en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王鸿琪,男,1998年出生,硕士。主要研究方向为激光防护材料。E-mail:1421525095@qq.com;

赵永峰,男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为金属基复合材料的设计与应用。E-mail:zyf200900150317@163.com;

殷凤仕(通信作者),男,1967年出生,博士,教授,博士研究生导师。主要研究方向为高温合金与耐热钢。E-mail:fsyin@sdut.edu.cn

中图分类号:TG953

DOI:10.11933/j.issn.1007−9289.20211229001

参考文献 1
王之江.浅谈中国第一台激光器的诞生[J].中国激光,2010,37(9):2188-2189.WANG Zhijiang.An introduction to the birth of China’ s first laser[J].Chinese Journal of Lasers,2010,37(9):2188-2189.(in Chinese)
参考文献 2
徐惠忠.高能激光武器的毁伤机理及飞行器防御途径分析[J].中国航天,2004(9):35-38,43.XU Huizhong.Analysis of the destruction mechanism of high-energy laser weapons and the defense path of aircraft[J].Aerospace China,2004(9):35-38,43.(in Chinese)
参考文献 3
张江华.高能激光武器毁伤机理及其防护技术[J].中国科技信息,2008(20):37,39.ZHANG Jianghua.Destruction mechanism of high-energy laser weapons and its protection technology[J].China Science and Technology Information,2008(20):37,39.(in Chinese)
参考文献 4
刘晓明,何煦虹,张翼麟.激光武器及导弹抗激光技术研究[J].战术导弹技术,2014(4):1-4,37.LIU Xiaoming,HE Xuhong,ZHANG Yilin.Study of laser weapon and anti-laser technology missile[J].Tactical Missile Technology,2014(4):1-4,37.(in Chinese)
参考文献 5
郭亚林,梁国正,丘哲明,等.激光辐照下的材料破坏和防护研究进展[J].材料保护,2003(12):8-10,13.GUO Yalin,LIANG Guozheng,QIU Zheming,et al.Damage and protection progress of materials irradiated by laser beam[J].Materials Protection,2003(12):8-10,13.(in Chinese)
参考文献 6
宗思光,吴荣华,曹静,等.高能激光武器技术与应用进展[J].激光与光电子学进展,2013,50(8):158-167.ZONG Siguang,WU Ronghua,CAO Jing,et al.Developments and trends of high energy laser weapons[J].Laser & Optoelectronics Progress,2013,50(8):158-167.(in Chinese)
参考文献 7
TONG Y,LIANG X,BAI S,et al.Laser ablation applications in ablation-resistance characterization of materials[M]//Applications of laser ablation-thin film deposition,nanomaterial synthesis and surface modification.IntechOpen,2016.
参考文献 8
DAHOTRE N B,HARIMKAR S.Laser fabrication and machining of materials[M].New York:Springer Science & Business Media,2008.
参考文献 9
CHEN W W,XIAN Q W,CHEN G H.Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes[J].Optics and Laser Technology,2015,73:23-28.
参考文献 10
KURBATKINA V V,PATSERA E I,LEVASHOV E A.Combustion synthesis of ultra-high-temperature materials based on(Hf,Ta)B2.Part 1:The mechanisms of combustion and structure formation[J].Ceramics International,2019,45(3):4067-4075.
参考文献 11
陆建,倪晓武,贺安之.高功率激光与材料相互作用机理研究进展[J].激光技术,1996(3):181-184.LU Jian,NI Xiaowu,HE Anzhi.A research advance on the interaction mechanism of high-power laser and materials[J].Laser Technology,1996(3):181-184.(in Chinese)
参考文献 12
周益春,段祝平,解伯民.强激光破坏机制研究进展[J].力学与实践,1995(1):10-18.ZHOU Yichun,DUAN Zhuping,XIE Bomin.Progress in the study of the mechanism of strong laser damage[J].Mechanics in Engineering,1995(1):10-18.(in Chinese)
参考文献 13
张可星.LY12 铝靶激光热烧蚀的试验研究[J].强激光与粒子束,1990(2):226-234.ZHANG Kexing.Experimental study of laser thermal ablation of LY12 aluminum target[J].High Power Laser and Particle Beams,1990(2):226-234.(in Chinese)
参考文献 14
刘扬,汤伟,邵俊峰,等.连续激光对钢壳体热力损伤效应分析[J].激光与红外,2021,51(1):89-94.LIU Yang,TANG Wei,SHAO Junfeng,et al.Study on damage effect of continuous laser on steel cylinder[J].Laser & Infrared,2021,51(1):89-94.(in Chinese)
参考文献 15
汤文辉,郭少峰,秦石桥.强激光对材料的热-力学破坏效应[J].强度与环境,1998(3):41-47.TANG Wenhui,GUO Shaofeng,QIN Shiqiao.Thermal-mechanical destructive effects of strong lasers on materials[J].Structure & Environment Engineering,1998(3):41-47.(in Chinese)
参考文献 16
李欣荣,周天文,孙琦.长脉冲高能激光对金属靶材烧蚀试验研究[J].应用光学,2009,30(1):148-152.LI Xinrong,ZHOU Tianwen,SUN Qi.Ablation of metal target materials by long-pulse high energy laser[J].Journal of Applied Optics,2009,30(1):148-152.(in Chinese)
参考文献 17
徐立君,张喜和,倪晓武,等.不同光斑半径的连续激光作用金属靶材的温度场[J].红外与激光工程,2007(S1):364-367.XU Lijun,ZHANG Xihe,NI Xiaowu,et al.Temperature field of the CW-laser with different radius irradiating metal plate[J].Infrared and Laser Engineering,2007(S1):364-367.(in Chinese)
参考文献 18
赵杨,张昊春,李垚,等.激光辐照材料烧蚀特性的数值仿真[J].化工学报,2014,65(S1):426-432.ZHAO Yang,ZHANG Haochun,LI Yao,et al.Numerical simulation of laser ablation properties of irradiated material[J].CIESC Journal,2014,65(S1):426-432.(in Chinese)
参考文献 19
LI Z L,XIA Z L.The damage mechanism and process of metal multi-layer dielectric gratings induced by ps-pulsed laser[J].Applied Surface Science,2019,494:977-982.
参考文献 20
LI X,HOU W T,HAN B,et al.Thermal response during volumetric ablation of carbon fiber composites under a high intensity continuous laser irradiation[J].Surfaces and Interfaces,2021,23:101032.
参考文献 21
NIU J H,MENG S H,JIN H,et al.Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere[J].Journal of the European Ceramic Society,2019,39(15):4535-4544.
参考文献 22
LIU R J,LIU X Y,WANG Y F,et al.Laser ablation behavior and mechanism of Cf/SiC–ZrC ultra-high temperature ceramic matrix composite prepared by PIP method[J].Ceramics International,2021,47(16):23610-23619.
参考文献 23
蔡虎,程祖海,朱海红,等.脉冲强激光破坏 Hg_(0.8)Cd_(0.2)Te 晶片材料的机理分析[J].强激光与粒子束,2006(6):927-930.CAI Hu,CHENG Zuhai,ZHU Haihong,et al.Mechanistic analysis of the destruction of Hg_(0.8)Cd_(0.2)Te wafer material by pulsed intense laser[J].High Power Laser and Particle Beams,2006(6):927-930.(in Chinese)
参考文献 24
LI C H,KANG X L,HAN W,et al.Nanosecond laser-induced surface damage and material failure mechanism of single crystal CaF 2(111)at 355 nm[J].Applied Surface Science,2019,480:1070-1077.
参考文献 25
徐鑫,方春华,李智,等.连续激光作用下瓷质绝缘子温度和热应力分析[J].光电子· 激光,2021,32(1):78-87.XU Xin,FANG Chunhua,LI Zhi,et al.Analysis of temperature and thermal stress of porcelain insulator under continuous laser irradiaion[J].Journal of Optoelectronics Laser,2021,32(1):78-87.(in Chinese)
参考文献 26
孙铭远,张昊春,曲博岩,等.激光辐照下卫星筒体部分多物理建模及毁伤效应分析[J].应用光学,2021,42(3):542-549.SUN Mingyuan,ZHANG Haochun,QU Boyan,et al.Multi-physical modeling and damage effect analysisof satellite cylinders under laser irradiation[J].Journal of Applied Optics,2021,42(3):542-549.(in Chinese)
参考文献 27
LOHANI S,SHUBHAM M,RUSTY R K,et al.Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites[J].Materials Today:Proceedings,2021,43:524-529.
参考文献 28
DE CASTRO MONSORES K G,DA SILVA A O,OLIVEIRA S S A,et al.Influence of ultraviolet radiation on polystyrene[J].Journal of Materials Research and Technology,2021,13:359-365.
参考文献 29
DE CASTRO MONSORES K G,DA SILVA A O,OLIVEIRA S S A,et al.Influence of ultraviolet radiation on polymethylmethacrylate(PMMA)[J].Journal of Materials Research and Technology,2019,8(5):3713-3718.
参考文献 30
QI A,ELSHAFIEY A,HUANG L J,et al.Plasma and X-ray radiation-induced damage mechanisms in a tungsten heavy alloy[J].Journal of Nuclear Materials,2020,539:152325.
参考文献 31
何佩谣,赵越,刘宇,等.相变材料 Ge_2Sb_2Te_5 的X射线辐照致变效应研究[J].核技术,2021,44(3):9-15.HE Peiyao,ZHAO Yue,LIU Yu,et al.Study on X-ray irradiation induced effect of phase-change material Ge2Sb2Te5[J].Nuclear Techniques,2021,44(3):9-15.(in Chinese)
参考文献 32
郑佳艺,马壮,高丽红.智能化高能激光防护材料新进展[J].现代技术陶瓷,2020,41(3):121-133.ZHENG Jiayi,MA Zhuang,GAO Lihong.Development of intelligent anti-high power laser materials[J].Advanced Ceramics,2020,41(3):121-133.(in Chinese)
参考文献 33
张其土,许仲梓,付振晓,等.激光防护材料的研究与应用[J].南京化工大学学报(自然科学版),2001(3):82-86.ZHANG Qitu,XU Zhongzi,FU Zhenxiao,et al.Research and application of laser protection materials[J].Journal of Nanjing Tech University(Natural Science Edition),2001(3):82-86.(in Chinese)
参考文献 34
冯守志,圣冬冬.航天器激光防护材料研究现状与发展趋势[J].上海航天,2014,31(3):34-38.FENG Shouzhi,SHENG Dongdong.Research and development of laser protective materials of spacecraft[J].Aerospace Shanghai,2014,31(3):34-38.(in Chinese)
参考文献 35
付华,张光磊.材料性能学[M].北京:北京大学出版社,2017.FU hua,ZHANG Guanglei.An introduction to materials properties[M].Beijing:Beijing University Press,2017.(in Chinese)
参考文献 36
张磊,杨鹏翎,赵海川,等.铜铝材料粗糙表面的BRDF特性研究[J].现代应用物理,2018,9(4):65-69.ZHANG Lei,YANG Pengyu,ZHAO Haichuan,et al.Charateristics of bidirectional reflectance distribution function on roughness surface of copper and aluminum materials[J].Modern Applied Physics,2018,9(4):65-69.(in Chinese)
参考文献 37
YAHIAOUI K,ABERKANE S M.A comparative study of KrF laser ablation of aluminum and alumina in oxygen ambiance[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2021,180:106197.
参考文献 38
BENAVIDES O,DE L,GIL A F,et al.Experimental study on reflection of high-intensity nanosecond Nd:YAG laser pulses in ablation of metals[J].Optics & Lasers in Engineering,2015,68:83-86.
参考文献 39
ZHENG J Y,WANG S,GAO L H,et al.Theoretical and experimental studies of Ba2SmTaO6 on crystal structure,electronic structure and optical properties[J].Journal of Materials Chemistry C,2018,6(7):1806-1814.
参考文献 40
刘维良,吴坚强,陈云霞,等.臭氧发生器用 Al2O3 陶瓷基板材料的改性研究[J].陶瓷学报,2001(2):73-77.LIU Weiliang,WU Jianqiang,CHEN Yunxia,et al.Study on the Al2O3 ceramic plate material modifier for ozonizer[J].Journal of Ceramics,2001(2):73-77.(in Chinese)
参考文献 41
吴崇隽.高反射率LED陶瓷基板制备及其COB封装光源光效的研究[J].中国陶瓷工业,2019,26(6):15-20.WU Chongjun.Preparation of high reflectivity LED ceramic substrate and light efficiency of its COB packaging light source[J].China Ceramic Industry,2019,26(6):15-20.(in Chinese)
参考文献 42
MA C,MA Z,GAO L H,et al.Zirconium carbide-modified polymer-matrix composites with improved reflectivity under high-energy laser ablation[J].Ceramics International,2019,45(14):17681-17687.
参考文献 43
朱锦鹏,马壮,高丽红,等.基于等离子喷涂的反射型激光防护涂层研究[J].中国光学,2017,10(5):578-587,702.ZHU Jinpeng,MA Zhuang,GAO Lihong,et al.Reflective laser protective coating based on plasma spraying[J].Chinese Optics,2017,10(5):578-587,702.(in Chinese)
参考文献 44
ZHU J P,MA Z,GAO L H,et al.Influence of microstructure on the optical property of plasma-sprayed Al,Cu,and Ag coatings[J].Materials & Design,2016,111:192-197.
参考文献 45
孔静,马壮,高丽红,等.La1-xSrxTiO3+δ陶瓷涂层抗激光烧蚀性能研究[J].现代技术陶瓷,2018,39(2):115-121.KONG Jing,MA Zhuang,GAO Lihong,et al.Anti-laser ablation property of La1-xSrxTiO3+δ ceramic coating[J].Advanced Ceramics,2018,39(2):115-121.(in Chinese)
参考文献 46
ZHU J P,GAO L H,MA Z,et al.Optical property of La 1−x Sr x TiO 3+δ coatings deposited by plasma spraying technique[J].Applied Surface Science,2015,356:935-940.
参考文献 47
李东荣,王富耻,马壮,等.等离子喷涂 Al2O3涂层 CO2 连续激光反射性能的研究[J].有色金属(冶炼部分),2008(5):38-41.LI Dongrong,WANG Fuchi,MA Zhuang,et al.Research on the CO2-CW-laser reflectivity of plasma sprayed Al2O3 coatings[J].Nonferrous Metals(Extractive Metallurgy),2008(5):38-41.(in Chinese)
参考文献 48
ZHENG J Y,WEN K,LIU Y B,et al.Laser irradiation behavior of plasma-sprayed tantalum oxide coatings[J].Ceramics International,2020,46(3):3875-3881.
参考文献 49
XU F,ZHU S Z,MA Z,et al.Ablation behavior of inorganic particle-filled polybenzoxazine composite coating irradiated by high-intensity continuous laser[J].Ceramics International,2019,45(12):14968-14975.
参考文献 50
XU W Y,GAO L H,MA C,et al.Design and preparation of composite coatings with increased reflectivity under high-energy continuous wave laser ablation[J].Ceramics International,2020,46(15):23457-23462.
参考文献 51
WANG H H,KONG J A,GE J,et al.Effects of reflectivity on laser-ablation resistance of the laser-cladding repaired Nd2O3 modified SiO2 coatings on C/C composites[J].Journal of the European Ceramic Society,2021,41(13):6548-6558.
参考文献 52
漆海滨,李文煜,万红.强激光作用下金属基复合材料的破坏效应[J].应用激光,2000(5):198-200.QI Haibing,LI Wenyu,WAN Hong.Damage effects of metal matrix composite induced by high power laser[J].Applied Laser,2000(5):198-200.(in Chinese)
参考文献 53
YAN Z Y,MA Z,LIU L,et al.The ablation behavior of ZrB2/Cu composite irradiated by high-intensity continuous laser[J].Journal of the European Ceramic Society,2014,34(10):2203-2209.
参考文献 54
HONG C Q,HAI J C,ZHANG X H,et al.Preparation and thermal ablation behavior of titanium diboride/(copper,nickel)C4 material[J].Materials Science & Engineering A,2006,447(1):95-98.
参考文献 55
ZHANG Y L,SHAO D Y,FENG G H,et al.Ablation-resistant Ta0.78Hf0.22C solid solution ceramic modified C/C composites for oxidizing environments over 2 200 ℃[J].Journal of the European Ceramic Society,2021,41(13):6181-6188.
参考文献 56
SU X J,HU B T,QUAN Y,et al.Ablation behavior and mechanism of bulk MoAlB ceramic at ∼1 670–2 550 ℃ in air plasma flame[J].Journal of the European Ceramic Society,2021,41(11):5474-5483.
参考文献 57
LI W Z,GAO L H,MA Z,et al.Ablation behavior of graphite/SiO2 composite irradiated by high-intensity continuous laser[J].Journal of the European Ceramic Society,2017,37(4):1331-1338.
参考文献 58
CHEN Z F,FANG D,MIAO Y L,et al.Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2 900 and 3 550 ℃[J].Corrosion Science,2008,50(12):3378-3381.
参考文献 59
CHEN J,AN Q L,MING W W,et al.Investigations on continuous-wave laser and pulsed laser induced controllable ablation of SiCf/SiC composites[J].Journal of the European Ceramic Society,2021,41(12):5835-5849.
参考文献 60
WANG Z,WANG J T,SONG H W,et al.Laser ablation behavior of C/SiC composites subjected to transverse hypersonic airflow[J].Corrosion Science,2021,183:109345.
参考文献 61
WU X W,SU Z A,HUANG Q Z,et al.Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis[J].Ceramics International,2020,46(10):16062-16067.
参考文献 62
LI W Z,GAO L H,MA Z,et al.Multi-synergy ablative effects of laminated SiO2–graphite/SiO2/Cu composite irradiated by high power laser[J].Ceramics International,2019,45(12):15272-15280.
参考文献 63
ZHOU Y,NIU J,MENG S,et al.Improved laser ablation resistance of Si-CN precursor derived ceramics in air[J].Ceramics International,2018,44(18):23267-23272.
参考文献 64
ZHU Q S,WANG G Y,LIAO X Q,et al.Ablation properties and mechanisms of BN-coated Cf-reinforced SiBCNZr ceramic composites under an oxyacetylene combustion torch[J].Ceramics International,2021,47(11):15533-15541.
参考文献 65
张俊华,李锦文,魏化震,等.低成本高性能酚醛树脂基烧蚀材料的性能研究[J].纤维复合材料,2009,26(3):36-38,42.ZHANG Junhua,LI Jinwen,WEI Huazhen,et al.Research on properties of low cost and high performance phenolic resin composites[J].Fiber Composites,2009,26(3):36-38,42.(in Chinese)
参考文献 66
齐风杰,李锦文,魏化震,等.新型酚醛树脂基耐烧蚀复合材料的性能研究[J].纤维复合材料,2008(3):50-52.QI Fengjie,LI Jinwen,WEI Huazhen,et al.Research on properties of new-type phenolic resin matrix ablative composites[J].Fiber Composites,2008(3):50-52.(in Chinese)
参考文献 67
张俊华,李锦文,魏化震,等.高性能酚醛树脂基烧蚀复合材料的研究[J].纤维复合材料,2009,26(1):15-18,23.ZHANG Junhua,LI Jinwen,WEI Huazhen,et al.Research on high performance phenolic resin ablative composites[J].Fiber Composites,2009,26(1):15-18,23.(in Chinese)
参考文献 68
于庆春,万红.片状石墨增强树脂基复合材料的耐激光烧蚀性能研究[J].无机材料学报,2012,27(2):157-161.YU Qingchun,WAN Hong.Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse Laser irradiation[J].Journal of Inorganic Materials,2012,27(2):157-161.(in Chinese)
参考文献 69
XU F,ZHU S Z,LIU Y B,et al.Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite[J].Journal of Materials Science,2020,55(20):8553-8563.
参考文献 70
XU F,ZHU S Z,MA Z,et al.Effect of TaSi2/ZrSi2 on ablation properties of carbon-phenolic composite irradiated by high-intensity continuous laser[J].Ceramics International,2020,46(18):28443-28450.
参考文献 71
MERZAPOUR A,ASADOLLAHI M H,BAGHSHAEI S,et al.Effect of nanosilica on the microstructure,thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite[J].Composites Part A Applied Science and Manufacturing,2014,63:159-167.
参考文献 72
穆景阳,万红,白书欣.长脉冲激光辐照下环氧树脂的热烧蚀规律[J].强激光与粒子束,2008(1):36-40.MU Jingyang,WAN Hong,BAI Shuxin.Thermal ablation pattern of epoxy resin under long-pulse laser irradiation[J].High Power Laser and Particle Beams,2008(1):36-40.(in Chinese)
参考文献 73
陈博,万红,穆景阳,等.重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J].强激光与粒子束,2008(4):547-552.CHEN Bo,WAN Hong,MU Jingyang,et al.Thermal damage pattern of carbon fiber/epoxy resin composites under heavy frequency laser action[J].High Power Laser and Particle Beams,2008(4):547-552.(in Chinese)
参考文献 74
贺敏波,马志亮,韦成华,等.热解对碳纤维/环氧复合材料激光烧蚀的影响[J].红外与激光工程,2016,45(3):97-100.HE Minbo,MA Zhiliang,WEI Chenghua,et al.Influence of pyrolysis on the laser ablation of carbon-fiber/epoxy composite[J].Infrared and Laser Engineering 2016,45(3):97-100.(in Chinese)
参考文献 75
LAFARIE-FRENOT M C,GRANDIDIER J C,GIGLIOTTI M,et al.Thermo-oxidation behaviour of composite materials at high temperatures:A review of research activities carried out within the COMEDI program[J].Polymer Degradation & Stability,2010,95(6):965-974.
参考文献 76
彭国良,王玉恒,闫辉,等.C/C 复合材料的氧化对激光防护的影响研究[J].激光与红外,2013,43(2):148-151.PENG Guoliang,WANG Yuheng,YAN Hui,et al.Research of the effect of carbon-carbon composites oxidation on laser protection[J].Laser & Infrared,2013,43(2):148-151.(in Chinese)
参考文献 77
TONG Y G,HU Y L,LIANG X B,et al.Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation:Ablation resistance,microstructure and damage mechanism[J].Ceramics International,2020,46(10):14408-14415.
参考文献 78
CORRAL E L,WALKER L S.Improved ablation resistance of C–C composites using zirconium diboride and boron carbide[J].Journal of the European Ceramic Society,2010,30(11):2357-2364.
参考文献 79
孙世杰,马壮,柳彦博,等.SiC-Al2O3-SiO2 复合陶瓷涂层组织结构及抗烧蚀性能研究[J].表面技术,2019,48(4):40-47.SUN Shijie,MA Zhuang,LIU Yanbo,et al.Microstructures and anti-ablation properties of SiC-Al2O3-SiO2 composite ceramic coatings[J].Surface Technology,2019,48(4):40-47.(in Chinese)
参考文献 80
HE R X,LI K Z,GU S Y,et al.Comparing ablation properties of NbC and NbC-25 mol.% ZrC coating on SiC-coated C/C composites[J].Ceramics International,2020,46(6):7055-7064.
参考文献 81
LI D R,WANG F C,MA Z,et al.Damage mechanism of Al2O3 ceramic coatings irradiated by CO2 CW laser[J].Journal of Beijing Institute of Technology,2008(2):227-231.
参考文献 82
LIANG B,DING C X.Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J].Surface & Coatings Technology,2004,197(2):185-192.
参考文献 83
MA C,MA Z,GAO L H,et al.Laser ablation behavior of flake graphite and SiO2 particle-filled hyperbranched polycarbosilane matrix composite coatings[J].Ceramics International,2018,44(17):21374-21380.
参考文献 84
LI W Z,GAO L H,MA Z,et al.Effect of Ni content on high power laser ablation behavior of coatings sprayed by Ni covering graphite/SiO2 powders[J].Journal of Materials Science & Technology,2020,47(12):38-44.
参考文献 85
SU C,LI G,LIU X,et al.Laser ablation behavior and mechanism of C/SiC coated with ZrB2–MoSi2–SiC/Mo prepared by HVOF[J].Ceramics International,2020,46(11):17752-17762.
参考文献 86
LIU Yanbo,GUO Jiayi,MA Zhuang,et al.Anti-ablation property of ZrB2/SiC/Ta2O5 coatings prepared by atmosphere plasma spraying[J].Rare Metal Materials and Engineering,2018,47(S1):72-77.
参考文献 87
陈四海,赖建军,董珊,等.新型光电子材料氧化钒[J].红外与激光工程,2008,37(S3):407-409.CHEN Sihai,LAI Jianjun,DONG Shan,et al.Novel optoelectronic materials-VOx[J].Infrared and Laser Engineering,2008,37(S3):407-409.(in Chinese)
参考文献 88
赵佳明,边继明,骆英民,等.用于智能激光防护武器的二氧化钒薄膜研究进展[J].兵器材料科学与工程,2011,34(2):102-106.ZHAO Jiaming,BIAN Jiming,LUO Yingmin,et al.Recent research progress in VO2 thin films for intelligent laser protection weapons[J].Ordnance Material Science and Engineering,2011,34(2):102-106.(in Chinese)
参考文献 89
GUI Z,FAN R,CHEN X H,et al.A New metastable phase of needle-like nanocrystalline VO2·H2O and phase transformation[J].Journal of Solid State Chemistry,2001,157(2):250-254.
参考文献 90
杜艳秋,尚春雨.强度防护型激光防护机制[J].激光与红外,2009,39(4):363-366.DU Yanqiu,SHANG Chunyu.Principles of laser protective technology against intensity[J].Laser & Infrared,2009,39(4):363-366.(in Chinese)
参考文献 91
刘志伟,张斌,陈彧.二维纳米材料及其衍生物在激光防护领域中的应用[J].物理学报,2020,69(18):30-51.LIU Zhiwei,ZHANG Bin,CHEN Yu.Two-dimensional nanomaterials and their derivatives for laser protection[J].Acta Physica Sinica,2020,69(18):30-51.(in Chinese)
参考文献 92
GANEEV R A,RYASSNYANSKY A I,REDKORECHEV V I,et al.Variations of nonlinear optical characteristics of C60 thin films at 532 nm[J].Optics Communications,2003,225(1-3):131-139.
参考文献 93
LIU R,HU J Y,ZHU S Q,et al.Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes[J].ACS Applied Materials & Interfaces,2017,9(38):33029-33040.
参考文献 94
DU Y L,DONG N N,ZHANG M H,et al.Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting[J].Physical Chemistry Chemical Physics:PCCP,2017,19(3):2252-2260.
参考文献 95
SHUKLA V,SINGH C P,MUKHERJEE C,et al.Investigation of optical limiting in cobalt nanoparticles synthesized by laser ablation[J].Chemical Physics Letters,2013,555:149-153.
参考文献 96
GUO Z N,ZHANG H,LU S B,et al.Phosphorene:from black phosphorus to phosphorene:basic solvent exfoliation,evolution of raman scattering,and applications to ultrafast photonics[J].Advanced Functional Materials,2015,25(45):7100-7100.
参考文献 97
FU G,YODA T,KAZUO K,et al.Third-order optical nonlinearities of naphthalocyanine derivatives measured by resonant femtosecond degenerate four-wave mixing technique[J].Synthetic Metals,2005,155(1):68-72.
参考文献 98
胡富根,徐碣敏,周淑英,等.复合型激光防护眼镜的激光防护效应观察[J].兵器激光,1986(3):50-54.HU Fugen,XU Yemin,ZHOU Shuying,et al.Observation of laser protection effect of composite laser protective glasses[J].Laser Technology,1986(3):50-54.(in Chinese)
参考文献 99
WANG B,LI E H,DU J J,et al.Effects of heat treatment conditions and Y-doping on structure and phase transition temperature of VO2 powders[J].Transactions of Nonferrous Metals Society of China,2020,30(4):1038-1045.
参考文献 100
GUO H,WANG Y G,JAIN A,et al.Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties[J].Journal of Alloys and Compounds,2021,878:160352.
参考文献 101
WANG D,GUO D Y,ZHAO Z J,et al.Surface modification-assisted solvent annealing to prepare high quality M-phase VO2 nanocrystals for flexible thermochromic films[J].Solar Energy Materials and Solar Cells,2019,200:110031.
参考文献 102
SIMO A,BEUKES P,KAVIYARASU K,et al.Structural and luminescence properties changes study of VO2 nanostructures induced by gamma irradiation[J].Materials Today:Proceedings,2021,36:595-599.
参考文献 103
骆永全,王伟平,罗飞.V2O5 薄膜在连续激光防护中的应用研究[J].应用激光,2005(6):381-383.LUO Yongquan,WANG Weiping,LUO Fei.Study on the application of vanadium pentoxide thin films in continuous laser protection[J].Applied Laser,2005(6):381-383.(in Chinese)
参考文献 104
CHEN Y,BAI T,DONG N N,et al.Graphene and its derivatives for laser protection[J].Progress in Materials Science,2016,84:118-157.
参考文献 105
黄强,王丽熙,张其土.双波段激光防护多层反射膜的设计[J].光学技术,2007(S1):147-149.HUANG Qiang,WANG Lixi,ZHANG Qitu.Design of double-wavelength reflective multi-layer coatings for laser protection[J].Optical Technique,2007(S1):147-149.(in Chinese)
参考文献 106
MOGHARE A M,KIANI A.Optical reflectivity of heat-treated nanofibrous silicon thin-films induced by high energy picosecond laser pulses[J].Sensing and Bio-Sensing Research,2020,30:100385.
目录contents

