en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴帅,男,1995年出生,硕士研究生。主要研究方向为薄膜材料。E-mail:wushuai15123253879@163.com;

覃礼钊(通信作者),男,1967年出生,博士,副教授,硕士研究生导师。主要研究方向为射线束材料表面改性、超硬膜、纳米材料光电性能。E-mail:qin8394@swu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211213004

参考文献 1
闫奎呈,田宪华,刘亚,等.(Ti,Al)N+TiN 涂层硬质合金刀具加工铁基高温合金正交切削试验研究[J].工具技术,2020,54(5):3-8.YAN Kuicheng,TIAN Xianhua,LIU Ya,et al.Orthogonal cutting experiment study of(Ti,Al)N+TiN coated carbide tools for processing iron-based superalloy[J].Tool Engineering,2020,54(5):3-8.(in Chinese)
参考文献 2
张正权,金永中,陈昌浩,等.真空热处理对多弧离子镀TiAlSiN涂层性能的影响[J].中国表面工程,2017,30(1):70-76.ZHANG Zhengquan,JIN Yongzhong,CHEN Changhao,et al.Effects of vacuum heat treatment on properties of TiAlSiN coatings prepared by arc ion plating[J].China Surface Engineering,2017,30(1):70-76.(in Chinese)
参考文献 3
郭麒,孟天旭,席雯,等.C/C 复合材料表面 CoNiCrAlTaHfY/Co 复合涂层的组织[J].中国表面工程,2018,31(2):29-38.GUO Qi,MENG Tianxu,XI Wen,et al.Microstructure of CoNiCrAlTaHfY/Co composite coating formed on c/c composites[J].China Surface Engineering,2018,31(2):29-38.(in Chinese)
参考文献 4
董标,毛陶杰,陈汪林,等.Al/Cr 原子比对AlCrTiSiN多元复合刀具涂层微观结构及切削性能的影响[J].中国表面工程,2016,29(5):49-55.DONG Biao,MAO Taojie,CHEN Wanglin,et al.Effects of Al/Cr atom ratios on microstructure and mechanical properties of alcrtisin multi-composite tools coatings[J].China Surface Engineering,2016,29(5):49-55.(in Chinese)
参考文献 5
VEPREK S,REIPRICH S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268(1-2):64-71.
参考文献 6
ENDRINO J L,PALACÍN S,AGUIRRE M H,et al.Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films[J].Acta Materialia,2007,55(6):2129-2135.
参考文献 7
YU X W,ZHANG S,LEE J W,et al.Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite[J].Applied Surface Science,2013,265:418-423.
参考文献 8
XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.
参考文献 9
QWYA C,YLA C,MYZ B,et al.Electrochemical behavior of(Cr,W,Al,Ti,Si)N multilayer coating on nitrided AISI 316L steel in natural seawater[J].Ceramics International,2020,46(14):22404-22418.
参考文献 10
陈淑年,廖斌,吴先映,等.基于磁过滤技术制备亚微米级TiAlN/TiAlCN/TiAlC复合涂层的耐腐蚀性能[J].中国表面工程,2019,32(3):49-58.CHEN Shunian,LIAO Bin,WU Xianying,et al.Corrosion resistance of submicron TiAlN/TiAlCN/TiAlC composite coatings prepared by filtered cathodic vacuum arc[J].China Surface Engineering,2019,32(3):49-58.(in Chinese)
参考文献 11
SURESHA S J,BHIDE R,JAYARAM V,et al.Processing,microstructure and hardness of TiN/(Ti,Al)N multilayer coatings[J].Materials Science and Engineering:A,2006,429(1-2):252-260.
参考文献 12
DEEVI P.Single layer and multilayer wear resistant coatings of(Ti,Al)N:A review[J].Materials Science and Engineering:A,2003,342(1-2):58-79.
参考文献 13
LI C,PAULITSCH J,DU Y,et al.Thermal stability and oxidation resistance of Ti–Al–N coatings[J].Surface & Coatings Technology,2012,206-318(11-12):2954-2960.
参考文献 14
MUNZ W D.Titanium aluminum nitride films:a new alternative to TiN coatings[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1986,4(6):2717-2725.
参考文献 15
XU Y X,LI C,FEI P,et al.Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios[J].Surface & Coatings Technology,2016,304:512-518.
参考文献 16
ZHU L,HU M,NI W,et al.High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating[J].Vacuum,2012,86(12):1795-1799.
参考文献 17
CHEN L,D Holec,DU Y,et al.Influence of Zr on structure,mechanical and thermal properties of Ti–Al–N[J].Thin Solid Films,2011,519(16):5503-5510.
参考文献 18
CHANG Y Y,CHIU W T,HUNG J P.Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation[J].Surface & Coatings Technology,2016,303:18-24.
参考文献 19
SUTHAM S,CHARNNARONG S,ANURAT W,et al.Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron[J].International Journal of Advanced Manufacturing Technology,2018,97(9):3883-3892.
参考文献 20
WONGPANYA P,SURINPHONG S,RUJISOMNAPA J.Increasing Tool Life by AlCrTiSiN Film[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,853:217-222.
参考文献 21
LIND H,FORSEN R,AILING B,et al.Improving thermal stability of hard coating films via a concept of multicomponent alloying[J].Applied Physics Letters,2011,99(9):384.
参考文献 22
DELISLE D A,KRZANOWSKI J E.Surface morphology and texture of TiAlN/CrN multilayer coatings[J].Thin Solid Films,2012,524:100-106.
参考文献 23
YAU B-S,HUANG J-L,LII D-F,et al.Investigation of nanocrystal-(Ti,Al)Nx/amorphous-SiNy composite films by co-deposition process[J].Surface and Coatings Technology,2004,177:209-214.
参考文献 24
KUO Y C,WANG C J,LEE J W.The microstructure and mechanical properties evaluation of CrTiAlSiN coatings:Effects of silicon content[J].Thin Solid Films,2017,638:220-229.
参考文献 25
BOBZIN K,BRGELMANN T,KRUPPE N C,et al.Nanocomposite(Ti,Al,Cr,Si)N HPPMS coatings for high performance cutting tools[J].Surface and Coatings Technology,2019,378:124857.
参考文献 26
CHANG Y Y,HSIAO C Y.High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings[J].Surface & Coatings Technology,2009,204(6-7):992-996.
参考文献 27
张志强,廖斌,欧伊翔,等.磁过滤阴极真空弧技术制备厚且韧TiN涂层[J].物理学报,2020,69(10):67-76.ZHANG Zhiqiang,LIAO Bin,OU Yixiang,et al.Thick yet tough TiN coatings deposited by filter cathode vacuum arc technology[J].Acta Physica Sinica,2020,69(10):67-76.(in Chinese)
参考文献 28
CHEN S N,ZHAO Y M,ZHANG Y F,et al.Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings[J].Surface and Coatings Technology,2021,411:126886.
参考文献 29
EZURA H,ICHIJO K,HASEGAWA H,et al.Micro-hardness,microstructures and thermal stability of(Ti,Cr,Al,Si)N films deposited by cathodic arc method[J].Vacuum,2008,82(5):476-481.
参考文献 30
SUN K K,VINH P V,LEE J W.Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition[J].Surface & Coatings Technology,2008,202(22):5395-5399.
参考文献 31
REITER A E,DERFLINGER V H,HANSELMANN B,et al.investigation of the properties of Al1-xCrx N coatings prepared by cathodic arc evaporation[J].Surface & Coatings Technology,2005,200(7):2114-2122.
参考文献 32
KIMURA A,KAWATE M,HASEGAWA H,et al.Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films[J].Surface & Coatings Technology,2003,169:367-370.
参考文献 33
MAKINO Y.Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method[J].Surface and Coatings Technology,2005,193(1-3):185-191.
参考文献 34
SHAN L,ZHANG Y.R,WANG Y.X,et al.Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J].Transactions of Nonferrous Metals Society of China,2016,26(1):175-184.
参考文献 35
I Bertóti,MOHAI M,SULLIVAN J L,et al.Surface characterisation of plasma-nitrided titanium:An XPS study[J].Applied Surface Science,1995,84(4):357-371.
参考文献 36
BARSHILIA H C,GHOSH M,SHASHIDHARA,et al.Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering[J].Applied Surface Science,2010,256(21):6420-6426.
参考文献 37
ZHANG G A,YAN P X,WANG P,et al.The structure and tribological behaviors of CrN and Cr–Ti–N coatings[J].Applied Surface Science,2007,253(18):7353-7359.
参考文献 38
SUGISHIMA A,KAJIOKA H,MAKINO Y.Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method[J].Surface & Coatings Technology,1997,97(1-3):590-594.
参考文献 39
MOULDER J F,CHASTAIN J,KING R C.Handbook of X-ray photoelectron spectroscopy:A reference book of standard spectra for identification and interpretation of XPS data[J].Chemical Physics Letters,1992,220(1):7-10.
参考文献 40
LIN C H,DUH J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J].Surface and Coatings Technology,2007,201(14):6304-6308.
参考文献 41
MOHAMMADPOUR E,JIANG Z T,ALTARAWNEH M,et al.Predicting high temperature mechanical properties of CrN and CrAlN coatings from in-situ synchrotron radiation X-ray diffraction[J].Thin Solid Films,2016,599:98-103.
参考文献 42
卢柯,刘学东,胡壮麒.纳米晶体材料的 Hall—Petch 关系[J].材料研究学报,1994(5):385-391.LU Ke,LIU Xuedong,HU Zhuangqi.The hall-petch relation in nanocrystalline materials[J].Chinese Journal of Material Research,1994(5):385-391.(in Chinese)
参考文献 43
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
参考文献 44
YEH J W.Alloy design strategies and future trends in high-entropy alloys[J].Jom,2013,65(12):1759-1771.
参考文献 45
PARK J H,CHUNG W S,CHO Y R,et al.Synthesis and mechanical properties of Cr-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques[J].Surface and Coatings Technology,2004,188:425-430.
参考文献 46
LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:A nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1-2):1-11.
参考文献 47
LIN C H,DUH J G.Corrosion behavior of(Ti-Al-CrSi-V)xNy coatings on mild steels derived from RF magnetron sputtering[J].Surface and Coatings Technology,2008,203(5):558-561.
参考文献 48
DELGADO-ALVARADO C,SUNDARAM P A.A study of the corrosion behavior of gamma titanium aluminide in 3.5 wt.% NaCl solution and seawater[J].Corrosion Science,2007,49(9):3732-3741.
参考文献 49
YANG Y,CHENG Y F.Electrolytic deposition of Ni-Co-SiC nano-coating for erosion-enhanced corrosion of carbon steel pipes in oilsand slurry[J].Surface & Coatings Technology,2011,205(10):3198-3204.
参考文献 50
VACANDIO F,MASSIANI Y,GRAVIER P,et al.Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers[J].Electrochimica Acta,2001,46(24-25):3827-3834.
参考文献 51
OLIVEIRA V,AGUIAR C,VAZQUEZ A M,et al.Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J].Corrosion Science,2014,88:317-327.
目录contents

