en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

邢传斐,男,1996年出生,硕士研究生。主要研究方向为内燃机摩擦学。E-mail:18340966165@163.com;

徐久军(通信作者),男,1967年出生,教授,博士研究生导师。主要研究方向为内燃机摩擦学。E-mail:xu.jiujun@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220121002

参考文献 1
王增全,徐久军.柴油机活塞环-气缸套摩擦学[M].北京:科学出版社,2021.WANG Zengquan,XU Jiujun.Tribology in piston ring-cylinder liner system of diesel engine[M].Beijing:Science Press,2021.(in Chinese)
参考文献 2
LU L,ZHANG Z,GUAN Y,et al.Comparison of the effect of typical patterns on friction and wear properties of chromium alloy prepared by laser surface texturing[J].Optics & Laser Technology,2018,106:272-279.
参考文献 3
ZHU F,XU J,HAN X,et al.Deposit formation on chromium-plated cylinder liner in a fully formulated oil[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2016,230(12):1415-1422.
参考文献 4
VISHNOI M,KUMAR P,MURTAZA Q.Surface texturing techniques to enhance tribological performance:A review[J].Surfaces and Interfaces,2021,27:101463.
参考文献 5
VENKATESWARA BABU P,SYED I,BENBEERA S.Experimental investigation on effects of positive texturing on friction and wear reduction of piston ring/cylinder liner system[J].Materials today:proceedings,2020,24:1112-1121.
参考文献 6
ZOU H,YAN S,SHEN T,et al.Efficiency of surface texturing in the reducing of wear for tests starting with initial point contact[J].Wear,2021,482-483:203957.
参考文献 7
RODRIGUES T A,COSTA H L,DA SILVA W M.Sliding wear behavior of electrochemically textured surfaces under different lubrication regimes:Effects of curvature radius[J].Wear,2021,477:203817.
参考文献 8
NIU Y,PANG X,YUE S,et al.The friction and wear behavior of laser textured surfaces in non-conformal contact under starved lubrication[J].Wear,2021,476:203723.
参考文献 9
ROSENKRANZ A,REINERT L,GACHOT C,et al.Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions[J].Wear,2014,318(1-2):49-61.
参考文献 10
MOSEY N J,MÜSER M H,WOO T K.Molecular Mechanisms for the Functionality of Lubricant Additives[J].Science,2005,307(5715):1612-1615.
参考文献 11
GOSVAMI N N,BARES J A,MANGOLINI F,et al.Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts[J].Science,2015,348(6230):102-106.
参考文献 12
AL-SALLAMI W,PARSAEIAN P,DORGHAM A,et al.Oil-soluble ionic liquid to lubricate silicon[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2021,235(10):1995-2006.
参考文献 13
MARTIN J M.Antiwear mechanisms of zinc dithiophosphate:A chemical hardness approach[J].Tribology letters,1999,6(1):1-8.
参考文献 14
SOLTANAHMADI S,MORINA A,VAN EIJK M C P,et al.Experimental observation of zinc dialkyl dithiophosphate(ZDDP)-induced iron sulphide formation[J].Applied Surface Science,2017,414:41-51.
参考文献 15
VYAVHARE K,TIMMONS R B,ERDEMIR A,et al.Tribochemistry of fluorinated ZnO nanoparticles and ZDDP lubricated interface and implications for enhanced anti-wear performance at boundary lubricated contacts[J].Wear,2021,474-475:203717.
参考文献 16
MODER J,GRÜN F,SUMMER F,et al.Effect of temperature on wear and tribofilm formation in highly loaded DLC-steel line contacts[J].Tribology International,2018,123:120-129.
参考文献 17
WAN S,TIEU A K,XIA Y,et al.Tribochemistry of adaptive integrated interfaces at boundary lubricated contacts[J].Scientific Reports,2017,7(1):1-17.
参考文献 18
HE X,MEYER H M,LUO H,et al.Wear penalty for steel rubbing against hard coatings in reactive lubricants due to tribochemical interactions[J].Tribology International,2021,160:107010.
参考文献 19
GOSVAMI N N,LAHOUIJ I,MA J,et al.Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy[J].Tribology International,2020,143:106075.
参考文献 20
MITTAL P,MAITHANI Y,SINGH J P,et al.In situ microscopic study of tribology and growth of ZDDP antiwear tribofilms on an Al–Si alloy[J].Tribology International,2020,151:106419.
参考文献 21
MAO B,SIDDAIAH A,LIAO Y,et al.Laser surface texturing and related techniques for enhancing tribological performance of engineering materials:A review[J].Journal of Manufacturing Processes,2020,53:153-173.
参考文献 22
GACHOT C,ROSENKRANZ A,HSU S M,et al.A critical assessment of surface texturing for friction and wear improvement[J].Wear,2017,372-373:21-41.
参考文献 23
WALKER J C,KAMPS T J,LAM J W,et al.Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J].Wear,2017,376-377:1611-1621.
参考文献 24
MENG F,ZHOU R,DAVIS T,et al.Study on effect of dimples on friction of parallel surfaces under different sliding conditions[J].Applied Surface Science,2010,256(9):2863-2875.
参考文献 25
COBLAS D G,FATU A,MAOUI A,et al.Manufacturing textured surfaces:State of art and recent developments[Z].London,England:SAGE Publications,2015:229(1):3-29.
参考文献 26
SHEN Y,LV Y,LI B,et al.Reciprocating electrolyte jet with prefabricated-mask machining micro-dimple arrays on cast iron cylinder liner[J].Journal of Materials Processing Technology,2019,266:329-338.
参考文献 27
MA S,LIU Y,WANG Z,et al.The effect of honing angle and roughness height on the tribological performance of CuNiCr iron liner[J].Materials,2019,12(9):487.
参考文献 28
朱峰,徐久军,孙健,等.松孔镀铬缸套磨损机理研究[J].内燃机学报,2017,35(3):274-279.ZHU Feng,XU Jiujun,SUN Jian,et al.Wear mechanism of chromium plated cylinder liner[J].Transactions of Csice,2017,35(3):274-279.(in Chinese)
参考文献 29
CAI F,ZHANG J,WANG J,et al.Improved adhesion and erosion wear performance of CrSiN/Cr multi-layer coatings on Ti alloy by inserting ductile Cr layers[J].Tribology International,2021,153:106657.
参考文献 30
MA Z,HUANG R,YUAN X,et al.Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner[J].Friction,2021,10(8):1245-1257.
参考文献 31
赫冬,韩晓光,陈广聪,等.CKS 活塞环表面微织构几何形貌及排布方式对摩擦学性能的影响[J].中国表面工程,2021,34(2):59-69.HE Dong,HAN Xiaoguang,CHEN Guangcong,et al.Effect of geometrical morphology and arrangement of micro-texture on friction property of CKS piston ring[J].China Surface Engineering,2021,34(2):59-69.(in Chinese)
参考文献 32
JIN Z,XIONG C,ZHAO T,et al.Passivation and depassivation properties of Cr–Mo alloyed corrosionresistant steel in simulated concrete pore solution[J].Cement and Concrete Composites,2022,126:104375.
参考文献 33
COSTA H L,EVANGELISTA K S,COUSSEAU T,et al.Use of XANES and XPS to investigate the effects of ethanol contamination on anti-wear ZDDP tribofilms[J].Tribology International,2021,159:106997.
参考文献 34
CROBU M,ROSSI A,MANGOLINI F,et al.Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS[J].Analytical and Bioanalytical Chemistry,2012,403(5):1415-1432.
参考文献 35
UEDA M,KADIRIC A,SPIKES H.On the crystallinity and durability of ZDDP tribofilm[J].Tribology Letters,2019,67(4):1-13.
参考文献 36
PARSAEIAN P,GHANBARZADEH A,VAN EIJK M C P,et al.A new insight into the interfacial mechanisms of the tribofilm formed by zinc dialkyl dithiophosphate[J].Applied Surface Science,2017,403:472-486.
参考文献 37
BIESINGER M C,PAYNE B P,GROSVENOR A P,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257(7):2717-2730.
参考文献 38
CHOWDHURY S R,YANFUL E K,PRATT A R.Chemical states in XPS and Raman analysis during removal of Cr(VI)from contaminated water by mixed maghemite-magnetite nanoparticles[J].Journal of Hazardous Materials,2012,235-236:246-256.
参考文献 39
KUBO Y,SONOHARA Y,UEMURA S.Changes in the chemical state of metallic Cr during deposition on a polyimide substrate:Full soft XPS and ToF-SIMS depth profiles[J].Applied Surface Science,2021,553:149437.
参考文献 40
LYNCH B,WIAME F,MAURICE V,et al.XPS study of oxide nucleation and growth mechanisms on a model FeCrNiMo stainless steel surface[J].Applied Surface Science,2022,575:151681.
参考文献 41
MISTRY K K,MORINA A,NEVILLE A.A tribochemical evaluation of a WC–DLC coating in EP lubrication conditions[J].Wear,2011,271(9-10):1739-1744.
参考文献 42
ZHANG S,YUE W,KANG J,et al.Ti content on the tribological properties of W/Ti-doped diamond-like carbon film lubricating with additives[J].Wear,2019,430-431:137-144.
参考文献 43
DORGHAM A,AZAM A,PARSAEIAN P,et al.Understanding the effect of water on the transient decomposition of zinc dialkyl dithiophosphate(ZDDP)[J].Tribology International,2021,157:106855.
参考文献 44
SHEN Y,YE B,YU B,et al.Enhancement of heavy-duty friction and wear characteristics of cast-iron surface by electrolytic micro-textures filled with MoS2[J].Surface and Coatings Technology,2021,408:126806.
参考文献 45
MASSOUD T,DE MATOS R P,LE MOGNE T,et al.Effect of ZDDP on lubrication mechanisms of linear fatty amines under boundary lubrication conditions[J].Tribology International,2020,141:105954.
参考文献 46
QU J,MEYER H M,CAI Z,et al.Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms[J].Wear,2015,332-333:1273-1285.
参考文献 47
DENG X,SORESCU D C,LEE J.Single-layer ZnS supported on Au(111):A combined XPS,LEED,STM and DFT study[J].Surface Science,2017,658:9-14.
参考文献 48
ZHU B,ZHOU J,NI L,et al.Synthesis and characterization of P-doped g-C3N4 nanosheet hybridized ZnS nanospheres with enhanced visible-light photocatalytic activity[J].Journal of Solid State Chemistry,2022,305:122703.
参考文献 49
BIESINGER M C,LAU L W M,GERSON A R,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Sc,Ti,V,Cu and Zn[J].Applied Surface Science,2010,257(3):887-898.
目录contents

