en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘昊,男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为激光表面工程、激光增材制造和矿山装备激光再制造。E-maill:liuhao56@cumt.edu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220303002

参考文献 1
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
参考文献 2
GALI A,GEORGE E P.Tensile properties of high-and medium-entropy alloys[J].Intermetallics,2013,39:74-78.
参考文献 3
LIU H,GAO W P,LIU J,et al.Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J].Journal of Materials Engineering and Performance,2020,29(11):7170-7178.
参考文献 4
LIU J,LIU H,CHEN P,et al.Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J].Surface and Coatings Technology,2019,361:63-74.
参考文献 5
YANG L,CHENG Z,ZHU W W,et al.Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure[J].Journal of Materials Science and Technology,2021,73:1-8.
参考文献 6
VERMA A,TARATE P,ABHYANKAR A C,et al.High temperature wear in CoCrFeNiCux high entropy alloys:The role of Cu[J].Scripta Materialia,2019,161:28-31.
参考文献 7
WANG X Y,LIU Q,HUANG Y B,et al.Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding[J].Materials,2020,13(10):2209.
参考文献 8
ZHANG M N,ZHOU X L,YU X N,et al,Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface and Coatings Technology,2017,311:321-329.
参考文献 9
THIRATHIPVIWAT P,QNUKI Y,SONG G,et al.Evaluation of dislocation activities and accumulation in cold swaged CoCrFeMnNi high entropy alloy[J].Journal of Alloys and Compounds,2022,890:161816.
参考文献 10
MA X G,CHEN J,WANG XH,et al,Microstructure and mechanical properties of Cold drawing CoCrFeMnNi high entropy alloy[J].Journal of Alloys ang Compounds,2019,795:45-53.
参考文献 11
HSU C Y,SHEU T S,YEH J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J].Wear,2010,268(5-6):653-659.
参考文献 12
SHAHMIR H,NILI-AHMADABADI M,SHAFIEE A,et al.Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy[J].Materials Science and Engineering:A,2018,725:196-206.
参考文献 13
DENG G Y,TIEU A K,SU L H,et al.Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes:Role of Mo element concentration[J].Wear,2020460:203440.
参考文献 14
LI M,ZHANG Q,HAN B,et al.Investigation on microstructure and properties of AlxCoCrFeMnNi high entropy alloys by ultrasonic impact treatment[J].Journal of Alloys and Compounds,2020,816:152626.
参考文献 15
POLTARANIN M A,PANIN S V,IVANOV Y F.Influence of ultrasonic impact treatment on structure and wearing pattern of hadfield steel[J].Journal of Iron and Steel Research International,2010,17:82-88.
参考文献 16
HE B,YU Y,MIAO Y.Effect of ultrasonic impact strengthening treating on microstructure and properties of AZ91D magnesium alloy[J].Advanced Materials Research,2010,1037:382-385.
参考文献 17
PANIN S V,SERGEEV V P,POCHIVALOV Y I,et al.Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments[C]//Ifost 2008:Proceeding of the Third International Forum on Strategic Technologies,2008:83-86.
参考文献 18
SUN Q Q,LIU X T,HAN Q Y,et al.A comparison of AA2024 and AA7150 subjected to ultrasonic shot peening:Microstructure,surface segregation and corrosion[J].Surface and Coatings Technology,2018,337:552-560.
参考文献 19
LU K,LU J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering:A Structural Materials Properties Microstructure and Processing,2004,375:38-45.
参考文献 20
LIU H,LIU J,CHEN P,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics and Laser Technology,2019,118:140-150.
参考文献 21
WANG F,YAN X,LIU L,et al.Surface strengthening of single-crystal alumina by high-temperature laser shock peening[J].Materials Research Letters,2020,9(3):155-161.
参考文献 22
张爱军,韩杰胜,苏博,等.AlCoCrFeNi 高熵合金的高温摩擦磨损性能[J].摩擦学学报,2017,37(6):776-783.ZHANG Aijun,HAN Jiesheng,SU Bo,et al.Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature[J].Tribology,2017,37(6):776-783.(in Chinese)
参考文献 23
CHENG X W,JIANG Z Y,KOSASIH B,et al.Influence of Cr-Rich oxide scale on sliding wear mechanism of ferritic stainless steel at high temperature[J].Tribology Letters,2016,63(2):28.
参考文献 24
SCHARF T W,PRASAD S V,KOTULA P G,et al.Elevated temperature tribology of cobalt and tantalum-based alloys[J].Wear,2015,330:199-208.
参考文献 25
WU Y H,YANG H J,GUO R P,et al.Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions[J].Wear,2020,460:203452.
目录contents

