74×10−5 mm3 (N·m). However, after the addition of 20 % Cu, the support of the coating on the hard phase decreases, resulting in the stripping of the coating on the hard phase, thus damaging the lubricating film and increasing the wear rate. However, at 600 ℃, N1 coating has the best friction reduction performance, and the friction coefficient decreases by 50.7 % compared with the substrate. The wear resistance of N2 coating is the highest, and the wear rate is 5.99×10−5 mm3 (N·m), which is lower than that of N3 coating, 9.02×10−5 mm3 (N·m). This is because the protective effect of solid lubricant Cu on the coating is not enough to offset the negative impact of the decrease of coating hardness. This paper provides reference for the addition of solid lubricating phase Cu to the Ni60 composite powder, and then prepare self-lubricating composite coating.

  • 0 前言

  • 在现代工业生产中,摩擦磨损作为常见的材料损耗形式,严重影响生产水平及经济效益的提高。一直以来,材料摩擦磨损行为都是研究人员关注的热门领域[1-2]。45#钢因具有较高的强度、抗变形能力,被广泛应用于工业领域。但因其较低的表面硬度及耐磨性能,会严重影响设备的服役寿命,如林业采伐机在林区服役时,45#钢制备的零部件表面常出现微裂纹及表面磨损等损伤形式,更换零部件严重影响了生产效率,浪费大量人力物力。

  • 因此,研究者通过表面改性技术扩大非耐磨材料的应用范围,如等离子喷涂-物理气相沉积 (PS-PVD)技术[3]、超高音速火焰喷涂(HVOF)技术[4]、大气等离子喷涂(APS)技术[5]、激光熔覆(LC) 技术等,其中基体与涂层结合可靠、涂层组织致密的激光熔覆技术,现已成为重要的表面改性技术之一[6]。研究人员通过制备超高硬度涂层来改善基体耐磨性,LI 等[7]制备了显微硬度为 1 142 HV0.1 的 NiCrBSi / WC 复合涂层,复合涂层磨损量比 Ti6Al4V 基体下降了 81.9%;ZHU 等[8]在 16Mn 钢表面原位制备了 Al2O3 / TiC 复合陶瓷涂层,该涂层的显微硬度为 956.5~878.9 HV0.3,为纯铁基合金的 1.7 倍。然而发现,在涂层材料中添加固体润滑相,凭借固体润滑相的特性实现摩擦过程中的自润滑性能,可显著改善涂层的耐磨减摩性能,如 Cu、CaF2、 MoS2、石墨、h-BN[9]、Ti3SiC2 [10]等。张诗怡等[11] 设计了 Co-Cu / Ti3SiC2 复合粉末,采用激光熔覆技术将其制备在 Ti6Al4V 合金表面,所得复合涂层硬度达到 Ti6Al4V 基体(370 HV0.5)的 2.1~2.4 倍,其中室温下,Co-5%Ti3SiC2-10%Cu(wt. %)涂层表现出最好的减摩性能,摩擦因数比基体下降了 68.7%。加入固体润滑相的复合涂层适用于高温和真空环境等更加复杂的工况环境。

  • 当前,镍基自熔性复合材料因其优异的耐磨性、耐腐蚀性和高温抗氧化性常被制备成高性能涂层用于复杂工况[12-13]。王勉等[14]设计了 WS2 为润滑相、 TiC 为耐磨相、Ni60 为增韧相的自润滑复合粉末,利用激光熔覆技术中预置粉末工艺,在 304 不锈钢表面将复合粉末原位合成为 Ni60 / WS2-TiC 复合涂层,结果表明,涂层在所有试验温度下(20、300、 600、800℃)均表现出良好的减摩耐磨性能,其中 600℃下,涂层的磨损率为 9.699×10−5 mm 3(N·m)。 LIU 等[15]则制备了 Ni60 / Ti3SiC2 复合涂层,结果表明,在 600℃下,涂层的磨损率和摩擦稳定性分别提高了 88.9%和 61.5%,有效地保护了基材。WS2 在激光熔覆的高温下容易分解失效,Ti3SiC2作为陶瓷材料与 Ni60 粉末性质差异大,易导致涂层产生裂纹。Cu 作为一种剪切强度低的软金属材料[16],是一种性能较好的金属固体润滑相,高温下生成的 CuO 也具有自润滑效果,与 Ni60 粉末性质更相近,因此可以认为其更适合与 Ni60 粉末共同制备自润滑复合涂层。

  • 目前少有研究利用 Cu 作为固体润滑相对 Ni60 粉末进行改性且用激光熔覆技术制备复合涂层,并对涂层的摩擦学性能及组织演变进行探索。因此本文设计了 Ni60、Ni60 / 10%Cu、Ni60 / 20%Cu(wt. %) 三种粉末体系,通过激光熔覆技术在 45#钢上成功制备了三种不同 Cu 含量自润滑涂层,并探索了涂层的组织演变与宽温域下的磨损机理。

  • 1 材料及方法

  • 三种试验材料的化学成分(质量分数)见表1。 45#钢材被加工成 40 mm×20 mm×8 mm 块状试样,加工设备选用电火花线切割机,采用砂纸对 45# 钢基体表面对进行打磨,达到去除 45#钢基体在空气中氧化生成的表面氧化皮的目的,采用有机溶剂无水乙醇洗净块状基体表面,真空干燥后密封备用。采用行星立式球磨机(DECO-PBM-V-0.4L)对添加 10%、20%(wt. %)Cu 的 Ni60 复合粉末进行混合,以获得均匀性良好的粉末。球磨机转速为 600 r / min,正反交替旋转 3 h,混合过程中,没有添加研磨球,因为添加研磨球可能会破坏复合粉末的流动性。采用 LDM-8060 型半导体激光系统在 45#钢 40 mm×20 mm 面上以同步送粉法制备复合涂层,试验工艺参数见表2。