    摘要

    针对柴油机强化程度不断提高引起的镀铬气缸套摩擦磨损问题,采用往复式电射流加工技术在镀铬气缸套表面制备直径 810 μm、深度 11 μm、面积占有率 20%、相交排布的电解微织构,研究其在边界润滑条件下的摩擦磨损性能。结果表明,在载荷 22~66 MPa 范围内,相比于无织构气缸套,微织构气缸套可以有效降低摩擦因数和磨损量,在载荷 66 MPa 时摩擦因数和磨损量分别降低 12.3%和 10%;微织构气缸套往复滑动方向的磨痕明显减少,并且在个别区域微坑具有阻断磨痕的作用; 微坑内部和微坑之间平台上都含有 S、P、Zn 等元素的二烷基二硫代磷酸锌(ZDDP)的摩擦化学反应产物,这种产物多数以白亮斑点呈现,主要成分为硫化锌、短链磷酸盐等化合物。往复式电射流技术制备的电解微织构表面能有效改善镀铬气缸套摩擦磨损性能,可为镀铬气缸套微织构表面设计提供理论依据。

    Abstract

    To address the friction and wear problem of chrome-plated cylinder liners caused by the increasing reinforcement of diesel engines, reciprocating electric jet processing technology is used to prepare an electrolytic micro-textured with a diameter of 810 μm, a depth of 11 μm, an area occupation of 20% and an intersecting arrangement on the surface of chrome-plated cylinder liners. The friction and wear properties under boundary lubrication conditions are studied. The results show that the micro-textured surface effectively reduces the friction factor and wear depth compared with the un-textured surface from 22 MPa to 66 MPa. At a load of 66 MPa, the friction factor and wear depth are reduced by 12.3% and 10%, respectively. The wear scars in the reciprocating sliding direction of the micro-textured cylinder liner are significantly reduced, and the micro-pits in individual areas have the effect of blocking wear scars. Zinc dialkyl dithiophosphate (ZDDP) tribe-chemical reaction products containing S, P, and Zn elements are distributed within the micro-dimples and on the platform between the micro-dimples. Most of these products appear as white and bright spots, and the main components are zinc sulfide, short-chain phosphates, and other compounds. The experiment demonstrates that the electrolytic micro-textured surface prepared by reciprocating electric jet technology effectively improves the friction and wear Performance of the chromium-plated cylinder liner. This paper provides a theoretical basis for the design of the micro-textured surface of the chrome-plated cylinder liner.