    摘要

    CoCrFeMnNi 高熵合金较低的硬度和较差的耐磨损性能限制了其在表面工程领域的应用。利用激光熔覆技术制备强化的 CoCrFeMnNiM(M=Ti,Mo)高熵合金熔覆层,并通过超声表面滚压(USRE)技术强化熔覆层表面。采用 XRD、FSEM、 EDS、AFM、显微硬度计和摩擦磨损试验机等研究 USRE 处理对高熵合金激光熔覆层的微观组织、表面形貌、力学性能和摩擦学性能的影响。结果表明:CoCrFeMnNiTi 高熵合金激光熔覆层由面心立方(FCC)结构的固溶体相和 TiC 原位析出相组成,CoCrFeMnNiMo 高熵合金激光熔覆层仍由单一的 FCC 固溶体相组成。USRE 处理后涂层的相构成均未发生变化,但 CoCrFeMnNiMo 涂层的晶粒尺寸得到更明显的细化。USRE 处理降低了高熵合金激光熔覆层的表面粗糙度,提高了残余压应力和显微硬度,并且 USRE 处理对 CoCrFeMnNiMo 涂层的效果提升更加显著。经过相同工艺参数的 USRE 处理后, CoCrFeMnNiTi 高熵合金激光熔覆层的体积磨损率由 1.90×10−4 mm3 / (N·m)降低到 0.71×10−4 mm3 / (N·m);但由于磨损机制的转变和表面脆性的增大,CoCrFeMnNiMo 高熵合金激光熔覆层的磨损率反而上升。探讨了超声表面滚压处理对高熵合金涂层的适用性,可为高熵合金涂层耐磨性的强化提供参考。

    Abstract

    The poor hardness and wear properties of CoCrFeMnNi high-entropy alloy (HEA) greatly limit its application in surface engineering, so the enhanced CoCrFeMnNiM (M=Ti, Mo) high-entropy alloy coatings are prepared by laser cladding, and the surface is then processed using ultrasonic surface rolling extrusion (USRE). The microstructure and mechanical properties (residual stress, microhardness, wear resistance) of the coatings are investigated. The results show that Ti-doping leads to the TiC precipitation in the CoCrFeMnNi coating, while the CoCrFeMnNiMo coating is still comprised of a single FCC solid solution phase. USRE treatment reduces the surface roughness, and increases the residual compressive stress and microhardness of the HEA coatings. Besides, USRE treatment has a more significant effect on the CoCrFeMnNiMo coating. After USRE treatment with the same processing parameters, the volume wear rate of the CoCrFeMnNiTi HEA coating declines from 1.90×10−4 mm3 / (N·m) to 0.71×10−4 mm3 / (N· m). However, the wear rate of CoCrFeMnNiMo HEA coating increases due to the change in wear mechanism and the increase of surface brittleness. The applicability of USRE treatment to HEA coatings is discussed, which provides a reference for wear resistance enhancement of HEA coatings.

  • 0 前言

  • 高熵合金(HEA)是由 5 种或 5 种以上等原子比或近等原子比元素组成的新型合金[1-2]。这种多组元的材料设计理念使合金体系具有显著的高熵效应,抑制了金属间化合物的产生,促进了具有高度晶格畸变的固溶体相的生成,赋予了高熵合金独特而优异的性能[3-4]。现已报道了多种具有优异耐磨性[5-6]、耐蚀性[7]和高温稳定性[8]的高熵合金体系。CoCrFeMnNi 是目前研究最广泛的高熵合金体系之一。研究表明其具有面心立方晶格 (FCC)结构,具有极其优异的抗拉强度(>1 GPa) 和拉伸塑形(>70%)[9],但 CoCrFeMnNi 硬度仅有 136 HV[10]。根据 Khruschov 的结论, CoCrFeMnNi 较低的硬度极大地限制了其摩擦磨损性能[11]。合金化是强化高熵合金的有效途径。其中 Ti 和 Mo 作为具有高熔点和大原子半径的元素,能够促进高熵合金的固溶强化和第二相强化,是典型的强化元素。 SHAHMIR 等 [12] 发现 CoCrFeMnNiTi0.1 在 800℃退火保温 60 min 后抗拉强度大于 1 GPa,断裂延伸率为 40%,并且 Ti 元素显著提高了析出相的热稳定性,减小了晶粒粗化。DENG 等[13]通过向 CoCrFeNi 中添加不同含量的 Mo 元素,发现 Mo 元素的添加显著提高了 CoCrFeNi HEA 的耐磨性。

  • 超声表面滚压( Ultrasonic surface rolling extrusion,USRE)是一种新兴的表面强化技术,具有诱发严重塑性变形进而强化表面、细化表层晶粒的作用[14]。POLTARANIN 等[15]发现超声表面滚压可以降低 Hadfield 钢晶粒尺寸,并显著提升其耐磨性。HE 等[16]研究发现超声表面滚压后的 AZ91D 镁合金的硬度提升了 28.90%,耐磨性提高了 37.56%。PANIN 等[17]发现超声表面滚压后的 30CrMnSi2Ni 钢的亚表层形成了均匀的纳米结构,其强度和耐磨性均得到提升。这些研究表明超声表面滚压是改善金属零件摩擦学性能的有效方法。将超声表面滚压技术应用于高熵合金材料,有望提高 CoCrFeMnNi 系合金的摩擦磨损性能。