    摘要

    激光武器由于打击能量大、打击精度高、抗干扰能力强等优势已成为各军事强国竞相研究的技术领域。相应地如何开展激光防护工作成为科研人员亟须解决的难题,而之前对于激光防护材料及其在涂层中的应用研究进展仍未有较全面的归纳总结。首先介绍激光武器的优越性能和激光防护的重要意义;接着总结激光防护机制,包括激光与材料相互作用机理和三种激光对材料的破坏形式,提出激光防护材料的原理和要求,并归纳激光防护材料的研究进展,包括高反射率材料、耐烧蚀材料,以及相变材料等的防护特点和防护效果。随后归纳这几种材料在涂层中的应用研究进展。最后指出目前激光防护技术存在的局限性,并探讨激光防护材料未来的研究方向。根据激光与材料的作用机理,分别从高反射、耐烧蚀和激光软防护方面对防护材料进行综述,并分别综述各类材料在涂层中的应用,对防护材料的发展方向进行展望。填补了对于激光防护材料及其在涂层中应用研究进展总结的空白,可为激光防护新技术的发展提供借鉴。

    Abstract

    Laser weapon has become a competitive research field in military power because of its advantages such as high striking energy, high striking accuracy and strong anti-jamming ability. How to carry out laser protection has become an urgent problem for researchers to solve. However, the research progress of laser protection materials and their application in coatings has not been comprehensively summarized before. This paper first introduces the superior performance of laser weapon and the significance of laser protection. Then this paper summarizes the laser protective mechanism, including the mechanism of interaction between laser and material, and three kinds of laser damage to the material form, on the basis of which the principle of laser protection materials and requirements, and summarizes the research progress of laser protection materials, including the protective characteristics and the protective effect of high reflectivity material, ablative resistance material, as well as phase change materials. Then the application of these materials in coatings is summarized. Finally, the limitations of current laser protection technology are pointed out and the future research direction of laser protection materials is discussed in order to provide reference for the development of new laser protection technology. According to the interaction mechanism of laser and material, the protective materials are reviewed from the aspects of high reflection, ablative resistance and laser soft protection. Finally the application of various materials in coating is reviewed, the development direction of protective materials is prospected, and the research progress of laser protective materials and its application in coatings is filled up, in order to provide reference for the development of new laser protective technology.

  • 0 前言

  • 激光的理论基础最早由爱因斯坦提出,其实质就是“受激辐射的光放大”。随着对激光的研究逐渐深入,人们总结了激光的特点:定向发光、亮度极高、能量密度大,并发展了多种激光技术在生产生活中应用,如激光切割、激光焊接、激光清洗、激光治疗等。在军事应用上,20 世纪 60 年代第一台红宝石激光器[1]问世之后,研究人员们就致力于将其运用到国防军事领域,并掀起了研究热潮,以美国为例,20 世纪末至今,陆续研发了车载、舰载、机载激光武器并相继投入试验,有军事专家预测, 2030 年前美国将部署更为先进的飞机自卫激光器和无人机载战术导弹防御武器,乃至光子战斗机和天基全球精确光学武器或空间中继激光武器。除美国外,日本、德国和英国等军事强国也陆续开展激光武器的相关研究,并相继进入实战阶段[2-6]。激光武器是一种利用定向发射的激光束直接毁伤目标或使之失效的高精度杀伤性武器,其组成和工作原理如图1 所示。随着研究的不断深入,人们逐渐探索出激光武器的巨大优势:

  • (1)激光能量集中、传输距离远,大多数正在开发与测试的战术级军用高能激光功率在几十千瓦至 100 kW 之间,而战略级军用高能激光功率更是可以高达数千千瓦,通过发射器可以将激光能量汇聚到近乎于一点发射。

  • (2)激光打击精度高、响应速度快,超音速或亚音速的战机以及弹道导弹在光速面前近乎于静止目标,其作战方式几乎可以达到瞄准即摧毁,可对空天目标进行外科手术式的精准打击。

  • (3)抗电磁干扰能力强、效费比高,激光武器占用空间小,理论上只要电能充足就可以无限发射[2-6]

  • 随着科技的进步,可以预见,未来的战争将是涵盖多维度、多领域、全时域、高强度的综合战争,武器装备的发展是一个国家军事实力的重要体现,激光武器很可能会成为占据未来战场的主导力量,甚至改变未来战争的模式和格局,随着各军事强国对激光武器研究投入的逐步加大,激光领域的研究人员也应该紧跟趋势,加强对实现有效激光防护领域的研究。

  • 本文通过对激光与材料相互作用机理的分析,总结激光防护材料的防护机制,同时指出目前被大量研究的激光防护材料及其在涂层中的应用,如高反射率金属材料、耐烧蚀树脂基材料以及利用此类材料制备的涂层,最后指出目前激光防护存在的一些缺点和局限之处,并探讨未来的重点研究方向。

  • 图1 激光武器系统的构成和基本原理示意图[4]

  • Fig.1 Schematic diagram of the components and basic principles of a laser weapon system[4]

  • 1 激光防护机制

  • 激光防护机制是多种复杂机制有机结合的作用,其中涉及到物理学、化学、机械等多学科交叉的内容。想深入了解激光防护材料的防护机制、探讨激光防护材料的发展现状以及发展趋势,必须明确激光与材料的相互作用机理以及激光对材料的主要毁伤形式,这样科研人员可以有针对性地寻找或开发激光防护材料。

  • 1.1 激光与材料相互作用机理

  • 探明激光与材料的相互作用机理对于理解材料的激光烧蚀过程非常重要。在激光束的照射下,材料会吸收照射能量。这会导致各种效应,如加热、熔化、汽化和等离子体的形成,而材料被激光辐照的过程中也往往会伴随着化学变化。目前人们已知激光参数包括强度、波长、入射角、空间和时间相干性、照明时间和偏振;基底材料的参数包括对激光能量的吸收、热导率、比热和密度会显著对相互作用产生影响[7]。因此要从物理、化学两方面探讨激光与材料相互作用机理。

  • (1)在物理方面,激光与材料最先发生的相互作用是材料对激光能量的吸收。当激光束照射到基底材料的表面时,一部分激光能量会因为真实折射率的不连续而从界面上反射出来,其余的会被传输到材料中。一般地,随着波长的提高反射率也会提高。未被反射的激光照射至基体会导致自由电子的激发(金属)或者振动(绝缘体),从而使系统能量增加,并且迅速转化为热量[8]

  • (2)热量传导进材料会使材料升温,形成一个加热的过程,这可能会导致材料的组织性能发生改变,特别是复合材料中各相具有不同的热物理性质,这导致不同相的温度分布有很大的不同,各相可能呈现不同的烧蚀行为和机制。温度分布不均也可能造成热应力对材料的破坏[9]

  • (3)如果激光功率密度很大,材料的表面温度可能达到其熔点。纯金属材料一旦达到其熔点就会开始熔化。而复合材料由于各相具有不同的熔点,随着激光功率密度或脉冲数的增加,会依次得到熔化。熔点低先熔化的相可能会与其他一些相或大气发生反应,产生新的物质,并影响材料的表面熔化和材料的相组成[10]

  • (4)如果激光强度足够高,材料的表面会被加热到沸点,将会导致严重的蒸发性材料去除。一旦在材料表面开始汽化,持续的激光照射会使液-汽界面在材料内部深移,并且蒸汽还会造成材料内部的空洞,引起材料的缺失性破坏[79]。弱强激光继续辐照蒸汽,蒸汽可能被电离形成等离子体,等离子体和蒸汽在高温下的反冲力会冲刷材料被辐照表面,加速材料的流失。