  • 表1 45#钢和熔覆材料化学成分(质量分数)

  • Table1 Chemical composition of 45# steel and cladding material

  • 表2 激光工艺参数

  • Table2 Laser cladding process parameters

  • 为方便说明,将 Ni60、Ni60 / 10%Cu、Ni60 / 20%Cu(wt.%)粉末制备的涂层命名为 N1、N2、 N3 涂层。将熔覆后的涂层采用砂纸打磨,用绒布进行抛光去除表面划痕,然后采用 X 射线衍射仪 (XRD,Smartlab SE)分析涂层表面的相结构,扫描范围为 20°~80°。然后采用体积比 VHNO3∶ VHCL=3∶1 的王水作为腐蚀剂,对涂层样品的横截面腐蚀 30~40 s,通过扫描电子显微镜(SEM, MIRA4 LMH)和能谱仪(EDS,Xplore30. Aztec one) 对熔覆层不同区域和放大倍数对微观结构、元素分布和化学成分进行表征。通过数字显微硬度计 (HX-1000TM/LCD)测量涂层沿深度方向的硬度,并在相同高度处采集三组数据,取平均值作为测量的显微硬度值,载荷为 4.9 N,保荷时间为 15 s。

  • 对涂层样品与基体在球盘式摩擦磨损试验机(HT-1000 型)进行室温与 600℃下滑动摩擦学试验。为减少试验结果误差,保证可靠性,采取以下准备措施:① 测试前,对涂层进行抛光,确保表面粗糙度低于 Ra 0.10;② 根据 Archard 弹性模型中磨损和样品之间的相对硬度(H0 / H)发现,H0 / H 值较小时,试验过程中 H0会影响涂层的磨损率,其中 H0 是磨损硬度,H 是涂层样品硬度[17]。因此选择硬度较高(约 1 700 HV)的 Si3N4 陶瓷球作为摩擦副,试验参数见表3。然后通过计算稳定阶段(约 30 min 范围内)的平均值获得摩擦因数。试验后,以摩擦因数曲线为基础,用标准差(SD)来评判摩擦过程中的波动程度,计算公式如下:

  • SD=(X-X-)2n-1
    (1)
  • 表3 摩擦试验参数

  • Table3 Experimental parameters of wear tests

  • 采用探针型表面轮廓仪(MT-100 型)测试磨损体积,并根据以下公式计算磨损率:

  • W=VFL
    (2)
  • 式中, W 表示单位载荷和距离下的磨损率(mm 3 /(N·m));V 表示体积损失(mm 3);F 表示正常载荷(N);L 表示滑动距离(m)。最后,结合接触面的微观形貌和化学成分的结果,以及收集到的磨屑,揭示磨损机理。

  • 2 结果与讨论

  • 2.1 组织分析

  • 图1 为 N1、N2、N3 涂层的 XRD 分析结果,从图1 中可以看出涂层的衍射峰主峰基本在 45°左右。通过与标准 PDF 卡片对比分析得出,N1 涂层主要包括γ-Ni 固溶体、Cr7C3 硬质相、FeNi3 金属间化合物。在涂层样品中,Cu 元素和 Ni 元素分布是一致的,这是因为 Cu 和 Ni 是无限互溶元素[18],但因激光熔覆快速冷凝的性质,Cu 元素未完全固溶入 γ-Ni,因此在 N2、N3 复合涂层中则检测到固体润滑相 Cu,且激光熔覆具有快速冷却、凝固和非平衡过程,一些衍射峰会发生重叠和偏离,导致多相共存和部分相的尺寸变小且数量变少,很难分析出涂层中所有相的存在[19]。在涂层制备过程中,Ni60 在 1 453℃下发生偏晶反应[20],故涂层中主要生成物为 γ-Ni,且随着 Cu 含量的增加,γ-Ni 的衍射峰强度也逐渐提高。

  • 图1 复合涂层 X 射线衍射图

  • Fig.1 XRD patterns of composite coatings

  • 图2 为 N1、N2、N3 微观结构特征区域的 SEM 图像,由图2a1、2b1、2c1 发现,涂层横截面形貌上并无裂纹,这是因为 Ni60 自熔性复合粉末中含有自熔性元素(B / Si)且受到氩气保护,没有形成氧化物和较大的残余应力。但是横截面中存在一些气孔,这是因为保护气氛进入熔池[21-22],未能及时从熔池中扩散出来,产生气孔。在涂层与基体结合界面处,涂层与基体中的化学元素在此扩散至另一方区域,在此形成了冶金结合,可以有效保证涂层工作的可靠性。同时,在一定的激光功率下,由于复合粉末的成分分布差异与激光熔覆冷凝速度快的特点,熔池中存在温度梯度,导致出现张力差,这种张力差使得熔池中液体物质由中心向四周流动[23],最终使得熔合线表现为波浪状。随着 Cu 元素的加入,涂层宏观形貌上孔隙并未出现增加,说明 Cu 元素与 Ni60 复合粉末有良好的润湿性和冶金相容性[24]

