en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋江杰,男,1996年出生,硕士研究生。主要研究方向为材料疲劳与断裂。E-mail:1412137241@qq.com;

杨冰(通信作者),男,1979年出生,博士,研究员,博士研究生导师。主要研究方向为结构强度理论与可靠性、材料疲劳与断裂。E-mail:yb@swjtu.edu.cn

中图分类号:O346

DOI:10.11933/j.issn.1007−9289.20211226002

参考文献 1
周建斌.机车车轴疲劳问题分析及对策[J].电力机车与城轨车辆,2008.31(2):5-7.ZHOU Jianbin.Analyses and counter measures of locomotive axle fatigue[J].Electric Locomotives and Mass Transit Vehicles,2008,31(2):5-7.(in Chinese)
参考文献 2
洪友士,方飚.疲劳短裂纹萌生及发展的细观过程和理论[J].力学进展,1993,23(4):468-486.HONG Youshi,FANG Biao.Meso process and theory of fatigue short crack initiation and development[J].Advances in Mechanics,1993,23(4):468-486.(in Chinese)
参考文献 3
铁道部运输局,铁道科学研究院金属及化学研究所.铁路货车轮轴典型损伤图册[M].北京:中国铁道出版社,2006.Transportation Bureau of China Ministry of Railways,Institute of Metals and Chemistry of China Academy of Railway Sciences.Typical damage atlas of railway freight car axle[M].Beijing:China Railway Press,2006.(in Chinese)
参考文献 4
LI X,ZHANG J W,YANG B,et al.Effect of micro-shot peening,conventional shot peening and their combination on fatigue property of EA4T axle steel[J].Journal of Materials Processing Tech,2020,275:116320.
参考文献 5
杨冰,赵永翔.表面滚压对LZ50钢疲劳短裂纹行为的影响[J].金属学报,2012,48(8):922-928.YANG Bing,ZHAO Yongxiang.Effect of surface rolling on short fatigue crack behavior of LZ50 axle steel[J].Acta Metallurgica Sinica,2012,48(8):922-928.(in Chinese)
参考文献 6
任岩平,贺继樊,蔡振兵,等.DZ2 车轴钢离子渗氮层的冲击磨损损伤演变研究[J].中国表面工程,2021,34(4):129-138.REN Yanping,HE Jifan,CAI Zhenbing,et al.Study on impact wear damage evolution of ion nitrided layer of DZ2 axle steel [J].China Surface Engineering,2021,34(4):129-138.(in Chinese)
参考文献 7
唐凯,周留成,何卫峰,等.激光冲击强化对LZ50钢疲劳性能影响试验研究[J].中国机械工程,2020,31(3):267-273.TANG Kai,ZHOU Liucheng,HE Weifeng,et al.Experimental study on influences of laser shock processing on fatigue performance of LZ50 axle steels[J].China Mechanical Engineering,2020,31(3):267-273.(in Chinese)
参考文献 8
WANG T,WANG T P,LIU G.Investigations on the nanocrystallzation of 40Cr using ultrasonic surface rolling processing[J].Applied Sufface Science,2008,255(5):1824-1829.
参考文献 9
LIU D,LIU D,ZHANG X,et al.Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process[J].Materials Science and Engineering:A,2018,726:69-81.
参考文献 10
ZHAO W,LIU D,CHIANG R,et al.Effects of ultrasonic nanocrystal surface modification on the surface integrity,microstructure,and wear resistance of 300M martensitic ultra-high strength steel[J].Journal of Materials Processing Technology,2020,285:116767.
参考文献 11
郑建新,蒋书祥.7050 铝合金二维超声滚压加工残余应力场研究[J].表面技术,2017,46(12):265-269.ZHENG Jianxin,JIANG Shuxiang.Residual stress field in the process of 2D ultrasonic rolling 7050 aluminum alloy[J].Surface Technology,2017,46(12):265-269.(in Chinese)
参考文献 12
LI G,QU S,XIE M X,et al.Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy[J].Surface and Coatings Technology,2017,316:75-84.
参考文献 13
YE H,SUN X,LIU Y,et al.Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J].Surface and Coatings Technology,2019,372:288-298.
参考文献 14
HUANG H W,WANG Z B,Lu J.Fatigue behaviors of stainless steel with a gradient nanostructured surface layer[J].Acta Materialia,2015,87:150-160.
参考文献 15
蔡振.表面超声滚压对 Ti-6Al-4V 合金多尺度疲劳裂纹扩展行为的影响[D].上海:华东理工大学,2017.CAI Zhen.Effect of ultrasonic surface rolling processing on multi-scale fatigue crack growth behavior of Ti-6Al-4V Alloy[D].Shanghai:East China University of Science and Technology,2017.(in Chinese)
参考文献 16
陈利钦,项彬,任学冲,等.表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J].中国表面工程,2014,27(5):96-101.CHEN Liqin,XIANG bin,REN xuechong,et al.Effect of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J].China Surface Engineering,2014,27(5):96-101.(in Chinese)
参考文献 17
林子龙,赵秀娟,任瑞铭,等.表面超声滚压对D2车轮钢磨损性能的影响[J].热加工工艺,2021,50(6):83-87.LIN Zilong,ZHAO Xiujuan,REN Ruiming,et al.Effect of surface ultrasonic rolling process on wear performance of D2 wheel steel[J].Hot Working Technology,2021,50(6):83-87.(in Chinese)
参考文献 18
WANG XD,CHEN L Q,LIU P,et al.Enhancement of fatigue endurancelimit through ultrasonic surface rolling processing in EA4T axle steel[J].Metals,2020,10(6):830.
参考文献 19
REN S,ZHANG Y F,ZHAO Y L,et al.Enhanced surface properties and microstructure evolution of Cr12MoV using ultrasonic surface rolling process combined with deep cryogenic treatment[J].Journal of Materials Engineering and Performance,2019,28:1132-1140.
参考文献 20
CHOI Y.A study on the effects of machining-induced residual seress on rolling contact fatigue[J].International Journal of Fatigue,2009,31(10):1517-1523.
参考文献 21
ZHAO Y X,GAO Q,WAN J N.Interaction and evolution of short fatigue cracks[J].Fatigue and Fracture of Engineering Materials & Structures,2001,22(6):459-467.
参考文献 22
杨冰,赵永翔.两种终加工工艺下LZ50钢疲劳短裂纹扩展行为对比研究[J].铁道学报,2013,35(5):34-39.YANG Bing,ZHAO Yongxiang.Comparative study on short fatigue crack growth behavior of axle steel LZ50 with two final processing methods[J].Journal of railways,2013,35(5):34-39.(in Chinese)
参考文献 23
YANG B,DAI S,WU Y Y,et al.Short fatigue crack behavior of LZ50 axle steel under rotating-bending cyclic loading[J].Strength of Materials,2018,50:193-202
参考文献 24
MILLER K J.The behaviour of short fatigue cracks and llleir initiation Part I:A review of two recent books[J].Fatigue Fract Engng Struct,1987,10(1):75-91.
目录contents