  • 采用激光熔覆技术在45号钢表面制备Ti和Mo 元素强化的 CoCrFeMnNiM(M=Ti,Mo)高熵合金涂层,并进一步通过超声表面滚压技术对高熵合金涂层进行表面处理,对比研究超声表面滚压对两种高熵合金涂层的显微组织、力学性能和室温摩擦学性能的影响。研究结果可为超声表面滚压技术在高熵合金上的应用提供参考。

  • 1 试验方法

  • 1.1 涂层的制备

  • 采用激光熔覆技术制备 CoCrFeMnNiM (M=Ti,Mo)高熵合金涂层。基体材料选用尺寸为 100 mm×100 mm×10 mm 的 45 钢。采用气雾化生产的 CoCrFeMnNi 高熵合金粉末和纯度大于 99.5% 的单质 Ti、 Mo 粉末作为熔覆材料。 CoCrFeMnNi 高熵合金粉末化学成分(质量分数) 如表1。CoCrFeMnNi 高熵合金粉末和单质(Ti、 Mo)粉末按 1∶1 摩尔比称重后,利用行星球磨机对粉末进行充分混合。采用 HWL-1.5 kW 型半导体激光器进行熔覆试验。高纯氩气作为保护气体,气流速度 3 L / min。激光熔覆工艺参数如下:激光功率 1.5 kW,光斑直径 2.5 mm,扫描速度 1.2 mm / s,搭接率 40%。采用 H+VM850 型毫克能超声加工机对 CoCrFeMnNiM 高熵合金涂层进行超声表面滚压强化处理,加工工艺如图1 所示。超声表面滚压处理的工艺参数如下:冲击频率为 20 kHz,压球直径为 8 mm,冲击速度为 1.2 m / min,超声振幅 5 μm,进给量为 0.1 mm,静压力为 0.3 MPa。为了表述方便,超声表面滚压后的 CoCrFeMnNiTi 和 CoCrFeMnNiMo 涂层试样分别记为 Ti-USRE、Mo-USRE。

  • 表1 CoCrFeMnNi 高熵合金粉末的化学成分(质量分数)

  • Table1 The chemical composition of CoCrFeMnNi HEA powder

  • 图1 超声表面滚压工艺示意图

  • Fig.1 Schematic diagram of USRE process

  • 1.2 涂层的表征

  • 采用 DK7745 型电火花线切割机将制备的材料切割成尺寸为 15 mm×15 mm×10 mm 的试样。采用 D8-Advance 型 X 射线衍射仪(XRD)对试样的相成分和表面残余应力进行分析。利用 MAIA3 LMH 型高分辨场发射扫描电子显微镜(FSEM)和能谱仪(EDS)分析涂层的微观结构和成分。采用 HVSA 1000A 型数字显示硬度计测量沿涂层深度方向的硬度分布。测试位置间隔 50 μm,同一深度测量三次取平均值。载荷为 3 N,保荷时间为 15 s。采用 CSPM5500 原子力显微镜(AFM)测量涂层的表面轮廓和表面粗糙度。采用 HT-1000 型摩擦磨损试验机测试超声表面滚压前后涂层在室温(300 K) 下的摩擦学性能。摩擦磨损试验采用球-盘式接触方式,采用半径为 5 mm 的 Si3N4 球作为对摩副,试验载荷为 5 N,滑动速度为 500 rad / min,滑动半径为 4 mm,测试时间为 30 min。摩擦试验后采用二维轮廓仪测试其磨损轮廓并计算体积磨损率,采用 FSEM 和 EDS 分析其磨痕形貌和成分。

  • 2 结果与讨论

  • 2.1 相组成与微观结构

  • 图2 为 CoCrFeMnNiTi 和 CoCrFeMnNiMo 高熵合金涂层超声表面滚压处理前后的 XRD 图谱。激光熔覆制备的 CoCrFeMnNi 高熵合金具有单相 FCC 晶格结构。Ti 和 Mo 元素的添加均导致 FCC 相的 (111)晶面衍射峰左移,这是具有大原子半径的 Ti、Mo 元素固溶进 FCC 相的结果。值得注意的是, Ti 掺杂的涂层中出现了新的 TiC 相衍射峰。其次,两种涂层超声表面滚压处理后的衍射峰位置和未加工前的十分接近,这表明超声表面滚压处理并未改变两种高熵合金涂层的相组成和晶格结构。然而,超声表面滚压后两涂层的(111)晶面衍射峰均变宽,由 Scherrer 公式[18]可知,涂层表面晶粒尺寸减小,涂层表面残余应力发生了变化。此外,Mo-USRE 涂层 FCC 相(111)晶面衍射峰强度相较于 CoCrFeMnNiMo 涂层显著降低,说明晶粒的择优取向减小,超声表面滚压对 Mo-USRE 涂层表面影响更为显著。

  • 图2 超声表面滚压处理前后 CoCrFeMnNiM 高熵合金激光熔覆层的 XRD 谱线

  • Fig.2 XRD patterns of the CoCrFeMnNiM high-entropy alloy coatings before and after USRE