    摘要

    科技发展使军用、船舶、切削等各领域的精密器件所面临的环境更加极端复杂,多元防护涂层因具有良好的综合性能而逐渐取代传统的二三元氮化物,但目前关于 TiAlCr 基多元涂层结构与性能的影响研究尚未报道。通过调控氮气流量(5 ≤ FN ≤ 40 mL / min),基于磁过滤阴极真空弧(FCVA)技术制备 TiAlCr 基的多元(TiAlCrSi)N 涂层。采用 FESEM、EDS、 XRD、XPS 和 TEM 对涂层的相结构、形貌和成分进行表征,并通过纳米压痕仪、划痕仪和电化学工作站对涂层性能进行表征。结果表明:随着氮气流量增加,涂层由无序致密的非晶相转变为具有柱状晶的(TiAlCr)N 纳米晶 / Si3N4 非晶相的复合结构。FN ≤ 20 mL / min 时,涂层结构以均匀致密的非晶相为主;FN = 20 mL / min 时,涂层的结合强度 LC3(27.1 N)较高,在 3.5 wt.% NaCl 溶液中拥有较好的耐腐蚀性能(Ecorr = −0.314 V, Icorr = 2.9038 μA·cm−2 );FN ≥ 30 mL / min 时,涂层结构转变为具有柱状晶的(TiAlCr) N 纳米晶 / Si3N4非晶相复合结构,涂层的硬度得到显著提升,达到超硬级别;FN = 40 mL / min 时,涂层拥有良好的力学性能,硬度、弹性模量、H / EH 3 / E 2 分别为 45.11、460.4、0.098 和 0.433 GPa。通过 FCVA 制备的(TiAlCrSi)N 涂层具有优异的耐腐蚀和力学性能,可为表面防护技术在复杂苛刻环境中的发展提供参考。

    Abstract

    Technological advances have made the environment facing precision equipment in military equipment more complex and extreme. TiAlCr-based multi-component protective coatings have gradually replaced the traditional binary and ternary nitride because of its good comprehensive properties. However, the research on the influence of multi-component coatings structure and performance have not been reported. TiAlCr-based multi-component (TiAlCrSi)N coatings are prepared based on filtered cathode vacuum arc (FCVA) technology by regulating the N2 flow rate (5 ≤ FN ≤ 40 mL / min). FESEM, EDS, XRD, XPS, TEM, nanoindenter, scratch meter and electrochemical workstation are selected to characterized the morphology, structure, corrosion resistance and mechanical properties of the coatings, respectively. The results show that the coating is transformed from a disordered dense amorphous phase to a composite structure of columnar (TiAlCr)N nanocrystals / Si3N4 amorphous phase with the increase of N2 flow rate. When FN ≤ 20 mL / min, the coating exhibits uniform and dense amorphous phase structure. The coating (FN = 20 mL / min) has a higher bonding strength LC3 (27.1 N), and better corrosion resistance (Ecorr = −0.314 V, Icorr = 2.9038 μA·cm2 ) in 3.5 wt.% NaCl solution. When FN ≥ 30 mL / min, the coating structure is transformed into a composite (TiAlCr)N nanocrystal / Si3N4 amorphous phase structure with columnar crystals, and the hardness of the coating is significantly enhanced and reaches the ultra-hard level. The coatings possess good mechanical properties at FN = 40 mL / min, with hardness, modulus of elasticity, H / E and H 3 / E 2 of 45.11, 460.4, 0.098 and 0.433 GPa, respectively. The (TiAlCrSi) N coatings are deposited by FCVA technology has excellent corrosion resistance and mechanical properties, which provides an important reference value for the development of surface protection technology in complex and harsh environments.