  • 0 前言

  • 为了提高燃油效率、减少尾气排放,并提高体积功率密度,柴油机的强化程度不断提高,活塞环气缸套运动副面临的工况也愈发苛刻[1]。相比于铸铁气缸套,钢质镀铬气缸套具有良好的耐磨性、耐腐蚀性,特别是强度明显提高,适合用在高强化、高紧凑柴油机中,但是在高强化条件下,镀铬气缸套的摩擦学性能也须进一步提高,以应对更加严苛的高温、高载条件,达到降低摩擦因数、延长磨损寿命、提高抗黏着磨损能力[2-3]

  • 一般认为,微织构表面能够改善流体动压润滑性能,但在边界润滑条件下,微织构表面改善配对副摩擦磨损性能的潜力则须进一步挖掘[4-6]。 RODRIGUES 等[7]在不同润滑条件下,采用环-块式摩擦磨损试验机研究了微织构表面对不锈钢摩擦磨损性能的影响,发现在边界润滑条件下微织构表面的摩擦因数和磨损量均明显小于无织构表面,但在混合润滑条件下,摩擦因数和磨损量反而增大。NIU 等[8]采用球-盘式滑动摩擦副研究了乏油条件下微织构参数对摩擦学性能的影响,观测到微织构能够提供二次润滑和收集磨粒,起到减摩耐磨作用,有效延长乏油条件下滑动距离。ROSENKRANZ 等[9]在干摩擦条件下,采用球-盘式摩擦副进行线性往复滑动摩擦磨损试验,发现由于实际接触面积的减少,激光织构化会导致摩擦因数下降。上述研究结果表明,微织构可以起到贮存润滑油、捕获磨粒、减少直接接触面积的作用,可以用于镀铬气缸套表面形貌设计当中。

  • 在边界润滑条件下,微织构与边界润滑膜的相互作用机制还没有明确的研究结果。一般认为,润滑油中耐磨添加剂二烷基二硫代磷酸锌(ZDDP) 在热和力的作用下,ZDDP 分子在摩擦界面会分解,分解产物形成具有更高承载能力的润滑膜,防止微凸体直接接触,从而减少磨损[10-12]。铁基摩擦副表面的 ZDDP 摩擦反应膜通常由不同链长的磷酸盐、硫化物、氧化铁等成分组成,越靠近表层,短链磷酸盐和硫化物的含量越高[13-15]。目前对于非铁基摩擦副表面与 ZDDP 的交互作用机理的研究还比较少。有些试验使用了非铁基-铁基摩擦副,在这种情况下,很难知道非铁基上观察到的摩擦反应膜是在非铁基表面形成,还是在摩擦时从铁基表面转移过去的[16-18]。最近 GOSVAMI 等[19]使用 AFM(原位原子力显微镜)技术研究了氧化铝探针和铝或氧化铝组成的基底之间的滑动界面生成的 ZDDP 摩擦反应膜,观测到在两种基底上都形成了 ZDDP 摩擦反应膜,这支持了摩擦膜形成符合热激活、应力辅助化学反应的观点,并不需要来自基底的阳离子交换。MITTAL 等[20]等使用 AFM 技术,也观测到氧化铝探针和 Al 基体或 Si 表面滑动时 ZDDP 摩擦反应膜的生长。从上述研究结果说明,ZDDP 摩擦反应膜可以在非铁基摩擦副表面生成,但是摩擦反应膜的成分还不清楚,当镀铬气缸套表面具有微织构形貌时,微织构表面必然要与 ZDDP 生成的摩擦膜产生相互影响,需要进一步研究镀铬气缸套表面微织构与 ZDDP 摩擦化学产物的相互作用。

  • 目前气缸套表面加工微织构主要采用激光技术来实现,它是利用激光对材料的加热、去除等作用来实现微坑的制备[21]。但是材料被高温烧蚀去除的过程中,容易在微坑边缘产生凸起、熔渣等[422]。虽然可以通过抛光去除,但是会破坏摩擦副原始表面形貌特征,影响摩擦副的匹配性特性。电化学刻蚀是克服这些问题最具有竞争力的微织构加工技术之一,材料去除是利用电解液和基底之间的化学反应实现的,改变表面的微观形貌,但不会产生毛刺,也可以加工出复杂的几何形状[723-25]

  • 本文设计了专用的往复式电射流加工系统[26] 在镀铬气缸套表面制备微织构,并在边界润滑条件下进行摩擦学试验。研究不同强化载荷下电解微织构对镀铬气缸套摩擦磨损性能的影响,分析微织构表面的磨损形貌特征,以及 ZDDP 摩擦化学反应膜分布和成分,探讨镀铬气缸套微织构表面的减摩耐磨机理,为镀铬气缸套表面的减摩耐磨微织构形貌设计提供理论依据。

  • 1 材料和试验

  • 1.1 试验材料

  • 本试验气缸套选用定制的直筒镀铬气缸套,气缸套内径 110 mm,壁厚 7 mm,沿气缸套的圆周方向切成 40 等份,即每 9°一切,切割长度为 43 mm。活塞环选用喷钼活塞环,活塞环内径为 100 mm,外径为 110 mm,厚度为 3 mm,沿圆周方向被切割成 18 等份,即 12°一切,活塞环-气缸套试样通过电火花线切割,切割好的活塞环-气缸套试样如图1 所示。

  • 图2 给出了镀铬气缸套和喷钼活塞环的表面和截面形貌。镀铬气缸套表面粗、细珩磨纹交错分布,角度约为 45°,如图2a 所示;镀层厚度约为 43 μm,如图2c 所示。喷钼活塞环表面呈现不对称偏桶面形状,如图2b 所示;涂层厚度约为 290 μm,如图2d 所示。喷钼活塞环和镀铬气缸套一些参数见表1。润滑油是 15W-40,含有约 1 wt.%的 ZDDP。

  • 图1 气缸套与活塞环试样

  • Fig.1 Cylinder liner and piston ring samples

  • 图2 气缸套-活塞环表面和截面形貌

  • Fig.2 Surface and cross-section morphology of cylinder liner and piston ring

  • 表1 镀铬气体缸套和喷钼活塞环参数

  • Table1 Parameters of chrome-plated cylinder liner and molybdenum sprayed piston ring

  • 1.2 往复式电射流制备微织构表面

  • 往复式电射流加工技术是将电解液从阴极喷嘴流出,在覆盖有掩模的阳极气缸套上形成注入(Ⅰ)、活化(Ⅱ)、湿润(Ⅲ)区,如图3 所示。随着喷嘴的往复运动,3 个区域依次交替。喷嘴往复运动一段时间后,气缸套表面就会形成微织构。微织构电解加工参数如下:电流 1.5 A,电解时间 60 s,电解液流量 45 mL / s。模板厚度为 100 μm,掩膜圆孔直径为 800 μm,排布方式选择沿滑动方向上相邻两列微织构的位置关系为相交,相交的距离为直径的 1 / 4,面积占有率(微织构的面积与整个气缸套面积的比值)为 20%。在镀铬气缸套表面制备了直径 810 μm、深度 11 μm、面积占有率 20%、相交排布的圆形微织构,加工后的微织构形貌如图4 和 5 所示。可以看出,镀铬气缸套表面加工出的微织构形貌规整均匀。