  • 图2 N1、N2 和 N3 涂层的横截面、结合区和中部典型组织的 SEM 照片

  • Fig.2 SEM images of the cross-section, bonding zone, middle zone typical structure of N1, N2, N3 coatings

  • 图2 显示了三种激光熔覆涂层横截面、结合区和典型组织的显微结构。N1 涂层各区域的组织分布均匀,主要包括连续相组织 A 及胞状晶体组织 B。表4 显示了每个特征点的 EDS 数据,结合 XRD 结果推测出,连续相组织 A 主要为 γ-Ni 和 FeNi3,胞状晶 B 点含有大量的 Cr 和 C 元素,主要为 Cr7C3

  • 表4 图2 中典型组织的 EDS 结果

  • Table4 EDS results of typical microstructures in Fig.2

  • 图2b3 所示是 N2 涂层的典型微观结构,其中 N2 涂层主要为包含 γ-Ni、FeNi3 的胞状体组织 C 及含有 Cr7C3 的柱状体组织 D。由图2b2、2b3 发现, N2 涂层比 N1 涂层的胞状体组织更为密集,且出现了马氏体相变,这主要是因为 Cu 元素的引入,提高了复合粉末的热导率,因此导致其形核率上升,胞状体组织增加,且结合区域温度梯度大,晶粒会定向长大,导致马氏体相变。由于 N3 涂层中添加 Cu 元素的含量最高,因此可以用它来表征 Cu 元素在复合粉末中的作用。图2 中 c2、c3 为 N3 涂层的微观结构,其组织同样主要由胞状晶组织 E 和柱状晶组织 F 组成。N3 涂层与 N1 涂层相比,组织整体更为明显且涂层与基体结合处出现了大量花簇状组织 G 和黑色针状沉淀 H。这主要是由于 N3 涂层 Cu 含量较高,且激光熔覆过程中熔池温度场复杂,温度梯度方向在熔池的上下部存在一定差异,使得不同区域的凝固速度不一,进而使组织呈花簇状和针状组织[25-26]

  • 2.2 显微硬度分析

  • 图3 显示了从 N1、N2、N3 涂层截面沿涂层厚度方向的显微硬度变化。与基体平均显微硬度 (299.20 HV0.5)相比,所有涂层具有更高的平均显微硬度,分别为 730.41、653.04 及 592.29 HV0.5。试验样品由涂层表面到基体按照深度变化,依次可分为熔覆层区、热影响区和基体三部分。从图3 可知,平均显微硬度最高的区域为熔覆层区,接近热影响区域时,该处由于强化相溶解,而降温速率较高,降温过程中来不及析出第二相,导致硬度明显下降[27]。涂层具有较高硬度的原因如下:① 激光熔覆是一个快热快冷的过程,涂层形核率和过冷度上升,出现晶粒细化,实现细晶强化。② Cu 元素在熔池中发生扩散,溶入 γ-Ni,形成固溶体,导致晶格畸变产生固溶强化。③ 涂层中的硬质相,如 Cr7C3、FeNi3 等,在热对流作用下在涂层中均匀分布,形成第二相强化,从而提高涂层的硬度。随着润滑相 Cu 元素的添加,涂层平均显微硬度逐渐下降,其中 N3 涂层的显微硬度最低,这是因为 Cu 是一种软质金属,根据复合材料的混合原则,向硬质材料中加入软质材料会导致材料硬度降低[28],制备的复合图层中随着添加 Cu 含量的增加,涂层平均显微硬度持续下降。

  • 图3 复合涂层显微硬度曲线

  • Fig.3 Microhardness curves of composite coatings

  • 2.3 摩擦学性能分析

  • 室温和高温条件下基体和 3 种涂层的摩擦因数结果如图4 和表5 所示,室温条件下 N1、N2、 N3 涂层摩擦因数下降至 0.447、0.434、0.409,所有涂层的摩擦因数均低于基体摩擦因数(0.705),且稳定性均比基体 45#钢好,其中 N3 涂层的摩擦因数最小,比 N1 和 N2 涂层分别低 8.5%和 5.3%,也就是说在室温下,复合涂层摩擦学性能均优于基体,随着润滑相 Cu 元素的加入,涂层的减摩性能得到了进一步的提高。然而,当摩擦环境温度达到 600℃时,如图4b,基体和涂层的摩擦因数均下降。其中,N1 涂层较 N2、N3 涂层拥有最低的摩擦因数,N1 涂层达到稳定摩擦阶段时间比室温下更短,在磨合期间,N1 涂层摩擦因数波动较大,进入稳定摩擦阶段后,N1 涂层摩擦因数值最低,也拥有最小的 SD 值。高温下,N2 涂层的摩擦因数高于 N3 涂层的摩擦因数,SD 值 N2 涂层也高于 N3 涂层。

  • 图4 不同温度下复合涂层的摩擦因数曲线

  • Fig.4 Friction factor of composite coatings at different temperatures

  • 表5 基体和涂层的摩擦因数结果

  • Table5 Friction factor results for substrates and coatings

  • 高温下 N1、N2、N3 涂层摩擦因数产生变化有以下原因:摩擦的本质是原子的去除和转移[29],在高温下,原子获得了更大的能量,运动更加剧烈,破坏原子之间的键所需要提供额外的能量降低,表现为摩擦因数降低。在高温摩擦过程中 Ni 和 Cu 发生氧化反应,生成了具有润滑性能的 NiO、 CuO[30-31],导致三种复合涂层的摩擦因数普遍下降。