  • 图3 为 CoCrFeMnNiM(M=Ti,Mo)高熵合金涂层超声表面滚压后的横截面微观组织图像。从图3a 可以看出,涂层横截面呈现出细小枝晶的特征,沿深度方向枝晶尺寸略微增大。涂层表面 A 区域的放大图(图3b)显示晶粒大小为 5~15 μm。涂层中下部区域的放大图(图3c)显示枝晶组织的晶粒尺寸在 20 μm 以上; 此外,组织表面存在弥散分布的颗粒状析出相,析出相尺寸为 1~2 μm,EDS 结果(图3c)显示其含有大量的 Ti 元素,结合 XRD 结果,析出相鉴定为原位自生的 TiC 颗粒。Mo-USRE 涂层上表面比较平整,同时,注意到涂层中上部存在大量在循环应力下萌生的裂纹 (图3d)。图3e 显示涂层表面的晶粒在超声表面滚压的作用下被严重压缩变形,形成了类似共晶的组织形貌。图3f 为涂层中下部区域的高倍图像,根据 EDS 结果 (图3f),涂层由相同晶格结构的富 Ni 固溶体和富 Mo 固溶体构成。涂层表层晶粒的变形主要是因为超声表面滚压过程中,涂层表面受到一定静压力和高频率冲击,在这种高应变速率下,表层的初始枝晶中的高能位错发生交错,缠结,移动和重排行为,形成位错缠结或位错壁[19],随着应变与应变速率的增加,位错缠结与位错壁继续吸收

  • 图3 激光熔覆 CoCrFeMnNiM 高熵合金涂层在超声表面滚压处理后的横截面微观组织

  • Fig.3 Microstructure in cross-section of the laser cladded CoCrFeMnNiM high-entropy alloy coatings after USRE. (a) - (c) CoCrFeMnNiTi; (d) - (f) CoCrFeMnNiMo

  • 2.2 显微硬度和残余应力

  • 图4 为 CoCrFeMnNiM(M=Ti、Mo)涂层在超声表面滚压前后的三维轮廓图。图4a、4c 显示超声表面滚压处理前两涂层表面均具有由研磨而造成的波谷起伏特征,表面较为粗糙。CoCrFeMnNiTi 和 CoCrFeMnNiMo 的表面粗糙度 Sa 分别计算为 45.3 nm 和 44.7 nm。图4b、4d 显示超声表面滚压处理后,涂层表面的波峰在超声表面滚压的高频作用下被破碎、碾平,涂层表面变得光滑平整,表面粗糙度 Sa 分别降低到 22.2 nm 和 17.3 nm,波峰平均高度 Rz 均集中在 200 nm。

  • 图4 激光熔覆 CoCrFeMnNiM 高熵合金涂层在超声表面滚压处理前后的表面形貌

  • Fig.4 Surface morphology of CoCrFeMnNiM high-entropy alloy coatings before and after USRE: (a) (b) CoCrFeMnNiTi; (c) (d) CoCrFeMnNiMo

  • 图5 显示了对两种高熵合金涂层表层超声表面滚压前后的残余应力统计结果。可以看出两种涂层在超声表面滚压前均呈压应力状态,残余应力分别为−229.8 MPa 和−238.2 MPa。超声表面滚压处理后, Ti-USRE 涂层残余应力提升至−495.0 MPa。值得注意的是,Mo-USRE 涂层残余应力提升至 −1 493.5 MPa,相较于 CoCrFeMnNiMo 涂层提升了约 527%,远高于 Ti-USRE 涂层,说明 CoCrFeMnNiMo高熵合金涂层更容易受到超声表面滚压的强化作用而发生较大塑性变形。

  • 图5 超声表面滚压前后 CoCrFeMnNiM 高熵合金涂层的表面残余应力

  • Fig.5 Surface residual stress of the CoCrFeMnNiM high-entropy alloy coatings before and after USRE