    摘要

    针对超声滚压(USRP)对材料短裂纹行为影响规律不明的问题,对 LZ50 钢开展 USRP 试验,对比分析 USRP 对材料表面形貌、表层显微组织、表层显微硬度、残余应力分布和疲劳寿命的影响,并在 340 MPa 应力水平下开展旋转弯曲复型试验,研究 USRP 对疲劳短裂纹萌生和扩展的影响。结果表明:USRP 能使材料表面发生塑性变形,有效改善材料表面状态,降低表面粗糙度;处理后的 LZ50 钢表层铁素体、珠光体组织显微硬度平均值分别从 200 HV 和 240 HV 提升至 304 HV 和 357 HV,表层残余压应力从−103 MPa 提升至−720 MPa,且表层显微硬度和残余压应力沿深度方向呈梯度分布,影响层深约为 300 μm。在 340 MPa 应力水平下,USRP 试样平均疲劳寿命提升 385.54%,疲劳短裂纹突破晶界障碍、珠光体带状组织,出现第一、第二次显著降速时的平均寿命分数 f 分别从 0.068 和 0.469 延后至 0.172 和 0.604,短裂纹的萌生和扩展得到明显抑制与延缓。研究结果有助于明确 USRP 在抑制材料疲劳裂纹萌生与扩展上发挥的积极作用,可为工程材料表面强化工艺的选择提供参考。

    Abstract

    For the problem that the influence law of ultrasonic surface rolling processing (USRP) on short crack behavior of materials is unknown, USRP test is carried out on LZ50 steel. The effects of USRP on surface morphology, surface microstructure, surface microhardness, residual stress distribution and fatigue life are compared and analyzed. The effects of USRP on the initiation and propagation of short fatigue cracks are studied by replica test under 340 MPa rotating bending load. The results show that USRP causes plastic deformation on the material surface, and effectively improves the material surface state and reduces the surface roughness. After USRP, the microhardness of ferrite and pearlite on the surface of LZ50 axle steel increases from 200 HV and 240 HV to 304 HV and 357 HV, and the surface residual compressive stress increases from −103 MPa to −720 MPa, and the surface microhardness and residual compressive stress are gradient distributed along the depth direction, and the affected layer depth is about 300 μm. Under the stress level of 340 MPa, the average fatigue life of the specimens after USRP is increased by 385.54%. When the short fatigue crack breaks through the grain boundary barrier and pearlite banded structure, the average life fraction f at the first and second deceleration is delayed from 0.068 and 0.469 to 0.172 and 0.604 respectively. The initiation and propagation of short fatigue cracks are restrained and delayed. The results are helpful to clarify the positive role of USRP in inhibiting fatigue crack initiation and propagation, and can provide reference for the selection of surface strengthening process of engineering materials.

