en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张梓浩,男,1999年出生,硕士研究生。主要研究方向为生物医用合金增材制造。E-mail:b975124509@163.com;

刘宇,男,1996年出生,博士研究生。主要研究方向为生物可降解金属材料。E-mail:liuyupku@pku.edu.cn;

窦新雨,男,1994年出生,博士研究生。主要研究方向为新型骨再生材料。E-mail:douxinyupku@stu.pku.edu.cn;

张百成(通信作者),男,1984年出生,博士,副教授,硕士研究生导师。主要研究方向为增材制造、3D打印、新材料开发。E-mail:zhangbc@ustb.edu.cn;

祝斌,男,1984年出生,博士,副教授,副主任医师,硕士研究生导师。主要研究方向为骨组织工程材料。E-mail:zhubin@bjmu.edu.cn

中图分类号:TG146

DOI:10.11933/j.issn.1007−9289.20211210002

参考文献 1
KABIR H,MUNIR K,WEN C,et al.Recent research and progress of biodegradable zinc alloys and composites for biomedical applications:Biomechanical and biocorrosion perspectives[J].Bioactive Materials,2021,6(3):836-879.
参考文献 2
WANG J,XU J,HOPKINS C,et al.Biodegradable magnesium-based implants in orthopedics— a general review and perspectives[J].Advanced Science,2020,7(8):1-19.
参考文献 3
HERNANDEZ ESCOBAR D,CHAMPAGNE S,YILMAZER H,et al.Current status and perspectives of zinc-based absorbable alloys for biomedical applications[J].Acta Biomaterialia,2019,97:1-22.
参考文献 4
代晓军,杨西荣,王昌,等.生物医用可降解锌基合金的研究进展[J].材料导报,2018,32(21):3754-9.DAI Xiaojun,YANG Xirong,WANG Chang,et al.Research progress on biomedical degradable zinc-based alloys[J].Materials Review,2018,32(21):3754-3759.(in Chinese)
参考文献 5
MOSTAED E,SIKORA JASINSKA M,DRELICH J W,et al.Zinc-based alloys for degradable vascular scent applications[J].Acta Biomaterialia,2018,71:1-23.
参考文献 6
YIN Y,ZHOU C,SHI Y,et al.Hemocompatibility of biodegradable Zn-0.8 wt%(Cu,Mn,Li)alloys[J].Materials Science & Engineering C-Materials for Biological Applications,2019,104:1-7.
参考文献 7
SU Y,COCKERILL I,WANG Y,et al.Zinc-based biomaterials for regeneration and therapy[J].Trends in Biotechnology,2019,37(4):428-441.
参考文献 8
CERRATO E,BARBERO U,ROMERO J,et al.Magmaris™ resorbable magnesium scaffold:State-of-art review[J].Future Cardiology,2019,15:1-13.
参考文献 9
SEITZ J M,LUCAS A,KIRSCHNER M.Magnesium-based compression screws:A novelty in the clinical use of implants[J].The Minerals,Metals & Materials Society,2016,68(4):1177-1182.
参考文献 10
BOWEN P K,DRELICH J,GOLDMAN J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J].Advanced Materials,2013,25(18):2577-2582.
参考文献 11
王洋洋,吴红枚,甄文强,等.生物可降解血管支架研究进展[J].中国医疗器械杂志,2021,45(4):410-415.WANG Yangyang,WU Hongmei,ZHEN Wenqiang,et al.Research progress of biodegradable vascular stent[J].Chinese Journal of Medical Instrumentation,2021,45(4):410-415.(in Chinese)
参考文献 12
孙钰晟,左保齐.高分子聚合物硬骨缺损修复材料研究进展[J].纺织学报,2021,42(8):175-84.SUN Yusheng,ZUO Baoqi.Research progress of high-molecular polymer material for bone defect repair[J].Journal of Textile Research,2021,42(8):175-184.(in Chinese)
参考文献 13
SONG R,MURPHY M,LI C,et al.Current development of biodegradable polymeric materials for biomedical applications[J].Drug Design,Development and Therapy,2018,12:3117-3145.
参考文献 14
ZHANG S,LI J,SONG Y,et al.In vitro degradation,hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2009,29(6):1907-1912.
参考文献 15
VOJTĔCH D,KUBÁSEK J,SERAK J,et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515-22.