  • 室温和 600℃下摩擦学试验得到的体积磨损率和平均磨痕宽度结果如图5 和表6 所示,结果表明无论是在室温还是高温下,基体的体积磨损率和平均磨痕宽度均是最大和最宽的。结合图6 a1 和图7a1,由于 Si3N4 陶瓷球对基体进行挤压,其磨痕边缘产生了严重的塑性变形,这表明基体耐磨性能差。

  • 由如图5 所示的体积磨损率,可以看出,所制备的涂层均可以有效提高 45#钢基体在室温和 600℃下的耐磨性。所有涂层高温下磨损率均高于室温下磨损率,磨损试验期间的极高温度会显著降低涂层的强度[32]。涂层在高温下的强度下降会导致涂层在摩擦过程中发生严重的粘着磨损。涂层强度越低,磨损过程中粘着磨损越严重。因此,涂层的磨损率随温度的升高而增加[33]。但在制备的 N1、 N2、N3 涂层中,随着润滑相 Cu 含量的增加,在室温和 600℃下,涂层的体积磨损率均呈现出先下降再上升的情况,体积磨损率最小的均为 N2 涂层,且 N3 涂层的磨损率均大于 N1 涂层。这是因为摩擦过程中固体润滑剂 Cu 在涂层和对偶件形成一层固体润滑膜,保护磨损表面避免被进一步损伤,从而降低涂层的磨损率。Cu 具有良好的润滑性能,Cu 元素的添加能够有效增强涂层的减摩性能,但过多的 Cu 会降低涂层的硬度和承载能力,在相同的磨损条件下,磨损率与材料的硬度和强度具有相关性[34]。因此,当软金属 Cu 的含量增加时,涂层中润滑相的含量增加,涂层摩擦因数虽然下降,但是涂层的整体硬度降低,固体润滑相 Cu 对涂层的保护作用不足以抵消硬度下降对涂层的负面作用,从而磨损率上升。所以随着涂层中润滑相 Cu 含量增多,涂层摩擦学综合性能不是越好,因此,Cu 元素存在一个最佳添加量,当含量为 10%时,涂层显示出最好的减摩耐磨性能。

  • 图5 45#钢基体及 N1、N2、N3 涂层在不同温度下的磨损率

  • Fig.5 Wear rates of 45# steel and N1, N2, N3 coatings at different temperatures

  • 表6 45#钢基体和复合涂层在室温下和 600℃磨痕宽度

  • Table6 Wear width of 45# steel substrate and coatings at room temperafure and 600℃

  • 2.4 摩擦学机理

  • 图6a1 为基体在室温下磨痕形貌的微观形态。由于基体表面硬度较低,基体在对磨球的挤压下,基体部分材料在摩擦过程中被对磨球挤压到磨痕边缘,发生了严重的塑性变形,并且在磨痕中观测到了犁沟,在磨屑中,有大量层片状剥落物产生及少量粉末状态的磨屑,严重的塑性变形、粘着磨损及轻微的磨粒磨损是基体的主要磨损机理。当摩擦环境温度升高至 600℃时,图7a1 中磨痕中犁沟减少,层片状磨屑减少,塑性变形减轻,粉末状磨屑增加,在高温摩擦环境下,基体表面出现疏松的氧化膜,在对磨球的作用下,氧化膜被不断剥落,伴随着对磨球一起滑动,并被对磨球研磨成粉末状磨屑,此时基体的磨损机理为氧化磨损、粘着磨损及轻微的塑性变形。

  • 在摩擦行为研究中,涂层表面能够承受并保持弹性状态的最大凹陷度通常用 H / E 值(H 为涂层显微硬度,E 为弹性模量)判断[35],N1 涂层拥有最大的平均显微硬度,其韧性也是最好,即 E 值最小,所以 N1 涂层的 H / E 值在试验样品中最高。在室温下,如图6b1,所有试验涂层中,磨痕表面最为光滑的涂层是 N1 涂层,N1 涂层磨痕表面仅有轻微的塑性变形及和犁沟。在图6b2 中,磨屑是来自摩擦过程中涂层的脆性剥落,由于对磨球对磨屑的挤压,部分磨屑中出现微裂纹,它们此时还尚未被对磨球研磨成为相对较小的磨屑,其他磨屑在摩擦过程中被研磨成细微的类似于粉末状的层状磨屑,这些磨屑导致了涂层磨痕上出现了犁沟。N1 涂层在 600℃ 下磨损形貌及磨屑形貌如图7b1 和图7b2,磨痕表面出现了塑性变形、细微划痕和磨屑颗粒依附,磨屑主要为大颗粒,结合表7 中 A 区域 EDS 结果分析,O 元素为磨屑中主要的元素,N1 涂层在高温磨损过程中,涂层表面会生成氧化膜,在对磨球的挤压作用下氧化膜从涂层表面脱落,并被研磨形成大颗粒状磨屑。因此氧化磨损、粘着磨损及轻微的磨粒磨损是 N1 涂层在 600℃的主要磨损机理。