  • 0 前言

  • 车轴作为轨道车辆的关键承载部件之一,在服役过程中承受着交变载荷的作用,主要失效形式为疲劳破坏[1]。相关研究[2]表明,金属材料在疲劳失效过程中,短裂纹的萌生与扩展阶段占据主导地位,因此,对车轴疲劳短裂纹行为的研究,有助于掌握其扩展演变规律,为车轴的疲劳寿命评估提供合理可靠的依据。同时,轨道车辆车轴的疲劳裂纹多萌生于表面[3],改善表面状态对提高车轴的抗疲劳性能有重要的作用。

  • 目前,喷丸[4]、滚压[5]、渗氮[6]、激光冲击[7]等多种表面强化技术被用于提升车轴疲劳强度。超声滚压处理( Ultrasonic surface rolling processing,USRP)[8]作为一种新兴的表面强化工艺,将超声振动和传统滚压相结合,对金属表面进行微幅高速撞击和滚压处理,使金属表面产生塑性变形,能改善材料表面状态,引入残余压应力,增强其耐磨损、耐腐蚀和抗疲劳性能。

  • 国内外学者对 USRP 技术在钢材[9-10]、铝合金[11]、钛合金[12]、镁合金[13]等多种金属材料中的应用开展了大量研究,分析 USRP 对金属材料表面性能和抗疲劳性能的影响及其机理。HUANG 等[14]研究发现 USRP 使材料内部产生了大量的位错和形变孪晶,并引发马氏体相变,形成梯度纳米结构组织,减小应变局部化,抑制裂纹萌生,提高了不锈钢试样的疲劳强度。蔡振等[15]发现 USRP 使得 Ti-6Al-4V 合金材料表面在孪晶和位错等共同作用下发生晶粒细化,在相同应力比下,USRP 压样的疲劳寿命均显著高于原始样,在裂纹扩展时,USRP 试样的扩展路径会出现裂纹路径改变和裂纹路径偏折现象,这会引起裂纹扩展速率的大幅度降低,使得 USRP 试样的裂纹扩展速率均明显低于无 USRP 试样的裂纹扩展速率。

  • 也有学者关注 USRP 对轨道交通车辆关键零部件的强化作用。陈利钦等[16]研究 USRP 加工参数对 EA4T 车轴钢表面状态的影响后发现,USRP 使试样表面轴向残余压应力、表面硬度大幅度提高,并随着静压力的增加而增加,随着进给速度的增加而减小;其表面粗糙度随静压力和进给速度的降低而降低。林子龙等[17]指出 D2 车轮钢经 USRP 后表面粗糙度降低,表层出现明显硬化层,晶粒发生细化,抗磨损性能得到提升。WANG 等[18]结合旋转弯曲疲劳试验,发现 USRP 能改善 EA4T 车轴钢表面微观结构,增加表面显微硬度、残余压应力,并将其疲劳极限由 352 MPa 提高到 401 MPa。

  • 然而,短裂纹的萌生与扩展作为材料断裂失效过程中的重要环节,鲜有研究报道 USRP 对材料疲劳短裂纹行为的具体影响和影响机理。本文以 LZ50 钢为研究对象,对比分析 USRP 对其表层状态、疲劳性能的影响,通过对光滑圆棒试样开展旋转弯曲疲劳短裂纹复型试验,研究 USRP 对该材料疲劳短裂纹行为的影响。

  • 1 试验

  • 1.1 试验材料及制备

  • 试验材料为 LZ50 钢车轴轴坯。其热处理条件为:先分别在 860℃和 800℃下保温 2.5 h 正火,再在 570℃下保温 1.5 h 回火。表1 和表2 所示为 LZ50 钢的力学性能和化学成分(质量分数)。图1 为 LZ50 钢的金相组织,它由白色铁素体和片层状珠光体构成,且存在明显的带状组织特征。

  • 表1 LZ50 钢力学性能

  • Table1 Main mechanical properties of LZ50 steel

  • 表2 LZ50 钢化学成分(质量分数)

  • Table2 Chemical composition of LZ50 steel (wt.%)

  • 图1 LZ50 钢的金相组织

  • Fig.1 Metallographic structure of LZ50 steel

  • 从 LZ50 钢车轴近表面处取样,加工成图2 所示光滑漏斗形疲劳试样。将该试样分为两组,一组作为对照,另一组通过 HK30G 型设备进行超声滚压处理,图3、表3 所示分别为处理过程示意图和工艺参数。

  • 图2 试样形状及尺寸

  • Fig.2 Shape and size of specimens

  • 图3 USRP 过程示意图

  • Fig.3 Schematic diagram of USRP

  • 表3 超声滚压工艺参数

  • Table3 Ultrasonic surface rolling process parameters

  • 1.2 试验方法

  • 为研究 USRP 对 LZ50 钢的影响,首先测试有、无 USRP 的材料表面形貌、表面粗糙度、截面组织、沿深度方向的显微硬度残余应力等试样表层状态。

  • 利用 Olympus OLS4100 激光共聚焦显微镜观察试样表面形貌并测量表面粗糙度,表面粗糙度取 3 次测量结果的平均值。采用 Pulstec μ-X360n X 射线残余应力分析仪测量试样的残余应力,残余应力分析仪的 X 射线管利用 Cr-Kα 辐射,在 30 kV 电压和 1 mA 电流下工作,入射的 X 射线束与所测的平面成 35°角,衍射角 2θ 为 156°,衍射晶面为(211)晶面,衍射时间为 90 s,准直管直径为 1 mm。使用 1% HClO4和 9% HCl 的混合酸溶液为电解液逐步腐蚀去除表层,用 Olympus OLS 4100 激光共聚焦显微镜扫描腐蚀坑,根据其三维形貌测量腐蚀坑深度。腐蚀坑深度及对应的残余应力值均取 3 次测量结果的平均值。