  • 图3 往复式电射流加工示意图

  • Fig.3 Reciprocating electric jet processing diagram

  • 图4 电解加工后织构的平面形貌

  • Fig.4 Planar morphology of texture after electrochemical machining

  • 图5 电解加工后织构的三维形貌

  • Fig.5 Three-dimensional morphology of the texture after electrolytic machining

  • 1.3 摩擦和磨损试验

  • 为了模拟高强化柴油机活塞环-气缸套上止点附近的边界润滑状态,采用自制对置往复式摩擦磨损试验机[27]进行磨损试验,试验机往复运动行程 30 mm,施加的载荷范围为 0~380 MPa,加热温度范围为 30~300℃,转速范围为 5~3 000 r / min,采用压电传感器采集摩擦力信号,活塞环试样固定在夹具上,气缸套往复运动,润滑油以 0.1 mL / min 的流量连续润滑摩擦界面。

  • 根据“磨损形式-条件统一”的准则模拟活塞环-气缸套边界润滑状态,并适当强化载荷加速磨损试验。表2 包括了喷钼活塞环-镀铬气缸套界面试验阶段的载荷、温度、持续时间和转速。在试验中,低载磨合阶段是为了去除试样上大的毛刺,并在高载磨损阶段提供稳定的接触状态,高载阶段 66 MPa 的压力对应 1 875 N。

  • 表2 摩擦磨损试验条件

  • Table2 Experimental conditions of friction and wear tests

  • 摩擦因数是由止点位置最大摩擦力与法向压力的比值算出的。在相同试验条件下,重复 3 次试验,用 3 个结果计算平均值和标准偏差,以减小误差。每次试验前后,所有样品用汽油和酒精清洗以去除表面的杂质,用于表面观察和磨损量的测量。采用三维激光共聚焦显微镜(CLSM,奥林巴斯,日本东京)测量的磨损深度用于表征气缸套和活塞环的磨损量,如图6 所示。

  • 图6 未磨损轮廓与磨损轮廓的台阶高度差表征磨损深度

  • Fig.6 Wear depth measured from unworn and worn profiles

  • 使用 SUPRA 55 蓝宝石型场发射扫描电子显微镜(SEM,卡尔蔡司 NTS 有限公司,德国奥博科亨) 分析摩擦副表面的微观形貌。使用 X 射线能量色散光谱仪(EDS,伊达克斯公司,美国)分析摩擦副表面元素的组成与分布。使用 X 射线光电子能谱系统(XPS,热电费希尔科学公司,美国萨诸塞州) 对磨损后的摩擦化学反应膜进行分析。X 射线源选用 Al Kα(1 486.6 eV)微聚集单色器,功率 72 W,检测面积约为 400 μm×400 μm。以外来污染碳氢化合物中的 C1s 的结合能(284.8 eV)作为电荷校正的标准。XPS 制造商提供的 Avantage 软件用于数据处理和峰位曲线拟合。

  • 2 结果和讨论

  • 2.1 微织构对气缸套摩擦因数和磨损量的影响

  • 织构和无织构镀铬气缸套与喷钼活塞环止点的平均摩擦因数、磨损量如图7 所示。可以看出在所有试验条件下,织构表面显示出较低的摩擦因数和磨损量。特别是在 66 MPa、240℃条件下,平均摩擦因数从无织构气缸套的 0.085 降低到织构气缸套的 0.075,大约降低了 12.3%,如图7a 所示;无织构气缸套和喷钼活塞环磨损量分别为 12.56 μm 和 2.07 μm,织构气缸套和喷钼活塞环磨损量分别为 11.32 μm 和 1.86 μm,磨损深度大约降低了 10%,如图7d 所示。也可以看出,采用往复式电射流加工技术在镀铬气缸套表面制备微织构,可以改善镀铬气缸套和喷钼活塞环在高温重载工况下的摩擦磨损性能。

  • 2.2 气缸套和活塞环磨损表面分析

  • 采用光学显微镜观察了 66 MPa、240℃下气缸套的磨损表面。图8a 显示出了无微织构气缸套的磨损表面,可以看出气缸套表面存在明显较宽的滑动磨损痕迹,且磨痕较为密集地分布在整个观察区域,部分珩磨纹消失。图8b 显示出微织构气缸套的磨损表面,气缸套表面磨损相对轻微,沿滑动方向并没有发现明显的磨痕,珩磨纹磨损相对轻微。图中右上角方框内轻微磨痕在微坑位置被阻断,并没有贯通整个观察区域。

  • 图7 微织构表面对气缸套、活塞环平均摩擦因数及磨损量的影响

  • Fig.7 Effect of textured surface on the friction factor and wear depth of cylinder liner and piston ring

  • 图8 气缸套样品磨损表面的光学图像

  • Fig.8 Optical image of the worn surface of cylinder liner samples

  • 用 SEM 表征了有无微织构气缸套在 66 MPa、 240℃下磨损表面的微观形貌,用 EDS 检测了表面元素成分。图9 显示出无微织构气缸套的磨损表面,可以看出镀铬气缸套表面珩磨纹变得不清晰,表面分布着不同形状、不同尺寸的凹坑,呈现出疲劳脱落留下的凹坑特征[28-29],沿滑动方向有大量的犁沟,说明脱落的磨粒使气缸套发生了磨粒磨损。气缸套表面分布着大量白亮斑点,且多数白亮斑点分布在珩磨纹的沟槽内。EDS 分析表明,白亮斑点(A 区域)成分是 C、O、P、S、Zn,如图10a 所示。P、 S、Zn 一般来自润滑油中的耐磨剂 ZDDP,所以白亮斑点是 ZDDP 摩擦化学反应的产物。在磨痕(B区域)仅有 C、O、Cr、Ca,C 和 O 一般来自于吸附物,Cr 是镀铬层的成分,Ca 来自于润滑油的清洁添加剂,说明磨痕处摩擦膜已经失效[30],如图10b 所示。

  • 图9 无微织构气缸套样品磨损表面的 SEM 形貌

  • Fig.9 SEM images of the wear surface of un-textured cylinder liner samples

  • 图10 气缸套磨损表面四个区域的 EDS 能谱分析:A、B、C、D

  • Fig.10 EDS spectra analysis of four areas of the cylinder liner wear surface: A, B, C, D