  • 0 前言

  • 科技发展使军用、船舶、切削等各领域设备的精密器件所面临的环境更加极端复杂,多元防护涂层因具有良好的综合性能而逐渐取代传统的二、三元氮化物涂层[1-4]。VEPREK 等[5]发现硅掺杂到多元氮化物涂层中能形成金属氮化物 / 硬质氮化硅纳米复合结构,进而改善涂层的性能,并提出一种新型纳米晶 / 非晶复合材料的概念。涂层性能与结构紧密相关,非晶结构涂层的致密性好,具有优异的耐腐蚀性;柱状晶结构有助于改善涂层的力学性能,但同时涂层的致密性会降低,形成结构缺陷[6-8],成为腐蚀物侵袭基体的通道,具有侵蚀性的 Cl-能使涂层出现严重的点蚀现象,降低涂层的耐腐蚀性能[9]。因此,关于涂层结构对性能的影响研究具有重要意义。

  • TiAlN 涂层因具有优良的化学稳定性、硬度、耐磨性和抗氧化性而用于在深海中服役的军用设备的精密器件上[10],但科技的发展使得军用仪器面临的环境更加极端复杂,这对保护涂层材料的综合性能要求更高[11-13]。此外,在较高温度下 TiAlN 涂层的硬度会有所降低,这对涂层的保护效果存在一定影响[14]。研究发现,在涂层中掺杂不同的元素能有效提高涂层性能,如 Cr[15]、Si[16]、Zr[17]、V[18];特别是将 Cr 和 Si 掺入 TiAlN 涂层,形成(TiAlCrSi)N 涂层的性能得到显著提升[19-20];Cr 元素掺入 TiAlN 中能减缓有害纤锌矿相的形成,显著提升涂层的抗氧化性、力学等性能[21-22];掺入 Si 形成的非晶相 Si3N4,不仅能抑制晶粒生长,还能增加涂层硬度和抗氧化性[23]。因此,多元(TiAlCrSi)N 涂层的性能优于三元 TiAlN 涂层,在保护涂层材料方面具有潜在的应用价值。

  • 采用不同物理气相沉积( Physical vapor deposition,PVD)技术可以制备(TiAlCrSi)N 涂层,目前常用技术有磁控溅射[24-25]和阴极电弧[26];然而从靶材出来的粒子中除了等离子体外还有大颗粒和中性粒子,对涂层结构和性能存在一定的影响。磁过滤阴极真空弧(Filtered cathode vacuum arc, FCVA)技术[27]通过磁场能有效除去等离子体束源中的大颗粒及中性粒子,该沉积技术的离化率高达 100%。 CHEN 等 [28] 通过 FCVA 技术制备了 TiAlCN / TiAlN / TiAl 多层复合涂层,致密的微观结构使涂层具有优异的耐腐蚀性。

  • 有研究表明[29-30],含硅的(TiAlCrSi)N 涂层具有优异的力学性能和抗高温氧化性,能延长刀具的使用寿命。但在对(TiAlCrSi)N 涂层相关研究中,有关氮含量对(TiAlCrSi)N 涂层结构的变化,进而影响涂层性能研究的报道较少,且有关(TiAlCrSi)N 涂层在耐腐蚀性能方面的研究尚未报道。在本文中,通过 FCVA 技术,调节氮气流量制备了含有不同氮含量的(TiAlCrSi)N 涂层;系统性分析了氮气流量对(TiAlCrSi)N 涂层结构的影响,同时研究了不同涂层结构对涂层耐腐蚀性和力学性能的影响。

  • 1 试验准备

  • 1.1 样品制备

  • 本文沉积(TiAlCrSi)N涂层所使用的FCVA设备示意图如图1 所示,该设备由阴极弧头、阳极筒、135°弯管及沉积腔室组成;能有效过滤掉离子束源中的大颗粒及中性粒子;本文采用的基体为 SUS 304 不锈钢和硅片,靶材为 TiAlCrSi 合金靶,其原子百分比为:20∶55∶20∶5;在沉积前先对基体进行预处理,分别在丙酮、无水乙醇和去离子水中各超声清洗 15 min,基体干燥后固定在沉积腔室的样品台上;真空度抽至 5 MPa 以下后,分别在负偏压为 800、600、400 和 200 V 下各溅射 20 s,目的是清洗基体表面残留的杂质。在负偏压为 200 V 的条件下沉积 TiAlCrSi 涂层 1 min 作为过渡层,以增强涂层与基体间的结合强度,再在氮气环境下沉积(TiAlCrSi)N 涂层,沉积涂层变量为不同梯度的氮气流量,样品沉积完后随炉冷却后再取出,相关沉积参数总结在表1 中。

  • 图1 磁过滤真空阴极弧设备示意图

  • Fig.1 Schematic diagram of magnetic FCVA equipment

  • 表1(TiAlCrSi)N 涂层沉积的沉积参数

  • Table1 Deposition parameters of (TiAlCrSi) N coating deposition

  • 1.2 结构表征及力学性能测试

  • 采用 S-4800 冷场发射扫描电镜(FESEM),观察样品的截面形貌,并用电镜自带的 EMAX-350 能谱仪(EDS)对涂层的元素种类及其含量进行分析。采用 X 射线衍射仪(XRD,SmartLab S2)分析涂层的相结构,其中使用 Cu Kα 源,低掠射角为 1°,步长为 0.02°,扫描范围为 20°~90°。采用 X 射线光电能谱仪(ESCALABMKⅡ)对涂层中的元素成键情况进行分析,采用 800 eV Ar+ 离子束对涂层进行溅射清洗 30 s,并利用 284.8 eV 处 C 1s 峰的结合能对 X 射线光电子能谱仪进行校正。使用透射电子显微镜(TEM,FEI TECNAI F20)对涂层结构进行研究。

  • 采用纳米压痕仪(Wrexham-MicroMaterials LTD Nanotest)测量涂层的硬度和弹性模量,为了减小基体对涂层的影响,纳米压头压入深度约为涂层厚度的 10%,测试次数为 5 次,以减少误差。采用划痕仪(RST3,Anton Paar)对 SUS 304 不锈钢基体上(TiAlCrSi)N 涂层进行结合力测试研究,载荷加载为 40 N,载荷加载速度为 20 N / min,划痕长度为 5 mm。采用 PARSTAT2273 电化学测试仪测量膜层的动电位极化曲线和电化学阻抗图谱并分析其耐腐蚀性能,电解池为三电极体系,其中参比电极(RE)为饱和甘汞电极,对电极(CE)为铂电极,工作电极(WE)为(TiAlCrSi)N 涂层,涂层测试表面积为 0.5 cm2,腐蚀溶液为 3.5 wt.% 的 NaCl 溶液。

  • 2 结果与讨论

  • 2.1(TiAlCrSi)N 涂层的显微组织和形态

  • 图2 显示了(TiAlCrSi)N 涂层在不同氮气流量下各元素的相对含量,从图中发现,随着氮气流量增加,涂层中的 N 元素含量不断增加,对应的 Ti、Al、Cr 和 S i 元素含量不同程度地逐渐减少。F N ≥ 30 mL / min 时涂层的氮含量保持在 50 at.%左右,与其他元素总和比值约为1,这可能是形成了氮化物[24]。值得注意的是,Al 元素的相对含量下降幅度较低,这可能是 Al(原子半径为 0.141 Å)取代 Ti(原子半径为 0.147 Å)和 Cr(原子半径为 0.139 Å)原子并溶解到 TiN 和 CrN 晶格中,原子置换引起晶格畸变,同时对涂层起到固溶强化作用[31-33],这会使涂层力学性能得到明显提升。图3 为(TiAlCrSi)N 涂层在不同氮气流量的截面示意图,截面没有出现大颗粒或孔洞,这归功于 135°磁过滤弯管,有效过滤掉大颗粒和中性粒子。FN = 5 mL / min 时涂层厚度为 953 nm,随着气体流量增加,涂层厚度减小, FN = 40 mL / min 时涂层厚度值最低为 200 nm;FN ≤20 mL / min 时,涂层为均匀的致密结构,这有利于涂层的耐腐蚀性。据报道,涂层结构的致密性与耐腐蚀性呈正相关[34];在 FN≤20 mL / min 时,涂层为致密结构,FN ≥30 mL / min 时,涂层结构由致密结构转变为明显的柱状晶结构,涂层致密性有所下降,这可能对涂层的耐腐蚀性能有一定程度的影响。