参考文献 16
BOWEN P K,GUILLORY R J,SHEARIER E R,et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J].Materials Science & Engineering C-Materials for Biological Applications,2015,56:467-472.
参考文献 17
LI H,XIE X,ZHENG Y,et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr[J].Scientific Reports,2015,5:10719-10732.
参考文献 18
NIU J,TANG Z,HUANG H,et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J].Materials Science & Engineering C-Materials for Biological Applications,2016,69:407-413.
参考文献 19
KUBÁSEK J,VOJTĔCH D,JABLONSKÁ E,et al.Structure,mechanical characteristics and in vitro degradation,cytotoxicity,genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J].Materials Science & Engineering C-Materials for Biological Applications,2016,58:24-35.
参考文献 20
ZHAO S,MCNAMARA C T,BOWEN P K,et al.Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J].Metallurgical and Materials Transactions A,2017,48(3):1204-1215.
参考文献 21
GUO H,HU J,SHEN Z,et al.In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis[J].Acta Biomaterialia,2021,121:713-723.
参考文献 22
MOSTAED E,SIKORA JASINSKA M,MOSTAED A,et al.Novel Zn-based alloys for biodegradable stent applications:design,development and in vitro degradation[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,60:581-602.
参考文献 23
LI G,YANG H,ZHENG Y,et al.Challenges in the use of zinc and its alloys as biodegradable metals:Perspective from biomechanical compatibility[J].Acta Biomaterialia,2019,97:23-45.
参考文献 24
YANG H,JIA B,ZHANG Z,et al.Alloying design of biodegradable zinc as promising bone implants for load-bearing applications[J].Nature Communications,2020,11(1):1-16.
参考文献 25
TONG X,CAI W,LIN J,et al.Biodegradable Zn-3Mg-0.7Mg(2)Si composite fabricated by highpressure solidification for bone implant applications[J].Acta Biomaterialia,2021,123:407-417.
参考文献 26
ZHU D,COCKERILL I,SU Y,et al.Mechanical strength,biodegradation,and in vitro and in vivo biocompatibility of Zn biomaterials[J].ACS Applied Materials & Interfaces,2019,11(7):6809-6819.
参考文献 27
QIAO Y,ZHANG W,TIAN P,et al.Stimulation of bone growth following zinc incorporation into biomaterials[J].Biomaterials,2014,35(25):6882-6897.
参考文献 28
INZANA J A,SCHWARZ E M,KATES S L,et al.Biomaterials approaches to treating implant-associated osteomyelitis[J].Biomaterials,2016,81:58-71.
参考文献 29
ARCIOLA C R,CAMPOCCIA D,SPEZIALE P,et al.Biofilm formation in staphylococcus implant infections.a review of molecular mechanisms and implications for biofilm-resistant materials[J].Biomaterials,2012,33(26):5967-5982.
参考文献 30
CAMPOCCIA D,MONTANARO L,ARCIOLA C R.A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces[J].Biomaterials,2013,34(33):8018-8029.
参考文献 31
QU X,YANG H,JIA B,et al.Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties[J].Bioactive Materials,2021,6(12):4607-4624.
参考文献 32
HENNIG B,TOBOREK M,MCCLAIN C J.Antiatherogenic properties of zinc:implications in endothelial cell metabolism[J].Nutrition,1996,12(10):711-717.
参考文献 33
VENEZUELA J,DARGUSCH M S.The influence of alloying and fabrication techniques on the mechanical properties,biodegradability and biocompatibility of zinc:A comprehensive review[J].Acta Biomaterialia,2019,87:1-40.
参考文献 34
BAO G,FAN Q,GE D,et al.In vitro and in vivo studies to evaluate the feasibility of Zn-0.1Li and Zn-0.8Mg application in the uterine cavity microenvironment compared to pure zinc[J].Acta Biomaterialia,2021,123:393-406.
参考文献 35
JIA B,YANG H,HAN Y,et al.In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications[J].Acta Biomaterialia,2020,108:358-372.
参考文献 36
LIN J,TONG X,SUN Q,et al.Biodegradable ternary Zn-3Ge-0.5X(X=Cu,Mg,and Fe)alloys for orthopedic applications[J].Acta Biomaterialia,2020,115:432-446.