  • 将试样从最小截面处截断并取高度约为 10 mm 的样品,经过镶嵌、打磨、抛光和金相腐蚀,通过 Olympus OLS 4100 激光共聚焦显微镜观察截面组织形貌,并使用 HVS-1000Z 型自动转塔数显显微硬度计测试沿截面深度方向的显微硬度,试验载荷为 0.5 N,保载时间 15 s,其中每个深度的每种组织各测 3 个点,再取平均值作为该深度处的硬度。

  • 使用 QBWP-6000J 型旋转弯曲疲劳试验机测试材料 S-N 曲线,应力比 R= −1,转速为 2 160 r / min,并在 340 MPa 应力水平下开展疲劳短裂纹复型试验。为便于观察短裂纹萌生机理和萌生过程,试验前用 4%硝酸酒精溶液腐蚀试样表面,试验中在一定的载荷循环周次停机,使用醋酸纤维膜复型,利用 Olympus OLS4100 激光共聚焦显微镜进行短裂纹观察和数据测量。试样断裂后,利用超声波清洗机和无水乙醇清洗断口,并通过 SEM 观察分析断口形貌。

  • 2 试验结果与分析

  • 2.1 试样表层状态

  • 如图4 所示为有、无 USRP 试样的表面形貌,未经 USRP 的试样表面有机加工痕迹,USRP 后试样表面机加工痕迹被消除,表面产生塑性变形。同时测得有、无 USRP 试样表面粗糙度参数 Ra 分别为 0.050 μm 和 0.022 μm,可见 USRP 试样表面粗糙度有明显降低。图5 所示为有、无 USRP 试样的截面组织,可见 USRP 试样表层晶粒发生了明显的塑性变形,呈现细小狭长的状态。

  • 图4 有、无 USRP 试样的表面形貌

  • Fig.4 Surface morphology of specimens with and without USRP

  • 图5 有、无 USRP 试样的截面组织

  • Fig.5 Sectional structure of specimens with and without USRP

  • 图6 给出了有、无 USRP 试样的铁素体和珠光体组织沿深度方向的显微硬度。可见无 USRP 试样的铁素体硬度约为 200 HV,珠光体硬度约为 240 HV,且沿深度方向几乎没有改变,但 USRP 试样的铁素体和珠光体硬度分别提升到 304 HV 和 357 HV,并从表面沿深度方向下降,影响范围约为 300 μm。

  • 图6 有、无 USRP 试样的表层显微硬度分布

  • Fig.6 Distribution of surface microhardness of specimens with and without USRP

  • 测得的残余应力沿深度方向的结果如图7 所示。USRP 试样被引入了较大的残余压应力,其表面能达到−720 MPa,且该残余应力随深度而下降,对比有、无处理试样的表层残余应力分布曲线,可知该影响层深度约为 300 μm。

  • 图7 有、无 USRP 试样的表层残余应力分布

  • Fig.7 Distribution of residual stress of specimens with and without USRP

  • 2.2 S-N 曲线

  • 如图8 所示为有、无 USRP 试样的 S-N 曲线,在 340 MPa 应力水平下,USRP 试样的平均疲劳寿命 N 由 120 881 cycles(周)提升到了 586 929 cycles,提升了 385.54%;同时,在此载荷下,无 USRP 试样比 USRP 试样疲劳寿命分散性小。可见 USRP 使材料的疲劳寿命显著提升。有研究表明[19-20],影响疲劳性能的主要因素包括表面粗糙度、表层硬度及残余应力等,而 USRP 正是通过降低试样表面粗糙度、提高表层硬度,引入残余压应力,有力地促进了试样疲劳性能的提升。

  • 图8 有、无 USRP 试样的 S-N 曲线

  • Fig.8 S-N curve of specimens with and without USRP

  • 2.3 复型试验结果

  • 基于有效短裂纹准则[21],描述并分析短裂纹行为。如图9 所示为无 USRP 试样的疲劳短裂纹复型结果,图9a 为 N=0 cycle 时的复型状态,可见腐蚀试样表面为白色铁素体和黑色片状珠光体结构,此时试样未受载荷作用,表面无裂纹。当加载一段时间至 N = 2×103 cycles 时,铁素体晶粒 B 内部出现微小裂纹 C1,如图9b 所示。之后此微小裂纹开始扩展,直至图9c 所示 N = 1.5×104 cycles 时,受晶界影响,裂纹扩展出现第一次显著降速。而后随着载荷循环和损伤累积,该主导短裂纹突破晶界约束,进一步扩展,直至 N = 5×104 cycles 时,受到富珠光体带状结构影响,裂纹扩展速率出现第二次显著下降,如图9d 所示。待主导短裂纹突破富珠光体带状结构约束后,短裂纹尺度持续增长,扩展速率不断升高,最终形成长裂纹,如图9e、9f 所示,之后该试样至 N = 122 326 cycles 时断裂失效。上述未经 USRP 处理试样的短裂纹萌生和扩展行为与已有研究成果[22-23]报道的规律具有一致性。