  • (5)化学方面,主要是基体材料在激光烧蚀过程中会与环境气体发生反应,可能会形成一些新的化合物。例如碳基材料(如石墨和 C / C 复合材料),与氧气的反应会产生 CO 和 CO2气体,很容易从烧蚀的表面喷出,在基体材料留下大量空洞,影响材料性能甚至导致材料失效。然而,对于某些难熔合金和难熔陶瓷,氧化反应会产生难熔氧化物。这些氧化物普遍具有高熔点,特别是这些氧化物对于氧气的渗透率非常小,反而保护基材材料不与氧气接触,阻止了进一步氧化破坏。

  • 1.2 激光对材料几种破坏形式

  • 一般地根据上述总结的相互作用机理划分,激光对于材料的破坏可分为热作用破坏、力学破坏和辐射破坏[5-611-14]

  • 1.2.1 热作用破坏

  • 热作用破坏主要表现为激光对材料的热烧蚀效应。热烧蚀效应是指激光照射到靶材表面时,靶材电子由于吸收大量光能产生碰撞运动从而转化为热能,使材料温度由表及里迅速升高。当温度超过靶材的熔点时,材料开始熔融甚至气化。由此产生的高速蒸气会向外膨胀喷溅,并带走熔融状态的液滴或者固体颗粒[21115]

  • 目前国内外学者针对激光对材料的热烧蚀效应做了大量研究。对于金属材料的烧蚀现象已经有较多研究[16-18],学者普遍认为金属材料激光烧蚀效应受控于激光功率密度,当激光功率密度达到 105~106 W / cm2 时,出现熔化或气化,增大到 107 W / cm2 以上时,会产生等离子体。LI 等[19]以金为基体,氧化硅和氧化铪为电介质制备了一种用于激光脉冲压缩的金属多层介质光栅(MMDG)。激光脉冲以 800 nm 为中心,脉冲宽度为 450 ps,辐照后表面形貌 SEM 图像如图2 所示,可以看出脊侧壁和损伤坑表面的交线是直的并且平行于光栅表面,这反映了制备的脊状二氧化铪层具有均匀的热力学性质。由此得出结论:光栅损伤主要是由热烧蚀作用引起的,应力作用较少。针对非金属材料国外很多学者已经走在前列。LI 等[20]建立了一个综合数值模型来预测高强度连续激光辐照下碳纤维增强复合材料 (CFRP)体积烧蚀的热响应,如图3 所示。研究发现:在相同的激光辐照下,最大热解反应速率随着激光功率密度的增加而增加。随着激光辐照时间的增加,复合材料中的热解反应中心向复合材料的背面移动。同时,最大热解反应速率随着激光照射时间的增加而降低。

  • 图2 MMDG 扫描电镜损伤形貌[19]

  • Fig.2 SEM damage morphology of the MMDG[19]

  • 图3 连续激光对 CFRP 复合材料的体积烧蚀示意图及其一维数值模型[20]

  • Fig.3 Schematic of volumetric ablation of CFRP composite with a CW laser and the corresponding one-dimensional numerical model[20]

  • NIU 等[21]研究了惰性气氛下聚合物基氮化硅陶瓷的激光烧蚀行为,研究发现当激光功率大于 40 W 时,出现了明显激光烧蚀现象,并且随着激光功率的增加,烧蚀加剧,在烧蚀区域观察到大量裂纹,整个激光烧蚀过程伴随着复杂的热性质和化学性质的变化,如图4 所示。针对此现象 NIU 等利用有限元模拟量化了激光加热过程中由高斯分布的激光热流引起的非均匀温度场,发现此现象的出现归因于高加热速率和高温度梯度引起的热应力。 LIU 等 [22] 归纳总结大量激光对 Cf / SiC–ZrC(CSZ)复合材料的烧蚀行为后总结得到:Cf / SiC–ZrC(CSZ)复合材料表现出相似的烧蚀区域划分,表面根据其形态特征可大致分为四个区域,即中心烧蚀坑区(Ⅰ)、烧蚀过渡区 (Ⅱ)、氧化区(Ⅲ)和边缘非烧蚀区(Ⅲ之外),如图5 所示(其中数字代表烧蚀时间 / s,5a 至 5c 分别代表 CSZ-5、CSZ-10、CSZ-15)。

  • 图4 非晶碳化硅陶瓷激光烧蚀过程示意图[21]

  • Fig.4 Schematic diagram of the laser ablation process[21]

  • 图5 典型激光烧蚀样品前后表面的光学图像[22]

  • Fig.5 Optical images of the front and back surfaces of typical laser-ablated samples [22]

  • 1.2.2 力学破坏

  • 力学破坏主要包括激波效应和热应力作用。激波破坏效应是脉冲高能激光特有的物理效应,又称力学破坏效应。脉冲高能激光辐照功率达到峰值时,靶材表面因烧蚀作用形成一个等离子层。该等离子层高速向外喷射,施于靶面一个冲击压力,该压力称作烧蚀压力。靶面的这一烧蚀压力的冲击加载导致一个激波向靶内传播,称作压缩加载波。随着激光功率的下降,又会向靶内传播一个稀疏卸载波。由于稀疏卸载波很快赶上前面的压缩加载波,两者叠加的结果便形成了三角形剖面的激波。该激波到达靶材后自由面时发生反射,转换为拉伸波。拉伸力达到一定值时便会引起拉伸损伤,即断裂破坏。这就是激光的激波破坏效应[211-1215]。热应力作用主要指激光照射到材料上时,将产生空间非均匀的温度场,这将使不同区域材料的热膨胀量不同从而导致热应力。如果材料发生了熔融,密度变化很大,在激光脉冲照射过后材料快速冷却凝固,凝固后的材料密度一般低于照射前的凝聚相密度,并且密度的空间分布是不均匀的,这也会产生热应力。在热应力集中的部位可能造成裂纹甚至发展为局部破坏。由热应力造成靶材破坏所需的激光能量密度阈值,比纯粹由热作用造成材料破坏的相应阈值低得多[11-14]

  • 蔡虎等[23]分别采用单脉冲和多脉冲激光辐照 Hg0.8Cd0.2Te 晶片,并对比分析不同脉冲次数对材料破坏机制的影响,晶片表面的破坏特征如表1 所示 (其中 1 # 代表单脉冲辐照样品,2# 代表多脉冲辐照样品)。分析得出,激光热应力以及脉冲作用次数是影响材料破坏的关键因素。LI 等[24]研究了氟化钙单晶在紫外激光辐照下的表面损伤行为和材料失效机理,图6 为 21 J / cm2 单脉冲激光对氟化钙表面损伤的典型形貌 SEM 照片,可以清楚看出严重碎裂的核心区域存在平行的裂纹群,这表明材料经历了严重的机械应力。随后基于热弹性理论计算了由热梯度引起的热应力,分析得出热诱导的表面环向应力是驱动 CaF2 晶体机械破坏的主要原因。

  • 表1 晶片表面的破坏特征[23]

  • Table1 Destruction characteristics of the wafer surface[23]

  • 图6 21 J / cm2单脉冲激光对氟化钙表面损伤的典型形貌[24]

  • Fig.6 Typical morphologies of surface damage for CaF2 induced by one pulse laser at 21 J / cm2 [24]

  • 徐鑫等[25]通过建模计算研究了激光分别在静止和移动条件下辐照普通瓷、氧化铝瓷、氧化锆瓷、堇青石瓷 4 种材料的损伤情况。研究发现激光辐照下陶瓷的热作用区域十分小,极小范围内的高温度梯度形成很大的热应力,超过瓷质绝缘子的抗拉应力阈值而破碎。对于金属材料的力学破坏现象,孙铭远等[26]以 Al 基体圆筒壁面为靶材建立了应力场模型,并计算了激光功率密度为 20 kW / cm2 时圆筒壁面的径向应力、环向应力和轴向应力。分析得出,在此激光功率下,仅 0.003 s 热应力便超过了许用应力,材料发生破坏。

  • 1.2.3 辐射破坏

  • 当高能量的激光辐照材料时,气化的物质会被电离成等离子云。等离子云一方面可以屏蔽激光同时也会辐射出紫外线和 X 射线,对目标材料以及电子光学原件造成损伤。紫外线主要针对人体造成激光致盲,同时对材料的性能也有一定影响,特别是容易导致聚合物结构变化。X 射线具有极强的穿透能力,可使感光材料曝光,作用时间较长时可使物质电离改变其电学性质,也可以对材料产生光解作用使其发生暂时性或永久性色泽变化,对固体材料造成剥落、破裂等物理损伤,这就是辐射破坏效应[27-811]

  • LOHANI 等[27]讨论了紫外线辐射对纤维增强聚合物(FRP)复合材料性能的影响,并以玻璃纤维 / 环氧树脂(GE)复合材料为例展开试验,研究发现紫外线辐射会显著影响此材料的层间剪切强度,但不会改变材料的玻璃化转变温度。 MONSORES 等[28-29]研究了紫外辐射对于聚苯乙烯材料和聚甲基丙烯酸甲酯材料的力学性能影响。将聚苯乙烯和聚甲基丙烯酸甲酯压制成板材,通过对比材料是否暴露在紫外辐射条件下的力学性能发现:紫外辐照不会改变两种材料的分解温度,但是会发生大分子改性从而影响其力学性能,特别是断裂伸长率和拉伸强度。为了探究 X 射线辐射对金属材料的影响, QI 等 [30] 将一种钨重合金电极 90We4Cu6Ni 暴露于高能量密度等离子体和 X 射线辐射中,并对比了单次曝光和多次曝光后电极材料的损伤情况如图7 所示。从图中明显看出:在高能量密度等离子体和 X 射线辐射的极端热机械条件下,会对钨重合金材料产生严重烧蚀破坏。国内的何佩谣等[31]研究了相变材料 Ge2Sb2Te5 在 X 射线辐照下的结构变化,研究发现随辐照时间的增加, Ge2Sb2Te5 材料中各元素化学状态及键合方式发生了改变,被氧化的程度也逐渐增强。研究还确定了 Ge2Sb2Te5的照射时间阈值为 9 h,超过 9 h 材料表面会受到严重破坏,形成大量孔洞。

  • 综上所述,激光防护机制要求有以下重点: ①靶材表面的反射率应尽可能高,尽可能阻止激光能量传导进材料,以减少激光热量的沉积;② 防护材料具有较高的热沉和较低的热导率,以增加材料的防护阈值,降低防护目标温升。③ 在特定场合下,防护材料应有对于电离产生的紫外线和 X 射线的防护作用。

  • 图7 钨重合金电极尖辐射后的扫描电镜显微照片[30]

  • Fig.7 SEM micrograph of the WHAs electrode tip after pulse exposure[30]

  • 2 高反射率材料

  • 随着激光装备以及试验分析技术的飞速发展,人们在深入研究并明确激光对材料的主要破坏作用后,开始着手研究可以用作激光防护的材料,目前已经取得了较大进展,如一些金属材料,树脂材料以及陶瓷材料都已经被证实对激光防护有积极作用。对激光的反射是激光辐照材料初期散耗激光能量的重要方式,高反射率材料可以反射大部分激光能量,从而使到达基体的能量远低于材料毁坏阈值。若仅仅依靠耐烧蚀材料或热障材料自身散耗激光能量,会给激光防护材料提出过于苛刻的要求。所以深入研究高反射率材料对激光防护具有重要意义。

  • 2.1 金属材料

  • 高反射率材料主体思想是利用材料对光的高反射特性,将入射激光大部分能量以反射或散射形式耗散出去,减少材料对激光能量的吸收,降低激光与材料的热耦合效应以实现激光防护目的[32-34]。金属中的价带与导带是重叠的,它们之间没有禁带,所以不管入射光子的能量多大,电子都可以发生跃迁。但是跃迁至高能级的电子处于不稳定状态,立刻会回落到能级较低的稳定态,同时发射出与入射光子相同波长的光子束,这就是金属的反射现象。金属材料一般有较多的自由电子,这决定了金属材料普遍具有有高反射率[35]。金属材料也成为目前常用的激光反射材料。

  • 张磊等[36]对 Cu 和 Al 材料粗糙表面的双向反射分布函数(BRDF)做了研究,并分别对比了不同激光入射角和材料不同表面粗糙度条件下 Cu 和 Al材料的 BRDF,在特定波长的入射光辐照下,粗糙铝板和粗糙铜板表面的 BRDF 分布具有明显的镜反射特征。YAHIAOUI 等[37]对比了 Al 纯金属和 Al2O3 在在相同试验条件下的激光烧蚀行为,试验结果表明氧化铝的烧蚀量是铝的十倍,这归因于 Al 对于激光的反射率要远高于 Al2O3。BENAVIDES 等[38]通过试验方法研究了低熔点金属Mg和Sn在激光烧蚀作用下的反行为,并得到如图8 所示结果。从图中可以看出,随着激光能量增加两种金属的激光反射率先保持基本不变,在达到某一阈值后降低,原因是在激光烧蚀过程中激光诱导产生等离子体吸收了部分激光辐射。

  • 图8 镁和锡的总反射率与激光能量密度的关系[38]

  • Fig.8 Total reflectivity of magnesium and tin as function of laser fluence for ablation in 1-atm air[38]

  • 金属材料虽然对激光反射率较高,但是熔点相对较低,热障性能差、化学性质不稳定这些缺点都限制了其作为激光防护材料的大规模应用。

  • 2.2 陶瓷材料

  • 目前陶瓷材料是高反射率激光防护材料的研究热门,陶瓷材料普遍具有较高的熔点和优良的热障性能,一旦具有高反射率将成为非常理想的激光防护材料。

  • ZHENG 等[39]用第一性原理(包括 GGA 和 GGA+U)和试验方法研究了 Ba2SmTaO6 的晶体结构、电子结构和光学性质。研究结果发现, Ba2SmTaO6 的四方相和立方相都具有特别高的反射率(在 1.06 mm 处高达 97%),其次 Ba2SmTaO6作为陶瓷材料不仅具有非常高的熔点,而且还拥有与金属媲美的高反射率,因此具有非常好的激光防护前景。刘维良等[40]对比了不同掺杂物对于 Al2O3 陶瓷基板性能的影响,研究指出 Al2O3 陶瓷基板材料掺杂 Y2O3时,可以大幅度提高材料的介电常数,从而提高反射率。吴崇隽[41]在此基础上继续研究了在普通 Al2O3 陶瓷基板中掺杂不同金属氧化物如 ZnO、 SnO2 或 ZrO2 可增加材料气孔率,研究发现随着气孔率增加,普通陶瓷基板的反射率从 92%提高到 99%。

  • 2.3 树脂材料

  • 人们对于树脂材料的关注大多集中在其热障性能和高熔点上,目前国内外针对高反射率的树脂材料研究报道较少。MA 等[42]成功制备了碳化锆改性短碳纤维增强酚醛树脂基复合材料,并研究了其激光烧蚀行为,如图9 所示。发现此材料在经过高能激光烧蚀后,表面的碳化锆颗粒烧结氧化成致密的氧化锆层,对激光的反射率可提升 50%以上,并且在经过 180 s 的高能激光烧蚀后仍然不发生破坏。但这也仅仅是相对提高了激光对材料的反射率,距离作为高反射材料使用还有较远距离。

  • 图9 激光烧蚀碳化锆改性短碳纤维增强酚醛树脂基复合材料过程示意图[42]

  • Fig.9 Schematic diagram of laser ablation of zirconium carbide modified short carbon fiber reinforced phenolic resin matrix composites [42]

  • 2.4 高反射率涂层材料

  • 激光防护涂层是对飞机导弹等易受激光打击目标进行激光防护最常见也是最有效的办法。之前研究人员设想过利用各种镀膜技术在材料表面形成具有抗激光辐照的薄膜,但是这些镀膜工艺存在效率低、受工件体积与形状限制很大和成本较高等缺点 [43]。现今对高能激光的反射型防护材料的应用,一般是采用特殊的喷涂方式将高反射率材料喷涂在受保护基体上,这是目前最常见的反射型防护方法。等离子喷涂焰流速度高,粒子获得的动能大,涂层致密度高、表面粗糙粗低,并且喷涂过程中的保护气体可以保护基体和喷涂颗粒不受氧化,所以目前大多采用等离子喷涂制备防护涂层。

  • 国内在反射型激光防护涂层方面,北京理工大学王富耻团队率先做了大量研究,并取得一系列成果[43-48]。金属材料一般有较多的自由电子,这也决定了金属材料介电常数比较高,因此普遍具有高反射率。朱锦鹏等[43-44]指出金属 Al 涂层的反射率可达到 98.1%,但是 Al 涂层在激光辐照后会被氧化,反射率随激光功率增加而降低。随后又研究了等离子喷涂不同金属涂层(铝、铜和银)的光学性能与微观结构之间的关系,试验指出金属涂层与其表面氧化行为以及表面粗糙度有直接关系,因而控制金属涂层在激光辐照过程中的氧化行为以及提高涂层表面粗糙度是提高金属涂层光学损伤阈值的重要方向。

  • 金属材料虽然有较高的反射率,但是其化学性质不稳定,导致在激光防护领域的应用有很大局限性。因此王富耻教授团队将研究重心转到拥有高反射率的陶瓷材料上,并成功制备了 La1-xSrxTiO3+ð 块体。孔静等[45]以环氧乳液为基料,采用空气喷涂法制备了 La0.9Sr0.1TiO3 涂层,并分析了烧蚀产物和不同烧蚀区域的微观形貌,指出涂层丧失高反射率的原因是大功率长时间的激光辐照使涂层中的有机部分燃烧气化,破坏了涂层结构。ZHU 等[46]用 4 组不同的喷涂参数制备了4组不同的La1-xSrxTiO3+ð(LST)涂层,喷涂参数如表2 所示,LST 涂层的反射光谱如图10 所示,其中曲线 a 至 d 分别代表 LST-1 至 LST-4。从图中可以看出 LST-4 的反射率最高,图11 为 LST 涂层的横截面形貌,LST-4 的孔隙率最高。由此得出孔隙率是影响散射系数的主要因素。李东荣等[47]用等离子喷涂制备了 Al2O3 涂层,研究了 Al2O3 不同相结构对于反射率的影响,通过第一性原理计算得到 α-Al2O3 的反射率为 6.6%,γ-Al2O3 的反射率为 40.13%,并指出此现象的原因是:α-Al2O3 中存在 6eV 的禁带宽度,阻碍了价电子的跃迁, γ-Al2O3 中费米面附近的电子轨道产生交叠,有利于电子的连续跃迁提高了产生光子的概率。试验还指出激光辐照会使 Al2O3涂层中的 γ 相向 α 相转变,导致涂层的激光反射率降低。