参考文献 37
JIANG J,HUANG H,NIU J,et al.Characterization of nano precipitate phase in an as-extruded Zn-Cu alloy[J].Scripta Materialia,2021,200:1-6.
参考文献 38
MOSTAED E,SIKORA JASINSKA M,ARDAKANI M S,et al.Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting[J].Acta Biomaterialia,2020,105:319-335.
参考文献 39
ČAPEK J,KUBÁSEK J,PINC J,et al.ZnMg0.8Ca0.2(wt.%)biodegradable alloy—The influence of thermal treatment and extrusion on microstructural and mechanical characteristics[J].Materials Characterization,2020,162:1-17.
参考文献 40
SUN J,ZHANG X,SHI Z Z,et al.Adjusting comprehensive properties of biodegradable Zn-Mn alloy through solution heat-treatment[J].Materials Today Communications,2020,23:1-4.
参考文献 41
JARZĘBSKA A,BIEDA M,MAJ L,et al.Controlled grain refinement of biodegradable Zn-Mg alloy:The effect of magnesium alloying and multi-pass hydrostatic extrusion preceded by hot extrusion[J].Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2020,51(12):6784-6796.
参考文献 42
ZHU S,WU C,LI G,et al.Microstructure,mechanical properties and creep behaviour of extruded Zn-xLi(x=0.1,0.3 and 0.4)alloys for biodegradable vascular[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2020,777:1-7.
参考文献 43
GUO P,ZHU X,YANG L,et al.Ultrafine-and uniform-grained biodegradable Zn-0.5Mn alloy:Grain refinement mechanism,corrosion behavior,and biocompatibility in vivo[J].Materials Science & Engineering C-Materials for Biological Applications,2021,118:1-12.
参考文献 44
LIN J,TONG X,WANG K,et al.Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications[J].Journal of Materials Science & Technology,2021,68:76-90.
参考文献 45
SOTOUDEH BAGHA P,KHALEGHPANAH S,SHEIBANI S,et al.Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying[J].Journal of Alloys and Compounds,2018,735:1319-1327.
参考文献 46
HOU Y,JIA G,YUE R,et al.Synthesis of biodegradable Zn-based scaffolds using NaCl templates:Relationship between porosity,compressive properties and degradation behavior[J].Materials Characterization,2018,137:162-169.
参考文献 47
QIN Y,WEN P,XIA D,et al.Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn[J].Additive Manufacturing,2020,33:1-10.
参考文献 48
LI Y,PAVANRAM P,ZHOU J,et al.Additively manufactured biodegradable porous zinc[J].Acta Biomaterialia,2020,101:609-623.
参考文献 49
MONTANI M,DEMIR A G,MOSTAED E,et al.Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing[J].Rapid Prototyping Journal,2017,23(3):514-523.
参考文献 50
DEMIR A G,MONGUZZI L,PREVITALI B.Selective laser melting of pure Zn with high density for biodegradable implant manufacturing[J].Additive Manufacturing,2017,15:20-28.
参考文献 51
WEN P,JAUER L,VOSHAGE M,et al.Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants[J].Journal of Materials Processing Technology,2018,258:128-137.
参考文献 52
WEN P,VOSHAGE M,JAUER L,et al.Laser additive manufacturing of Zn metal parts for biodegradable applications:Processing,formation quality and mechanical properties[J].Materials & Design,2018,155:36-45.
参考文献 53
LI Y,LI W,BOBBERT F S L,et al.Corrosion fatigue behavior of additively manufactured biodegradable porous zinc[J].Acta Biomaterialia,2020,106:439-449.
参考文献 54
LI Y,PAVANRAM P,ZHOU J,et al.Additively manufactured functionally graded biodegradable porous zinc[J].Biomaterials Science,2020,8(9):2404-2419.
参考文献 55
LIETAERT K,ZADPOOR A A,SONNAERT M,et al.Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications[J].Acta Biomaterialia,2020,110:289-302.
参考文献 56
XIA D,QIN Y,GUO H,et al.Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur[J].Bioactive Materials,2023,19:12-23.
参考文献 57
YANG Y,YUAN F,GAO C,et al.A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,82:51-60.
参考文献 58
QIN Y,WEN P,VOSHAGE M,et al.Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds:Formation quality,microstructure and mechanical properties[J].Materials & Design,2019,181:1-10.