  • 图9 无 USRP 试样的疲劳短裂纹复型结果

  • Fig.9 Short fatigue crack replica result of specimen without USRP

  • 图10 所示为 USRP 试样的疲劳短裂纹复型结果,其短裂纹萌生和扩展过程与无 USRP 试样相似。在图10a,N = 0 cycle 时,试样表面无裂纹,至图10b,N = 2×104 cycles 时铁素体晶粒 B 内部靠边缘处出现微小裂纹 C1,之后此微小裂纹开始沿铁素体晶粒 A、B 扩展,直至图10c,N = 8×104 cycles 时受晶粒 A、B 晶界影响出现第一次降速。之后裂纹突破晶界障碍继续扩展,至图10d, N=3.2×105 cycles 时,受富珠光体带状结构影响,出现第二次降速。之后裂纹突破富珠光体带状结构约束快速扩展,最终形成如图10e、10f 所示的长裂纹,之后裂纹扩展至 N = 526 690 cycles 时试样断裂。

  • 图10 USRP 试样的疲劳短裂纹复型结果

  • Fig.10 Short fatigue crack replica result of specimen with USRP

  • 由上述复型结果可知,有、无 USRP 试样,其短裂纹行为有一定相似性,在 MSC 阶段[24](短裂纹萌生与扩展初期),短裂纹行为主要受局部微观结构影响,短裂纹萌生于铁素体内部或边缘,扩展速率分别在晶界障碍和珠光体带状结构约束下出现两次明显下降;在 PSC 阶段[24](短裂纹扩展后期),短裂纹行为基本和微观结构无关,裂纹尺度增长速度和扩展速率都显著增长。但差异在于,由于较高的表面硬度和较大的残余压应力对裂纹萌生与扩展的阻碍作用,对 USRP 试样,在 MSC 阶段其短裂纹更加细微,裂纹宽度更小;在裂纹扩展后期,其短裂纹群体效应得到了明显抑制。

  • 2.4 疲劳断口分析

  • 图11 和图12 分别为有、无 USRP 试样在 340 MPa 应力水平下的疲劳断口形貌。疲劳断口均包括裂纹萌生、扩展和瞬断 3 个疲劳特征区域。

  • 图11 无 USRP 试样断口形貌

  • Fig.11 Fracture morphology of specimen without USRP

  • 图12 USRP 试样的断口形貌

  • Fig.12 Fracture morphology of specimen with USRP

  • 从图11 可见,无 USRP 试样在受载后,疲劳裂纹萌生于试样表面,随着循环的进行而向内部扩展,并且在 340 MPa 应力水平下,该试样表面有多处裂纹源,各区域的裂纹扩展交汇后形成疲劳台阶,随着宏观裂纹的扩展,试样有效面承载面积逐渐减小,直至发生断裂。图11b 所示为其中一处裂纹源和疲劳台阶。图11c 所示为扩展区形貌,可观察到较多的二次裂纹。图11d 所示为瞬断区形貌,瞬断区在试样截面中部位置,可见较多的韧窝,表现出韧性断裂的特征。

  • 从图12 可见,USRP 试样在受载后,疲劳裂纹同样萌生于试样表面,并随着循环的进行而向内部扩展,但在 340 MPa 应力水平下,仅有一处裂纹源,该裂纹呈放射状向试样内部扩展直至断裂,如图12b 所示。图12c 可见在裂纹扩展区也出现了疲劳条带及与扩展方向垂直的二次裂纹。图12d 可见瞬断区在试样截面一侧,同样出现了较多韧窝特征。

  • 从二者断口可见,USRP 未能改变裂纹的扩展形式和疲劳失效形式。但同样的 340 MPa,对无 USRP 试样来说属于高应力水平,表现为多裂纹源断裂,而对 USRP 试样来说属于低应力水平,表现为单裂纹源断裂,且断口平整。由此进一步印证了表面超声滚压对增强 LZ50 钢抗疲劳性能的积极作用。

  • 2.5 裂纹扩展特征

  • 图13 和图14 所示分别为有、无 USRP 的各 3 根有效试样的主导有效短裂纹(DESFC)扩展率与寿命分数、DESFC 尺度的关系。

  • 图13 有、无 USRP 试样 DESFC 扩展率与寿命分数的关系

  • Fig.13 Relationship between DESFC expansion rate and life fraction of samples with and without USRP