  • 图2 不同氮气流量下(TiAlCrSi)N 涂层的各元素含量变化示意图

  • Fig.2 Schematic diagram of element content change of (TiAlCrSi) N coating under different N2 flow rate

  • 图3 不同氮气流量(TiAlCrSi)N 涂层的截面示意图

  • Fig.3 Cross section diagram of (TiAlCrSi) N coating with different N2 flow rate

  • 2.2(TiAlCrSi)N 涂层的相结构

  • 图4 为不同氮气流量(TiAlCrSi)N 涂层的 Ti2p、 Al2p、Cr 2p、Si2p 和 N 1s 的 XPS 能谱图。各元素的能谱峰随着氮气流量的增加而向高结合能方向移动。图4a 为(TiAlCrSi)N 涂层的 Ti2p 峰能谱,分裂成 Ti2p3 / 2和 Ti2p1 / 2,由 Ti-Ti、Ti-N 和 Ti-O 键组成[35],对应的结合能分别为 454.32 eV、456.7 eV 和 480.07 eV,出现 Ti-O 键的原因可能是腔室内残留有少量空气,在沉积涂层的过程中空气中的 O 可能参与了沉积。在图4b 的 Al2p 能谱中出现了 Al-Al 和 Al-N 键,分别对应 72.07 eV 和 74.22 eV[36],与 Ti 和 Cr 原子相比,Al 更易与 N 结合,使 AlN 相在 FN= 5 mL / min 时就开始明显出现[37-38]。在 Cr 2p 能谱中(如图4c),在 573.82 eV 和 575.17 eV 处分别出现了 Cr-Cr 键和 Cr-N 键。图4d 为 Si2p 谱图,Si-Si 键出现在 98.30 eV,在 101.67 eV 处出现了 Si3N4[24],表明(TiAlCrSi)N 涂层中硅主要以 Si 和 Si3N4 相存在;(TiAlCrSi)N 涂层的 N 1s 能谱图如图4e 所示,随着氮气流量变化,图谱中峰位的变化不明显,这与 TiN、 AlN、CrN 和 Si3N4键位[39]相近有一定关系。

  • 结果表明,在 FN ≤ 20 mL / min 时,涂层中的金属元素以 AlN、Cr、Ti 形式存在,Si 元素以 Si 和 Si3N4 形式存在,并随着氮气流量增加,Si 转变为 Si3N4FN ≥ 30 mL / min 时,涂层中各元素以 TiN、AlN、CrN 和 Si3N4等氮化物形式存在。

  • 图5 为不同氮气流量的(TiAlCrSi)N 涂层的 GIXRD 图谱。在 FN ≤ 20 mL / min 时,涂层在 37.14°和 43.56°附近出现了宽峰,说明涂层结构以非晶相为主;FN ≥ 30 mL / min 时,涂层分别在 37.14°、43.56°、63.04°、75.64°附近出现了明显尖锐的衍射峰,对应于 NaCl Bl 型面心立方结构(fcc)的(111)、(200)、(220)和(311)晶面,这与 LIN 等[40] 报道的结果一致。在 FN = 30 mL / min 时,衍射峰尖锐,峰底较窄,且衍射峰的相对强度最大,表明涂层在氮气流量为 30 mL / min 时结晶性最好。 FN ≥ 30 mL / min 时,衍射峰(111)、(200)、(220)、(311)分别出现在 TiN(PDF# 00-006-0642)和 CrN (PDF# 00-003-1157)标准衍射峰之间,这是由于涂层中多种元素产生晶格畸变,生成对应的 TiN(fcc)、 AlN(hcp)和 CrN(fcc)等氮化物相互固溶,产生的固溶效应使涂层表现为单一 fcc 结构。没有发现 Si3N4 的衍射峰,说明 Si3N4 以非晶相形式存在涂层中,因此 Si 主要以 Si3N4非晶形式存在于(TiAlCrSi)N 涂层中。

  • 图4 不同氮气流量下(TiAlCrSi)N 涂层的 XPS 示意图

  • Fig.4 XPS diagram of (TiAlCrSi) N coatings with different N2 flow rate

  • 图5 不同氮气流量(TiAlCrSi)N 涂层的 GIXRD 图

  • Fig.5 GIXRD diagram of (TiAlCrSi) N coating at different N2 flow rate

  • 采用 Williamson-Hall(W-H)图计算了在 FN ≥ 30 mL / min 时(TiAlCrSi)N 涂层的微晶尺寸。由于衍射峰的总峰宽是晶粒尺寸加宽和应变加宽共同作用导致的,因此通过此方法计算出来的晶粒尺寸值比不考虑应变的 Schhmer 公式更准确[41]。(TiAlCrSi)N 涂层在 FN = 30 mL / min 和 40 mL / min 的晶粒尺寸分别为 13.46 nm 和 9.79 nm,根据反 Hall-Petch 效应[42],晶粒尺寸越接近 10 nm,涂层的力学性能越好。

  • 对 20 mL / min 和 40 mL / min 氮气流量下制备的涂层进行了透射电镜研究,以进一步研究(TiAlCrSi)N 涂层的微观结构,如图6 中的 SAED 图只出现了非晶晕环,且高分辨透射图中没有出现晶格条纹,表明该涂层为非晶态。高分辨透射图(图6b)中不仅有非晶相,还出现了晶格条纹(图中白色虚圈区域),其中晶格条纹被非晶相包覆着,表明该涂层结构为非晶包覆纳米晶结构。在图6c 的 SAED 图中可以观察到 fcc 相的 NaCl-B1 型的(111)、(200)、(220)衍射环,这与 XRD 图中的结果一致; 此外根据反傅里叶变换图(图6d)可以看出,在此氮气含量下发生了严重的晶格畸变,并且产生了大量的位错,这会对涂层的力学性能有很大的影响。

  • 结合 EDS、TEM、XRD、FESEM 和 XPS 结果,当 FN ≤ 20 mL / min 时,涂层中氮含量随氮气流量增加而增加,涂层为非晶态致密结构可能有如下几个原因[43-44]:① Ti、Al 和 Cr 原子尺寸大小不一,导致晶格畸变,因原子尺寸不同,各原子难以协同扩散,产生了迟滞扩散效应,减缓了结晶动力学; ② 不同原子的半径不同,导致许多空隙存在,在 N原子占据空隙后,剩下的 N 原子不足以形成大量各种氮化物。FN ≥ 30 ml / min 时,氮含量不随氮气流量的增加而变化,表明氮含量充足足以形成明显的氮化物,涂层中形成的 TiN、AlN 和 CrN 等金属氮化物晶相使涂层出现明显的衍射峰,同时形成的 Si3N4非晶相,使涂层结构形成了非晶相包覆晶相的(TiAlCr)N 纳米晶相 / Si3N4 非晶相复合结构。

  • 图6 不同氮气流量(TiAlCrSi)N 涂层的 TEM 图像及 SAED 图

  • Fig.6 TEM image and SAED diagram of (TiAlCrSi) N coating under different N2 flow rate