  • 图11 微织构气缸套样品磨损表面的 SEM 形貌

  • Fig.11 SEM images of the wear surface of textured cylinder liner samples

  • 图11 显示出微织构气缸套的磨损表面,可以看出镀铬气缸套表面珩磨纹相对清晰,呈现小平台状,总体光滑平整,表面分布着小尺寸的凹坑,呈现出疲劳脱落留的凹坑特征,沿滑动方向没有明显的犁沟,说明气缸套没有发生磨粒磨损,微织构可以收集磨粒,减少磨粒磨损。气缸套表面分布着大量白亮斑点,且多数白亮斑点分布在珩磨纹的沟槽内。EDS 分析表明,白亮斑点(C 区域)成分是 C、O、P、S、Zn,如图10c 所示。平台 (D 区域)有少量的 S、P、Zn 元素吸附,如图10d 所示。图12 为微坑位置面扫结果。可以看出,ZDDP 摩擦化学反应产物S、P、Zn 等元素不仅在微坑之间平台有分布,而且在微坑内有较多的沉积。说明微织构起到了储存ZDDP 摩擦化学反应产物的作用,可以在一定程度上抑制微坑周边区域的表面磨损。

  • 图12 微织构气缸套样品磨损表面的元素分布

  • Fig.12 Elemental distribution on the wear surface of textured cylinder liner sample

  • 图13 显示了与气缸套配对的喷钼活塞环磨损表面的微观形貌。由图可知活塞环表面有严重的塑性变形和脱落,承载面较为光滑,在凹坑内有大量白色斑点。喷钼活塞环表面硬度较低,抗塑性变形的能力较弱,在法向力和切向力的循环作用下,产生塑性变形和脱落,然后变成磨屑。无微织构气缸套配对的活塞环表面相对于织构气缸套配对的活塞环塑性变形和脱落的区域更多,这种脱落下来的磨屑可能是造成镀铬气缸套发生磨粒磨损的重要原因。微织构表面微坑具有捕捉磨屑作用,降低脱落的磨屑进入到摩擦副表面发生三体磨粒磨损的概率,减少微织构表面的损伤[31]

  • 图13 活塞环样品磨损表面的 SEM 形貌

  • Fig.13 SEM images of the wear surface of piston ring samples

  • 2.3 气缸套磨损平台表面 XPS 分析

  • 为了进一步了解摩擦界面的摩擦化学反应,利用 XPS 分析了 66 MPa、240℃下镀铬微织构气缸套磨损平台表面摩擦化学反应的产物,如图14 所示。EDS 表明镀铬气缸套的磨损平台表面主要含有 C、Cr、O、S、P、Zn 元素,因此扫描这些元素,总光谱用于获得元素峰相对强度的信息[32],如图14a 所示。摩擦膜上的 C1s、Cr2p、O1s、P2p、S2p、 Zn2p 的高分辨率光谱如图14b-14g 所示。

  • 图14 镀铬气缸套磨损平台表面 XPS 光谱

  • Fig.14 XPS spectrum of wear platform surface of chromium-plated cylinder liner

  • 图14b 显示了 C1s 的高分辨率光谱,采用外来污染碳氢化合物中的 C1s(C-C / C-H)的结合能 (284.8 eV)作为电荷校正的标准。

  • O1s 高分辨率光谱如图14c 所示,结合能 530.14 eV 的峰位对应金属氧化物(氧化铬),结合能 530.83 eV 的峰位对应 C-O 键(碳酸盐),结合能 532.62 eV 的峰位则对应 S-O 键(硫酸盐)[33],BO(533.75 eV) 和 NBO(531.55 eV)两个磷酸盐相关的峰要特别给予注意,BO 与 NBO 峰的强度比是判断聚磷酸盐链长和种类的重要参数。较高的 BO / NBO 的强度比表示聚磷酸盐的链较长(偏磷酸盐和多磷酸盐),较低的BO / NBO的强度比表示聚磷酸盐的链较短(焦磷酸盐和正磷酸盐)[34]。根据 O1s 的 XPS 分析的结果,该比率约为 0.11,表明摩擦膜主要是短链的正磷酸盐或焦磷酸盐,可能伴有少量长链聚磷酸盐。研究表明摩擦膜中短链的磷酸盐具有较好的耐久性[35-36]

  • 图14d 显示了 Cr2p3 / 2 的高分辨率光谱,结合能 574.16 eV 的 Cr2p3 / 2 峰被认为是 Cr 单质[37],结合能 575.97 eV、577.62 eV 和 579.73 eV 的 Cr2p3 / 2 峰被认为是 Cr 的氧化物[38-40],说明 Cr 并没有和 ZDDP 的 S、P、Zn 等元素发生摩擦化学反应,只形成了氧化物。

  • S2p 高分辨率光谱如图14e 所示,可以检测到 4 个峰位,可以识别出两种不同类型峰位的信号,因为电子来自 2p 能级,每个信号表现为双峰 (S2p3 / 2、S2p1 / 2)。结合能为 161.61 eV 的 S2p3 / 2 峰位对应硫化锌[41-43]。结合能为 163.38 eV 的 S2p3 / 2 峰位对应硫单质[44]。P2p 高分辨率光谱如图14f 所示,结合能为 132.68 eV 的 P2p3 / 2 峰位对应磷酸锌[1845-46]。Zn2p 高分辨率光谱如图14g 所示,结合能为 1 021.68 eV 的 Zn2p3 / 2 峰位对应硫化锌[47-49],结合能为 1 023.56 eV 的 Zn2p3 / 2 峰位对应磷酸锌。

  • 由上述表面形貌和摩擦化学反应产物的分析可以看出,相比于无织构镀铬气缸套表面,微织构镀铬气缸套表面的微坑除了能够起到贮存润滑油、捕获磨粒之外,这些微织构表面的微坑还改变了ZDDP 自身分解产物的分布状态,使得微坑内部和微坑之间平台都有白亮斑点等摩擦化学反应产物的分布。虽然铬基体发生了氧化作用,但是铬基体并没有和 ZDDP 中的 S、P、Zn 等元素发生结合而生成铬的化合物。这些在镀铬基体表面上形成的摩擦产物,主要成分为硫化物、短链磷酸盐等化合物。这些因素的综合作用抑制了磨粒磨损对镀铬表面造成的损伤,减少了配副表面微凸体之间的直接接触,改善了镀铬气缸套与喷钼活塞环的摩擦磨损性能。

  • 3 结论

  • (1)在边界润滑下的往复滑动试验表明,相比于无织构气缸套,往复式电射流技术制备的微织构气缸套在不同载荷下均能改善活塞环-气缸套的摩擦磨损性能,降低摩擦因数 8.3%~12.3%,降低磨损量 6.5%~10%。

  • (2)从磨损形貌来看,电解微织构气缸套表面没有明显的磨痕和犁沟,并且微织构可以阻断磨粒磨损造成的连续磨痕,配对的活塞环表面塑性变形和脱落的区域较少。

  • (3)ZDDP 在微织构镀铬气缸套表面形成的摩擦膜主要成分为硫化物、短链磷酸盐等化合物,铬基体并没有和 ZDDP 中的 S、P、Zn 等元素发生摩擦化学反应,只形成了氧化物。需要进一步研究 ZDDP 摩擦膜与微织构表面的协同减摩耐磨作用,优化镀铬气缸套微织构表面参数。

  • 参考文献

    • [1] 王增全,徐久军.柴油机活塞环-气缸套摩擦学[M].北京:科学出版社,2021.WANG Zengquan,XU Jiujun.Tribology in piston ring-cylinder liner system of diesel engine[M].Beijing:Science Press,2021.(in Chinese)

    • [2] LU L,ZHANG Z,GUAN Y,et al.Comparison of the effect of typical patterns on friction and wear properties of chromium alloy prepared by laser surface texturing[J].Optics & Laser Technology,2018,106:272-279.