  • N2 涂层在室温下的综合摩擦学性能最好,主要是因为 Cu 在室温下具有良好的延展性和散热性,可以有效传递摩擦过程中产生的热量,且在对磨球的挤压下,Cu 会在 N2 涂层与对磨球的接触面形成一层连续的润滑膜,起到减摩作用,其磨损机理示意图如图8a 所示。在室温下,如图6c1 所示,在磨痕边缘出现了塑性变形,磨痕中间出现了疲劳点蚀,因疲劳点蚀而剥离的材料随着对磨球一起运动对涂层表面产生了划痕,因此室温下 N2 涂层的磨损机理是塑性变形和疲劳点蚀。图7c1、7c2 为高温下 N2 涂层磨痕和磨屑形貌,从表面形貌来看,N2 涂层具有良好的表面连续性,磨痕表面出现了较大的犁沟与大量的划痕,这是由于在高温下,涂层表面发生氧化行为,结构也变得疏松多孔,且高温下涂层软化,涂层表面发生粘着磨损,同时氧化物与涂层结合能力相对较弱,容易剥落,粘着物和氧化物被对偶件在磨损过程中碾压粉碎,从而伴随对磨球一起对涂层表面形成磨粒磨损,在涂层表面造成许多划痕,结合表7 中 B 点 EDS 数据和图7c2 磨屑形貌分析,磨屑中含有大量的 O 元素,磨屑为疏松多孔结构,进一步证实了 N2 涂层在高温下的磨损机理为粘着磨损、氧化磨损和磨粒磨损。

  • 图6 室温下 45#钢、N1、N2 和 N3 的磨痕和磨屑 SEM 照片

  • Fig.6 SEM images of wear scars and wear debris of 45# steel, N1, N2 and N3 at room temperature

  • 图7 600℃下 45#钢、N1、N2 和 N3 涂层的磨痕和磨屑 SEM 照片

  • Fig.7 SEM images of wear scars and wear debris of 45# steel, N1, N2 and N3 at 600℃

  • N3 涂层 Cu 元素的含量最高,在室温下磨痕表面形貌(图6d1)较 N1、N2 涂层也更为粗糙,磨痕边缘塑性变形也更为严重,出现了明显的分层现象,这是因为加入过多的 Cu 元素会使涂层的硬度下降,同时在对磨球旋转离心力的作用下,涂层表面变得更容易被挤压和剥落,剥落的硬质相磨屑在对磨球的作用下更容易嵌入涂层表面,加剧磨损,同时破坏连续的润滑膜,磨损机理示意图如图8b 所示。图6d2 为常温下 N3 涂层的磨屑较 N1、N2 涂层的磨屑尺寸更细小,结合表7 中 C 点 EDS 数据,磨屑中主要含有 Ni、Cr、C、Cu 元素,进一步证明了随着加入 Cu 含量的上升,N3 涂层对 γ-Ni 固溶体基质和含 Cr 的硬质相支撑不够,导致其脱离涂层,含 Cr 硬质相破坏了含 Cu 润滑膜,无法形成稳定的润滑结构,硬质相与对磨球协同运动磨损涂层表面,致使划痕的增多。因此磨粒磨损与轻微的塑性变形是 N3 涂层在室温下的主要磨损机理。如图7d1、7d2,N3 涂层高温下的磨痕出现了划痕,在磨痕表面可观测到粉末状颗粒和层片状剥落物,结合图7d2 中 D 点 EDS 数据分析,磨屑中含有 Cu、Ni、Cr、O、C,其中 O 元素物质的量分数达到 45.87%,说明 N3 涂层在高温摩擦过程中,涂层表面产生了大量氧化物。推测高温下 N3 涂层摩擦过程为:首先在涂层表面形成了 CuO、NiO,而 CuO 和 NiO[36]具备润滑作用,在摩擦过程中氧化膜被不断磨损掉,被研磨成细小颗粒,同时涂层又会有新的氧化膜形成,氧化膜在摩擦过程中是属于动态变化,它处于形成、磨损、重新形成的循环过程,在此过程中,涂层中的硬质相脱落并参与磨损。因此氧化磨损和粘着磨损及轻微的磨粒磨损和塑性变形是 N3 涂层在高温下的主要磨损机理。

  • 表7 图6 和图7 特征区域 EDS 结果

  • Table7 Typical area EDS results in Figs.6 and 7

  • 图8 复合涂层磨损机理

  • Fig.8 Wear mechanism of composite coatings

  • 3 结论

  • (1)利用 Cu 作为固体润滑相改性 Ni60 复合金属粉末,采用激光熔覆技术将复合粉末在 45#钢基体上成功制备出 Ni60、Ni60-10%Cu 和 Ni60-20%Cu (wt.%)复合涂层,并且在复合涂层中成功检测到固体润滑相 Cu。

  • (2)室温和高温下,制备的复合涂层的摩擦因数和磨损率均低于 45#钢基体。室温下,添加固体润滑相 Cu 后,涂层摩擦因数降低;600℃下,复合涂层磨损率均高于室温下,且随 Cu 元素含量的上升,复合涂层磨损率出现先下降后上升趋势,此时复合涂层的磨损主要由氧化、粘着磨损和磨粒磨损造成。

  • (3)复合涂层提高了 45#钢在工业中更多领域应用的可能性,具有良好的应用潜力。但固体润滑相 Cu 的最佳添加量及如何缓解添加润滑相 Cu 后涂层硬度下降仍然需要进一步探索。

  • 参考文献

    • [1] 雒建斌.影响制造业发展的新技术[J].中国市场监管研究,2020(10):12-14.LUO Jianbin.New technology affecting the development of manufacturing industry[J].Research on China Market Regulation,2020(10):12-14.(in Chinese)

    • [2] 曹中炫.感应淬火处理45钢微观组织演变及摩擦磨损性能研究[D].常州:常州大学,2021.CAO Zhongxuan.Research on microstructure evolution and friction and wear properties of 45 steel by induction hardening[D].Changzhou:Changzhou University,2021.(in Chinese)

    • [3] 张啸,刘敏,张小锋,等.等离子喷涂-物理气相沉积高温防护涂层研究进展[J].中国表面工程,2018,31(5):39-53.ZHANG Xiao,LIU Ming,ZHANG Xiaofeng,et.al.Research progress of high temperature protective coatings by plasma spray-physical vapor deposition[J].China Surface Engineering,2018,31(5):39-53.(in Chinese)

    • [4] QIAO L,WU Y P,HONG S,et al.Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying[J].Ceramics International,2021,47(2):1829-1836.