  • 2.3(TiAlCrSi)N 涂层的力学性能

  • 图7、8 显示了不同氮气流量下的(TiAlCrSi)N 涂层的纳米硬度(H)及弹性模量值(E),H / EH3 / E2 图谱。随着氮气流量增加,涂层的力学性能增强。由图7 可知,FN ≤ 20 mL / min 时,涂层的纳米硬度和弹性模量分别小于 20 GPa 和 300 GPa,涂层的力学性能主要是由晶格畸变和金属键导致的;FN ≥ 30 mL / min 时,涂层硬度和弹性模量明显得到改善,达到超硬级别(≥40 GPa)。涂层达到超硬的原因有:① 涂层中出现了明显的 TiN、AlN和 CrN 等金属氮化物,使涂层表现为单一相 fcc,涂层产生固溶硬化效应;② 生成了硬质相 Si3N4氮化物[45];③ 涂层形成了(TiAlCr)N 纳米晶相 / Si3N4 非晶相复合结构。FN = 40 mL / min 时,涂层硬度达到最大值,其硬度和弹性模量分别为 45.11 GPa 和 460.4 GPa。众所周知,涂层硬度和弹性模量的比值能反映涂层的耐磨性和抗塑性变形能力,H / E 比值越高,涂层的耐磨性越好,H3 / E2 比值越大,涂层的抗塑性变形能力越好[46]。根据图8,随着氮气流量增加,涂层 H / EH3 / E2 增加,FN = 40 mL / min 时 H / EH3 / E2 有最大值,分别为 0.098 和 0.433 GPa。表明(TiAlCrSi)N 涂层在 FN = 40 mL / min 时的耐磨性和抗塑性变形能力最好。

  • 图7 不同氮气流量(TiAlCrSi)N 涂层的硬度和弹性模量

  • Fig.7 Hardness and Young’s modulus of (TiAlCrSi) N coatings with different N2 flow rates

  • 图8 不同氮气流量(TiAlCrSi)N 涂层的 H / EH3 / E2

  • Fig.8 H / E and H3 / E2 of (TiAlCrSi) N coatings with different N2 flow rates

  • 因此,由 Williamson-Hall(W-H)图计算的涂层微晶尺寸可知,(TiAlCrSi)N 涂层在 FN = 40 mL / min 时的晶粒尺寸(9.79 nm)比 FN = 30 mL / min 时的晶粒尺寸(13.46 nm)更接近于 10 nm,Hall-Petch 效应在 FN = 40 mL / min 中(TiAlCrSi)N 涂层的效果最强,使涂层的力学性能最好。

  • 图9展现了不同氮气流量下(TiAlCrSi)N涂层的划痕形貌。LC3 表示在划痕形貌中出现部分基体暴露时涂层的结合强度。根据图9 可知,涂层的结合强度值随着氮气流量增加而升高;FN ≥ 30 mL / min 时,涂层的 LC3 有所降低,这可能是由涂层的厚度以及形成以氮化物(硬质相)为主的涂层与 SUS 304 不锈钢基底(软质相)的硬度相差较大导致的。因此,涂层还未完全形成氮化物时,即 FN = 20 mL / min 时涂层的 LC3最高(27.1 N)。

  • 图9 不同氮气流量(TiAlCrSi)N 涂层的划痕形貌

  • Fig.9 Scratch morphology of different N2 flow rates (TiAlCrSi) N coatings

  • 2.4(TiAlCrSi)N 涂层的耐腐蚀性能

  • 图10 为基底及不同氮气流量(TiAlCrSi)N 涂层的极化曲线图,其对应自腐蚀电位(Ecorr)和腐蚀电流密度(Icorr)如表2 所示。众所周知,材料的自腐蚀电位(Ecorr)越大,腐蚀电流密度(Icorr)越小,则材料的耐腐蚀性能越好[47]。由表2 可知,SUS304 不锈钢基底的腐蚀电流密度为 399.11 μA·cm−2;当在基底上沉积(TiAlCrSi)N 涂层后,腐蚀电流密度明显下降,耐腐蚀性明显得到改善;FN = 20 mL / min 时,涂层的腐蚀电流密度最低,为 2.903 8 μA·cm−2,腐蚀电流密度降低了两个数量级;当 FN ≥ 30 mL / min 时,腐蚀电流密度升高,耐腐蚀性有所下降。涂层的成分和微观结构对其耐腐蚀性的影响较大,这归因于涂层的致密性[34],根据涂层截面形貌(图3)可知,FN ≤ 20 mL / min 时涂层具有均匀致密的结构,涂层中的非晶相Si促进晶粒再形核,抑制晶粒长大,涂层结构中没有出现裂纹和针孔等微缺陷,在进行电化学试验后涂层表面出现渗透孔或点蚀的现象很少。KUO 等[24]报道了(TiAlCrSi)N 涂层的耐腐蚀性能,当 Si 含量小于 1.6 at.%时,涂层由致密的非晶结构转变为柱状晶。因此,拥有非晶相致密结构的(TiAlCrSi)N 涂层,其耐腐蚀性能优异,在 FN = 20 mL / min 时,涂层发生腐蚀时的耐腐电流最小(Icorr = 2.903 8 μA·cm−2)。

  • 图10 不同氮气流量(TiAlCrSi)N 涂层在 3.5 wt.% NaCl 溶液中的动电位极化曲线图

  • Fig.10 Potentiodynamic polarization curve of (TiAlCrSi) N coating with different N2 flow rate in 3.5 wt.% NaCl solution

  • 表2 不同氮气流量的(TiAlCrSi)N 涂层在 3.5 wt.% NaCl 溶液中的电化学腐蚀参数

  • Table2 Electrochemical corrosion parameters of (TiAlCrSi) N coatings with different N2 flow rates in 3.5 wt.% NaCl

  • Ecorr is potential, βa is anodic polarization curve, βc is cathodic polarization curve, and Icorr is current density.

  • 图11 为(TiAlCrSi)N 涂层的等效电路模型,Rs 表示腐蚀溶液电阻,Qc 表示溶液与涂层的电容,Rs 表示非理想状态下涂层缺陷产生的电阻,与涂层中的凹坑、裂缝等缺陷有关,Rct 表示涂层与基体界面电荷转移电阻,Qdl 表示涂层与基体之间的电容。有研究发现,高电容值和低电阻值与腐蚀溶液中的主动行为相关,低电容值和高阻抗值与被动行为有关[48]。因此,(TiAlCrSi)N 涂层的阻抗谱结果 (图11 和表3)证实了极化测试的结果,即基底的主动行为和不同氮气流量梯度(TiAlCrSi)N 涂层的被动行为。

  • 图11(TiAlCrSi)N 涂层的等效电路模型图

  • Fig.11 Equivalent circuit model diagram of (TiAlCrSi) N coating

  • 表3 通过等效电路模型获得了不同氮气流量下(TiAlCri)N 涂层的 EIS 数据

  • Table3 EIS data of substrate and (TiAlCri) N coatings with different N2 flow rate obtained by equivalent circuit model.

  • CPEc is capacitive element between coating and solution, CPEdl is capacitive element between coating and substrate, Rs is defect resistance of coatings, Rc is resistance of the coating, and Rct is resistance between coating and substrate.