    • [3] ZHU F,XU J,HAN X,et al.Deposit formation on chromium-plated cylinder liner in a fully formulated oil[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2016,230(12):1415-1422.

    • [4] VISHNOI M,KUMAR P,MURTAZA Q.Surface texturing techniques to enhance tribological performance:A review[J].Surfaces and Interfaces,2021,27:101463.

    • [5] VENKATESWARA BABU P,SYED I,BENBEERA S.Experimental investigation on effects of positive texturing on friction and wear reduction of piston ring/cylinder liner system[J].Materials today:proceedings,2020,24:1112-1121.

    • [6] ZOU H,YAN S,SHEN T,et al.Efficiency of surface texturing in the reducing of wear for tests starting with initial point contact[J].Wear,2021,482-483:203957.

    • [7] RODRIGUES T A,COSTA H L,DA SILVA W M.Sliding wear behavior of electrochemically textured surfaces under different lubrication regimes:Effects of curvature radius[J].Wear,2021,477:203817.

    • [8] NIU Y,PANG X,YUE S,et al.The friction and wear behavior of laser textured surfaces in non-conformal contact under starved lubrication[J].Wear,2021,476:203723.

    • [9] ROSENKRANZ A,REINERT L,GACHOT C,et al.Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions[J].Wear,2014,318(1-2):49-61.

    • [10] MOSEY N J,MÜSER M H,WOO T K.Molecular Mechanisms for the Functionality of Lubricant Additives[J].Science,2005,307(5715):1612-1615.

    • [11] GOSVAMI N N,BARES J A,MANGOLINI F,et al.Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts[J].Science,2015,348(6230):102-106.

    • [12] AL-SALLAMI W,PARSAEIAN P,DORGHAM A,et al.Oil-soluble ionic liquid to lubricate silicon[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2021,235(10):1995-2006.

    • [13] MARTIN J M.Antiwear mechanisms of zinc dithiophosphate:A chemical hardness approach[J].Tribology letters,1999,6(1):1-8.

    • [14] SOLTANAHMADI S,MORINA A,VAN EIJK M C P,et al.Experimental observation of zinc dialkyl dithiophosphate(ZDDP)-induced iron sulphide formation[J].Applied Surface Science,2017,414:41-51.

    • [15] VYAVHARE K,TIMMONS R B,ERDEMIR A,et al.Tribochemistry of fluorinated ZnO nanoparticles and ZDDP lubricated interface and implications for enhanced anti-wear performance at boundary lubricated contacts[J].Wear,2021,474-475:203717.

    • [16] MODER J,GRÜN F,SUMMER F,et al.Effect of temperature on wear and tribofilm formation in highly loaded DLC-steel line contacts[J].Tribology International,2018,123:120-129.

    • [17] WAN S,TIEU A K,XIA Y,et al.Tribochemistry of adaptive integrated interfaces at boundary lubricated contacts[J].Scientific Reports,2017,7(1):1-17.

    • [18] HE X,MEYER H M,LUO H,et al.Wear penalty for steel rubbing against hard coatings in reactive lubricants due to tribochemical interactions[J].Tribology International,2021,160:107010.

    • [19] GOSVAMI N N,LAHOUIJ I,MA J,et al.Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy[J].Tribology International,2020,143:106075.

    • [20] MITTAL P,MAITHANI Y,SINGH J P,et al.In situ microscopic study of tribology and growth of ZDDP antiwear tribofilms on an Al–Si alloy[J].Tribology International,2020,151:106419.

    • [21] MAO B,SIDDAIAH A,LIAO Y,et al.Laser surface texturing and related techniques for enhancing tribological performance of engineering materials:A review[J].Journal of Manufacturing Processes,2020,53:153-173.

    • [22] GACHOT C,ROSENKRANZ A,HSU S M,et al.A critical assessment of surface texturing for friction and wear improvement[J].Wear,2017,372-373:21-41.

    • [23] WALKER J C,KAMPS T J,LAM J W,et al.Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J].Wear,2017,376-377:1611-1621.

    • [24] MENG F,ZHOU R,DAVIS T,et al.Study on effect of dimples on friction of parallel surfaces under different sliding conditions[J].Applied Surface Science,2010,256(9):2863-2875.

    • [25] COBLAS D G,FATU A,MAOUI A,et al.Manufacturing textured surfaces:State of art and recent developments[Z].London,England:SAGE Publications,2015:229(1):3-29.

    • [26] SHEN Y,LV Y,LI B,et al.Reciprocating electrolyte jet with prefabricated-mask machining micro-dimple arrays on cast iron cylinder liner[J].Journal of Materials Processing Technology,2019,266:329-338.

    • [27] MA S,LIU Y,WANG Z,et al.The effect of honing angle and roughness height on the tribological performance of CuNiCr iron liner[J].Materials,2019,12(9):487.

    • [28] 朱峰,徐久军,孙健,等.松孔镀铬缸套磨损机理研究[J].内燃机学报,2017,35(3):274-279.ZHU Feng,XU Jiujun,SUN Jian,et al.Wear mechanism of chromium plated cylinder liner[J].Transactions of Csice,2017,35(3):274-279.(in Chinese)

    • [29] CAI F,ZHANG J,WANG J,et al.Improved adhesion and erosion wear performance of CrSiN/Cr multi-layer coatings on Ti alloy by inserting ductile Cr layers[J].Tribology International,2021,153:106657.

    • [30] MA Z,HUANG R,YUAN X,et al.Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner[J].Friction,2021,10(8):1245-1257.

    • [31] 赫冬,韩晓光,陈广聪,等.CKS 活塞环表面微织构几何形貌及排布方式对摩擦学性能的影响[J].中国表面工程,2021,34(2):59-69.HE Dong,HAN Xiaoguang,CHEN Guangcong,et al.Effect of geometrical morphology and arrangement of micro-texture on friction property of CKS piston ring[J].China Surface Engineering,2021,34(2):59-69.(in Chinese)

    • [32] JIN Z,XIONG C,ZHAO T,et al.Passivation and depassivation properties of Cr–Mo alloyed corrosionresistant steel in simulated concrete pore solution[J].Cement and Concrete Composites,2022,126:104375.