  • 图10 LST 涂层的反射光谱[46]

  • Fig.10 Reflectivity spectra of LST coatings [46]

  • 表2 大气等离子喷涂参数[46]

  • Table2 Atmospheric plasma spray parameters[46]

  • 图11 LST 涂层的横截面形貌[46]

  • Fig.11 Cross-sectional morphologies of LST coatings [46]

  • ZHENG 等[48]用等离子喷涂制备了 Ta2O5 涂层,试验发现喷涂后 Ta2O5 发生了相变转化为 Ta2O3,并且在辐照过程中分为三个阶段:首先涂层被氧化,随之涂层反射率增加;随后出现微裂纹;接着微裂纹生长和扩展,然后涂层分解失效。通过模拟激光辐照过程中的温度场,发现激光辐照过程中反射率的增加又可以显著降低升温速率,这种机制使 Ta2O5 涂层有良好的激光防护前景。此外北京理工大学的 XU 等[49]还研究了树脂材料复合涂层的激光烧蚀性能,制备了 APP[(NH4PO3nn=500-700]-聚苯并噁嗪 (A / P-ddm) / 季戊四醇(PER)三聚氰胺(MEL) 改性 APP-聚苯并噁嗪(AM / P-ddm) / 纯聚苯并噁嗪三种涂层,并研究了辐照复合涂层的光学行为。图12 为三种涂层的反射率,其中 12a 为激光照射前涂层的表面反射率,12b 为激光照射后残余炭的表面反射率,12c 为激光照射过程中的前散射光响应, 12d 为显示导致激光反射率变化机理的示意图。从图中可以看出,三种涂层都具有较高的反射率,而添加季戊四醇和三聚氰胺无机涂料改性的 APP-聚苯并噁嗪涂层具有最好激光反射表现,这说明聚苯并噁嗪树脂材料自身具有良好的激光防性能,加入无机填料后会进一步提高反射性能,试验证明了复合树脂材料也可以应用在反射型激光防护领域,结合复合树脂材料自身的耐烧蚀特性,将会成为未来激光防护的重要方向。XU 等[50] 制备了 ZrC 和 SiC 改性的甲阶酚醛树脂型硼改性酚醛树脂(BPF)复合涂层。试验指出该涂层在激光辐照后会生成由 ZrO2 和 SiO2 组成的白色陶瓷层,分别对应 ZrC 和 SiC 的氧化物。由紫外-可见近红外分光光度计测试陶瓷层的反射率可达到 63.5%,而在生成白色陶瓷层之前的涂层表面反射率仅为 7.3%。西北工业大学的 WANG 等[51]也做了相关研究,成功制备了 SiO2-Nd2O3 / Si-SiC 双层涂层,并研究了 Nd2O3 改性 SiO2 涂层的激光烧蚀行为以及反射率对抗烧蚀性能的影响。试验发现材料的反射率由改性前的 39.6%提升到改性后的 82.9%。通过对比前后的烧蚀质量和线性烧蚀率,也验证了有优异反射能力的 SiO2-Nd2O3 涂层具有更好的激光防护性能。

  • 图12 三种涂层的反射率[49]

  • Fig.12 Reflectivity of the three coatings[49]

  • 研究反射性激光防护意义重大,不过更多的是要将反射性防护和烧蚀型防护结合起来,二者共同作用下才能将防护效果提升至最优。

  • 3 耐烧蚀材料

  • 耐烧蚀材料主要是利用高烧蚀热焓材料在激光作用下发生裂解、气化等吸热反应,大量消耗激光能量,使传达到基体的能量构不成损伤或者利用热障材料低热导率的特点,延缓激光热量的纵向传递,从而避免高温能量传递到基体发生毁坏[32-34]

  • 3.1 陶瓷材料

  • 陶瓷材料是目前应用最广泛的耐烧蚀材料,其组织结构稳定,不易与介质中的氧发生作用。陶瓷材料普遍熔点较高,导热能力远低于金属材料,是非常理想的高温绝热材料。目前已经被利用在激光防护领域的有金属陶瓷、碳化硅陶瓷、氮化硅陶瓷以及氧化铝陶瓷等。

  • 漆海滨等[52]以 Ly12 硬铝合金为基体,制备了铝基碳化硅纤维增强复合陶瓷材料,并探究了烧蚀行为,结果表明复合陶瓷材料的耐烧蚀性能较铝基体有明显提高。YAN 等[53]探讨了金属基复合陶瓷材料 ZrB2 / Cu 的激光烧蚀行为。研究指出 ZrB2 / Cu 复合陶瓷表现出良好的耐烧蚀性能,图13 是此材料烧蚀 10 s 后的截面微观形貌,从图中可以看出,在经历 10 s 高能激光烧蚀后,也仅仅产生小于 50 μm 的烧蚀层。图14 为烧蚀 10 s 后光斑中心的表面微观结构及能谱。从图中可以得出材料经过烧蚀后,表面有很多孔洞且仅有 ZrO2 成分。说明烧蚀后 Zr 被氧化,Cu 和 B2O3 气体从孔洞中逸散出来。ZrO2 具有隔热能力,防止内部基体进一步烧蚀,Cu 的状态转变和 ZrO2 的生成都消耗了大量的能量,这是 ZrB2 / Cu 复合陶瓷表现出良好的耐烧蚀性能的主要原因。HONG等[54]制备了TiB2 /(Cu,Ni)C4 复合材料,获得了三维 TiB2 颗粒连结结构以及连续的(Cu,Ni)网状结构。在高温烧蚀下 Cu、Ni 相挥发并伴随着氧化行为,这被推测是 TiB2 /(Cu,Ni)C4 复合材料具有耐烧蚀性能的主要原因。ZHANG 等[55]合成了 Ta0.78Hf0.22C 固溶体陶瓷,并通过聚合物渗透和热解(PIP)将其引入到 C / C 复合材料中,通过试验研究了 Ta0.78Hf0.22C-C / C 复合材料在氧乙炔烧蚀环境下的耐烧蚀性能,发现在 2 200℃条件下,线烧蚀率和质量烧蚀率分别降低了 73%和 70%。原因是烧蚀后生成 Ta2O5 表现出良好的密封和阻氧能力,同时生成的新的固溶体氧化物颗粒 Hf6Ta2O17 可以在烧蚀过程中钉扎裂纹,这两个因素共同提高改性 C / C 复合材料的耐烧蚀性能。SU 等[56]使用火花等离子烧结设备制备了 MoAlB 陶瓷,在烧蚀试验过程中发现,温度低于 1 670℃时会生成 Al2O3 薄膜覆盖在材料表面,显著降低了烧蚀率。温度达到 1 670~2 200℃时,材料出现裂纹使氧气与内部接触,并产生挥发性的 MoO3和 B2O3,烧蚀率增加。该工作确定了 MoAlB 陶瓷在超高温领域的应用温度限制范围。

  • 图13 ZrB2 / Cu 复合材料柱状晶粒和树枝晶烧蚀 10 s 后的截面微观形貌[53]

  • Fig.13 Cross-sectional microscopic morphology of ZrB2 / Cu composites with columnar grains and dendrites after 10s ablation [53]

  • 图14 烧蚀 10 s 后光斑中心的表面微观结构及能谱[53]

  • Fig.14 Surface microstructure and EDS result at the spot center after being ablated for 10 s[53]

  • 碳化硅陶瓷是熟知的耐烧蚀材料,国内外对其研究也是最多的。LI 等[57]制备并研究了 C / SiO2 复合材料的烧蚀行为和激光辐照反应。试验表明,在低功率激光辐照下,材料反射率提高,材料表面没有明显损伤;随着激光功率的增加,石墨与二氧化硅发生吸热反应,生成碳化硅,消耗了大量激光能量,从而降低了内部材料吸收的激光能量。在辐照区域的中心,形成了平行于辐照方向的柱状石墨,其结构如图15 所示,这种结构有利于阻挡激光入射。CHEN 等[58]从烧蚀机理入手,通过试验对比了氧乙炔火焰在 2 900℃和 3 550℃下对 C / SiC 复合材料的烧蚀行为,试验指出在 2 900℃时,碳化硅基体的热分解和氧化是烧蚀发生的主要原因,温度加热至 3 550℃以上时,碳化硅基体和碳纤维的升华是主要的烧蚀原因。CHEN 等[59]主要从烧蚀产物入手,研究了 SiCf / SiC 复合材料的烧蚀行为。试验表明,SiCf / SiC 复合材料的激光烧蚀产物由粉末状的非晶二氧化硅和再结晶 SiC 组成。在严重的烧蚀条件下,也会产生少量的二氧化硅晶体。WANG等[60]研究了在极端条件下 C / SiC 复合材料的激光烧蚀行为。研究指出,在横向高超声速气流作用下 C / SiC 复合材料烧蚀率提高了 4~9 倍。主要原因是:高超音速气流会使烧蚀表面的对流热增加,烧蚀产物的沉积减少,空气动力侵蚀和热烧蚀效应共同导致烧蚀深度和宽度增加。在此基础上,WU 等[61]在 C / SiC 复合材料中加入 ZrC,制备改性 C / SiC-ZrC 复合材料,并研究其烧蚀性能。研究指出,烧蚀性能与 ZrC 颗粒的细密性有关,颗粒越细小分布越均匀,C / SiC-ZrC 复合材料的耐烧蚀性能越好。原因是:细密均匀的 ZrC 颗粒被氧化成 ZrO2 均匀分布在基体中,有良好的隔热性,并且熔融态的 SiO2-ZrO2 覆盖在复合材料表面,有效抵抗了火焰的冲刷和氧气的渗透。 LIU 等 [22] 也针对 C / SiC-ZrC 复合陶瓷材料的烧蚀行为做了研究,通过对比不同烧蚀时间下烧蚀样品的烧蚀形貌,将烧蚀形貌分为中心烧蚀坑区、烧蚀过渡区、氧化区和边缘非烧蚀区。这为人们后续研究提供了便利。LI 等[62]基于多重协同效应思想提出了通过在石墨 / 二氧化硅复合材料中插入多层铜箔层并添加二氧化硅顶层(以下称为 SGS-Cu)的方法提高耐烧蚀性,制备工艺如图16 所示。经试验测定,SGS-Cu 复合材料表现出高反射和高度各向异性的导热性能,这种多重协同效应策略和设计的结构为以后改良复合材料的耐烧蚀性提供了新的思路。

  • 图15 激光照射区域的表面扫描电镜形貌[57]

  • Fig.15 Surface SEM morphology of the laser irradiated area[57]

  • 图16 层状结构 SGS-Cu 复合材料制备工艺示意图[62]

  • Fig.16 Sketch of preparation process of laminated structure SGS–Cu composite[62]

  • 与碳化硅类似,氮化硅复合陶瓷材料也具有优异的耐烧蚀性能。ZHOU 等[63]对比了在氩气和空气环境下 SiC-N 非晶体陶瓷激光烧蚀行为。结果表明,在氩气环境下烧蚀率反而高于空气环境,原因是在空气中陶瓷表面可以生成连续的 Si-O-C 层隔绝氧气,从而保护内部不被进一步烧蚀。同时可以看出 SiCN 陶瓷材料具有硅-碳-氮互锁结构的氧化保护机制。为了进一步探究 SiC-N 陶瓷材料在氩气环境中的烧蚀机理,NIU 等[21]研究了非晶 SiCN 陶瓷在氩气气氛中激光烧蚀过程中的热稳定性和纳米结构演变。基于径向温度梯度,将 SiCN 陶瓷的典型烧蚀表面分为三个区域:反应区、过渡区、热影响区。由于碳热反应,在反应区仅观察到多孔碳化硅纳米结构。在过渡区,碳化硅陶瓷表现出较低的热稳定性,碳热反应温度降低,碳纳米结构石墨化增强。在热影响区显微组织形态没有明显变化,如图17 所示。ZHU 等[64]研究了氮化硼包覆的 Cf增强SiBCNZr复合材料的耐烧蚀性能以及热冲击性能。试验发现 Cf / SiCnZr 陶瓷基复合材料的线性烧蚀率低于 Cf / SiCn 和 SiCf / SiCn 复合材料,这说明 Zr 提高了复合材料的耐烧蚀性能,而氮化硼包覆的碳纤维提高了氮化硅陶瓷的抗热震性能。

  • 图17 激光烧蚀后 SiCN 陶瓷的微观形貌[21]

  • Fig.17 Microscopic morphology of the SiCN ceramics after laser ablation[21]

  • 3.2 树脂材料

  • 一些以热固性树脂为粘结剂支撑的热固性玻璃钢,具有密度小、强度高、介电性和耐蚀性及成型工艺好的特点,并且研究人员发现这类材料还具有优异的耐烧蚀性能,因此成为热门的激光防护材料。

  • 为了比较基体树脂对耐烧蚀性能的影响,张俊华等[65-66]测试了硼酚醛树脂、高残碳酚醛树脂、 S-157 酚醛树脂 3 种已知烧蚀性能优良的改性基体树脂的耐烧蚀性能和力学性能,试验表明硼酚醛树脂复合材料同时拥有最好耐烧蚀性能以及力学性能。张俊华等[67]又分别对比了玄武岩纤维、S-2 高强玻璃纤维、高硅氧纤维、碳纤维 4 种材料增强硼酚醛树脂和 S-15X 酚醛树脂复合材料的耐烧蚀性能。研究指出,4 种纤维增强硼酚醛树脂复合材料的烧蚀性能均明显好于其增强 S-15X 酚醛树脂复合材料,其中碳纤维增强硼酚醛树脂复合材料烧蚀性能最佳。于庆春等[68]制备了一种片状石墨增强钡酚醛树脂基复合材料,发现该材料耐烧蚀性能要优于碳纤维增强的钡酚醛树脂基复合材料,这是由于片状石墨在材料中呈近平行的层状分布,大大提高了对激光的反射率。在此基础上 XU 等[69-70]分别测试 TaSi2 和 ZrSi2 改性碳纤维增强酚醛树脂复合材料的耐烧蚀性能,结果表明 TaSi2和 ZrSi2改性碳酚醛复合材料具有良好的抗长期激光烧蚀能力,主要原因是烧蚀后形成了以 TaZr2.75O8、Ta2O5和 SiC 为主相的双层陶瓷结构,有效提高了复合材料的反射率,并且热解气体的蒸发和碳热还原反应的发生有效地消耗掉了沉积能量,烧蚀示意图如图18 所示。 MERZAPOUR 等[71]提出利用纳米 SiO2 改性碳纤维增强酚醛树脂复合材料,可以进一步提高酚醛树脂基复合材料的耐烧蚀性,并通过试验证实此材料的线性烧蚀率和质量烧蚀率分别比未加入纳米 SiO2 降低 23.55%和 61.11%。

  • 万红等[72-73]研究了另一种树脂基体——环氧树脂的热烧蚀效应,并以碳纤维增强环氧树脂复合材料为例研究其耐烧蚀性能。研究表明树脂基体在 300℃时开始裂解炭化,裂解生成的气体反而会保护碳纤维不发生氧化损伤,当辐照区温度达到碳的汽化温度 3 300℃,碳纤维发生汽化烧蚀。可以证明碳纤维环氧树脂复合材料有优异的耐烧蚀性能。贺敏波等[74]则深入分析了不同辐照时间和不同功率密度下碳纤维环氧树脂复合材料层合板的热解规律。研究表明:试样质量损失与功率密度呈线性关系;激光功率密度的增加可提高热烧蚀率,但随功率密度的增加,试样热烧蚀率增幅减小并有饱和趋势。为了探究热氧化对环氧类复合材料结构 / 性能的影响,LAFARIE-FRENOT 等[75]从理论上建立了耦合模型,并从理论上分析了扩散控制热氧化、树脂化学收缩 / 应力累积和环氧树脂基体粘弹性行为的规律。

  • 图18 改性复合材料耐激光烧蚀机理示意图[70]

  • Fig.18 Schematic diagram of the underlying laser ablation resistance mechanism of the modified composites[70]

  • C / C 复合材料是指以碳纤维或其织物为增强相,以化学气相渗透的热解碳或液相浸渍-炭化的树脂碳、沥青碳为基体组成的一种纯碳多相结构。当碳纤维树脂基复合材料固化时超过温度时,树脂就会碳化形成 C / C 复合材料,通过将 C / C 基材复合材料改性可以获得良好的耐烧蚀性能。彭国良等[76] 通过模拟不同风速下激光烧蚀 C / C 复合材料温度场,提出在亚音速下风力的影响不会明显加剧材料的烧蚀行为,因此可以将 C / C 复合材料用于激光防护领域。TONG 等[77]指出 C / C-ZrC 超高温陶瓷基复合材料线性烧蚀率明显低于 C / SiC 复合材料, ZrC 被烧蚀生成的 ZrO2对于耐烧蚀性能的提升要大于 SiC 被烧蚀生成的 SiO2。不同激光功率密度和不同烧蚀时间下 C / C-ZrC 复合材料和 C / SiC 复合材料的线性烧蚀率如图19 所示。CORRAL 等[78]制备了 ZrB2和 B4C 改性 C / C 复合材料,发现改性后的材料在高温(1 500℃)下比传统 C / C 复合材料的耐烧蚀性提高了 30%。

  • 3.3 耐烧蚀涂层材料

  • 耐烧蚀型防护涂层将高烧蚀热焓材料或热障材料制成涂层喷涂在基体表面。让涂层材料在激光作用下发生裂解、气化等吸热反应,大量消耗激光能量,或利用热障材料低热导率的特点延缓激光热量的纵向传递,最终使传达到基体的能量低于材料失效阈值,从而保护基体材料。如今烧蚀型防护涂层的研究已经较为成熟,树脂基复合材料涂层、陶瓷材料涂层、玻璃涂层等均已经投入使用。

  • 图19 C / C-ZrC 复合材料和 C / SiC 复合材料的线性烧蚀率[77]

  • Fig.19 Linear ablation rates of C / C-ZrC composites and C / SiC composites [77]