  • 图12 为 SUS 304 不锈钢基底和不同氮气流量下(TiAlCrSi)N 涂层的奈奎斯特图。奈奎斯特图谱由阻抗的实部(Z’)和虚部(Z”)组成,所有涂层的电化学阻抗图谱表现为电容弧;有相关研究表明[49],涂层的耐腐蚀性与电容弧半径有关,电容弧表示电极表面与溶液形成的电层反应,形成的电容弧半径越大,表明反应阻力越大,涂层的耐腐蚀性能越好。从图12 看出,在 FN ≤ 20 mL / min 的涂层电容弧半径大于 FN ≥ 30 mL / min 的涂层电容弧半径,其中 FN = 20 mL / min 时涂层的容抗弧半径最大,表明氮气流量为 20 mL / min 时涂层的耐腐蚀性能最佳。

  • 图12 不同氮气流量下(TiAlCrSi)N 涂层的奈奎斯特图

  • Fig.12 Nyquist plot of (TiAlCrSi) N coating with different N2 flow rate

  • 图13 为(TiAlCrSi)N 涂层的阻抗频率 (Impedance-frequence)图,不同氮气流量涂层的阻抗值都出现在低频区域,低频区表示涂层的偏振电阻,可通过低频区的偏振阻抗值来衡量涂层的耐腐蚀性能,即低频区的偏振阻抗值越大,涂层的耐腐蚀性能越好[50];随着氮气流量增加,偏振阻抗值呈先增大后减小的变化趋势,在氮气流量为 20 mL / min 时,涂层具有最大偏振阻抗值(478 Ω / cm 2),表明 FN = 20 mL / min 时涂层的耐腐蚀性最好。

  • 图13 不同氮气流量下(TiAlCrSi)N 涂层的阻抗频率图

  • Fig.13 Bode plot of (TiAlCrSi) N coating with different N2 flow rate

  • 图14 为涂层的相位角-频率(Theta-Frequence)图。有研究发现,最高相位角对应的频率范围越大,耐腐蚀性能越好[51];在低氮气流量下(FN ≤ 20 mL / min) 的涂层具有更宽的相位角平台,其次是 FN ≥ 30 mL / min 时涂层及基体的相位角平台;氮气流量为 20 mL / min 的涂层拥有最宽的相角平台,这对应着 FN = 20 mL / min 时(TiAlCrSi)N 涂层的耐腐蚀性能最佳,这与极化曲线得到的结论一致。

  • 图14 不同氮气流量下(TiAlCrSi)N 涂层的相角-频率图

  • Fig.14 Bode plot of (TiAlCrSi) N coating with different N2 flow rate

  • 3 结论

  • (1)采用 135°弯管的磁过滤真空阴极弧技术成功制备并研究不同氮气流量下(TiAlCrSi)N 涂层结构的变化对涂层性能的影响。

  • (2)氮气流量对(TiAlCrSi)N 涂层结构显著影响,使涂层具有优良的耐腐蚀性、结合力和力学性能等良好的综合性能,在严峻苛刻环境中具有潜在的应用前景。

  • 参考文献

    • [1] 闫奎呈,田宪华,刘亚,等.(Ti,Al)N+TiN 涂层硬质合金刀具加工铁基高温合金正交切削试验研究[J].工具技术,2020,54(5):3-8.YAN Kuicheng,TIAN Xianhua,LIU Ya,et al.Orthogonal cutting experiment study of(Ti,Al)N+TiN coated carbide tools for processing iron-based superalloy[J].Tool Engineering,2020,54(5):3-8.(in Chinese)

    • [2] 张正权,金永中,陈昌浩,等.真空热处理对多弧离子镀TiAlSiN涂层性能的影响[J].中国表面工程,2017,30(1):70-76.ZHANG Zhengquan,JIN Yongzhong,CHEN Changhao,et al.Effects of vacuum heat treatment on properties of TiAlSiN coatings prepared by arc ion plating[J].China Surface Engineering,2017,30(1):70-76.(in Chinese)

    • [3] 郭麒,孟天旭,席雯,等.C/C 复合材料表面 CoNiCrAlTaHfY/Co 复合涂层的组织[J].中国表面工程,2018,31(2):29-38.GUO Qi,MENG Tianxu,XI Wen,et al.Microstructure of CoNiCrAlTaHfY/Co composite coating formed on c/c composites[J].China Surface Engineering,2018,31(2):29-38.(in Chinese)

    • [4] 董标,毛陶杰,陈汪林,等.Al/Cr 原子比对AlCrTiSiN多元复合刀具涂层微观结构及切削性能的影响[J].中国表面工程,2016,29(5):49-55.DONG Biao,MAO Taojie,CHEN Wanglin,et al.Effects of Al/Cr atom ratios on microstructure and mechanical properties of alcrtisin multi-composite tools coatings[J].China Surface Engineering,2016,29(5):49-55.(in Chinese)

    • [5] VEPREK S,REIPRICH S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268(1-2):64-71.

    • [6] ENDRINO J L,PALACÍN S,AGUIRRE M H,et al.Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films[J].Acta Materialia,2007,55(6):2129-2135.

    • [7] YU X W,ZHANG S,LEE J W,et al.Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite[J].Applied Surface Science,2013,265:418-423.

    • [8] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [9] QWYA C,YLA C,MYZ B,et al.Electrochemical behavior of(Cr,W,Al,Ti,Si)N multilayer coating on nitrided AISI 316L steel in natural seawater[J].Ceramics International,2020,46(14):22404-22418.

    • [10] 陈淑年,廖斌,吴先映,等.基于磁过滤技术制备亚微米级TiAlN/TiAlCN/TiAlC复合涂层的耐腐蚀性能[J].中国表面工程,2019,32(3):49-58.CHEN Shunian,LIAO Bin,WU Xianying,et al.Corrosion resistance of submicron TiAlN/TiAlCN/TiAlC composite coatings prepared by filtered cathodic vacuum arc[J].China Surface Engineering,2019,32(3):49-58.(in Chinese)

    • [11] SURESHA S J,BHIDE R,JAYARAM V,et al.Processing,microstructure and hardness of TiN/(Ti,Al)N multilayer coatings[J].Materials Science and Engineering:A,2006,429(1-2):252-260.

    • [12] DEEVI P.Single layer and multilayer wear resistant coatings of(Ti,Al)N:A review[J].Materials Science and Engineering:A,2003,342(1-2):58-79.

    • [13] LI C,PAULITSCH J,DU Y,et al.Thermal stability and oxidation resistance of Ti–Al–N coatings[J].Surface & Coatings Technology,2012,206-318(11-12):2954-2960.

    • [14] MUNZ W D.Titanium aluminum nitride films:a new alternative to TiN coatings[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1986,4(6):2717-2725.

    • [15] XU Y X,LI C,FEI P,et al.Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios[J].Surface & Coatings Technology,2016,304:512-518.

    • [16] ZHU L,HU M,NI W,et al.High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating[J].Vacuum,2012,86(12):1795-1799.

    • [17] CHEN L,D Holec,DU Y,et al.Influence of Zr on structure,mechanical and thermal properties of Ti–Al–N[J].Thin Solid Films,2011,519(16):5503-5510.

    • [18] CHANG Y Y,CHIU W T,HUNG J P.Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation[J].Surface & Coatings Technology,2016,303:18-24.

    • [19] SUTHAM S,CHARNNARONG S,ANURAT W,et al.Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron[J].International Journal of Advanced Manufacturing Technology,2018,97(9):3883-3892.

    • [20] WONGPANYA P,SURINPHONG S,RUJISOMNAPA J.Increasing Tool Life by AlCrTiSiN Film[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,853:217-222.

    • [21] LIND H,FORSEN R,AILING B,et al.Improving thermal stability of hard coating films via a concept of multicomponent alloying[J].Applied Physics Letters,2011,99(9):384.

    • [22] DELISLE D A,KRZANOWSKI J E.Surface morphology and texture of TiAlN/CrN multilayer coatings[J].Thin Solid Films,2012,524:100-106.

    • [23] YAU B-S,HUANG J-L,LII D-F,et al.Investigation of nanocrystal-(Ti,Al)Nx/amorphous-SiNy composite films by co-deposition process[J].Surface and Coatings Technology,2004,177:209-214.

    • [24] KUO Y C,WANG C J,LEE J W.The microstructure and mechanical properties evaluation of CrTiAlSiN coatings:Effects of silicon content[J].Thin Solid Films,2017,638:220-229.

    • [25] BOBZIN K,BRGELMANN T,KRUPPE N C,et al.Nanocomposite(Ti,Al,Cr,Si)N HPPMS coatings for high performance cutting tools[J].Surface and Coatings Technology,2019,378:124857.