  • 由图13 可见,USRP 试样的短裂纹萌生更晚,同时,在相同寿命分数 f 下,其裂纹扩展速率明显小于无 USRP 试样,在裂纹扩展中前期该差异尤为明显,但到裂纹扩展后期,USRP 试样的裂纹扩展率增长更快。两类试样裂纹扩展率均出现两次明显降速,但降速发生时的寿命分数差异明显,无 USRP 试样突破晶界障碍和珠光体带状组织出现第一、第二次显著降速时的寿命分数平均值 f 分别为 0.068 和 0.469,而 USRP 试样出现第一、第二次降速时的寿命分数平均值 f 分别为 0.172 和 0.604,可见 USRP 能明显延缓短裂纹的萌生和扩展。

  • 图14 有、无 USRP 试样 DESFC 扩展率与 DESFC 尺度的关系

  • Fig.14 Relationship between DESFC expansion rate and DESFC scale of samples with and without USRP

  • 由图14 可见,无 USRP 试样出现第一、第二次降速时的 DESFC 尺度分别为 19.026 和 101.235 μm; USRP 试样出现第一、第二次显著降速时的 DESFC 尺度分别为 11.565 μm 和 100.789 μm。两类试样在第二次降速发生时的 DESFC 尺度相差不大,但在第一次降速时,USRP 试样 DESFC 尺度明显低于未经处理试样。

  • 3 结论

  • (1)对有、无 USRP 的 LZ50 钢试样,二者短裂纹萌生与扩展行为有一定的相似性,主导有效短裂纹都萌生于铁素体晶体内部或边界,且受晶界和珠光体带状结构阻碍,裂纹扩展速率出现两次明显下降,其中第二次降速时对应的 DESFC 尺度基本相同,约为 100 μm。

  • (2)USRP 改善了 LZ50 钢表面状态,提高的表层硬度和引入的残余压应力影响层深度可达 300 μm 左右,有效抑制和延缓了短裂纹的萌生与扩展。由于 USRP 使表层晶粒细小狭长,故处理后试样的第一次明显降速对应的 DESFC 尺度更小,短裂纹扩展速率整体更低,两次显著降速时对应的寿命分数更大,试样平均疲劳寿命提升了 385.54%。可见,USRP 有效促进了材料疲劳断裂性能的提升。

  • 参考文献

    • [1] 周建斌.机车车轴疲劳问题分析及对策[J].电力机车与城轨车辆,2008.31(2):5-7.ZHOU Jianbin.Analyses and counter measures of locomotive axle fatigue[J].Electric Locomotives and Mass Transit Vehicles,2008,31(2):5-7.(in Chinese)

    • [2] 洪友士,方飚.疲劳短裂纹萌生及发展的细观过程和理论[J].力学进展,1993,23(4):468-486.HONG Youshi,FANG Biao.Meso process and theory of fatigue short crack initiation and development[J].Advances in Mechanics,1993,23(4):468-486.(in Chinese)

    • [3] 铁道部运输局,铁道科学研究院金属及化学研究所.铁路货车轮轴典型损伤图册[M].北京:中国铁道出版社,2006.Transportation Bureau of China Ministry of Railways,Institute of Metals and Chemistry of China Academy of Railway Sciences.Typical damage atlas of railway freight car axle[M].Beijing:China Railway Press,2006.(in Chinese)

    • [4] LI X,ZHANG J W,YANG B,et al.Effect of micro-shot peening,conventional shot peening and their combination on fatigue property of EA4T axle steel[J].Journal of Materials Processing Tech,2020,275:116320.

    • [5] 杨冰,赵永翔.表面滚压对LZ50钢疲劳短裂纹行为的影响[J].金属学报,2012,48(8):922-928.YANG Bing,ZHAO Yongxiang.Effect of surface rolling on short fatigue crack behavior of LZ50 axle steel[J].Acta Metallurgica Sinica,2012,48(8):922-928.(in Chinese)

    • [6] 任岩平,贺继樊,蔡振兵,等.DZ2 车轴钢离子渗氮层的冲击磨损损伤演变研究[J].中国表面工程,2021,34(4):129-138.REN Yanping,HE Jifan,CAI Zhenbing,et al.Study on impact wear damage evolution of ion nitrided layer of DZ2 axle steel [J].China Surface Engineering,2021,34(4):129-138.(in Chinese)

    • [7] 唐凯,周留成,何卫峰,等.激光冲击强化对LZ50钢疲劳性能影响试验研究[J].中国机械工程,2020,31(3):267-273.TANG Kai,ZHOU Liucheng,HE Weifeng,et al.Experimental study on influences of laser shock processing on fatigue performance of LZ50 axle steels[J].China Mechanical Engineering,2020,31(3):267-273.(in Chinese)

    • [8] WANG T,WANG T P,LIU G.Investigations on the nanocrystallzation of 40Cr using ultrasonic surface rolling processing[J].Applied Sufface Science,2008,255(5):1824-1829.

    • [9] LIU D,LIU D,ZHANG X,et al.Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process[J].Materials Science and Engineering:A,2018,726:69-81.

    • [10] ZHAO W,LIU D,CHIANG R,et al.Effects of ultrasonic nanocrystal surface modification on the surface integrity,microstructure,and wear resistance of 300M martensitic ultra-high strength steel[J].Journal of Materials Processing Technology,2020,285:116767.