参考文献 59
QIN Y,LIU A,GUO H,et al.Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration:In vitro and in vivo studies[J].Acta Biomaterialia,2022,145:403-415.
参考文献 60
QIN Y,YANG H,LIU A,et al.Processing optimization,mechanical properties,corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals[J].Acta Biomaterialia,2022,142:388-401.
参考文献 61
PACHLA W,PRZYBYSZ S,JARZĘBSKA A,et al.Structural and mechanical aspects of hypoeutectic Zn-Mg binary alloys for biodegradable vascular stent applications[J].Bioactive Materials,2021,6(1):26-44.
参考文献 62
DAMBATTA M S,IZMAN S,KURNIAWAN D,et al.Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants[J].Journal of King Saud University Science,2017,29(4):455-461.
参考文献 63
SHI Z,GAO X,CHEN H,et al.Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement[J].Materials Science & Engineering C-Materials for Biological Applications,2020,116:111197.
参考文献 64
HE J,FANG J,WEI P,et al.Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants[J].Acta Biomaterialia,2021,121:665-681.
参考文献 65
QU X,YANG H,JIA B,et al.Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation[J].Acta Biomaterialia,2020,117:400-417.
参考文献 66
TONG X,ZHANG D,ZHANG X,et al.Microstructure,mechanical properties,biocompatibility,and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials[J].Acta Biomaterialia,2018,82:197-204.
参考文献 67
ZHANG W,LI P,SHEN G,et al.Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application[J].Bioactive Materials,2021,6(4):975-989.
参考文献 68
FARABI E,SHARP J A,VAHID A,et al.Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices[J].Materials Science & Engineering C-Materials for Biological Applications,2021,122:111897.
参考文献 69
KRALOVA Z O,GOREJOVA R,ORINAKOVA R,et al.Biodegradable zinc-iron alloys:Complex study of corrosion behavior,mechanical properties and hemocompatibility[J].Progress in Natural ScienceMaterials International,2021,31(2):279-287.
参考文献 70
JIN H,ZHAO S,GUILLORY R,et al.Novel high-strength,low-alloys Zn-Mg(< 0.1 wt% Mg)and their arterial biodegradation[J].Materials Science & Engineering C-Materials for Biological Applications,2018,84:67-79.
参考文献 71
KUSTRA P,WROBEL M,BYRSKA WOJCIK D,et al.Manufacture technology,mechanical and biocorrosion properties of the Zn and ZnMg 0.008 alloy wires designed for biodegradable surgical threads[J].Journal of Manufacturing Processes,2021,67:513-520.
参考文献 72
TONG X,ZHANG D,LIN J,et al.Development of biodegradable Zn-1Mg-0.1RE(RE = Er,Dy,and Ho)alloys for biomedical applications[J].Acta Biomaterialia,2020,117:384-399.
参考文献 73
WU H,XIE X,WANG J,et al.Biological properties of Zn-0.04Mg-2Ag:A new degradable zinc alloy scaffold for repairing large-scale bone defects[J].Journal of Materials Research and Technology,2021,13:1779-1789.
参考文献 74
LI H,SHEN C,RUAN D,et al.Microstructure,mechanical properties,and in vitro behavior of biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca[J].Journal of Materials Science-Materials in Medicine,2020,31(10):1-8.
参考文献 75
ČAPEK J,KUBÁSEK J,PINC J,et al.Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy — The influence of extrusion parameters on microstructure and mechanical characteristics[J].Journal of the Mechanical Behavior of Biomedical Materials,2020,108:103796.
参考文献 76
LIU X,SUN J,ZHOU F,et al.Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J].Materials & Design,2016,94:95-104.
参考文献 77
TANG Z,NIU J,HUANG H,et al.Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,72:182-191.
参考文献 78
LI P,ZHANG W,DAI J,et al.Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants[J].Materials Science & Engineering C-Materials for Biological Applications,2019,103:1-13.
参考文献 79
YUE R,HUANG H,KE G,et al.Microstructure,mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys[J].Materials Characterization,2017,134:114-122.
参考文献 80
YUE R,ZHANG J,KE G,et al.Effects of extrusion temperature on microstructure,mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2019,105:1-9.
参考文献 81
LIN J,TONG X,SHI Z,et al.A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications[J].Acta Biomaterialia,2020,106:410-427.