  • 北京理工大学的孙世杰等[79]利用大气等离子喷涂技术在 C / C 基体表面制备了 3 种不同成分配比的 SiC-Al2O3-SiO2 复合陶瓷涂层。烧蚀试验后 3 种涂层均未脱落,基体也未遭到烧蚀破坏。Al2O3 和 SiO2 形成了莫来石相,具有高温稳定性、抗热震性以及较低的热膨胀率和氧扩散率,显著提高了涂层的耐烧蚀性能。HE 等[80]分别在 C / C 基体制备了 NbC 和 NbC-ZrC 两种涂层,通过试验对比二者的烧蚀性能,并分析了二者具有高耐烧蚀性的原因。其中 NbC 涂层氧化形成光滑致密的液体层,主要由高熔点的 NbO 和 NbO2 组成,而不是纯的 Nb2O5,这显著提高了 NbC 涂层的短时抗烧蚀性能。NbC-ZrC 涂层氧化后液体层中多了 ZrO2 成分,ZrO2 提高了液相线温度,使液相层在烧蚀作用下存在更久,并且涂层会生成 Nb2Zr6O17 和 ZrNb14O37 两种氧化物,可以有效地增强形成的铌-氧-锆液膜。LI 等[81]研究了激光辐照单一 Al2O3 涂层的损伤规律和微观机制,激光能量密度超过 795 W / cm2 时,会出现气孔和裂纹,并随着激光能量密度的增加而增加。当激光能量密度超过 17 507 W / cm2 时,辐照中心涂层开始融化。并且涂层材料发生的从 γ-Al2O3 到 α-Al2O3 的相变以及 Al2O3 涂层中裂纹的产生和扩展消耗了大量的激光能量,基体没有烧蚀痕迹。LIANG 等[82]对比了传统氧化锆涂层和纳米氧化锆涂层的热震性能,分析试验数据后指出纳米氧化锆涂层热震性能更好的原因有两点:① 纳米氧化锆涂层中存在大量的微裂纹和分布均匀的细孔以及细晶粒结构。② 纳米氧化锆涂层出现表面垂直裂纹、晶间断裂以及四方氧化锆向单斜氧化锆转变的发生。

  • MA 等[83]使用涂布试验机制备了片状石墨和二氧化硅填料组成的超支化聚碳硅烷复合涂层,并设计了对照试验探究 SiO2在烧蚀过程中起的作用。第一组片状石墨、二氧化硅、玻璃珠和六溴环十二烷的质量比为 3 ∶ 2 ∶ 1 ∶ 4,对照样品缩写为 HBPCS-CS。第二组片状石墨、玻璃珠和六溴环十二烷的质量比为 3∶1∶6,对照样品缩写为 HBPCS-C。图20 为不同激光参数辐照下的 HBPCS-C 和 HBPCS-CS 铝基板的背面温度曲线,从图中可以看出,含有 SiO2 涂层的基板温度始终低于其对照组。这是由于 SiO2 的存在可以阻碍热量的传播,并且 SiO2、C 和 SiC 之间的耗能反应提供了强大的热量消耗能力。该试验验证了片状石墨和二氧化硅复合涂层体制可以用在高功率激光防护领域。LI 等[84]制备了不同镍含量的镍改性石墨和二氧化硅涂层。其中 Ni 含量 25 wt.%为 NGS-1,Ni 含量 50 wt.%为 NGS-2。从图21 可以看出 Ni 改性后的涂层反射率高于原始涂层,并且低 Ni 含量涂层反射率高于高 Ni 涂层;从图22 得知,在相同激光辐照条件下,低 Ni 含量涂层的耐烧蚀性能更好,其原因可以用图22、23 来解释。NGS-1 涂层熔融容的镍滴零星分布在表面,涂层的致密度很高。NGS-2 涂层 Ni 在水平和垂直方向上形成连续的层状结构,提高了垂直方向的热导率,并且阻隔了 C 与 SiO2 的吸热反应。该试验指出 Ni 改性的石墨和二氧化硅涂层,在控制合适的 Ni 含量时具有良好的激光防护作用。SU 等[85]报道了 ZrB2-MoSi2-SiC 三元陶瓷涂层的耐烧蚀机理,研究表明 ZrB2 和 MoSi2 的固液转变是主导因素,当所有相变完成且没有形成连续液相时 ZrB2-MoSi2-SiC 涂层失效。柳彦博等[86]制备了以碳化硅 / 氧化铝为内层、氧化锆 / 碳化硅 / 氧化钽为外层的双层涂层,将涂层在 1 800℃氧乙炔火焰下烧蚀,烧蚀过程中形成的镶嵌结构有利于阻止 O2 的扩散,表面涂层上形成的 Ta-Si-O 玻璃层具有隔热作用,涂层表现出良好的抗烧蚀能力。

  • 图20 不同激光参数辐照下的 HBPCS-C 和 HBPCS-CS 铝基板背面温度曲线[83]

  • Fig.20 Back surface temperatures of the aluminum substrate of HBPCS-C and HBPCS-CS irradiated with different laser parameters[83]

  • 图21 激光烧蚀后喷涂涂层和 NGS1、NGS2 涂层的反射率及背面温度曲线[84]

  • Fig.21 Reflectance and backside temperature curves of NGS1 and NGS2 coatings [84]

  • 图22 NGS-1 涂层的扫描电镜形貌[84]

  • Fig.22 SEM morphologies of NGS-1 coating[84]

  • 图23 NGS-2 涂层的扫描电镜形貌[84]

  • Fig.23 SEM morphologies of NGS-2 coating[84]

  • 4 激光软防护材料

  • 激光软防护主要是指针对人眼致盲和光电元件辐射失效的防护,其材料主要特点是选择性透过弱光阻绝强光,对于此类材料研究主要有以下几类。

  • 4.1 相变材料

  • 相变材料主要是指一些过渡族金属氧化物,这类材料在室温下处于基态晶体结构,当受到激光热激励达到某一阈值时,材料发生相变,并伴随着其光电特性的显著变化[323487]。目前研究最广泛的相变材料主要是金属钒的诸多氧化物,如氧化钒 (VO2)和五氧化二钒(V2O5)。VO2 是一种热致相变材料,在室温附近,为单斜结构,呈半导体态,禁带宽度 0.7 eV,对应截止波长 λ≈1 800 nm,具有高迁移率和透过率。当温度上升到 68℃时,转变为正交结构,呈金属态对光有反射作用。在金属态时加电磁场作用下又突变为绝缘体,而当电磁场消失,又恢复到金属态。并且半导体-金属态-绝缘体转变时间只有纳秒级,由于 VO2的相变温度更容易达到并且相变响应快速,因此在激光防护等领域广受青睐[3389-91]

  • 4.2 非线性光学材料

  • 当强光照射非线性光学材料时,会产生非线性效应。强光会被阻挡无法穿透材料,弱光可以正常穿过材料。这样既能防止强激光透过造成损伤,又不影响视场的亮度。目前主要有非线性吸收、非线性散射、非线性反射、非线性折射这几种主要的防护形式[323490]。这里简要介绍非线性吸收材料的研究现状。

  • 非线性吸收主要包括激发态反饱和吸收 (RSA)、双光子 / 多光子吸收(TPA / MPA)、自由载流子吸收(FCA)几种形式。可见光区域 RSA 材料在溶液和固体薄膜中的防护范围介于 400~600 nm,而 TPA 材料则因在 600~800 nm 区域的激发态吸收而产生光限幅效应[91]。石墨烯材料是目前最热门的非线性光学材料,大量研究已经围绕石墨烯及其复合材料展开。GANEEV 等[92]研究了 C60 薄膜的非线性光学特性,发现 C60 材料表现出非线性光学性质的主要原因是反饱和吸收效应。LIU 等[93] 制备了氧化 C60-Pt(GO-Pt)配合物杂化材料,并对比 C60 材料、Pt 配合物材料三者的光限幅性能发现 GO-Pt 杂化材料具有比 C60 材料或 Pt 配合物材料大得多的光限幅性能,这可能归因于氧化 C60 和Pt 之间的非线性吸收和非线性散射,以及从供体 Pt 配合物部分到受体氧化 C60 的光致电子和能量转移效应。DU 等[94]将基于苯基砜、(对氨基)苯基氢醌和对称二萘卟啉设计的聚合物共价连接到氧化石墨烯片上,制备了卟啉-石墨烯复合材料。经试验对比发现此材料的光限幅响应和非线性消光系数大于单一材料。分析指出增强的非线性光学性能源于非线性散射、反饱和吸收和从聚合物主链中的供体卟啉部分到受体石墨烯的光诱导电子 / 能量转移机制的有效结合。SHUKLA 等[95]合成了分散在甲苯中的钴纳米粒子,研究发现此材料具有比 C60 材料更好的光限幅性能,推测是非线性吸收和前向非线性散射两种主要机制共同作用的结果。GUO 等[96]报道了一种利用碱性 NMP 液体剥离法来大量生产磷烯。通过紫外-可见-近红外吸收光谱和 Z 扫描技术测定其具有超快非线性光学性质,这表明化学剥离的磷烯在光电子学中同样具有巨大的潜力。FU 等[97]报道了采用飞秒简并四波混频(DFWM)技术在共振条件下测量了几种萘酞菁衍生物的三阶光学非线性,并得到优异得三阶光学非线性反馈,表明了它们在光学防护中的潜在用途。

  • 4.3 软杀伤防护涂层材料

  • 还有一些防护涂层主要用于激光软杀伤的防护。诸如针对人眼的激光致盲伤害如表3 所示[98],紫外线在一定剂量范围内主要损伤角膜,可见光与近红外线波段的激光主要损伤视网膜,超过一定剂量范围各波段激光可同时损伤角膜、晶体与视网膜,并可造成其他屈光介质的损伤。

  • 表3 人眼屈光介质的透射率与视网膜的吸收率[98]

  • Table3 Transmittance of the refractive medium of the human eye and the absorption rate of the retina[98]

  • 激光致盲主要防护形式就是在护目镜上制备防护薄膜,世界各军事强国已经开始着手研制激光护目镜。美陆军纳蒂克研究中心研制一种组合式层状结构防护镜,利用多层介质膜对特定波长激光的反射衰减达到激光防护效果,据报道可防护波长 532、694、1 064 nm 三种波长的激光[34]。过渡族金属元素钒的氧化物具有良好的热致相变效应,在 68℃以下为单斜结构具有高透过率,一旦温度上升到 68℃ 转变为正交结构具有高反射率。这个特性完美契合了对于激光护目镜薄膜材料的期望:无激光照射时具有高透过率不影响正常使用,受到激光照射时对人眼起保护作用。目前普遍认为在 VO2 中引入价态较高或半径较大的金属离子可以降低相变温度, VO2 的相变条件更容易达成。WANG 等[99]利用 Y2O3 制备了 Y 掺杂的 VO2 粉末,并研究了 Y 掺杂对 VO2 结构和相变温度的影响。掺杂材料 XRD 分析结果如图24 所示,从图中可以看出 Y3+掺入后会形成 YVO4 相与 VO2 相混合。图25 为掺入不同含量 Y 的VO2粉末的扫描电镜照片,可以看出随着Y掺杂, VO2 晶粒细化。DSC 分析发现 Y 掺杂 VO2 相变温度可从 68.3℃降至 61.3℃。GUO 等[100]制备了钨锆共掺杂二氧化钒纳米粒子,W 的加入改变了 VO2 的晶格结构,Zr 的加入稳定了没有亚稳相的 VO2 结构,形成的 V0.95W0.01Zr0.04O2 表现出优异的热致变色性能,相变温度降为 46.9℃。VO2 薄膜的使用环境要求其既有良好的透光性,这对 VO2粉末粒度细化提出了很高要求,WANG 等[101]利用设计双层反应器将表面活性剂改性的 VO2 纳米粒子与氧化剂 H2O2 物理分离,从而得到超精细 VO2 粉末。试验发现精细 VO2 纳米颗粒制成的柔性薄膜显示出比具有较大尺寸VO2纳米颗粒或溅射VO2薄膜好得多的热致变色性能。SIMO 等[102]研究了 γ 射线在不同能量下辐照诱导 VO2 纳米结构的结构和发光性质变化,研究表明随着辐照能量增加,晶体尺寸的增加,而 VO2 纳米结构的大表面积促进了对红外光的吸收。

  • 图24 掺不同含量 Y3+的氧化钒粉末 XRD 图谱[99]

  • Fig.24 XRD patters of VO2 (M) powders doped with different contents of Y3+[99]

  • 图25 掺入不同含量 Y 的 VO2 粉末的扫描电镜照片[99]

  • Fig.25 SEM images of VO2 powders doped with different contents of Y [99]

  • V 的另一种氧化物 V2O5 由于相变温度较高对之研究较少。骆永全等[103]研究了不同波长激光辐照下, V2O5薄膜热致相变后对激光透过率的影响,试验指出 V2O5薄膜对 1 064 nm 激光的透过率由相变前的 55% 变为相变后的 25.5%,响应时间约 24 ms;对 1 319 nm 激光的透过率由相变前的 63%变为相变后的 27.9%,响应时间约 40 ms。V2O5虽然也有较好热致相变性能,响应速度也足够快,但是如何解决 V2O5相变温度过高的问题,也是其能否大量应用的关键。

  • 将复合材料制成薄膜是另一种可行的思路,主要用来防止激光对人眼以及一些光电元件的损伤,例如富勒烯、碳纳米管、聚合物 / 纳米管复合材料、卟啉、酞菁、混合金属配合物、炭黑悬浮液和纳米级含银颗粒已经被广泛研究[104]。黄强等[105]设计了一种用于护目镜上的激光反射薄膜,可以防止激光辐射对人眼的伤害,以 ZrO2 和 SiO2 为膜层材料,聚碳酸酯(PC)为基体材料,经测定在 532 nm 和 1 064 nm 波长处的理论透过率达到了 0.01%,既可以满足激光防护要求又不影响使用。MOGHARE 等[106]利用脉冲激光沉积法制备了加热沉积的硅 / 二氧化硅纳米结构薄膜,并研究了薄膜的光学反射特性,通过分析得出薄膜的表面形态、氧化和结晶度会影响观察到的光学性质。这为以后激光防护薄膜的制备提供了更坚实的理论依据和更多样的方向。

  • 5 结论与展望

  • 5.1 结论

  • 根据激光与材料的作用机理,分别从高反射、耐烧蚀和激光软防护方面综述了激光的防护机制、激光防护材料的研究现状以及激光防护材料在涂层防护上的研究进展,探究了几种目前常见的激光防护材料的防护机制,重点归纳了耐烧蚀材料及其在涂层中的应用,填补了对于激光防护材料及其在涂层中应用研究进展的总结的空白。目前随着对于激光防护领域研究逐步取得重大进展,耐烧蚀材料如树脂基复合材料(包括酚醛树脂,环氧树脂,碳纤维树脂)、陶瓷材料(包括金属陶瓷、碳化硅陶瓷、氮化硅陶瓷以及氧化铝陶瓷)、晶体材料等,高反射率材料如金属材料,软杀伤防护如 VO2 薄膜,都已经被大量研究并以涂层形式应用。此外研究人员已经开发出新型的激光防护材料如 La1-xSrxTiO3+ð高反射率陶瓷材料,国内外诸多高校、科研院所及企业等对前沿的激光防护材料表现出浓厚的兴趣,纷纷加强了对激光防护材料在涂层中应用的试验与理论研究,并且逐步开始自主设计全新的激光防护材料,有力地推动了激光防护领域的发展。

  • 5.2 展望

  • 虽然目前对于激光防护材料的研究已经取得了一定进展,但以下仍然是未来值得探讨和解决的几个重点方向:

  • (1)激光防护涂层具有广阔的应用前景,可以用于飞机、舰船、卫星、弹道导弹等领域应对可能受到的激光武器威胁,但是目前只是在理论阶段研究,在实际战争环境中各类新型激光武器的防护效果尚未可知,只有进一步研究与验证才能够投入工业化甚至军事化应用。

  • (2)对具有高反射率的涂层材料研究相对较少,目前研究对激光反射效果明显的材料大部分是金属材料,但是金属涂层化学性质活泼且热导率高,经过高能激光辐照后很容易被氧化而失效。陶瓷材料一般具有较高的熔点和优良的热障性能,如果具有高反射率将有非常很好的激光防护前景。目前北京理工大学利用第一性原理已经成功制备出高反射率陶瓷材料,这一研究方向极具潜力,相信在未来将成为人们研究的重点方向。

  • (3)激光防护涂层的研究涉及复杂的工艺交叉融合,一方面是激光对材料毁伤作用的机理,热效应破坏与力学效应破坏共同作用时,主导机制存在不确定性;另一方面是涂层在制备时,不同工艺参数对涂层防护效果有较大影响,多重作用机制下机理复杂。此外,涂层与基体材料的结合效果以及涂层的致密度也不尽相同;多种因素相互作用给激光防护涂层的研究带来了诸多麻烦。相对于国外,国内在这一方面的研究进展较少,日后应加强这一方面的研究。随着激光防护涂层技术的发展,优化涂层制备工艺方面的研究会越来越多,将会是激光防护涂层方向的研究热点。

  • 参考文献

    • [1] 王之江.浅谈中国第一台激光器的诞生[J].中国激光,2010,37(9):2188-2189.WANG Zhijiang.An introduction to the birth of China’ s first laser[J].Chinese Journal of Lasers,2010,37(9):2188-2189.(in Chinese)

    • [2] 徐惠忠.高能激光武器的毁伤机理及飞行器防御途径分析[J].中国航天,2004(9):35-38,43.XU Huizhong.Analysis of the destruction mechanism of high-energy laser weapons and the defense path of aircraft[J].Aerospace China,2004(9):35-38,43.(in Chinese)

    • [3] 张江华.高能激光武器毁伤机理及其防护技术[J].中国科技信息,2008(20):37,39.ZHANG Jianghua.Destruction mechanism of high-energy laser weapons and its protection technology[J].China Science and Technology Information,2008(20):37,39.(in Chinese)

    • [4] 刘晓明,何煦虹,张翼麟.激光武器及导弹抗激光技术研究[J].战术导弹技术,2014(4):1-4,37.LIU Xiaoming,HE Xuhong,ZHANG Yilin.Study of laser weapon and anti-laser technology missile[J].Tactical Missile Technology,2014(4):1-4,37.(in Chinese)

    • [5] 郭亚林,梁国正,丘哲明,等.激光辐照下的材料破坏和防护研究进展[J].材料保护,2003(12):8-10,13.GUO Yalin,LIANG Guozheng,QIU Zheming,et al.Damage and protection progress of materials irradiated by laser beam[J].Materials Protection,2003(12):8-10,13.(in Chinese)

    • [6] 宗思光,吴荣华,曹静,等.高能激光武器技术与应用进展[J].激光与光电子学进展,2013,50(8):158-167.ZONG Siguang,WU Ronghua,CAO Jing,et al.Developments and trends of high energy laser weapons[J].Laser & Optoelectronics Progress,2013,50(8):158-167.(in Chinese)

    • [7] TONG Y,LIANG X,BAI S,et al.Laser ablation applications in ablation-resistance characterization of materials[M]//Applications of laser ablation-thin film deposition,nanomaterial synthesis and surface modification.IntechOpen,2016.