  • CoCrFeMnNiM(M=Ti、Mo)高熵合金涂层在超声表面滚压处理前后的硬度曲线如图6 所示。Ti、Mo 元素掺杂的高熵合金涂层的平均硬度分别为 363.7 HV0.3 和 244.5 HV0.3,沿深度方向两涂层硬度分布均匀;采用相同方法制备的 CoCrFeMnNi 高熵合金涂层的硬度仅为 180.7 HV0.3。显然,Ti 元素对 CoCrFeMnNi 高熵合金的强化效果更加显著。在超声表面滚压后,两种涂层的硬度曲线均出现了沿深度方向上升的趋势,这有利于变形与载荷的分布和传递,从而提升涂层的耐磨性[14]。根据硬度曲线,将涂层分为强化层(strengthened layer)、过渡层 (transition layer)和基体(matrix)。Ti-USRE 和 Mo-USRE 强化层的平均硬度分别达到了 500.86 HV0.3 和 410.74 HV0.3,相较于未处理前涂层的硬度分别提升了 38%和 67%。值得注意的是,Ti-USRE 过渡层的厚度约 250 μm,而 Mo-USRE 过渡层的厚度达到 400 μm。表2 给出了不同涂层的力学性能参数。结合前文的分析,显然超声表面滚压处理对 CoCrFeMnNiMo 涂层的强化效果更明显。首先, CoCrFeMnNiTi 涂层中存在大量弥散分布的 TiC 颗粒,硬质的 TiC 相有效阻碍了位错的滑移,实现了第二相强化,引起了涂层硬度的显著升高; CoCrFeMnNiMo 高熵合金依旧为单相结构,硬度较低,这使得在相同静压力的作用下,Mo-USRE 涂层表面晶粒变形更显著,过渡层更深。超声表面滚压处理后,涂层表面晶粒尺寸减小,起到了细晶强化的作用[20]。同时,塑性变形以及残余应力的增加诱导了大量位错形核[21],提高了材料的变形抗力,致使超声表面滚压后涂层表面硬度升高。相较于 Ti-USRE 涂层,Mo-USRE 涂层表面晶粒细化显著,塑性变形明显,所以 Mo-USRE 涂层硬度提升更加显著。

  • 图6 超声表面滚压前后 CoCrFeMnNiM 高熵合金涂层显微硬度曲线

  • Fig.6 Microhardness curves of the CoCrFeMnNiM high-entropy alloy coatings before and after USRE

  • 表2 CoCrFeMnNiM 高熵合金涂层的力学性能参数

  • Table2 Mechanical properties parameters of CoCrFeMnNiM high-entropy alloy coatings

  • 2.3 磨损行为

  • 图7 显示 CoCrFeMnNiM(M=Ti,Mo)高熵合金涂层超声表面滚压处理前后的平均摩擦因数。其中, CoCrFeMnNi 涂层的平均摩擦因数为 0.81。添加 Ti、 Mo 元素后,CoCrFeMnNiTi 和 CoCrFeMnNiMo 高熵合金涂层的平均摩擦因数分别下降至 0.59 和 0.63。超声表面滚压处理后,Ti-USRE 和 Mo-USRE 涂层在稳定摩擦阶段的平均摩擦因数分别为 0.62 和 0.57,这说明超声表面滚压处理对涂层稳定摩擦阶段的影响较小。

  • 图8 展示了各涂层的磨损率。其中, CoCrFeMnNi 高熵合金涂层的磨损率为 2.49× 10−4 mm 3 /(N·m),添加 Ti 和 Mo 元素后,涂层的磨损率分别下降至 1.90×10−4 mm 3 /(N·m)和 0.68× 10−4 mm 3 /(N·m),这说明 Ti 和 Mo 元素的添加均提升了 CoCrFeMnNi 高熵合金的磨损性能。有趣的是,Ti-USRE 涂层的磨损率进一步下降至 0.71× 10−4 mm 3 /(N·m),但 Mo-USRE 涂层的磨损率反而急剧增大,磨损率的改变可能与涂层表面硬度变化以及磨损机制的转变有关。

  • 图7 超声表面滚压前后 CoCrFeMnNiM 高熵合金涂层的平均摩擦因数

  • Fig.7 Average friction factor of the CoCrFeMnNiM high-entropy alloy coatings before and after USRE

  • 图8 超声表面滚压前后 CoCrFeMnNiM 高熵合金涂层的磨损率

  • Fig.8 Wear rate of the CoCrFeMnNiM high entropy alloy coatings before and after USRE

  • 采用 SEM 观察了 CoCrFeMnNiM(M=Ti,Mo) 高熵合金涂层在超声表面滚压前后的磨痕形貌,如图9 所示。图9a 显示 CoCrFeMnNiTi 涂层的磨痕宽度约 1.098 mm。磨痕表面存在大量沿滑动方向的由磨粒磨损造成的犁沟。表3 列举了不同区域的 EDS 分析结果。可以看出,图9c 中 A 区域的氧含量较高,说明该区域为摩擦过程中被氧化的氧化层[22],氧化层表面含有少许的 N 元素,这是因为氧化层的硬度较高,在摩擦过程中与 Si3N4 对摩球发生了材料交换。所以 CoCrFeMnNiTi 涂层以磨粒磨损为主,其中伴随轻微的氧化磨损现象。超声表面滚压后, Ti-USRE 涂层的磨痕宽度下降至 0.556 mm,图9d 显示磨痕表面氧化面积显著增大,从放大图(图9e) 中可以看氧化层表面光洁平整。硬质的氧化层在摩擦过程中可以防止材料表面同对摩球直接接触,提高了涂层的耐磨性[23-24]。这也是 Ti-USRE 涂层磨损率显著下降的原因。