参考文献 82
TANG Z,HUANG H,NIU J,et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J].Materials & Design,2017,117:84-94.
参考文献 83
CHEN C,YUE R,ZHANG J,et al.Biodegradable Zn-1.5Cu-1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents[J].Materials Science & Engineering C-Materials for Biological Applications,2020,116:1-15.
参考文献 84
AMANO H,MIYAKE K,HINOKI A,et al.Novel zinc alloys for biodegradable surgical staples[J].World Journal of Clinical Cases,2020,8(3):504-516.
参考文献 85
LI Z,SHI Z,HAO Y,et al.Insight into role and mechanism of Li on the key aspects of biodegradable Zn-Li alloys:Microstructure evolution,mechanical properties,corrosion behavior and cytotoxicity[J].Materials Science & Engineering C-Materials for Biological Applications,2020,114:1-17.
参考文献 86
YANG H,QU X,WANG M,et al.Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites[J].Chemical Engineering Journal,2021,417:1-12.
参考文献 87
ZHANG Y,YAN Y,XU X,et al.Investigation on themicrostructure,mechanical properties,in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg,Ag)alloys for guided bone regeneration[J].Materials Science & Engineering C-Materials for Biological Applications,2019,99:1021-1034.
参考文献 88
LI Z,SHI Z,HAO Y,et al.High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents[J].Journal of Materials Science & Technology,2019,35(11):2618-2624.
参考文献 89
LU Y,XU X,LIU H,et al.Biodegradable behavior and antibacterial activities of a novel Zn-0.5%Li-(Ag)alloys[J].Materials Research Express,2021,8(5):055405.
参考文献 90
ZHANG Z,JIA B,YANG H,et al.Zn0.8Li0.1Sr-a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures:In vitro and in vivo studies[J].Biomaterials,2021,275:120905.
参考文献 91
SHUAI C,XUE L,GAO C,et al.Rod-like eutectic structure in biodegradable Zn-Al-Sn alloy exhibiting enhanced mechanical strength[J].ACS Biomaterials Science & Engineering,2020,6(7):3821-31.
参考文献 92
BOWEN P K,SEITZ J M,GUILLORY R J,2ND,et al.Evaluation of wrought Zn-Al alloys(1,3,and 5 wt % Al)through mechanical and in vivo testing for stent applications[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2018,106(1):245-258.
参考文献 93
BAKHSHESHI RAD H R,HAMZAH E,LOW H T,et al.Fabrication of biodegradable Zn-Al-Mg alloy:Mechanical properties,corrosion behavior,cytotoxicity and antibacterial activities[J].Materials Science & Engineering C-Materials for Biological Applications,2017,73:215-219.
参考文献 94
SHI Z,YU J,LIU X,et al.Effects of Ag,Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2019,99:969-978.
参考文献 95
CHEN H,SHI Z,LIU X.Microstructure and mechanical properties of extruded and caliber rolled biodegradable Zn-0.8Mn-0.4Ag alloy with high ductility[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2020,770:138543.
参考文献 96
LI P,SCHILLE C,SCHWEIZER E,et al.Mechanical characteristics,in vitro degradation,cytotoxicity,and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material[J].International Journal of Molecular Sciences,2018,19(755):1-15.
参考文献 97
AVIOR O,BEN GHEDALIA PELED N,RON T,et al.The effect of Ca on in vitro behavior of biodegradable Zn-Fe alloy in simulated physiological environments[J].Metals,2020,10(12):1-14.
参考文献 98
LIU S,KENT D,NGHIEM D,et al.Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys[J].Bioactive Materials,2019,4:8-16.
参考文献 99
DONG A,LI B,LU Y,et al.Effect of Mg on the microstructure and corrosion resistance of the continuously hot-dip galvanizing Zn-Mg coating[J].Materials,2017,10(8):1-14.
参考文献 100
CHEN C,FAN S,NIU J,et al.Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening[J].Materials & Design,2021,204:1-11.
参考文献 101
LI G,ZHU S,NIE J,et al.Investigating the stress corrosion cracking of a biodegradable Zn-0.8 wt%Li alloy in simulated body fluid[J].Bioactive Materials,2021,6(5):1468-1478.