    • [5] LIU L M,XU H F,XIAO J K,et al.Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings[J].Surface and Coatings Technology,2017,325:548-554.

    • [6] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progess in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [7] LI G J,LI J,LUO X.Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate[J].Materials Characterization,2014,98:83-92.

    • [8] ZHU Z C,Li J F,PENG Y X,et al.In-situ synthesized novel eyeball-like Al2O3/TiC composite ceramics reinforced Fe-based alloy coating produced by laser cladding[J].Surface and Coatings Technology,2020,391:125671.

    • [9] 朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings prepared by laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [10] 祝杨,庄宿国,刘秀波,等.Ti6Al4V 合金激光熔覆 Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J].摩擦学学报,2021,41(3):414-422.ZHU Yang,ZHUANG Suguo,LIU Xiubo.et al.Microstructure and tribological properties of Ti3SiC2 enhanced Ni60 composite coatings on Ti6Al4V alloy by laser cladding[J].Tribology,2021,41(3):414-422.(in Chinese)

    • [11] 张诗怡,刘秀波,刘一帆,等.Ti6Al4V 合金激光熔覆 Co-Cu/Ti3SiC2复合涂层组织与摩擦学性能[J].中国表面工程,2021,34(6):124-133.ZHANG Shiyi,LIU Xiubo,LIU Yifan.et al.Microstructure and tribological properties of Co-Cu/Ti3SiC2 composite coatings on Ti6Al4V alloy by laser cladding[J].China Surface Engineering,2021,34(6):124-133.(in Chinese)

    • [12] LI B,GAO Y M,LI C,et al.Improved tribological performance of nickel based high temperature lubricating composites with addition of metallic oxides[J].Wear,2021,480:203938.

    • [13] DAVIS D,MARAPPAN G,SIVALINGAM Y,et al.Tribological behavior of NiMoAl-based self-lubricating composites[J].ACS Omega,2020,5(24):14669-14678.

    • [14] 王勉,刘秀波,欧阳春生,等.304 不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J].材料工程,2021,49(1):133-143.WANG Mian,LIU Xiubo,OU-YANG Chunsheng,et al.Wide temperature range tribological performance of laser in-situ synthesized self-lubricating coating on 304 stainless steel[J],Journal of Materials Engineering,2021,49(1):133-143.(in Chinese)

    • [15] LIU Y F,ZHUANG S G,LIU X B,et al.Microstructure evolution and high-temperature tribological behavior of Ti3SiC2 reinforced Ni60 composite coatings on 304 stainless steel by laser cladding[J].Surface and Coatings Technology,2021,420:127335.

    • [16] ZHEN J M,CHENG J,TAN H,et al.Investigation of tribological characteristics of nickel alloy-based solid-lubricating composites at elevated temperatures under vacuum[J].Friction,2021,9(5):990-1001.

    • [17] SIVA PRASAD H,BRUECKNER F,VOLPP J,et al.Laser metal deposition of copper on diverse metals using green laser sources[J].The International Journal of Advanced Manufacturing Technology,2020,107(3):1559-1568.

    • [18] YAO J H,YANG L J,BO L,et al.Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique[J].Materials & Design,2015,83(15):26-35.

    • [19] LIU K,LI Y J,WANG J,et al.In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser[J].Journal of Alloys and Compounds,2015,624:234-240.

    • [20] YE F X,LOU Z,WANG Y H,et al.Wear mechanism of Ag as solid lubricant for wide range temperature application in micro-beam plasma cladded Ni60 coatings[J].Tribology International,2022,167:107402.

    • [21] ZHAI Y J,LIU X B,QIAO S J,et al.Characteristics of laser clad α-Ti/TiC+(Ti,W)C1− x/Ti2SC+ TiS composite coatings on TA2 titanium alloy[J].Optics & Laser Technology,2017,89:97-107.

    • [22] HE B,ZHANG L J,ZHU Q H,et al.Effect of solution treated 316L layer fabricated by laser cladding on wear and corrosive wear resistance[J].Optics & Laser Technology,2020,121:105788.

    • [23] 王勉.304 不锈钢激光制备自润滑复合涂层微观组织结构和力学性能[D].长沙:中南林业科技大学,2019.WANG Mian.Microstructure and mechanical properites of laser fabricated of self-lubricating composite coating on 304 stainless steel[D].Changsha:Central South University of Forestry and Technology,2019.(in Chinese)

    • [24] OH J,RHEE C.Tribological performance of Cu− Ni alloy nanoparticles synthesized using a pulsed-wire evaporation method[J].Metals and materials International,2008,14(4):425-432.