    • [11] 郑建新,蒋书祥.7050 铝合金二维超声滚压加工残余应力场研究[J].表面技术,2017,46(12):265-269.ZHENG Jianxin,JIANG Shuxiang.Residual stress field in the process of 2D ultrasonic rolling 7050 aluminum alloy[J].Surface Technology,2017,46(12):265-269.(in Chinese)

    • [12] LI G,QU S,XIE M X,et al.Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy[J].Surface and Coatings Technology,2017,316:75-84.

    • [13] YE H,SUN X,LIU Y,et al.Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J].Surface and Coatings Technology,2019,372:288-298.

    • [14] HUANG H W,WANG Z B,Lu J.Fatigue behaviors of stainless steel with a gradient nanostructured surface layer[J].Acta Materialia,2015,87:150-160.

    • [15] 蔡振.表面超声滚压对 Ti-6Al-4V 合金多尺度疲劳裂纹扩展行为的影响[D].上海:华东理工大学,2017.CAI Zhen.Effect of ultrasonic surface rolling processing on multi-scale fatigue crack growth behavior of Ti-6Al-4V Alloy[D].Shanghai:East China University of Science and Technology,2017.(in Chinese)

    • [16] 陈利钦,项彬,任学冲,等.表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J].中国表面工程,2014,27(5):96-101.CHEN Liqin,XIANG bin,REN xuechong,et al.Effect of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J].China Surface Engineering,2014,27(5):96-101.(in Chinese)

    • [17] 林子龙,赵秀娟,任瑞铭,等.表面超声滚压对D2车轮钢磨损性能的影响[J].热加工工艺,2021,50(6):83-87.LIN Zilong,ZHAO Xiujuan,REN Ruiming,et al.Effect of surface ultrasonic rolling process on wear performance of D2 wheel steel[J].Hot Working Technology,2021,50(6):83-87.(in Chinese)

    • [18] WANG XD,CHEN L Q,LIU P,et al.Enhancement of fatigue endurancelimit through ultrasonic surface rolling processing in EA4T axle steel[J].Metals,2020,10(6):830.

    • [19] REN S,ZHANG Y F,ZHAO Y L,et al.Enhanced surface properties and microstructure evolution of Cr12MoV using ultrasonic surface rolling process combined with deep cryogenic treatment[J].Journal of Materials Engineering and Performance,2019,28:1132-1140.

    • [20] CHOI Y.A study on the effects of machining-induced residual seress on rolling contact fatigue[J].International Journal of Fatigue,2009,31(10):1517-1523.

    • [21] ZHAO Y X,GAO Q,WAN J N.Interaction and evolution of short fatigue cracks[J].Fatigue and Fracture of Engineering Materials & Structures,2001,22(6):459-467.

    • [22] 杨冰,赵永翔.两种终加工工艺下LZ50钢疲劳短裂纹扩展行为对比研究[J].铁道学报,2013,35(5):34-39.YANG Bing,ZHAO Yongxiang.Comparative study on short fatigue crack growth behavior of axle steel LZ50 with two final processing methods[J].Journal of railways,2013,35(5):34-39.(in Chinese)

    • [23] YANG B,DAI S,WU Y Y,et al.Short fatigue crack behavior of LZ50 axle steel under rotating-bending cyclic loading[J].Strength of Materials,2018,50:193-202

    • [24] MILLER K J.The behaviour of short fatigue cracks and llleir initiation Part I:A review of two recent books[J].Fatigue Fract Engng Struct,1987,10(1):75-91.

  • 参考文献

    • [1] 周建斌.机车车轴疲劳问题分析及对策[J].电力机车与城轨车辆,2008.31(2):5-7.ZHOU Jianbin.Analyses and counter measures of locomotive axle fatigue[J].Electric Locomotives and Mass Transit Vehicles,2008,31(2):5-7.(in Chinese)

    • [2] 洪友士,方飚.疲劳短裂纹萌生及发展的细观过程和理论[J].力学进展,1993,23(4):468-486.HONG Youshi,FANG Biao.Meso process and theory of fatigue short crack initiation and development[J].Advances in Mechanics,1993,23(4):468-486.(in Chinese)

    • [3] 铁道部运输局,铁道科学研究院金属及化学研究所.铁路货车轮轴典型损伤图册[M].北京:中国铁道出版社,2006.Transportation Bureau of China Ministry of Railways,Institute of Metals and Chemistry of China Academy of Railway Sciences.Typical damage atlas of railway freight car axle[M].Beijing:China Railway Press,2006.(in Chinese)

    • [4] LI X,ZHANG J W,YANG B,et al.Effect of micro-shot peening,conventional shot peening and their combination on fatigue property of EA4T axle steel[J].Journal of Materials Processing Tech,2020,275:116320.