    • [33] COSTA H L,EVANGELISTA K S,COUSSEAU T,et al.Use of XANES and XPS to investigate the effects of ethanol contamination on anti-wear ZDDP tribofilms[J].Tribology International,2021,159:106997.

    • [34] CROBU M,ROSSI A,MANGOLINI F,et al.Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS[J].Analytical and Bioanalytical Chemistry,2012,403(5):1415-1432.

    • [35] UEDA M,KADIRIC A,SPIKES H.On the crystallinity and durability of ZDDP tribofilm[J].Tribology Letters,2019,67(4):1-13.

    • [36] PARSAEIAN P,GHANBARZADEH A,VAN EIJK M C P,et al.A new insight into the interfacial mechanisms of the tribofilm formed by zinc dialkyl dithiophosphate[J].Applied Surface Science,2017,403:472-486.

    • [37] BIESINGER M C,PAYNE B P,GROSVENOR A P,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257(7):2717-2730.

    • [38] CHOWDHURY S R,YANFUL E K,PRATT A R.Chemical states in XPS and Raman analysis during removal of Cr(VI)from contaminated water by mixed maghemite-magnetite nanoparticles[J].Journal of Hazardous Materials,2012,235-236:246-256.

    • [39] KUBO Y,SONOHARA Y,UEMURA S.Changes in the chemical state of metallic Cr during deposition on a polyimide substrate:Full soft XPS and ToF-SIMS depth profiles[J].Applied Surface Science,2021,553:149437.

    • [40] LYNCH B,WIAME F,MAURICE V,et al.XPS study of oxide nucleation and growth mechanisms on a model FeCrNiMo stainless steel surface[J].Applied Surface Science,2022,575:151681.

    • [41] MISTRY K K,MORINA A,NEVILLE A.A tribochemical evaluation of a WC–DLC coating in EP lubrication conditions[J].Wear,2011,271(9-10):1739-1744.

    • [42] ZHANG S,YUE W,KANG J,et al.Ti content on the tribological properties of W/Ti-doped diamond-like carbon film lubricating with additives[J].Wear,2019,430-431:137-144.

    • [43] DORGHAM A,AZAM A,PARSAEIAN P,et al.Understanding the effect of water on the transient decomposition of zinc dialkyl dithiophosphate(ZDDP)[J].Tribology International,2021,157:106855.

    • [44] SHEN Y,YE B,YU B,et al.Enhancement of heavy-duty friction and wear characteristics of cast-iron surface by electrolytic micro-textures filled with MoS2[J].Surface and Coatings Technology,2021,408:126806.

    • [45] MASSOUD T,DE MATOS R P,LE MOGNE T,et al.Effect of ZDDP on lubrication mechanisms of linear fatty amines under boundary lubrication conditions[J].Tribology International,2020,141:105954.

    • [46] QU J,MEYER H M,CAI Z,et al.Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms[J].Wear,2015,332-333:1273-1285.

    • [47] DENG X,SORESCU D C,LEE J.Single-layer ZnS supported on Au(111):A combined XPS,LEED,STM and DFT study[J].Surface Science,2017,658:9-14.

    • [48] ZHU B,ZHOU J,NI L,et al.Synthesis and characterization of P-doped g-C3N4 nanosheet hybridized ZnS nanospheres with enhanced visible-light photocatalytic activity[J].Journal of Solid State Chemistry,2022,305:122703.

    • [49] BIESINGER M C,LAU L W M,GERSON A R,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Sc,Ti,V,Cu and Zn[J].Applied Surface Science,2010,257(3):887-898.

  • 参考文献

    • [1] 王增全,徐久军.柴油机活塞环-气缸套摩擦学[M].北京:科学出版社,2021.WANG Zengquan,XU Jiujun.Tribology in piston ring-cylinder liner system of diesel engine[M].Beijing:Science Press,2021.(in Chinese)

    • [2] LU L,ZHANG Z,GUAN Y,et al.Comparison of the effect of typical patterns on friction and wear properties of chromium alloy prepared by laser surface texturing[J].Optics & Laser Technology,2018,106:272-279.

    • [3] ZHU F,XU J,HAN X,et al.Deposit formation on chromium-plated cylinder liner in a fully formulated oil[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2016,230(12):1415-1422.

    • [4] VISHNOI M,KUMAR P,MURTAZA Q.Surface texturing techniques to enhance tribological performance:A review[J].Surfaces and Interfaces,2021,27:101463.

    • [5] VENKATESWARA BABU P,SYED I,BENBEERA S.Experimental investigation on effects of positive texturing on friction and wear reduction of piston ring/cylinder liner system[J].Materials today:proceedings,2020,24:1112-1121.

    • [6] ZOU H,YAN S,SHEN T,et al.Efficiency of surface texturing in the reducing of wear for tests starting with initial point contact[J].Wear,2021,482-483:203957.

    • [7] RODRIGUES T A,COSTA H L,DA SILVA W M.Sliding wear behavior of electrochemically textured surfaces under different lubrication regimes:Effects of curvature radius[J].Wear,2021,477:203817.

    • [8] NIU Y,PANG X,YUE S,et al.The friction and wear behavior of laser textured surfaces in non-conformal contact under starved lubrication[J].Wear,2021,476:203723.

    • [9] ROSENKRANZ A,REINERT L,GACHOT C,et al.Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions[J].Wear,2014,318(1-2):49-61.

    • [10] MOSEY N J,MÜSER M H,WOO T K.Molecular Mechanisms for the Functionality of Lubricant Additives[J].Science,2005,307(5715):1612-1615.

    • [11] GOSVAMI N N,BARES J A,MANGOLINI F,et al.Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts[J].Science,2015,348(6230):102-106.

    • [12] AL-SALLAMI W,PARSAEIAN P,DORGHAM A,et al.Oil-soluble ionic liquid to lubricate silicon[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2021,235(10):1995-2006.

    • [13] MARTIN J M.Antiwear mechanisms of zinc dithiophosphate:A chemical hardness approach[J].Tribology letters,1999,6(1):1-8.

    • [14] SOLTANAHMADI S,MORINA A,VAN EIJK M C P,et al.Experimental observation of zinc dialkyl dithiophosphate(ZDDP)-induced iron sulphide formation[J].Applied Surface Science,2017,414:41-51.

    • [15] VYAVHARE K,TIMMONS R B,ERDEMIR A,et al.Tribochemistry of fluorinated ZnO nanoparticles and ZDDP lubricated interface and implications for enhanced anti-wear performance at boundary lubricated contacts[J].Wear,2021,474-475:203717.

    • [16] MODER J,GRÜN F,SUMMER F,et al.Effect of temperature on wear and tribofilm formation in highly loaded DLC-steel line contacts[J].Tribology International,2018,123:120-129.

    • [17] WAN S,TIEU A K,XIA Y,et al.Tribochemistry of adaptive integrated interfaces at boundary lubricated contacts[J].Scientific Reports,2017,7(1):1-17.