    • [25] AGUILAR-ORTIZ C O,CAMARILLO-GARCIA J P,VERGARA J,et al.Effect of solidification rate on martensitic transformation behavior and adiabatic magnetocaloric effect of Ni50Mn35In15 ribbons[J].Journal of Alloys and Compounds,2018,748:464-472.

    • [26] LIANG Y J,LI J,LI A,et al.Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions[J].Scripta Materialia,2017,127:58-62.

    • [27] 方金祥,王玉江,董世运,等.激光熔覆Inconel718合金涂层与基体界面的组织及力学性能[J].中国机械工程,2019,30(17):2108-2113.FANG Jinxiang,WANG Yujiang,DONG Shiyun,et al.Microstructure and mechanics properties of interfaces between laser cladded Inconel718 coating and substrate[J].China Mechanical Engineering,2019,30(17):2108-2113.(in Chinese)

    • [28] HU M,ZHANG Y L,TANG L L,et al.Surface modifying of SiC particles and performance analysis of SiCp/Cu composites[J].Applied Surface Science,2015,332:720-725.

    • [29] 刘聪聪.金属摩擦作用下单晶金刚石化学磨损的微观机理研究[D].天津:天津大学,2019.LIU Congcong.Microscopic mechanism of the chemical wear of monocrystalline diamond in sliding contact with pure metals[D].Tianjin:Tianjin University,2019.(in Chinese)

    • [30] ZHU R Y,ZHANG P L,YU Z S,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface and Coatings Technology,2020,383:125248.

    • [31] XIN B B,YU Y J,ZHOU J S,et al.Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures[J].Surface and Coatings Technology,2017,313:328-336.

    • [32] ZHANG S T,ZHOU J S,GUO B G,et al.Preparation and characterization of reactively sintered Ni3Al–hBN–Ag composite coating on Ni-based superalloy[J].Journal of Alloys and Compounds,2009,473(1-2):462-466.

    • [33] ZHAO Y,FENG K,YAO C W,et al.Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants[J].Surface and Coatings Technology,2019,359:485-494.

    • [34] ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear:A review[J].Tribology International,2021,155:106792.

    • [35] CUI G,HAN B,ZHAO J B,et al.Microstructure and tribological performance of sulfurizing layer prepared on the laser cladding Co-based alloy coating[J].Surface and Coatings Technology,2017,331:27-34.

    • [36] 李建.NiCrW 基高温合金自润滑复合材料的制备及摩擦学性能研究[D].镇江:江苏大学,2020.LI Jian.Preparation and tribological properties of NiCrW-based superalloy self-lubricating composites[D].Zhenjiang:Jiangsu University,2020.(in Chinese)

  • 参考文献

    • [1] 雒建斌.影响制造业发展的新技术[J].中国市场监管研究,2020(10):12-14.LUO Jianbin.New technology affecting the development of manufacturing industry[J].Research on China Market Regulation,2020(10):12-14.(in Chinese)

    • [2] 曹中炫.感应淬火处理45钢微观组织演变及摩擦磨损性能研究[D].常州:常州大学,2021.CAO Zhongxuan.Research on microstructure evolution and friction and wear properties of 45 steel by induction hardening[D].Changzhou:Changzhou University,2021.(in Chinese)

    • [3] 张啸,刘敏,张小锋,等.等离子喷涂-物理气相沉积高温防护涂层研究进展[J].中国表面工程,2018,31(5):39-53.ZHANG Xiao,LIU Ming,ZHANG Xiaofeng,et.al.Research progress of high temperature protective coatings by plasma spray-physical vapor deposition[J].China Surface Engineering,2018,31(5):39-53.(in Chinese)

    • [4] QIAO L,WU Y P,HONG S,et al.Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying[J].Ceramics International,2021,47(2):1829-1836.

    • [5] LIU L M,XU H F,XIAO J K,et al.Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings[J].Surface and Coatings Technology,2017,325:548-554.

    • [6] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progess in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [7] LI G J,LI J,LUO X.Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate[J].Materials Characterization,2014,98:83-92.

    • [8] ZHU Z C,Li J F,PENG Y X,et al.In-situ synthesized novel eyeball-like Al2O3/TiC composite ceramics reinforced Fe-based alloy coating produced by laser cladding[J].Surface and Coatings Technology,2020,391:125671.

    • [9] 朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings prepared by laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [10] 祝杨,庄宿国,刘秀波,等.Ti6Al4V 合金激光熔覆 Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J].摩擦学学报,2021,41(3):414-422.ZHU Yang,ZHUANG Suguo,LIU Xiubo.et al.Microstructure and tribological properties of Ti3SiC2 enhanced Ni60 composite coatings on Ti6Al4V alloy by laser cladding[J].Tribology,2021,41(3):414-422.(in Chinese)

    • [11] 张诗怡,刘秀波,刘一帆,等.Ti6Al4V 合金激光熔覆 Co-Cu/Ti3SiC2复合涂层组织与摩擦学性能[J].中国表面工程,2021,34(6):124-133.ZHANG Shiyi,LIU Xiubo,LIU Yifan.et al.Microstructure and tribological properties of Co-Cu/Ti3SiC2 composite coatings on Ti6Al4V alloy by laser cladding[J].China Surface Engineering,2021,34(6):124-133.(in Chinese)

    • [12] LI B,GAO Y M,LI C,et al.Improved tribological performance of nickel based high temperature lubricating composites with addition of metallic oxides[J].Wear,2021,480:203938.

    • [13] DAVIS D,MARAPPAN G,SIVALINGAM Y,et al.Tribological behavior of NiMoAl-based self-lubricating composites[J].ACS Omega,2020,5(24):14669-14678.