    • [8] DAHOTRE N B,HARIMKAR S.Laser fabrication and machining of materials[M].New York:Springer Science & Business Media,2008.

    • [9] CHEN W W,XIAN Q W,CHEN G H.Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes[J].Optics and Laser Technology,2015,73:23-28.

    • [10] KURBATKINA V V,PATSERA E I,LEVASHOV E A.Combustion synthesis of ultra-high-temperature materials based on(Hf,Ta)B2.Part 1:The mechanisms of combustion and structure formation[J].Ceramics International,2019,45(3):4067-4075.

    • [11] 陆建,倪晓武,贺安之.高功率激光与材料相互作用机理研究进展[J].激光技术,1996(3):181-184.LU Jian,NI Xiaowu,HE Anzhi.A research advance on the interaction mechanism of high-power laser and materials[J].Laser Technology,1996(3):181-184.(in Chinese)

    • [12] 周益春,段祝平,解伯民.强激光破坏机制研究进展[J].力学与实践,1995(1):10-18.ZHOU Yichun,DUAN Zhuping,XIE Bomin.Progress in the study of the mechanism of strong laser damage[J].Mechanics in Engineering,1995(1):10-18.(in Chinese)

    • [13] 张可星.LY12 铝靶激光热烧蚀的试验研究[J].强激光与粒子束,1990(2):226-234.ZHANG Kexing.Experimental study of laser thermal ablation of LY12 aluminum target[J].High Power Laser and Particle Beams,1990(2):226-234.(in Chinese)

    • [14] 刘扬,汤伟,邵俊峰,等.连续激光对钢壳体热力损伤效应分析[J].激光与红外,2021,51(1):89-94.LIU Yang,TANG Wei,SHAO Junfeng,et al.Study on damage effect of continuous laser on steel cylinder[J].Laser & Infrared,2021,51(1):89-94.(in Chinese)

    • [15] 汤文辉,郭少峰,秦石桥.强激光对材料的热-力学破坏效应[J].强度与环境,1998(3):41-47.TANG Wenhui,GUO Shaofeng,QIN Shiqiao.Thermal-mechanical destructive effects of strong lasers on materials[J].Structure & Environment Engineering,1998(3):41-47.(in Chinese)

    • [16] 李欣荣,周天文,孙琦.长脉冲高能激光对金属靶材烧蚀试验研究[J].应用光学,2009,30(1):148-152.LI Xinrong,ZHOU Tianwen,SUN Qi.Ablation of metal target materials by long-pulse high energy laser[J].Journal of Applied Optics,2009,30(1):148-152.(in Chinese)

    • [17] 徐立君,张喜和,倪晓武,等.不同光斑半径的连续激光作用金属靶材的温度场[J].红外与激光工程,2007(S1):364-367.XU Lijun,ZHANG Xihe,NI Xiaowu,et al.Temperature field of the CW-laser with different radius irradiating metal plate[J].Infrared and Laser Engineering,2007(S1):364-367.(in Chinese)

    • [18] 赵杨,张昊春,李垚,等.激光辐照材料烧蚀特性的数值仿真[J].化工学报,2014,65(S1):426-432.ZHAO Yang,ZHANG Haochun,LI Yao,et al.Numerical simulation of laser ablation properties of irradiated material[J].CIESC Journal,2014,65(S1):426-432.(in Chinese)

    • [19] LI Z L,XIA Z L.The damage mechanism and process of metal multi-layer dielectric gratings induced by ps-pulsed laser[J].Applied Surface Science,2019,494:977-982.

    • [20] LI X,HOU W T,HAN B,et al.Thermal response during volumetric ablation of carbon fiber composites under a high intensity continuous laser irradiation[J].Surfaces and Interfaces,2021,23:101032.

    • [21] NIU J H,MENG S H,JIN H,et al.Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere[J].Journal of the European Ceramic Society,2019,39(15):4535-4544.

    • [22] LIU R J,LIU X Y,WANG Y F,et al.Laser ablation behavior and mechanism of Cf/SiC–ZrC ultra-high temperature ceramic matrix composite prepared by PIP method[J].Ceramics International,2021,47(16):23610-23619.

    • [23] 蔡虎,程祖海,朱海红,等.脉冲强激光破坏 Hg_(0.8)Cd_(0.2)Te 晶片材料的机理分析[J].强激光与粒子束,2006(6):927-930.CAI Hu,CHENG Zuhai,ZHU Haihong,et al.Mechanistic analysis of the destruction of Hg_(0.8)Cd_(0.2)Te wafer material by pulsed intense laser[J].High Power Laser and Particle Beams,2006(6):927-930.(in Chinese)

    • [24] LI C H,KANG X L,HAN W,et al.Nanosecond laser-induced surface damage and material failure mechanism of single crystal CaF 2(111)at 355 nm[J].Applied Surface Science,2019,480:1070-1077.

    • [25] 徐鑫,方春华,李智,等.连续激光作用下瓷质绝缘子温度和热应力分析[J].光电子· 激光,2021,32(1):78-87.XU Xin,FANG Chunhua,LI Zhi,et al.Analysis of temperature and thermal stress of porcelain insulator under continuous laser irradiaion[J].Journal of Optoelectronics Laser,2021,32(1):78-87.(in Chinese)

    • [26] 孙铭远,张昊春,曲博岩,等.激光辐照下卫星筒体部分多物理建模及毁伤效应分析[J].应用光学,2021,42(3):542-549.SUN Mingyuan,ZHANG Haochun,QU Boyan,et al.Multi-physical modeling and damage effect analysisof satellite cylinders under laser irradiation[J].Journal of Applied Optics,2021,42(3):542-549.(in Chinese)

    • [27] LOHANI S,SHUBHAM M,RUSTY R K,et al.Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites[J].Materials Today:Proceedings,2021,43:524-529.

    • [28] DE CASTRO MONSORES K G,DA SILVA A O,OLIVEIRA S S A,et al.Influence of ultraviolet radiation on polystyrene[J].Journal of Materials Research and Technology,2021,13:359-365.

    • [29] DE CASTRO MONSORES K G,DA SILVA A O,OLIVEIRA S S A,et al.Influence of ultraviolet radiation on polymethylmethacrylate(PMMA)[J].Journal of Materials Research and Technology,2019,8(5):3713-3718.

    • [30] QI A,ELSHAFIEY A,HUANG L J,et al.Plasma and X-ray radiation-induced damage mechanisms in a tungsten heavy alloy[J].Journal of Nuclear Materials,2020,539:152325.

    • [31] 何佩谣,赵越,刘宇,等.相变材料 Ge_2Sb_2Te_5 的X射线辐照致变效应研究[J].核技术,2021,44(3):9-15.HE Peiyao,ZHAO Yue,LIU Yu,et al.Study on X-ray irradiation induced effect of phase-change material Ge2Sb2Te5[J].Nuclear Techniques,2021,44(3):9-15.(in Chinese)

    • [32] 郑佳艺,马壮,高丽红.智能化高能激光防护材料新进展[J].现代技术陶瓷,2020,41(3):121-133.ZHENG Jiayi,MA Zhuang,GAO Lihong.Development of intelligent anti-high power laser materials[J].Advanced Ceramics,2020,41(3):121-133.(in Chinese)

    • [33] 张其土,许仲梓,付振晓,等.激光防护材料的研究与应用[J].南京化工大学学报(自然科学版),2001(3):82-86.ZHANG Qitu,XU Zhongzi,FU Zhenxiao,et al.Research and application of laser protection materials[J].Journal of Nanjing Tech University(Natural Science Edition),2001(3):82-86.(in Chinese)

    • [34] 冯守志,圣冬冬.航天器激光防护材料研究现状与发展趋势[J].上海航天,2014,31(3):34-38.FENG Shouzhi,SHENG Dongdong.Research and development of laser protective materials of spacecraft[J].Aerospace Shanghai,2014,31(3):34-38.(in Chinese)

    • [35] 付华,张光磊.材料性能学[M].北京:北京大学出版社,2017.FU hua,ZHANG Guanglei.An introduction to materials properties[M].Beijing:Beijing University Press,2017.(in Chinese)

    • [36] 张磊,杨鹏翎,赵海川,等.铜铝材料粗糙表面的BRDF特性研究[J].现代应用物理,2018,9(4):65-69.ZHANG Lei,YANG Pengyu,ZHAO Haichuan,et al.Charateristics of bidirectional reflectance distribution function on roughness surface of copper and aluminum materials[J].Modern Applied Physics,2018,9(4):65-69.(in Chinese)

    • [37] YAHIAOUI K,ABERKANE S M.A comparative study of KrF laser ablation of aluminum and alumina in oxygen ambiance[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2021,180:106197.

    • [38] BENAVIDES O,DE L,GIL A F,et al.Experimental study on reflection of high-intensity nanosecond Nd:YAG laser pulses in ablation of metals[J].Optics & Lasers in Engineering,2015,68:83-86.

    • [39] ZHENG J Y,WANG S,GAO L H,et al.Theoretical and experimental studies of Ba2SmTaO6 on crystal structure,electronic structure and optical properties[J].Journal of Materials Chemistry C,2018,6(7):1806-1814.

    • [40] 刘维良,吴坚强,陈云霞,等.臭氧发生器用 Al2O3 陶瓷基板材料的改性研究[J].陶瓷学报,2001(2):73-77.LIU Weiliang,WU Jianqiang,CHEN Yunxia,et al.Study on the Al2O3 ceramic plate material modifier for ozonizer[J].Journal of Ceramics,2001(2):73-77.(in Chinese)

    • [41] 吴崇隽.高反射率LED陶瓷基板制备及其COB封装光源光效的研究[J].中国陶瓷工业,2019,26(6):15-20.WU Chongjun.Preparation of high reflectivity LED ceramic substrate and light efficiency of its COB packaging light source[J].China Ceramic Industry,2019,26(6):15-20.(in Chinese)

    • [42] MA C,MA Z,GAO L H,et al.Zirconium carbide-modified polymer-matrix composites with improved reflectivity under high-energy laser ablation[J].Ceramics International,2019,45(14):17681-17687.

    • [43] 朱锦鹏,马壮,高丽红,等.基于等离子喷涂的反射型激光防护涂层研究[J].中国光学,2017,10(5):578-587,702.ZHU Jinpeng,MA Zhuang,GAO Lihong,et al.Reflective laser protective coating based on plasma spraying[J].Chinese Optics,2017,10(5):578-587,702.(in Chinese)

    • [44] ZHU J P,MA Z,GAO L H,et al.Influence of microstructure on the optical property of plasma-sprayed Al,Cu,and Ag coatings[J].Materials & Design,2016,111:192-197.

    • [45] 孔静,马壮,高丽红,等.La1-xSrxTiO3+δ陶瓷涂层抗激光烧蚀性能研究[J].现代技术陶瓷,2018,39(2):115-121.KONG Jing,MA Zhuang,GAO Lihong,et al.Anti-laser ablation property of La1-xSrxTiO3+δ ceramic coating[J].Advanced Ceramics,2018,39(2):115-121.(in Chinese)

    • [46] ZHU J P,GAO L H,MA Z,et al.Optical property of La 1−x Sr x TiO 3+δ coatings deposited by plasma spraying technique[J].Applied Surface Science,2015,356:935-940.

    • [47] 李东荣,王富耻,马壮,等.等离子喷涂 Al2O3涂层 CO2 连续激光反射性能的研究[J].有色金属(冶炼部分),2008(5):38-41.LI Dongrong,WANG Fuchi,MA Zhuang,et al.Research on the CO2-CW-laser reflectivity of plasma sprayed Al2O3 coatings[J].Nonferrous Metals(Extractive Metallurgy),2008(5):38-41.(in Chinese)

    • [48] ZHENG J Y,WEN K,LIU Y B,et al.Laser irradiation behavior of plasma-sprayed tantalum oxide coatings[J].Ceramics International,2020,46(3):3875-3881.

    • [49] XU F,ZHU S Z,MA Z,et al.Ablation behavior of inorganic particle-filled polybenzoxazine composite coating irradiated by high-intensity continuous laser[J].Ceramics International,2019,45(12):14968-14975.

    • [50] XU W Y,GAO L H,MA C,et al.Design and preparation of composite coatings with increased reflectivity under high-energy continuous wave laser ablation[J].Ceramics International,2020,46(15):23457-23462.

    • [51] WANG H H,KONG J A,GE J,et al.Effects of reflectivity on laser-ablation resistance of the laser-cladding repaired Nd2O3 modified SiO2 coatings on C/C composites[J].Journal of the European Ceramic Society,2021,41(13):6548-6558.

    • [52] 漆海滨,李文煜,万红.强激光作用下金属基复合材料的破坏效应[J].应用激光,2000(5):198-200.QI Haibing,LI Wenyu,WAN Hong.Damage effects of metal matrix composite induced by high power laser[J].Applied Laser,2000(5):198-200.(in Chinese)

    • [53] YAN Z Y,MA Z,LIU L,et al.The ablation behavior of ZrB2/Cu composite irradiated by high-intensity continuous laser[J].Journal of the European Ceramic Society,2014,34(10):2203-2209.

    • [54] HONG C Q,HAI J C,ZHANG X H,et al.Preparation and thermal ablation behavior of titanium diboride/(copper,nickel)C4 material[J].Materials Science & Engineering A,2006,447(1):95-98.

    • [55] ZHANG Y L,SHAO D Y,FENG G H,et al.Ablation-resistant Ta0.78Hf0.22C solid solution ceramic modified C/C composites for oxidizing environments over 2 200 ℃[J].Journal of the European Ceramic Society,2021,41(13):6181-6188.

    • [56] SU X J,HU B T,QUAN Y,et al.Ablation behavior and mechanism of bulk MoAlB ceramic at ∼1 670–2 550 ℃ in air plasma flame[J].Journal of the European Ceramic Society,2021,41(11):5474-5483.

    • [57] LI W Z,GAO L H,MA Z,et al.Ablation behavior of graphite/SiO2 composite irradiated by high-intensity continuous laser[J].Journal of the European Ceramic Society,2017,37(4):1331-1338.

    • [58] CHEN Z F,FANG D,MIAO Y L,et al.Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2 900 and 3 550 ℃[J].Corrosion Science,2008,50(12):3378-3381.

    • [59] CHEN J,AN Q L,MING W W,et al.Investigations on continuous-wave laser and pulsed laser induced controllable ablation of SiCf/SiC composites[J].Journal of the European Ceramic Society,2021,41(12):5835-5849.

    • [60] WANG Z,WANG J T,SONG H W,et al.Laser ablation behavior of C/SiC composites subjected to transverse hypersonic airflow[J].Corrosion Science,2021,183:109345.

    • [61] WU X W,SU Z A,HUANG Q Z,et al.Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis[J].Ceramics International,2020,46(10):16062-16067.

    • [62] LI W Z,GAO L H,MA Z,et al.Multi-synergy ablative effects of laminated SiO2–graphite/SiO2/Cu composite irradiated by high power laser[J].Ceramics International,2019,45(12):15272-15280.

    • [63] ZHOU Y,NIU J,MENG S,et al.Improved laser ablation resistance of Si-CN precursor derived ceramics in air[J].Ceramics International,2018,44(18):23267-23272.

    • [64] ZHU Q S,WANG G Y,LIAO X Q,et al.Ablation properties and mechanisms of BN-coated Cf-reinforced SiBCNZr ceramic composites under an oxyacetylene combustion torch[J].Ceramics International,2021,47(11):15533-15541.

    • [65] 张俊华,李锦文,魏化震,等.低成本高性能酚醛树脂基烧蚀材料的性能研究[J].纤维复合材料,2009,26(3):36-38,42.ZHANG Junhua,LI Jinwen,WEI Huazhen,et al.Research on properties of low cost and high performance phenolic resin composites[J].Fiber Composites,2009,26(3):36-38,42.(in Chinese)

    • [66] 齐风杰,李锦文,魏化震,等.新型酚醛树脂基耐烧蚀复合材料的性能研究[J].纤维复合材料,2008(3):50-52.QI Fengjie,LI Jinwen,WEI Huazhen,et al.Research on properties of new-type phenolic resin matrix ablative composites[J].Fiber Composites,2008(3):50-52.(in Chinese)

    • [67] 张俊华,李锦文,魏化震,等.高性能酚醛树脂基烧蚀复合材料的研究[J].纤维复合材料,2009,26(1):15-18,23.ZHANG Junhua,LI Jinwen,WEI Huazhen,et al.Research on high performance phenolic resin ablative composites[J].Fiber Composites,2009,26(1):15-18,23.(in Chinese)

    • [68] 于庆春,万红.片状石墨增强树脂基复合材料的耐激光烧蚀性能研究[J].无机材料学报,2012,27(2):157-161.YU Qingchun,WAN Hong.Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse Laser irradiation[J].Journal of Inorganic Materials,2012,27(2):157-161.(in Chinese)

    • [69] XU F,ZHU S Z,LIU Y B,et al.Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite[J].Journal of Materials Science,2020,55(20):8553-8563.

    • [70] XU F,ZHU S Z,MA Z,et al.Effect of TaSi2/ZrSi2 on ablation properties of carbon-phenolic composite irradiated by high-intensity continuous laser[J].Ceramics International,2020,46(18):28443-28450.

    • [71] MERZAPOUR A,ASADOLLAHI M H,BAGHSHAEI S,et al.Effect of nanosilica on the microstructure,thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite[J].Composites Part A Applied Science and Manufacturing,2014,63:159-167.

    • [72] 穆景阳,万红,白书欣.长脉冲激光辐照下环氧树脂的热烧蚀规律[J].强激光与粒子束,2008(1):36-40.MU Jingyang,WAN Hong,BAI Shuxin.Thermal ablation pattern of epoxy resin under long-pulse laser irradiation[J].High Power Laser and Particle Beams,2008(1):36-40.(in Chinese)

    • [73] 陈博,万红,穆景阳,等.重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J].强激光与粒子束,2008(4):547-552.CHEN Bo,WAN Hong,MU Jingyang,et al.Thermal damage pattern of carbon fiber/epoxy resin composites under heavy frequency laser action[J].High Power Laser and Particle Beams,2008(4):547-552.(in Chinese)

    • [74] 贺敏波,马志亮,韦成华,等.热解对碳纤维/环氧复合材料激光烧蚀的影响[J].红外与激光工程,2016,45(3):97-100.HE Minbo,MA Zhiliang,WEI Chenghua,et al.Influence of pyrolysis on the laser ablation of carbon-fiber/epoxy composite[J].Infrared and Laser Engineering 2016,45(3):97-100.(in Chinese)

    • [75] LAFARIE-FRENOT M C,GRANDIDIER J C,GIGLIOTTI M,et al.Thermo-oxidation behaviour of composite materials at high temperatures:A review of research activities carried out within the COMEDI program[J].Polymer Degradation & Stability,2010,95(6):965-974.