    • [26] CHANG Y Y,HSIAO C Y.High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings[J].Surface & Coatings Technology,2009,204(6-7):992-996.

    • [27] 张志强,廖斌,欧伊翔,等.磁过滤阴极真空弧技术制备厚且韧TiN涂层[J].物理学报,2020,69(10):67-76.ZHANG Zhiqiang,LIAO Bin,OU Yixiang,et al.Thick yet tough TiN coatings deposited by filter cathode vacuum arc technology[J].Acta Physica Sinica,2020,69(10):67-76.(in Chinese)

    • [28] CHEN S N,ZHAO Y M,ZHANG Y F,et al.Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings[J].Surface and Coatings Technology,2021,411:126886.

    • [29] EZURA H,ICHIJO K,HASEGAWA H,et al.Micro-hardness,microstructures and thermal stability of(Ti,Cr,Al,Si)N films deposited by cathodic arc method[J].Vacuum,2008,82(5):476-481.

    • [30] SUN K K,VINH P V,LEE J W.Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition[J].Surface & Coatings Technology,2008,202(22):5395-5399.

    • [31] REITER A E,DERFLINGER V H,HANSELMANN B,et al.investigation of the properties of Al1-xCrx N coatings prepared by cathodic arc evaporation[J].Surface & Coatings Technology,2005,200(7):2114-2122.

    • [32] KIMURA A,KAWATE M,HASEGAWA H,et al.Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films[J].Surface & Coatings Technology,2003,169:367-370.

    • [33] MAKINO Y.Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method[J].Surface and Coatings Technology,2005,193(1-3):185-191.

    • [34] SHAN L,ZHANG Y.R,WANG Y.X,et al.Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J].Transactions of Nonferrous Metals Society of China,2016,26(1):175-184.

    • [35] I Bertóti,MOHAI M,SULLIVAN J L,et al.Surface characterisation of plasma-nitrided titanium:An XPS study[J].Applied Surface Science,1995,84(4):357-371.

    • [36] BARSHILIA H C,GHOSH M,SHASHIDHARA,et al.Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering[J].Applied Surface Science,2010,256(21):6420-6426.

    • [37] ZHANG G A,YAN P X,WANG P,et al.The structure and tribological behaviors of CrN and Cr–Ti–N coatings[J].Applied Surface Science,2007,253(18):7353-7359.

    • [38] SUGISHIMA A,KAJIOKA H,MAKINO Y.Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method[J].Surface & Coatings Technology,1997,97(1-3):590-594.

    • [39] MOULDER J F,CHASTAIN J,KING R C.Handbook of X-ray photoelectron spectroscopy:A reference book of standard spectra for identification and interpretation of XPS data[J].Chemical Physics Letters,1992,220(1):7-10.

    • [40] LIN C H,DUH J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J].Surface and Coatings Technology,2007,201(14):6304-6308.

    • [41] MOHAMMADPOUR E,JIANG Z T,ALTARAWNEH M,et al.Predicting high temperature mechanical properties of CrN and CrAlN coatings from in-situ synchrotron radiation X-ray diffraction[J].Thin Solid Films,2016,599:98-103.

    • [42] 卢柯,刘学东,胡壮麒.纳米晶体材料的 Hall—Petch 关系[J].材料研究学报,1994(5):385-391.LU Ke,LIU Xuedong,HU Zhuangqi.The hall-petch relation in nanocrystalline materials[J].Chinese Journal of Material Research,1994(5):385-391.(in Chinese)

    • [43] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [44] YEH J W.Alloy design strategies and future trends in high-entropy alloys[J].Jom,2013,65(12):1759-1771.

    • [45] PARK J H,CHUNG W S,CHO Y R,et al.Synthesis and mechanical properties of Cr-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques[J].Surface and Coatings Technology,2004,188:425-430.

    • [46] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:A nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1-2):1-11.

    • [47] LIN C H,DUH J G.Corrosion behavior of(Ti-Al-CrSi-V)xNy coatings on mild steels derived from RF magnetron sputtering[J].Surface and Coatings Technology,2008,203(5):558-561.

    • [48] DELGADO-ALVARADO C,SUNDARAM P A.A study of the corrosion behavior of gamma titanium aluminide in 3.5 wt.% NaCl solution and seawater[J].Corrosion Science,2007,49(9):3732-3741.

    • [49] YANG Y,CHENG Y F.Electrolytic deposition of Ni-Co-SiC nano-coating for erosion-enhanced corrosion of carbon steel pipes in oilsand slurry[J].Surface & Coatings Technology,2011,205(10):3198-3204.

    • [50] VACANDIO F,MASSIANI Y,GRAVIER P,et al.Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers[J].Electrochimica Acta,2001,46(24-25):3827-3834.

    • [51] OLIVEIRA V,AGUIAR C,VAZQUEZ A M,et al.Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J].Corrosion Science,2014,88:317-327.

  • 参考文献

    • [1] 闫奎呈,田宪华,刘亚,等.(Ti,Al)N+TiN 涂层硬质合金刀具加工铁基高温合金正交切削试验研究[J].工具技术,2020,54(5):3-8.YAN Kuicheng,TIAN Xianhua,LIU Ya,et al.Orthogonal cutting experiment study of(Ti,Al)N+TiN coated carbide tools for processing iron-based superalloy[J].Tool Engineering,2020,54(5):3-8.(in Chinese)

    • [2] 张正权,金永中,陈昌浩,等.真空热处理对多弧离子镀TiAlSiN涂层性能的影响[J].中国表面工程,2017,30(1):70-76.ZHANG Zhengquan,JIN Yongzhong,CHEN Changhao,et al.Effects of vacuum heat treatment on properties of TiAlSiN coatings prepared by arc ion plating[J].China Surface Engineering,2017,30(1):70-76.(in Chinese)

    • [3] 郭麒,孟天旭,席雯,等.C/C 复合材料表面 CoNiCrAlTaHfY/Co 复合涂层的组织[J].中国表面工程,2018,31(2):29-38.GUO Qi,MENG Tianxu,XI Wen,et al.Microstructure of CoNiCrAlTaHfY/Co composite coating formed on c/c composites[J].China Surface Engineering,2018,31(2):29-38.(in Chinese)

    • [4] 董标,毛陶杰,陈汪林,等.Al/Cr 原子比对AlCrTiSiN多元复合刀具涂层微观结构及切削性能的影响[J].中国表面工程,2016,29(5):49-55.DONG Biao,MAO Taojie,CHEN Wanglin,et al.Effects of Al/Cr atom ratios on microstructure and mechanical properties of alcrtisin multi-composite tools coatings[J].China Surface Engineering,2016,29(5):49-55.(in Chinese)

    • [5] VEPREK S,REIPRICH S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268(1-2):64-71.

    • [6] ENDRINO J L,PALACÍN S,AGUIRRE M H,et al.Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films[J].Acta Materialia,2007,55(6):2129-2135.

    • [7] YU X W,ZHANG S,LEE J W,et al.Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite[J].Applied Surface Science,2013,265:418-423.

    • [8] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [9] QWYA C,YLA C,MYZ B,et al.Electrochemical behavior of(Cr,W,Al,Ti,Si)N multilayer coating on nitrided AISI 316L steel in natural seawater[J].Ceramics International,2020,46(14):22404-22418.

    • [10] 陈淑年,廖斌,吴先映,等.基于磁过滤技术制备亚微米级TiAlN/TiAlCN/TiAlC复合涂层的耐腐蚀性能[J].中国表面工程,2019,32(3):49-58.CHEN Shunian,LIAO Bin,WU Xianying,et al.Corrosion resistance of submicron TiAlN/TiAlCN/TiAlC composite coatings prepared by filtered cathodic vacuum arc[J].China Surface Engineering,2019,32(3):49-58.(in Chinese)

    • [11] SURESHA S J,BHIDE R,JAYARAM V,et al.Processing,microstructure and hardness of TiN/(Ti,Al)N multilayer coatings[J].Materials Science and Engineering:A,2006,429(1-2):252-260.