  • 图9g~9i 为 CoCrFeMnNiMo 涂层的磨痕形貌。明显地,磨痕表面较为粗糙,磨损区域存在密集和大面积的氧化层。氧化层区域的放大图(图10i)显示氧化层表面存在由 Si3N4 对摩球犁削作用产生的细小犁沟,说明氧化层对摩损表面起到了良好的保护作用。Mo 元素掺杂的 CoCrFeMnNi 高熵合金涂层的硬度低于 CoCrFeMnNiTi 涂层,在摩擦过程中涂层表面材料更容易被撕裂涂抹在磨痕表面,随后被氧化为致密的氧化膜,所以 CoCrFeMnNiMo 涂层磨损率低于 CoCrFeMnNiTi 涂层。超声表面滚压处理后,Mo-USRE 涂层表面存在大量沿滑动方向的犁沟(图9j),说明 Mo-USRE 涂层以磨粒磨损为主。此外,磨损区域的放大图(图9k)显示磨痕表面存在材料剥落后的凹坑,表明 Mo-USRE 涂层在磨损过程中出现了较为严重的材料损失,磨损率显著增大。

  • 为进一步探讨超声表面滚压处理对高熵合金激光熔覆层摩擦磨损行为的影响,计算了激光熔覆层和 Si3N4 对摩球之间的理论平均温度(Tb)和闪点温度(Tf),如下式所示[20]

  • Tb=T0+μT*β2+β(πV-/8)1/2F-V-
    (1)
  • 式中,T0 为环境温度(300 K),μ 为平均摩擦因数, T* 为试验过程中的等效温度,β 为等效滑动距离,F-V-分别为摩擦过程中的等效法向载荷和等效滑动速度。

  • Tf=Tb+μTc*β2F-N12V-
    (2)
  • 式中,Tc*为实际等效温度,N 为接触的微凸体数量。

  • 超声表面滚压处理前后高熵合金涂层的平均温度和闪点温度的计算结果如表4 所示。Ti-USRE 涂层的平均温度和闪点温度显著高于 CoCrFeMnNiTi 高熵合金涂层,闪点温度的提高加剧了磨屑的氧化,为氧化膜的形成创造了条件。所以相较于 CoCrFeMnNiTi 涂层,Ti-USRE 涂层氧化膜面积更大,耐磨性能更好。此外,Ti-USRE 高熵合金涂层表面的硬度显著增大,提高了涂层表面和对摩球之间的硬度比,提升了熔覆层表面的变形抗力,降低了磨损量;其次,Ti-USRE 高熵合金涂层残余压应力显著增大,抑制了微裂纹在高循环应力下的扩展,从而减少了熔覆层表层材料的剥落和磨屑的产生。同时,沿激光熔覆层深度方向较为平滑的硬度分布有利于应力传递和变形的分布,也降低了裂纹产生的敏感性,所以 Ti-USRE 涂层的耐磨性相较于 CoCrFeMnNiTi 高熵合金涂层显著提升。然而, Ti-USRE 涂层氧化膜表面存在由局部交变应力引起的裂纹(图9e)[13],这会导致氧化层容易随着裂纹的进一步扩展与交汇后剥落,在一定程度上制约了 Ti-USRE 涂层耐磨性。

  • 图9 超声表面滚压前后 CoCrFeMnNiM 高熵合金涂层的磨痕形貌

  • Fig.9 Worn surface morphology of CoCrFeMnNiM high-entropy alloy coatings before and after USRE (a) - (c) CoCrFeMnNiTi; (d) - (f) Ti-USRE; (g) - (i) CoCrFeMnNiMo; (j) - (l) Mo-USRE

  • 表3 CoCrFeMnNiM 高熵合金涂层磨痕表面的 EDS 分析结果(质量分数)

  • Table3 EDS analysis of the wear surface of CoCrFeMnNiM high entropy alloys coating (wt.%)

  • CoCrFeMnNiMo 和 Mo-USRE 涂层则展现出不同的规律。CoCrFeMnNiMo 涂层表面的闪点温度高达 464.66 K,较高的温度容易引起材料表面显著氧化,所以 CoCrFeMnNiMo 涂层具有明显的氧化磨损特征(图9j);此外,CoCrFeMnNiMo 涂层表面硬度相较于 Ti-USRE 较低,氧化膜的裂纹敏感性也相对降低,所以 CoCrFeMnNiMo 涂层的耐磨性甚至高于 Ti-USRE 涂层。然而,超声表面滚压处理后,涂层表面的闪点温度下降至 348.05 K,闪点温度的大幅度下降增加了氧化层的形成难度。此外,涂层表面的晶粒在超声表面滚压处理后变得更加致密,O 元素难以穿透氧化层和磨损表面进而形成稳定的氧化膜(图2e)。重要的是,超声表面滚压的强应变率导致涂层内部产生大量微裂纹(图2d)。在对摩球的循环应力下,内部裂纹极易向表面扩展,涂层表面更容易提前产生疲劳破碎,引起材料的大量损失。碎裂的材料在涂层表面形成硬质的磨粒,在摩擦副之间形成三体磨损[25],进一步引起了材料的损失,所以 Mo-USRE 高熵合金涂层的耐磨性反而下降。

  • 表4 超声表面滚压前后 CoCrFeMnNiM 高熵合金涂层的平均温度与闪点温度计算结果

  • Table4 Calculation results of average temperature and flash temperature of CoCrFeMnNiM high-entropy alloy coatings before and after USRE

  • An is contact area, F is equivalent normal stress, V is equivalent sliding velocity, N is number of contact points of microconvexes, Tb is theoretical average temperature, and Tf is flash temperature.