    • [76] 彭国良,王玉恒,闫辉,等.C/C 复合材料的氧化对激光防护的影响研究[J].激光与红外,2013,43(2):148-151.PENG Guoliang,WANG Yuheng,YAN Hui,et al.Research of the effect of carbon-carbon composites oxidation on laser protection[J].Laser & Infrared,2013,43(2):148-151.(in Chinese)

    • [77] TONG Y G,HU Y L,LIANG X B,et al.Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation:Ablation resistance,microstructure and damage mechanism[J].Ceramics International,2020,46(10):14408-14415.

    • [78] CORRAL E L,WALKER L S.Improved ablation resistance of C–C composites using zirconium diboride and boron carbide[J].Journal of the European Ceramic Society,2010,30(11):2357-2364.

    • [79] 孙世杰,马壮,柳彦博,等.SiC-Al2O3-SiO2 复合陶瓷涂层组织结构及抗烧蚀性能研究[J].表面技术,2019,48(4):40-47.SUN Shijie,MA Zhuang,LIU Yanbo,et al.Microstructures and anti-ablation properties of SiC-Al2O3-SiO2 composite ceramic coatings[J].Surface Technology,2019,48(4):40-47.(in Chinese)

    • [80] HE R X,LI K Z,GU S Y,et al.Comparing ablation properties of NbC and NbC-25 mol.% ZrC coating on SiC-coated C/C composites[J].Ceramics International,2020,46(6):7055-7064.

    • [81] LI D R,WANG F C,MA Z,et al.Damage mechanism of Al2O3 ceramic coatings irradiated by CO2 CW laser[J].Journal of Beijing Institute of Technology,2008(2):227-231.

    • [82] LIANG B,DING C X.Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J].Surface & Coatings Technology,2004,197(2):185-192.

    • [83] MA C,MA Z,GAO L H,et al.Laser ablation behavior of flake graphite and SiO2 particle-filled hyperbranched polycarbosilane matrix composite coatings[J].Ceramics International,2018,44(17):21374-21380.

    • [84] LI W Z,GAO L H,MA Z,et al.Effect of Ni content on high power laser ablation behavior of coatings sprayed by Ni covering graphite/SiO2 powders[J].Journal of Materials Science & Technology,2020,47(12):38-44.

    • [85] SU C,LI G,LIU X,et al.Laser ablation behavior and mechanism of C/SiC coated with ZrB2–MoSi2–SiC/Mo prepared by HVOF[J].Ceramics International,2020,46(11):17752-17762.

    • [86] LIU Yanbo,GUO Jiayi,MA Zhuang,et al.Anti-ablation property of ZrB2/SiC/Ta2O5 coatings prepared by atmosphere plasma spraying[J].Rare Metal Materials and Engineering,2018,47(S1):72-77.

    • [87] 陈四海,赖建军,董珊,等.新型光电子材料氧化钒[J].红外与激光工程,2008,37(S3):407-409.CHEN Sihai,LAI Jianjun,DONG Shan,et al.Novel optoelectronic materials-VOx[J].Infrared and Laser Engineering,2008,37(S3):407-409.(in Chinese)

    • [88] 赵佳明,边继明,骆英民,等.用于智能激光防护武器的二氧化钒薄膜研究进展[J].兵器材料科学与工程,2011,34(2):102-106.ZHAO Jiaming,BIAN Jiming,LUO Yingmin,et al.Recent research progress in VO2 thin films for intelligent laser protection weapons[J].Ordnance Material Science and Engineering,2011,34(2):102-106.(in Chinese)

    • [89] GUI Z,FAN R,CHEN X H,et al.A New metastable phase of needle-like nanocrystalline VO2·H2O and phase transformation[J].Journal of Solid State Chemistry,2001,157(2):250-254.

    • [90] 杜艳秋,尚春雨.强度防护型激光防护机制[J].激光与红外,2009,39(4):363-366.DU Yanqiu,SHANG Chunyu.Principles of laser protective technology against intensity[J].Laser & Infrared,2009,39(4):363-366.(in Chinese)

    • [91] 刘志伟,张斌,陈彧.二维纳米材料及其衍生物在激光防护领域中的应用[J].物理学报,2020,69(18):30-51.LIU Zhiwei,ZHANG Bin,CHEN Yu.Two-dimensional nanomaterials and their derivatives for laser protection[J].Acta Physica Sinica,2020,69(18):30-51.(in Chinese)

    • [92] GANEEV R A,RYASSNYANSKY A I,REDKORECHEV V I,et al.Variations of nonlinear optical characteristics of C60 thin films at 532 nm[J].Optics Communications,2003,225(1-3):131-139.

    • [93] LIU R,HU J Y,ZHU S Q,et al.Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes[J].ACS Applied Materials & Interfaces,2017,9(38):33029-33040.

    • [94] DU Y L,DONG N N,ZHANG M H,et al.Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting[J].Physical Chemistry Chemical Physics:PCCP,2017,19(3):2252-2260.

    • [95] SHUKLA V,SINGH C P,MUKHERJEE C,et al.Investigation of optical limiting in cobalt nanoparticles synthesized by laser ablation[J].Chemical Physics Letters,2013,555:149-153.

    • [96] GUO Z N,ZHANG H,LU S B,et al.Phosphorene:from black phosphorus to phosphorene:basic solvent exfoliation,evolution of raman scattering,and applications to ultrafast photonics[J].Advanced Functional Materials,2015,25(45):7100-7100.

    • [97] FU G,YODA T,KAZUO K,et al.Third-order optical nonlinearities of naphthalocyanine derivatives measured by resonant femtosecond degenerate four-wave mixing technique[J].Synthetic Metals,2005,155(1):68-72.

    • [98] 胡富根,徐碣敏,周淑英,等.复合型激光防护眼镜的激光防护效应观察[J].兵器激光,1986(3):50-54.HU Fugen,XU Yemin,ZHOU Shuying,et al.Observation of laser protection effect of composite laser protective glasses[J].Laser Technology,1986(3):50-54.(in Chinese)

    • [99] WANG B,LI E H,DU J J,et al.Effects of heat treatment conditions and Y-doping on structure and phase transition temperature of VO2 powders[J].Transactions of Nonferrous Metals Society of China,2020,30(4):1038-1045.

    • [100] GUO H,WANG Y G,JAIN A,et al.Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties[J].Journal of Alloys and Compounds,2021,878:160352.

    • [101] WANG D,GUO D Y,ZHAO Z J,et al.Surface modification-assisted solvent annealing to prepare high quality M-phase VO2 nanocrystals for flexible thermochromic films[J].Solar Energy Materials and Solar Cells,2019,200:110031.

    • [102] SIMO A,BEUKES P,KAVIYARASU K,et al.Structural and luminescence properties changes study of VO2 nanostructures induced by gamma irradiation[J].Materials Today:Proceedings,2021,36:595-599.

    • [103] 骆永全,王伟平,罗飞.V2O5 薄膜在连续激光防护中的应用研究[J].应用激光,2005(6):381-383.LUO Yongquan,WANG Weiping,LUO Fei.Study on the application of vanadium pentoxide thin films in continuous laser protection[J].Applied Laser,2005(6):381-383.(in Chinese)

    • [104] CHEN Y,BAI T,DONG N N,et al.Graphene and its derivatives for laser protection[J].Progress in Materials Science,2016,84:118-157.

    • [105] 黄强,王丽熙,张其土.双波段激光防护多层反射膜的设计[J].光学技术,2007(S1):147-149.HUANG Qiang,WANG Lixi,ZHANG Qitu.Design of double-wavelength reflective multi-layer coatings for laser protection[J].Optical Technique,2007(S1):147-149.(in Chinese)

    • [106] MOGHARE A M,KIANI A.Optical reflectivity of heat-treated nanofibrous silicon thin-films induced by high energy picosecond laser pulses[J].Sensing and Bio-Sensing Research,2020,30:100385.

  • 参考文献

    • [1] 王之江.浅谈中国第一台激光器的诞生[J].中国激光,2010,37(9):2188-2189.WANG Zhijiang.An introduction to the birth of China’ s first laser[J].Chinese Journal of Lasers,2010,37(9):2188-2189.(in Chinese)

    • [2] 徐惠忠.高能激光武器的毁伤机理及飞行器防御途径分析[J].中国航天,2004(9):35-38,43.XU Huizhong.Analysis of the destruction mechanism of high-energy laser weapons and the defense path of aircraft[J].Aerospace China,2004(9):35-38,43.(in Chinese)

    • [3] 张江华.高能激光武器毁伤机理及其防护技术[J].中国科技信息,2008(20):37,39.ZHANG Jianghua.Destruction mechanism of high-energy laser weapons and its protection technology[J].China Science and Technology Information,2008(20):37,39.(in Chinese)

    • [4] 刘晓明,何煦虹,张翼麟.激光武器及导弹抗激光技术研究[J].战术导弹技术,2014(4):1-4,37.LIU Xiaoming,HE Xuhong,ZHANG Yilin.Study of laser weapon and anti-laser technology missile[J].Tactical Missile Technology,2014(4):1-4,37.(in Chinese)

    • [5] 郭亚林,梁国正,丘哲明,等.激光辐照下的材料破坏和防护研究进展[J].材料保护,2003(12):8-10,13.GUO Yalin,LIANG Guozheng,QIU Zheming,et al.Damage and protection progress of materials irradiated by laser beam[J].Materials Protection,2003(12):8-10,13.(in Chinese)

    • [6] 宗思光,吴荣华,曹静,等.高能激光武器技术与应用进展[J].激光与光电子学进展,2013,50(8):158-167.ZONG Siguang,WU Ronghua,CAO Jing,et al.Developments and trends of high energy laser weapons[J].Laser & Optoelectronics Progress,2013,50(8):158-167.(in Chinese)

    • [7] TONG Y,LIANG X,BAI S,et al.Laser ablation applications in ablation-resistance characterization of materials[M]//Applications of laser ablation-thin film deposition,nanomaterial synthesis and surface modification.IntechOpen,2016.

    • [8] DAHOTRE N B,HARIMKAR S.Laser fabrication and machining of materials[M].New York:Springer Science & Business Media,2008.

    • [9] CHEN W W,XIAN Q W,CHEN G H.Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes[J].Optics and Laser Technology,2015,73:23-28.

    • [10] KURBATKINA V V,PATSERA E I,LEVASHOV E A.Combustion synthesis of ultra-high-temperature materials based on(Hf,Ta)B2.Part 1:The mechanisms of combustion and structure formation[J].Ceramics International,2019,45(3):4067-4075.

    • [11] 陆建,倪晓武,贺安之.高功率激光与材料相互作用机理研究进展[J].激光技术,1996(3):181-184.LU Jian,NI Xiaowu,HE Anzhi.A research advance on the interaction mechanism of high-power laser and materials[J].Laser Technology,1996(3):181-184.(in Chinese)

    • [12] 周益春,段祝平,解伯民.强激光破坏机制研究进展[J].力学与实践,1995(1):10-18.ZHOU Yichun,DUAN Zhuping,XIE Bomin.Progress in the study of the mechanism of strong laser damage[J].Mechanics in Engineering,1995(1):10-18.(in Chinese)

    • [13] 张可星.LY12 铝靶激光热烧蚀的试验研究[J].强激光与粒子束,1990(2):226-234.ZHANG Kexing.Experimental study of laser thermal ablation of LY12 aluminum target[J].High Power Laser and Particle Beams,1990(2):226-234.(in Chinese)

    • [14] 刘扬,汤伟,邵俊峰,等.连续激光对钢壳体热力损伤效应分析[J].激光与红外,2021,51(1):89-94.LIU Yang,TANG Wei,SHAO Junfeng,et al.Study on damage effect of continuous laser on steel cylinder[J].Laser & Infrared,2021,51(1):89-94.(in Chinese)

    • [15] 汤文辉,郭少峰,秦石桥.强激光对材料的热-力学破坏效应[J].强度与环境,1998(3):41-47.TANG Wenhui,GUO Shaofeng,QIN Shiqiao.Thermal-mechanical destructive effects of strong lasers on materials[J].Structure & Environment Engineering,1998(3):41-47.(in Chinese)

    • [16] 李欣荣,周天文,孙琦.长脉冲高能激光对金属靶材烧蚀试验研究[J].应用光学,2009,30(1):148-152.LI Xinrong,ZHOU Tianwen,SUN Qi.Ablation of metal target materials by long-pulse high energy laser[J].Journal of Applied Optics,2009,30(1):148-152.(in Chinese)

    • [17] 徐立君,张喜和,倪晓武,等.不同光斑半径的连续激光作用金属靶材的温度场[J].红外与激光工程,2007(S1):364-367.XU Lijun,ZHANG Xihe,NI Xiaowu,et al.Temperature field of the CW-laser with different radius irradiating metal plate[J].Infrared and Laser Engineering,2007(S1):364-367.(in Chinese)

    • [18] 赵杨,张昊春,李垚,等.激光辐照材料烧蚀特性的数值仿真[J].化工学报,2014,65(S1):426-432.ZHAO Yang,ZHANG Haochun,LI Yao,et al.Numerical simulation of laser ablation properties of irradiated material[J].CIESC Journal,2014,65(S1):426-432.(in Chinese)

    • [19] LI Z L,XIA Z L.The damage mechanism and process of metal multi-layer dielectric gratings induced by ps-pulsed laser[J].Applied Surface Science,2019,494:977-982.

    • [20] LI X,HOU W T,HAN B,et al.Thermal response during volumetric ablation of carbon fiber composites under a high intensity continuous laser irradiation[J].Surfaces and Interfaces,2021,23:101032.

    • [21] NIU J H,MENG S H,JIN H,et al.Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere[J].Journal of the European Ceramic Society,2019,39(15):4535-4544.

    • [22] LIU R J,LIU X Y,WANG Y F,et al.Laser ablation behavior and mechanism of Cf/SiC–ZrC ultra-high temperature ceramic matrix composite prepared by PIP method[J].Ceramics International,2021,47(16):23610-23619.

    • [23] 蔡虎,程祖海,朱海红,等.脉冲强激光破坏 Hg_(0.8)Cd_(0.2)Te 晶片材料的机理分析[J].强激光与粒子束,2006(6):927-930.CAI Hu,CHENG Zuhai,ZHU Haihong,et al.Mechanistic analysis of the destruction of Hg_(0.8)Cd_(0.2)Te wafer material by pulsed intense laser[J].High Power Laser and Particle Beams,2006(6):927-930.(in Chinese)

    • [24] LI C H,KANG X L,HAN W,et al.Nanosecond laser-induced surface damage and material failure mechanism of single crystal CaF 2(111)at 355 nm[J].Applied Surface Science,2019,480:1070-1077.

    • [25] 徐鑫,方春华,李智,等.连续激光作用下瓷质绝缘子温度和热应力分析[J].光电子· 激光,2021,32(1):78-87.XU Xin,FANG Chunhua,LI Zhi,et al.Analysis of temperature and thermal stress of porcelain insulator under continuous laser irradiaion[J].Journal of Optoelectronics Laser,2021,32(1):78-87.(in Chinese)

    • [26] 孙铭远,张昊春,曲博岩,等.激光辐照下卫星筒体部分多物理建模及毁伤效应分析[J].应用光学,2021,42(3):542-549.SUN Mingyuan,ZHANG Haochun,QU Boyan,et al.Multi-physical modeling and damage effect analysisof satellite cylinders under laser irradiation[J].Journal of Applied Optics,2021,42(3):542-549.(in Chinese)

    • [27] LOHANI S,SHUBHAM M,RUSTY R K,et al.Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites[J].Materials Today:Proceedings,2021,43:524-529.

    • [28] DE CASTRO MONSORES K G,DA SILVA A O,OLIVEIRA S S A,et al.Influence of ultraviolet radiation on polystyrene[J].Journal of Materials Research and Technology,2021,13:359-365.

    • [29] DE CASTRO MONSORES K G,DA SILVA A O,OLIVEIRA S S A,et al.Influence of ultraviolet radiation on polymethylmethacrylate(PMMA)[J].Journal of Materials Research and Technology,2019,8(5):3713-3718.

    • [30] QI A,ELSHAFIEY A,HUANG L J,et al.Plasma and X-ray radiation-induced damage mechanisms in a tungsten heavy alloy[J].Journal of Nuclear Materials,2020,539:152325.

    • [31] 何佩谣,赵越,刘宇,等.相变材料 Ge_2Sb_2Te_5 的X射线辐照致变效应研究[J].核技术,2021,44(3):9-15.HE Peiyao,ZHAO Yue,LIU Yu,et al.Study on X-ray irradiation induced effect of phase-change material Ge2Sb2Te5[J].Nuclear Techniques,2021,44(3):9-15.(in Chinese)

    • [32] 郑佳艺,马壮,高丽红.智能化高能激光防护材料新进展[J].现代技术陶瓷,2020,41(3):121-133.ZHENG Jiayi,MA Zhuang,GAO Lihong.Development of intelligent anti-high power laser materials[J].Advanced Ceramics,2020,41(3):121-133.(in Chinese)

    • [33] 张其土,许仲梓,付振晓,等.激光防护材料的研究与应用[J].南京化工大学学报(自然科学版),2001(3):82-86.ZHANG Qitu,XU Zhongzi,FU Zhenxiao,et al.Research and application of laser protection materials[J].Journal of Nanjing Tech University(Natural Science Edition),2001(3):82-86.(in Chinese)

    • [34] 冯守志,圣冬冬.航天器激光防护材料研究现状与发展趋势[J].上海航天,2014,31(3):34-38.FENG Shouzhi,SHENG Dongdong.Research and development of laser protective materials of spacecraft[J].Aerospace Shanghai,2014,31(3):34-38.(in Chinese)

    • [35] 付华,张光磊.材料性能学[M].北京:北京大学出版社,2017.FU hua,ZHANG Guanglei.An introduction to materials properties[M].Beijing:Beijing University Press,2017.(in Chinese)

    • [36] 张磊,杨鹏翎,赵海川,等.铜铝材料粗糙表面的BRDF特性研究[J].现代应用物理,2018,9(4):65-69.ZHANG Lei,YANG Pengyu,ZHAO Haichuan,et al.Charateristics of bidirectional reflectance distribution function on roughness surface of copper and aluminum materials[J].Modern Applied Physics,2018,9(4):65-69.(in Chinese)

    • [37] YAHIAOUI K,ABERKANE S M.A comparative study of KrF laser ablation of aluminum and alumina in oxygen ambiance[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2021,180:106197.