    • [12] DEEVI P.Single layer and multilayer wear resistant coatings of(Ti,Al)N:A review[J].Materials Science and Engineering:A,2003,342(1-2):58-79.

    • [13] LI C,PAULITSCH J,DU Y,et al.Thermal stability and oxidation resistance of Ti–Al–N coatings[J].Surface & Coatings Technology,2012,206-318(11-12):2954-2960.

    • [14] MUNZ W D.Titanium aluminum nitride films:a new alternative to TiN coatings[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1986,4(6):2717-2725.

    • [15] XU Y X,LI C,FEI P,et al.Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios[J].Surface & Coatings Technology,2016,304:512-518.

    • [16] ZHU L,HU M,NI W,et al.High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating[J].Vacuum,2012,86(12):1795-1799.

    • [17] CHEN L,D Holec,DU Y,et al.Influence of Zr on structure,mechanical and thermal properties of Ti–Al–N[J].Thin Solid Films,2011,519(16):5503-5510.

    • [18] CHANG Y Y,CHIU W T,HUNG J P.Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation[J].Surface & Coatings Technology,2016,303:18-24.

    • [19] SUTHAM S,CHARNNARONG S,ANURAT W,et al.Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron[J].International Journal of Advanced Manufacturing Technology,2018,97(9):3883-3892.

    • [20] WONGPANYA P,SURINPHONG S,RUJISOMNAPA J.Increasing Tool Life by AlCrTiSiN Film[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,853:217-222.

    • [21] LIND H,FORSEN R,AILING B,et al.Improving thermal stability of hard coating films via a concept of multicomponent alloying[J].Applied Physics Letters,2011,99(9):384.

    • [22] DELISLE D A,KRZANOWSKI J E.Surface morphology and texture of TiAlN/CrN multilayer coatings[J].Thin Solid Films,2012,524:100-106.

    • [23] YAU B-S,HUANG J-L,LII D-F,et al.Investigation of nanocrystal-(Ti,Al)Nx/amorphous-SiNy composite films by co-deposition process[J].Surface and Coatings Technology,2004,177:209-214.

    • [24] KUO Y C,WANG C J,LEE J W.The microstructure and mechanical properties evaluation of CrTiAlSiN coatings:Effects of silicon content[J].Thin Solid Films,2017,638:220-229.

    • [25] BOBZIN K,BRGELMANN T,KRUPPE N C,et al.Nanocomposite(Ti,Al,Cr,Si)N HPPMS coatings for high performance cutting tools[J].Surface and Coatings Technology,2019,378:124857.

    • [26] CHANG Y Y,HSIAO C Y.High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings[J].Surface & Coatings Technology,2009,204(6-7):992-996.

    • [27] 张志强,廖斌,欧伊翔,等.磁过滤阴极真空弧技术制备厚且韧TiN涂层[J].物理学报,2020,69(10):67-76.ZHANG Zhiqiang,LIAO Bin,OU Yixiang,et al.Thick yet tough TiN coatings deposited by filter cathode vacuum arc technology[J].Acta Physica Sinica,2020,69(10):67-76.(in Chinese)

    • [28] CHEN S N,ZHAO Y M,ZHANG Y F,et al.Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings[J].Surface and Coatings Technology,2021,411:126886.

    • [29] EZURA H,ICHIJO K,HASEGAWA H,et al.Micro-hardness,microstructures and thermal stability of(Ti,Cr,Al,Si)N films deposited by cathodic arc method[J].Vacuum,2008,82(5):476-481.

    • [30] SUN K K,VINH P V,LEE J W.Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition[J].Surface & Coatings Technology,2008,202(22):5395-5399.

    • [31] REITER A E,DERFLINGER V H,HANSELMANN B,et al.investigation of the properties of Al1-xCrx N coatings prepared by cathodic arc evaporation[J].Surface & Coatings Technology,2005,200(7):2114-2122.

    • [32] KIMURA A,KAWATE M,HASEGAWA H,et al.Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films[J].Surface & Coatings Technology,2003,169:367-370.

    • [33] MAKINO Y.Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method[J].Surface and Coatings Technology,2005,193(1-3):185-191.

    • [34] SHAN L,ZHANG Y.R,WANG Y.X,et al.Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J].Transactions of Nonferrous Metals Society of China,2016,26(1):175-184.

    • [35] I Bertóti,MOHAI M,SULLIVAN J L,et al.Surface characterisation of plasma-nitrided titanium:An XPS study[J].Applied Surface Science,1995,84(4):357-371.

    • [36] BARSHILIA H C,GHOSH M,SHASHIDHARA,et al.Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering[J].Applied Surface Science,2010,256(21):6420-6426.

    • [37] ZHANG G A,YAN P X,WANG P,et al.The structure and tribological behaviors of CrN and Cr–Ti–N coatings[J].Applied Surface Science,2007,253(18):7353-7359.

    • [38] SUGISHIMA A,KAJIOKA H,MAKINO Y.Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method[J].Surface & Coatings Technology,1997,97(1-3):590-594.

    • [39] MOULDER J F,CHASTAIN J,KING R C.Handbook of X-ray photoelectron spectroscopy:A reference book of standard spectra for identification and interpretation of XPS data[J].Chemical Physics Letters,1992,220(1):7-10.

    • [40] LIN C H,DUH J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J].Surface and Coatings Technology,2007,201(14):6304-6308.

    • [41] MOHAMMADPOUR E,JIANG Z T,ALTARAWNEH M,et al.Predicting high temperature mechanical properties of CrN and CrAlN coatings from in-situ synchrotron radiation X-ray diffraction[J].Thin Solid Films,2016,599:98-103.

    • [42] 卢柯,刘学东,胡壮麒.纳米晶体材料的 Hall—Petch 关系[J].材料研究学报,1994(5):385-391.LU Ke,LIU Xuedong,HU Zhuangqi.The hall-petch relation in nanocrystalline materials[J].Chinese Journal of Material Research,1994(5):385-391.(in Chinese)

    • [43] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [44] YEH J W.Alloy design strategies and future trends in high-entropy alloys[J].Jom,2013,65(12):1759-1771.

    • [45] PARK J H,CHUNG W S,CHO Y R,et al.Synthesis and mechanical properties of Cr-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques[J].Surface and Coatings Technology,2004,188:425-430.

    • [46] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:A nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1-2):1-11.

    • [47] LIN C H,DUH J G.Corrosion behavior of(Ti-Al-CrSi-V)xNy coatings on mild steels derived from RF magnetron sputtering[J].Surface and Coatings Technology,2008,203(5):558-561.

    • [48] DELGADO-ALVARADO C,SUNDARAM P A.A study of the corrosion behavior of gamma titanium aluminide in 3.5 wt.% NaCl solution and seawater[J].Corrosion Science,2007,49(9):3732-3741.

    • [49] YANG Y,CHENG Y F.Electrolytic deposition of Ni-Co-SiC nano-coating for erosion-enhanced corrosion of carbon steel pipes in oilsand slurry[J].Surface & Coatings Technology,2011,205(10):3198-3204.

    • [50] VACANDIO F,MASSIANI Y,GRAVIER P,et al.Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers[J].Electrochimica Acta,2001,46(24-25):3827-3834.

    • [51] OLIVEIRA V,AGUIAR C,VAZQUEZ A M,et al.Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J].Corrosion Science,2014,88:317-327.

  • 手机扫一扫看