    • [18] HE X,MEYER H M,LUO H,et al.Wear penalty for steel rubbing against hard coatings in reactive lubricants due to tribochemical interactions[J].Tribology International,2021,160:107010.

    • [19] GOSVAMI N N,LAHOUIJ I,MA J,et al.Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy[J].Tribology International,2020,143:106075.

    • [20] MITTAL P,MAITHANI Y,SINGH J P,et al.In situ microscopic study of tribology and growth of ZDDP antiwear tribofilms on an Al–Si alloy[J].Tribology International,2020,151:106419.

    • [21] MAO B,SIDDAIAH A,LIAO Y,et al.Laser surface texturing and related techniques for enhancing tribological performance of engineering materials:A review[J].Journal of Manufacturing Processes,2020,53:153-173.

    • [22] GACHOT C,ROSENKRANZ A,HSU S M,et al.A critical assessment of surface texturing for friction and wear improvement[J].Wear,2017,372-373:21-41.

    • [23] WALKER J C,KAMPS T J,LAM J W,et al.Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J].Wear,2017,376-377:1611-1621.

    • [24] MENG F,ZHOU R,DAVIS T,et al.Study on effect of dimples on friction of parallel surfaces under different sliding conditions[J].Applied Surface Science,2010,256(9):2863-2875.

    • [25] COBLAS D G,FATU A,MAOUI A,et al.Manufacturing textured surfaces:State of art and recent developments[Z].London,England:SAGE Publications,2015:229(1):3-29.

    • [26] SHEN Y,LV Y,LI B,et al.Reciprocating electrolyte jet with prefabricated-mask machining micro-dimple arrays on cast iron cylinder liner[J].Journal of Materials Processing Technology,2019,266:329-338.

    • [27] MA S,LIU Y,WANG Z,et al.The effect of honing angle and roughness height on the tribological performance of CuNiCr iron liner[J].Materials,2019,12(9):487.

    • [28] 朱峰,徐久军,孙健,等.松孔镀铬缸套磨损机理研究[J].内燃机学报,2017,35(3):274-279.ZHU Feng,XU Jiujun,SUN Jian,et al.Wear mechanism of chromium plated cylinder liner[J].Transactions of Csice,2017,35(3):274-279.(in Chinese)

    • [29] CAI F,ZHANG J,WANG J,et al.Improved adhesion and erosion wear performance of CrSiN/Cr multi-layer coatings on Ti alloy by inserting ductile Cr layers[J].Tribology International,2021,153:106657.

    • [30] MA Z,HUANG R,YUAN X,et al.Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner[J].Friction,2021,10(8):1245-1257.

    • [31] 赫冬,韩晓光,陈广聪,等.CKS 活塞环表面微织构几何形貌及排布方式对摩擦学性能的影响[J].中国表面工程,2021,34(2):59-69.HE Dong,HAN Xiaoguang,CHEN Guangcong,et al.Effect of geometrical morphology and arrangement of micro-texture on friction property of CKS piston ring[J].China Surface Engineering,2021,34(2):59-69.(in Chinese)

    • [32] JIN Z,XIONG C,ZHAO T,et al.Passivation and depassivation properties of Cr–Mo alloyed corrosionresistant steel in simulated concrete pore solution[J].Cement and Concrete Composites,2022,126:104375.

    • [33] COSTA H L,EVANGELISTA K S,COUSSEAU T,et al.Use of XANES and XPS to investigate the effects of ethanol contamination on anti-wear ZDDP tribofilms[J].Tribology International,2021,159:106997.

    • [34] CROBU M,ROSSI A,MANGOLINI F,et al.Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS[J].Analytical and Bioanalytical Chemistry,2012,403(5):1415-1432.

    • [35] UEDA M,KADIRIC A,SPIKES H.On the crystallinity and durability of ZDDP tribofilm[J].Tribology Letters,2019,67(4):1-13.

    • [36] PARSAEIAN P,GHANBARZADEH A,VAN EIJK M C P,et al.A new insight into the interfacial mechanisms of the tribofilm formed by zinc dialkyl dithiophosphate[J].Applied Surface Science,2017,403:472-486.

    • [37] BIESINGER M C,PAYNE B P,GROSVENOR A P,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257(7):2717-2730.

    • [38] CHOWDHURY S R,YANFUL E K,PRATT A R.Chemical states in XPS and Raman analysis during removal of Cr(VI)from contaminated water by mixed maghemite-magnetite nanoparticles[J].Journal of Hazardous Materials,2012,235-236:246-256.

    • [39] KUBO Y,SONOHARA Y,UEMURA S.Changes in the chemical state of metallic Cr during deposition on a polyimide substrate:Full soft XPS and ToF-SIMS depth profiles[J].Applied Surface Science,2021,553:149437.

    • [40] LYNCH B,WIAME F,MAURICE V,et al.XPS study of oxide nucleation and growth mechanisms on a model FeCrNiMo stainless steel surface[J].Applied Surface Science,2022,575:151681.

    • [41] MISTRY K K,MORINA A,NEVILLE A.A tribochemical evaluation of a WC–DLC coating in EP lubrication conditions[J].Wear,2011,271(9-10):1739-1744.

    • [42] ZHANG S,YUE W,KANG J,et al.Ti content on the tribological properties of W/Ti-doped diamond-like carbon film lubricating with additives[J].Wear,2019,430-431:137-144.

    • [43] DORGHAM A,AZAM A,PARSAEIAN P,et al.Understanding the effect of water on the transient decomposition of zinc dialkyl dithiophosphate(ZDDP)[J].Tribology International,2021,157:106855.

    • [44] SHEN Y,YE B,YU B,et al.Enhancement of heavy-duty friction and wear characteristics of cast-iron surface by electrolytic micro-textures filled with MoS2[J].Surface and Coatings Technology,2021,408:126806.

    • [45] MASSOUD T,DE MATOS R P,LE MOGNE T,et al.Effect of ZDDP on lubrication mechanisms of linear fatty amines under boundary lubrication conditions[J].Tribology International,2020,141:105954.

    • [46] QU J,MEYER H M,CAI Z,et al.Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms[J].Wear,2015,332-333:1273-1285.

    • [47] DENG X,SORESCU D C,LEE J.Single-layer ZnS supported on Au(111):A combined XPS,LEED,STM and DFT study[J].Surface Science,2017,658:9-14.

    • [48] ZHU B,ZHOU J,NI L,et al.Synthesis and characterization of P-doped g-C3N4 nanosheet hybridized ZnS nanospheres with enhanced visible-light photocatalytic activity[J].Journal of Solid State Chemistry,2022,305:122703.

    • [49] BIESINGER M C,LAU L W M,GERSON A R,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Sc,Ti,V,Cu and Zn[J].Applied Surface Science,2010,257(3):887-898.

  • 手机扫一扫看