    • [38] BENAVIDES O,DE L,GIL A F,et al.Experimental study on reflection of high-intensity nanosecond Nd:YAG laser pulses in ablation of metals[J].Optics & Lasers in Engineering,2015,68:83-86.

    • [39] ZHENG J Y,WANG S,GAO L H,et al.Theoretical and experimental studies of Ba2SmTaO6 on crystal structure,electronic structure and optical properties[J].Journal of Materials Chemistry C,2018,6(7):1806-1814.

    • [40] 刘维良,吴坚强,陈云霞,等.臭氧发生器用 Al2O3 陶瓷基板材料的改性研究[J].陶瓷学报,2001(2):73-77.LIU Weiliang,WU Jianqiang,CHEN Yunxia,et al.Study on the Al2O3 ceramic plate material modifier for ozonizer[J].Journal of Ceramics,2001(2):73-77.(in Chinese)

    • [41] 吴崇隽.高反射率LED陶瓷基板制备及其COB封装光源光效的研究[J].中国陶瓷工业,2019,26(6):15-20.WU Chongjun.Preparation of high reflectivity LED ceramic substrate and light efficiency of its COB packaging light source[J].China Ceramic Industry,2019,26(6):15-20.(in Chinese)

    • [42] MA C,MA Z,GAO L H,et al.Zirconium carbide-modified polymer-matrix composites with improved reflectivity under high-energy laser ablation[J].Ceramics International,2019,45(14):17681-17687.

    • [43] 朱锦鹏,马壮,高丽红,等.基于等离子喷涂的反射型激光防护涂层研究[J].中国光学,2017,10(5):578-587,702.ZHU Jinpeng,MA Zhuang,GAO Lihong,et al.Reflective laser protective coating based on plasma spraying[J].Chinese Optics,2017,10(5):578-587,702.(in Chinese)

    • [44] ZHU J P,MA Z,GAO L H,et al.Influence of microstructure on the optical property of plasma-sprayed Al,Cu,and Ag coatings[J].Materials & Design,2016,111:192-197.

    • [45] 孔静,马壮,高丽红,等.La1-xSrxTiO3+δ陶瓷涂层抗激光烧蚀性能研究[J].现代技术陶瓷,2018,39(2):115-121.KONG Jing,MA Zhuang,GAO Lihong,et al.Anti-laser ablation property of La1-xSrxTiO3+δ ceramic coating[J].Advanced Ceramics,2018,39(2):115-121.(in Chinese)

    • [46] ZHU J P,GAO L H,MA Z,et al.Optical property of La 1−x Sr x TiO 3+δ coatings deposited by plasma spraying technique[J].Applied Surface Science,2015,356:935-940.

    • [47] 李东荣,王富耻,马壮,等.等离子喷涂 Al2O3涂层 CO2 连续激光反射性能的研究[J].有色金属(冶炼部分),2008(5):38-41.LI Dongrong,WANG Fuchi,MA Zhuang,et al.Research on the CO2-CW-laser reflectivity of plasma sprayed Al2O3 coatings[J].Nonferrous Metals(Extractive Metallurgy),2008(5):38-41.(in Chinese)

    • [48] ZHENG J Y,WEN K,LIU Y B,et al.Laser irradiation behavior of plasma-sprayed tantalum oxide coatings[J].Ceramics International,2020,46(3):3875-3881.

    • [49] XU F,ZHU S Z,MA Z,et al.Ablation behavior of inorganic particle-filled polybenzoxazine composite coating irradiated by high-intensity continuous laser[J].Ceramics International,2019,45(12):14968-14975.

    • [50] XU W Y,GAO L H,MA C,et al.Design and preparation of composite coatings with increased reflectivity under high-energy continuous wave laser ablation[J].Ceramics International,2020,46(15):23457-23462.

    • [51] WANG H H,KONG J A,GE J,et al.Effects of reflectivity on laser-ablation resistance of the laser-cladding repaired Nd2O3 modified SiO2 coatings on C/C composites[J].Journal of the European Ceramic Society,2021,41(13):6548-6558.

    • [52] 漆海滨,李文煜,万红.强激光作用下金属基复合材料的破坏效应[J].应用激光,2000(5):198-200.QI Haibing,LI Wenyu,WAN Hong.Damage effects of metal matrix composite induced by high power laser[J].Applied Laser,2000(5):198-200.(in Chinese)

    • [53] YAN Z Y,MA Z,LIU L,et al.The ablation behavior of ZrB2/Cu composite irradiated by high-intensity continuous laser[J].Journal of the European Ceramic Society,2014,34(10):2203-2209.

    • [54] HONG C Q,HAI J C,ZHANG X H,et al.Preparation and thermal ablation behavior of titanium diboride/(copper,nickel)C4 material[J].Materials Science & Engineering A,2006,447(1):95-98.

    • [55] ZHANG Y L,SHAO D Y,FENG G H,et al.Ablation-resistant Ta0.78Hf0.22C solid solution ceramic modified C/C composites for oxidizing environments over 2 200 ℃[J].Journal of the European Ceramic Society,2021,41(13):6181-6188.

    • [56] SU X J,HU B T,QUAN Y,et al.Ablation behavior and mechanism of bulk MoAlB ceramic at ∼1 670–2 550 ℃ in air plasma flame[J].Journal of the European Ceramic Society,2021,41(11):5474-5483.

    • [57] LI W Z,GAO L H,MA Z,et al.Ablation behavior of graphite/SiO2 composite irradiated by high-intensity continuous laser[J].Journal of the European Ceramic Society,2017,37(4):1331-1338.

    • [58] CHEN Z F,FANG D,MIAO Y L,et al.Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2 900 and 3 550 ℃[J].Corrosion Science,2008,50(12):3378-3381.

    • [59] CHEN J,AN Q L,MING W W,et al.Investigations on continuous-wave laser and pulsed laser induced controllable ablation of SiCf/SiC composites[J].Journal of the European Ceramic Society,2021,41(12):5835-5849.

    • [60] WANG Z,WANG J T,SONG H W,et al.Laser ablation behavior of C/SiC composites subjected to transverse hypersonic airflow[J].Corrosion Science,2021,183:109345.

    • [61] WU X W,SU Z A,HUANG Q Z,et al.Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis[J].Ceramics International,2020,46(10):16062-16067.

    • [62] LI W Z,GAO L H,MA Z,et al.Multi-synergy ablative effects of laminated SiO2–graphite/SiO2/Cu composite irradiated by high power laser[J].Ceramics International,2019,45(12):15272-15280.

    • [63] ZHOU Y,NIU J,MENG S,et al.Improved laser ablation resistance of Si-CN precursor derived ceramics in air[J].Ceramics International,2018,44(18):23267-23272.

    • [64] ZHU Q S,WANG G Y,LIAO X Q,et al.Ablation properties and mechanisms of BN-coated Cf-reinforced SiBCNZr ceramic composites under an oxyacetylene combustion torch[J].Ceramics International,2021,47(11):15533-15541.

    • [65] 张俊华,李锦文,魏化震,等.低成本高性能酚醛树脂基烧蚀材料的性能研究[J].纤维复合材料,2009,26(3):36-38,42.ZHANG Junhua,LI Jinwen,WEI Huazhen,et al.Research on properties of low cost and high performance phenolic resin composites[J].Fiber Composites,2009,26(3):36-38,42.(in Chinese)

    • [66] 齐风杰,李锦文,魏化震,等.新型酚醛树脂基耐烧蚀复合材料的性能研究[J].纤维复合材料,2008(3):50-52.QI Fengjie,LI Jinwen,WEI Huazhen,et al.Research on properties of new-type phenolic resin matrix ablative composites[J].Fiber Composites,2008(3):50-52.(in Chinese)

    • [67] 张俊华,李锦文,魏化震,等.高性能酚醛树脂基烧蚀复合材料的研究[J].纤维复合材料,2009,26(1):15-18,23.ZHANG Junhua,LI Jinwen,WEI Huazhen,et al.Research on high performance phenolic resin ablative composites[J].Fiber Composites,2009,26(1):15-18,23.(in Chinese)

    • [68] 于庆春,万红.片状石墨增强树脂基复合材料的耐激光烧蚀性能研究[J].无机材料学报,2012,27(2):157-161.YU Qingchun,WAN Hong.Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse Laser irradiation[J].Journal of Inorganic Materials,2012,27(2):157-161.(in Chinese)

    • [69] XU F,ZHU S Z,LIU Y B,et al.Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite[J].Journal of Materials Science,2020,55(20):8553-8563.

    • [70] XU F,ZHU S Z,MA Z,et al.Effect of TaSi2/ZrSi2 on ablation properties of carbon-phenolic composite irradiated by high-intensity continuous laser[J].Ceramics International,2020,46(18):28443-28450.

    • [71] MERZAPOUR A,ASADOLLAHI M H,BAGHSHAEI S,et al.Effect of nanosilica on the microstructure,thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite[J].Composites Part A Applied Science and Manufacturing,2014,63:159-167.

    • [72] 穆景阳,万红,白书欣.长脉冲激光辐照下环氧树脂的热烧蚀规律[J].强激光与粒子束,2008(1):36-40.MU Jingyang,WAN Hong,BAI Shuxin.Thermal ablation pattern of epoxy resin under long-pulse laser irradiation[J].High Power Laser and Particle Beams,2008(1):36-40.(in Chinese)

    • [73] 陈博,万红,穆景阳,等.重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J].强激光与粒子束,2008(4):547-552.CHEN Bo,WAN Hong,MU Jingyang,et al.Thermal damage pattern of carbon fiber/epoxy resin composites under heavy frequency laser action[J].High Power Laser and Particle Beams,2008(4):547-552.(in Chinese)

    • [74] 贺敏波,马志亮,韦成华,等.热解对碳纤维/环氧复合材料激光烧蚀的影响[J].红外与激光工程,2016,45(3):97-100.HE Minbo,MA Zhiliang,WEI Chenghua,et al.Influence of pyrolysis on the laser ablation of carbon-fiber/epoxy composite[J].Infrared and Laser Engineering 2016,45(3):97-100.(in Chinese)

    • [75] LAFARIE-FRENOT M C,GRANDIDIER J C,GIGLIOTTI M,et al.Thermo-oxidation behaviour of composite materials at high temperatures:A review of research activities carried out within the COMEDI program[J].Polymer Degradation & Stability,2010,95(6):965-974.

    • [76] 彭国良,王玉恒,闫辉,等.C/C 复合材料的氧化对激光防护的影响研究[J].激光与红外,2013,43(2):148-151.PENG Guoliang,WANG Yuheng,YAN Hui,et al.Research of the effect of carbon-carbon composites oxidation on laser protection[J].Laser & Infrared,2013,43(2):148-151.(in Chinese)

    • [77] TONG Y G,HU Y L,LIANG X B,et al.Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation:Ablation resistance,microstructure and damage mechanism[J].Ceramics International,2020,46(10):14408-14415.

    • [78] CORRAL E L,WALKER L S.Improved ablation resistance of C–C composites using zirconium diboride and boron carbide[J].Journal of the European Ceramic Society,2010,30(11):2357-2364.

    • [79] 孙世杰,马壮,柳彦博,等.SiC-Al2O3-SiO2 复合陶瓷涂层组织结构及抗烧蚀性能研究[J].表面技术,2019,48(4):40-47.SUN Shijie,MA Zhuang,LIU Yanbo,et al.Microstructures and anti-ablation properties of SiC-Al2O3-SiO2 composite ceramic coatings[J].Surface Technology,2019,48(4):40-47.(in Chinese)

    • [80] HE R X,LI K Z,GU S Y,et al.Comparing ablation properties of NbC and NbC-25 mol.% ZrC coating on SiC-coated C/C composites[J].Ceramics International,2020,46(6):7055-7064.

    • [81] LI D R,WANG F C,MA Z,et al.Damage mechanism of Al2O3 ceramic coatings irradiated by CO2 CW laser[J].Journal of Beijing Institute of Technology,2008(2):227-231.

    • [82] LIANG B,DING C X.Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J].Surface & Coatings Technology,2004,197(2):185-192.

    • [83] MA C,MA Z,GAO L H,et al.Laser ablation behavior of flake graphite and SiO2 particle-filled hyperbranched polycarbosilane matrix composite coatings[J].Ceramics International,2018,44(17):21374-21380.

    • [84] LI W Z,GAO L H,MA Z,et al.Effect of Ni content on high power laser ablation behavior of coatings sprayed by Ni covering graphite/SiO2 powders[J].Journal of Materials Science & Technology,2020,47(12):38-44.

    • [85] SU C,LI G,LIU X,et al.Laser ablation behavior and mechanism of C/SiC coated with ZrB2–MoSi2–SiC/Mo prepared by HVOF[J].Ceramics International,2020,46(11):17752-17762.

    • [86] LIU Yanbo,GUO Jiayi,MA Zhuang,et al.Anti-ablation property of ZrB2/SiC/Ta2O5 coatings prepared by atmosphere plasma spraying[J].Rare Metal Materials and Engineering,2018,47(S1):72-77.

    • [87] 陈四海,赖建军,董珊,等.新型光电子材料氧化钒[J].红外与激光工程,2008,37(S3):407-409.CHEN Sihai,LAI Jianjun,DONG Shan,et al.Novel optoelectronic materials-VOx[J].Infrared and Laser Engineering,2008,37(S3):407-409.(in Chinese)

    • [88] 赵佳明,边继明,骆英民,等.用于智能激光防护武器的二氧化钒薄膜研究进展[J].兵器材料科学与工程,2011,34(2):102-106.ZHAO Jiaming,BIAN Jiming,LUO Yingmin,et al.Recent research progress in VO2 thin films for intelligent laser protection weapons[J].Ordnance Material Science and Engineering,2011,34(2):102-106.(in Chinese)

    • [89] GUI Z,FAN R,CHEN X H,et al.A New metastable phase of needle-like nanocrystalline VO2·H2O and phase transformation[J].Journal of Solid State Chemistry,2001,157(2):250-254.

    • [90] 杜艳秋,尚春雨.强度防护型激光防护机制[J].激光与红外,2009,39(4):363-366.DU Yanqiu,SHANG Chunyu.Principles of laser protective technology against intensity[J].Laser & Infrared,2009,39(4):363-366.(in Chinese)

    • [91] 刘志伟,张斌,陈彧.二维纳米材料及其衍生物在激光防护领域中的应用[J].物理学报,2020,69(18):30-51.LIU Zhiwei,ZHANG Bin,CHEN Yu.Two-dimensional nanomaterials and their derivatives for laser protection[J].Acta Physica Sinica,2020,69(18):30-51.(in Chinese)

    • [92] GANEEV R A,RYASSNYANSKY A I,REDKORECHEV V I,et al.Variations of nonlinear optical characteristics of C60 thin films at 532 nm[J].Optics Communications,2003,225(1-3):131-139.

    • [93] LIU R,HU J Y,ZHU S Q,et al.Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes[J].ACS Applied Materials & Interfaces,2017,9(38):33029-33040.

    • [94] DU Y L,DONG N N,ZHANG M H,et al.Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting[J].Physical Chemistry Chemical Physics:PCCP,2017,19(3):2252-2260.

    • [95] SHUKLA V,SINGH C P,MUKHERJEE C,et al.Investigation of optical limiting in cobalt nanoparticles synthesized by laser ablation[J].Chemical Physics Letters,2013,555:149-153.

    • [96] GUO Z N,ZHANG H,LU S B,et al.Phosphorene:from black phosphorus to phosphorene:basic solvent exfoliation,evolution of raman scattering,and applications to ultrafast photonics[J].Advanced Functional Materials,2015,25(45):7100-7100.

    • [97] FU G,YODA T,KAZUO K,et al.Third-order optical nonlinearities of naphthalocyanine derivatives measured by resonant femtosecond degenerate four-wave mixing technique[J].Synthetic Metals,2005,155(1):68-72.

    • [98] 胡富根,徐碣敏,周淑英,等.复合型激光防护眼镜的激光防护效应观察[J].兵器激光,1986(3):50-54.HU Fugen,XU Yemin,ZHOU Shuying,et al.Observation of laser protection effect of composite laser protective glasses[J].Laser Technology,1986(3):50-54.(in Chinese)

    • [99] WANG B,LI E H,DU J J,et al.Effects of heat treatment conditions and Y-doping on structure and phase transition temperature of VO2 powders[J].Transactions of Nonferrous Metals Society of China,2020,30(4):1038-1045.

    • [100] GUO H,WANG Y G,JAIN A,et al.Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties[J].Journal of Alloys and Compounds,2021,878:160352.

    • [101] WANG D,GUO D Y,ZHAO Z J,et al.Surface modification-assisted solvent annealing to prepare high quality M-phase VO2 nanocrystals for flexible thermochromic films[J].Solar Energy Materials and Solar Cells,2019,200:110031.

    • [102] SIMO A,BEUKES P,KAVIYARASU K,et al.Structural and luminescence properties changes study of VO2 nanostructures induced by gamma irradiation[J].Materials Today:Proceedings,2021,36:595-599.

    • [103] 骆永全,王伟平,罗飞.V2O5 薄膜在连续激光防护中的应用研究[J].应用激光,2005(6):381-383.LUO Yongquan,WANG Weiping,LUO Fei.Study on the application of vanadium pentoxide thin films in continuous laser protection[J].Applied Laser,2005(6):381-383.(in Chinese)

    • [104] CHEN Y,BAI T,DONG N N,et al.Graphene and its derivatives for laser protection[J].Progress in Materials Science,2016,84:118-157.

    • [105] 黄强,王丽熙,张其土.双波段激光防护多层反射膜的设计[J].光学技术,2007(S1):147-149.HUANG Qiang,WANG Lixi,ZHANG Qitu.Design of double-wavelength reflective multi-layer coatings for laser protection[J].Optical Technique,2007(S1):147-149.(in Chinese)

    • [106] MOGHARE A M,KIANI A.Optical reflectivity of heat-treated nanofibrous silicon thin-films induced by high energy picosecond laser pulses[J].Sensing and Bio-Sensing Research,2020,30:100385.

  • 手机扫一扫看