  • 3 结论

  • 采用激光熔覆技术在 45 钢表面制备 CoCrFeMnNiTi 和 CoCrFeMnNiMo 高熵合金涂层,对比研究超声表面滚压处理对高熵合金涂层组织结构及摩擦学性能的影响,研究结果表明超声表面滚压技术在高熵合金激光熔覆层领域的适用性。相应的结论如下:

  • (1)Ti、Mo 元素合金化可实现对 CoCrFeMnNi 高熵合金的强化。其中 Ti 元素合金化导致了第二相的生成,强化效果更加显著。

  • (2)超声表面滚压并未改变涂层的相组成,但两种高熵合金涂层在超声表面滚压处理后的面粗糙度均降低,表面残余压应力和显微硬度增大。其中, Mo-USRE 涂层的残余应力和显微硬度的提升更显著。

  • (3)相同工艺参数的超声表面滚压对两种高熵合金涂层的适用性不同。Mo-USRE 涂层的耐磨性显著下降。

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [2] GALI A,GEORGE E P.Tensile properties of high-and medium-entropy alloys[J].Intermetallics,2013,39:74-78.

    • [3] LIU H,GAO W P,LIU J,et al.Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J].Journal of Materials Engineering and Performance,2020,29(11):7170-7178.

    • [4] LIU J,LIU H,CHEN P,et al.Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J].Surface and Coatings Technology,2019,361:63-74.

    • [5] YANG L,CHENG Z,ZHU W W,et al.Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure[J].Journal of Materials Science and Technology,2021,73:1-8.

    • [6] VERMA A,TARATE P,ABHYANKAR A C,et al.High temperature wear in CoCrFeNiCux high entropy alloys:The role of Cu[J].Scripta Materialia,2019,161:28-31.

    • [7] WANG X Y,LIU Q,HUANG Y B,et al.Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding[J].Materials,2020,13(10):2209.

    • [8] ZHANG M N,ZHOU X L,YU X N,et al,Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface and Coatings Technology,2017,311:321-329.

    • [9] THIRATHIPVIWAT P,QNUKI Y,SONG G,et al.Evaluation of dislocation activities and accumulation in cold swaged CoCrFeMnNi high entropy alloy[J].Journal of Alloys and Compounds,2022,890:161816.

    • [10] MA X G,CHEN J,WANG XH,et al,Microstructure and mechanical properties of Cold drawing CoCrFeMnNi high entropy alloy[J].Journal of Alloys ang Compounds,2019,795:45-53.

    • [11] HSU C Y,SHEU T S,YEH J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J].Wear,2010,268(5-6):653-659.

    • [12] SHAHMIR H,NILI-AHMADABADI M,SHAFIEE A,et al.Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy[J].Materials Science and Engineering:A,2018,725:196-206.

    • [13] DENG G Y,TIEU A K,SU L H,et al.Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes:Role of Mo element concentration[J].Wear,2020460:203440.

    • [14] LI M,ZHANG Q,HAN B,et al.Investigation on microstructure and properties of AlxCoCrFeMnNi high entropy alloys by ultrasonic impact treatment[J].Journal of Alloys and Compounds,2020,816:152626.

    • [15] POLTARANIN M A,PANIN S V,IVANOV Y F.Influence of ultrasonic impact treatment on structure and wearing pattern of hadfield steel[J].Journal of Iron and Steel Research International,2010,17:82-88.

    • [16] HE B,YU Y,MIAO Y.Effect of ultrasonic impact strengthening treating on microstructure and properties of AZ91D magnesium alloy[J].Advanced Materials Research,2010,1037:382-385.

    • [17] PANIN S V,SERGEEV V P,POCHIVALOV Y I,et al.Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments[C]//Ifost 2008:Proceeding of the Third International Forum on Strategic Technologies,2008:83-86.

    • [18] SUN Q Q,LIU X T,HAN Q Y,et al.A comparison of AA2024 and AA7150 subjected to ultrasonic shot peening:Microstructure,surface segregation and corrosion[J].Surface and Coatings Technology,2018,337:552-560.

    • [19] LU K,LU J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering:A Structural Materials Properties Microstructure and Processing,2004,375:38-45.

    • [20] LIU H,LIU J,CHEN P,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics and Laser Technology,2019,118:140-150.

    • [21] WANG F,YAN X,LIU L,et al.Surface strengthening of single-crystal alumina by high-temperature laser shock peening[J].Materials Research Letters,2020,9(3):155-161.