    • [14] 王勉,刘秀波,欧阳春生,等.304 不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J].材料工程,2021,49(1):133-143.WANG Mian,LIU Xiubo,OU-YANG Chunsheng,et al.Wide temperature range tribological performance of laser in-situ synthesized self-lubricating coating on 304 stainless steel[J],Journal of Materials Engineering,2021,49(1):133-143.(in Chinese)

    • [15] LIU Y F,ZHUANG S G,LIU X B,et al.Microstructure evolution and high-temperature tribological behavior of Ti3SiC2 reinforced Ni60 composite coatings on 304 stainless steel by laser cladding[J].Surface and Coatings Technology,2021,420:127335.

    • [16] ZHEN J M,CHENG J,TAN H,et al.Investigation of tribological characteristics of nickel alloy-based solid-lubricating composites at elevated temperatures under vacuum[J].Friction,2021,9(5):990-1001.

    • [17] SIVA PRASAD H,BRUECKNER F,VOLPP J,et al.Laser metal deposition of copper on diverse metals using green laser sources[J].The International Journal of Advanced Manufacturing Technology,2020,107(3):1559-1568.

    • [18] YAO J H,YANG L J,BO L,et al.Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique[J].Materials & Design,2015,83(15):26-35.

    • [19] LIU K,LI Y J,WANG J,et al.In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser[J].Journal of Alloys and Compounds,2015,624:234-240.

    • [20] YE F X,LOU Z,WANG Y H,et al.Wear mechanism of Ag as solid lubricant for wide range temperature application in micro-beam plasma cladded Ni60 coatings[J].Tribology International,2022,167:107402.

    • [21] ZHAI Y J,LIU X B,QIAO S J,et al.Characteristics of laser clad α-Ti/TiC+(Ti,W)C1− x/Ti2SC+ TiS composite coatings on TA2 titanium alloy[J].Optics & Laser Technology,2017,89:97-107.

    • [22] HE B,ZHANG L J,ZHU Q H,et al.Effect of solution treated 316L layer fabricated by laser cladding on wear and corrosive wear resistance[J].Optics & Laser Technology,2020,121:105788.

    • [23] 王勉.304 不锈钢激光制备自润滑复合涂层微观组织结构和力学性能[D].长沙:中南林业科技大学,2019.WANG Mian.Microstructure and mechanical properites of laser fabricated of self-lubricating composite coating on 304 stainless steel[D].Changsha:Central South University of Forestry and Technology,2019.(in Chinese)

    • [24] OH J,RHEE C.Tribological performance of Cu− Ni alloy nanoparticles synthesized using a pulsed-wire evaporation method[J].Metals and materials International,2008,14(4):425-432.

    • [25] AGUILAR-ORTIZ C O,CAMARILLO-GARCIA J P,VERGARA J,et al.Effect of solidification rate on martensitic transformation behavior and adiabatic magnetocaloric effect of Ni50Mn35In15 ribbons[J].Journal of Alloys and Compounds,2018,748:464-472.

    • [26] LIANG Y J,LI J,LI A,et al.Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions[J].Scripta Materialia,2017,127:58-62.

    • [27] 方金祥,王玉江,董世运,等.激光熔覆Inconel718合金涂层与基体界面的组织及力学性能[J].中国机械工程,2019,30(17):2108-2113.FANG Jinxiang,WANG Yujiang,DONG Shiyun,et al.Microstructure and mechanics properties of interfaces between laser cladded Inconel718 coating and substrate[J].China Mechanical Engineering,2019,30(17):2108-2113.(in Chinese)

    • [28] HU M,ZHANG Y L,TANG L L,et al.Surface modifying of SiC particles and performance analysis of SiCp/Cu composites[J].Applied Surface Science,2015,332:720-725.

    • [29] 刘聪聪.金属摩擦作用下单晶金刚石化学磨损的微观机理研究[D].天津:天津大学,2019.LIU Congcong.Microscopic mechanism of the chemical wear of monocrystalline diamond in sliding contact with pure metals[D].Tianjin:Tianjin University,2019.(in Chinese)

    • [30] ZHU R Y,ZHANG P L,YU Z S,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface and Coatings Technology,2020,383:125248.

    • [31] XIN B B,YU Y J,ZHOU J S,et al.Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures[J].Surface and Coatings Technology,2017,313:328-336.

    • [32] ZHANG S T,ZHOU J S,GUO B G,et al.Preparation and characterization of reactively sintered Ni3Al–hBN–Ag composite coating on Ni-based superalloy[J].Journal of Alloys and Compounds,2009,473(1-2):462-466.

    • [33] ZHAO Y,FENG K,YAO C W,et al.Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants[J].Surface and Coatings Technology,2019,359:485-494.

    • [34] ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear:A review[J].Tribology International,2021,155:106792.

    • [35] CUI G,HAN B,ZHAO J B,et al.Microstructure and tribological performance of sulfurizing layer prepared on the laser cladding Co-based alloy coating[J].Surface and Coatings Technology,2017,331:27-34.

    • [36] 李建.NiCrW 基高温合金自润滑复合材料的制备及摩擦学性能研究[D].镇江:江苏大学,2020.LI Jian.Preparation and tribological properties of NiCrW-based superalloy self-lubricating composites[D].Zhenjiang:Jiangsu University,2020.(in Chinese)

  • 手机扫一扫看