    • [5] 杨冰,赵永翔.表面滚压对LZ50钢疲劳短裂纹行为的影响[J].金属学报,2012,48(8):922-928.YANG Bing,ZHAO Yongxiang.Effect of surface rolling on short fatigue crack behavior of LZ50 axle steel[J].Acta Metallurgica Sinica,2012,48(8):922-928.(in Chinese)

    • [6] 任岩平,贺继樊,蔡振兵,等.DZ2 车轴钢离子渗氮层的冲击磨损损伤演变研究[J].中国表面工程,2021,34(4):129-138.REN Yanping,HE Jifan,CAI Zhenbing,et al.Study on impact wear damage evolution of ion nitrided layer of DZ2 axle steel [J].China Surface Engineering,2021,34(4):129-138.(in Chinese)

    • [7] 唐凯,周留成,何卫峰,等.激光冲击强化对LZ50钢疲劳性能影响试验研究[J].中国机械工程,2020,31(3):267-273.TANG Kai,ZHOU Liucheng,HE Weifeng,et al.Experimental study on influences of laser shock processing on fatigue performance of LZ50 axle steels[J].China Mechanical Engineering,2020,31(3):267-273.(in Chinese)

    • [8] WANG T,WANG T P,LIU G.Investigations on the nanocrystallzation of 40Cr using ultrasonic surface rolling processing[J].Applied Sufface Science,2008,255(5):1824-1829.

    • [9] LIU D,LIU D,ZHANG X,et al.Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process[J].Materials Science and Engineering:A,2018,726:69-81.

    • [10] ZHAO W,LIU D,CHIANG R,et al.Effects of ultrasonic nanocrystal surface modification on the surface integrity,microstructure,and wear resistance of 300M martensitic ultra-high strength steel[J].Journal of Materials Processing Technology,2020,285:116767.

    • [11] 郑建新,蒋书祥.7050 铝合金二维超声滚压加工残余应力场研究[J].表面技术,2017,46(12):265-269.ZHENG Jianxin,JIANG Shuxiang.Residual stress field in the process of 2D ultrasonic rolling 7050 aluminum alloy[J].Surface Technology,2017,46(12):265-269.(in Chinese)

    • [12] LI G,QU S,XIE M X,et al.Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy[J].Surface and Coatings Technology,2017,316:75-84.

    • [13] YE H,SUN X,LIU Y,et al.Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J].Surface and Coatings Technology,2019,372:288-298.

    • [14] HUANG H W,WANG Z B,Lu J.Fatigue behaviors of stainless steel with a gradient nanostructured surface layer[J].Acta Materialia,2015,87:150-160.

    • [15] 蔡振.表面超声滚压对 Ti-6Al-4V 合金多尺度疲劳裂纹扩展行为的影响[D].上海:华东理工大学,2017.CAI Zhen.Effect of ultrasonic surface rolling processing on multi-scale fatigue crack growth behavior of Ti-6Al-4V Alloy[D].Shanghai:East China University of Science and Technology,2017.(in Chinese)

    • [16] 陈利钦,项彬,任学冲,等.表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J].中国表面工程,2014,27(5):96-101.CHEN Liqin,XIANG bin,REN xuechong,et al.Effect of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J].China Surface Engineering,2014,27(5):96-101.(in Chinese)

    • [17] 林子龙,赵秀娟,任瑞铭,等.表面超声滚压对D2车轮钢磨损性能的影响[J].热加工工艺,2021,50(6):83-87.LIN Zilong,ZHAO Xiujuan,REN Ruiming,et al.Effect of surface ultrasonic rolling process on wear performance of D2 wheel steel[J].Hot Working Technology,2021,50(6):83-87.(in Chinese)

    • [18] WANG XD,CHEN L Q,LIU P,et al.Enhancement of fatigue endurancelimit through ultrasonic surface rolling processing in EA4T axle steel[J].Metals,2020,10(6):830.

    • [19] REN S,ZHANG Y F,ZHAO Y L,et al.Enhanced surface properties and microstructure evolution of Cr12MoV using ultrasonic surface rolling process combined with deep cryogenic treatment[J].Journal of Materials Engineering and Performance,2019,28:1132-1140.

    • [20] CHOI Y.A study on the effects of machining-induced residual seress on rolling contact fatigue[J].International Journal of Fatigue,2009,31(10):1517-1523.

    • [21] ZHAO Y X,GAO Q,WAN J N.Interaction and evolution of short fatigue cracks[J].Fatigue and Fracture of Engineering Materials & Structures,2001,22(6):459-467.

    • [22] 杨冰,赵永翔.两种终加工工艺下LZ50钢疲劳短裂纹扩展行为对比研究[J].铁道学报,2013,35(5):34-39.YANG Bing,ZHAO Yongxiang.Comparative study on short fatigue crack growth behavior of axle steel LZ50 with two final processing methods[J].Journal of railways,2013,35(5):34-39.(in Chinese)

    • [23] YANG B,DAI S,WU Y Y,et al.Short fatigue crack behavior of LZ50 axle steel under rotating-bending cyclic loading[J].Strength of Materials,2018,50:193-202

    • [24] MILLER K J.The behaviour of short fatigue cracks and llleir initiation Part I:A review of two recent books[J].Fatigue Fract Engng Struct,1987,10(1):75-91.

  • 手机扫一扫看