    • [22] 张爱军,韩杰胜,苏博,等.AlCoCrFeNi 高熵合金的高温摩擦磨损性能[J].摩擦学学报,2017,37(6):776-783.ZHANG Aijun,HAN Jiesheng,SU Bo,et al.Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature[J].Tribology,2017,37(6):776-783.(in Chinese)

    • [23] CHENG X W,JIANG Z Y,KOSASIH B,et al.Influence of Cr-Rich oxide scale on sliding wear mechanism of ferritic stainless steel at high temperature[J].Tribology Letters,2016,63(2):28.

    • [24] SCHARF T W,PRASAD S V,KOTULA P G,et al.Elevated temperature tribology of cobalt and tantalum-based alloys[J].Wear,2015,330:199-208.

    • [25] WU Y H,YANG H J,GUO R P,et al.Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions[J].Wear,2020,460:203452.

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [2] GALI A,GEORGE E P.Tensile properties of high-and medium-entropy alloys[J].Intermetallics,2013,39:74-78.

    • [3] LIU H,GAO W P,LIU J,et al.Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J].Journal of Materials Engineering and Performance,2020,29(11):7170-7178.

    • [4] LIU J,LIU H,CHEN P,et al.Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J].Surface and Coatings Technology,2019,361:63-74.

    • [5] YANG L,CHENG Z,ZHU W W,et al.Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure[J].Journal of Materials Science and Technology,2021,73:1-8.

    • [6] VERMA A,TARATE P,ABHYANKAR A C,et al.High temperature wear in CoCrFeNiCux high entropy alloys:The role of Cu[J].Scripta Materialia,2019,161:28-31.

    • [7] WANG X Y,LIU Q,HUANG Y B,et al.Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding[J].Materials,2020,13(10):2209.

    • [8] ZHANG M N,ZHOU X L,YU X N,et al,Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface and Coatings Technology,2017,311:321-329.

    • [9] THIRATHIPVIWAT P,QNUKI Y,SONG G,et al.Evaluation of dislocation activities and accumulation in cold swaged CoCrFeMnNi high entropy alloy[J].Journal of Alloys and Compounds,2022,890:161816.

    • [10] MA X G,CHEN J,WANG XH,et al,Microstructure and mechanical properties of Cold drawing CoCrFeMnNi high entropy alloy[J].Journal of Alloys ang Compounds,2019,795:45-53.

    • [11] HSU C Y,SHEU T S,YEH J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J].Wear,2010,268(5-6):653-659.

    • [12] SHAHMIR H,NILI-AHMADABADI M,SHAFIEE A,et al.Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy[J].Materials Science and Engineering:A,2018,725:196-206.

    • [13] DENG G Y,TIEU A K,SU L H,et al.Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes:Role of Mo element concentration[J].Wear,2020460:203440.

    • [14] LI M,ZHANG Q,HAN B,et al.Investigation on microstructure and properties of AlxCoCrFeMnNi high entropy alloys by ultrasonic impact treatment[J].Journal of Alloys and Compounds,2020,816:152626.

    • [15] POLTARANIN M A,PANIN S V,IVANOV Y F.Influence of ultrasonic impact treatment on structure and wearing pattern of hadfield steel[J].Journal of Iron and Steel Research International,2010,17:82-88.

    • [16] HE B,YU Y,MIAO Y.Effect of ultrasonic impact strengthening treating on microstructure and properties of AZ91D magnesium alloy[J].Advanced Materials Research,2010,1037:382-385.

    • [17] PANIN S V,SERGEEV V P,POCHIVALOV Y I,et al.Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments[C]//Ifost 2008:Proceeding of the Third International Forum on Strategic Technologies,2008:83-86.

    • [18] SUN Q Q,LIU X T,HAN Q Y,et al.A comparison of AA2024 and AA7150 subjected to ultrasonic shot peening:Microstructure,surface segregation and corrosion[J].Surface and Coatings Technology,2018,337:552-560.

    • [19] LU K,LU J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering:A Structural Materials Properties Microstructure and Processing,2004,375:38-45.

    • [20] LIU H,LIU J,CHEN P,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics and Laser Technology,2019,118:140-150.

    • [21] WANG F,YAN X,LIU L,et al.Surface strengthening of single-crystal alumina by high-temperature laser shock peening[J].Materials Research Letters,2020,9(3):155-161.

    • [22] 张爱军,韩杰胜,苏博,等.AlCoCrFeNi 高熵合金的高温摩擦磨损性能[J].摩擦学学报,2017,37(6):776-783.ZHANG Aijun,HAN Jiesheng,SU Bo,et al.Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature[J].Tribology,2017,37(6):776-783.(in Chinese)

    • [23] CHENG X W,JIANG Z Y,KOSASIH B,et al.Influence of Cr-Rich oxide scale on sliding wear mechanism of ferritic stainless steel at high temperature[J].Tribology Letters,2016,63(2):28.

    • [24] SCHARF T W,PRASAD S V,KOTULA P G,et al.Elevated temperature tribology of cobalt and tantalum-based alloys[J].Wear,2015,330:199-208.

    • [25] WU Y H,YANG H J,GUO R P,et al.Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions[J].Wear,2020,460:203452.

  • 手机扫一扫看