参考文献 102
LIU X,SUN J,QIU K,et al.Effects of alloying elements(Ca and Sr)on microstructure,mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J].Journal of Alloys and Compounds,2016,664:444-452.
参考文献 103
MA J,ZHAO N,ZHU D.Endothelial cellular responses to biodegradable metal zinc[J].ACS Biomaterials Science & Engineering,2015,1(11):1174-1182.
参考文献 104
SHEARIER E R,BOWEN P K,HE W,et al.In vitro cytotoxicity,adhesion,and proliferation of human vascular cells exposed to zinc[J].ACS Biomaterials Science & Engineering,2016,2(4):634-642.
参考文献 105
ZHU D,SU Y,YOUNG M L,et al.Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials[J].ACS Applied Materials & Interfaces,2017,9(33):27453-27461.
参考文献 106
JABLONSKÁ E,VOJTĚCH D,FOUSOVÁ M,et al.Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy[J].Materials Science & Engineering:C,2016,68:198-204.
参考文献 107
SHEN C,LIU X,FAN B,et al.Mechanical properties,in vitro degradation behavior,hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants[J].Rsc Advances,2016,6(89):86410-86419.
参考文献 108
DRELICH A J,ZHAO S,GUILLORY R J,et al.Long-term surveillance of zinc implant in murine artery:Surprisingly steady biocorrosion rate[J].Acta Biomaterialia,2017,58:539-549.
参考文献 109
ZHAO S,SEITZ J M,EIFLER R,et al.Zn-Li alloy after extrusion and drawing:Structural,mechanical characterization,and biodegradation in abdominal aorta of rat[J].Materials Science & Engineering C-Materials for Biological Applications,2017,76:301-312.
参考文献 110
KAFRI A,OVADIA S,GOLDMAN J,et al.The suitability of Zn-1.3% Fe alloy as a biodegradable implant material[J].Metals,2018,8(3):1-15.
参考文献 111
KAFRI A,OVADIA S,YOSAFOVICH DOITCH G,et al.The effects of 4%Fe on the performance of pure zinc as biodegradable implant material[J].Annals of Biomedical Engineering,2019,47(6):1400-1408.
参考文献 112
ZHOU C,LI H,YIN Y,et al.Long-term in vivo study of biodegradable Zn-Cu stent:A 2-year implantation evaluation in porcine coronary artery[J].Acta Biomaterialia,2019,97:657-670.
参考文献 113
LIN S,RAN X,YAN X,et al.Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2019,107(6):1814-1823.
参考文献 114
GUILLORY R J,BOWEN P K,HOPKINS S P,et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J].ACS Biomaterials Science & Engineering,2016,2(12):2355-2364.
参考文献 115
BAI W,SHIN J,FU R,et al.Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity[J].Nature Biomedical Engineering,2019,3(8):644-654.
目录contents

    摘要

    医用金属植入体已广泛应用于临床骨组织修复中,但是随着临床手术案例的积累,发现不锈钢、钛、钽传统生物金属材料在生物体内长期存在会造成应力屏蔽、组织排异发炎等症状,二次手术会给患者带来极大痛苦。近年来,可降解金属植入体材料的概念被提出并引起重视,由可降解金属制备的植入体在生物体组织中可被吸收分解,并促进血管组织愈合与骨组织再生,被视为新一代医用植入体材料。锌合金由于其优异的降解特性及生物相容性成为近年来的研究热点,在血管腔内支架、骨科及口腔科内固定材料领域拥有巨大的应用潜力。锌合金发展迅速,须及时进行全面总结。总结归纳目前医用锌合金的主要制备方式、材料力学性能、降解行为和生物相容性。基于大量的数据分析与归纳,发现在锌合金中添加 Li、Mg 元素可细化晶粒,显著提高锌合金强度,添加 Mn 元素则可在塑性变形中细化晶粒,可提高锌合金的延伸率。与纯锌相比,锌合金中的 Zn-(Fe、Cu、Ag)析出相与 Zn 基体形成的微电池作用提高了锌合金的降解速率。针对新型锌合金成分及先进制备工艺,提出以材料基因工程,指导适用于增材制造的三元高强锌合金体系开发,在提高力学性能的基础上匹配锌合金的降解速率和生物相容性,直接获得具有定制化结构的锌合金近终成型植入体。在系统性汇总的基础上,从性能、开发以及增材制造三个方面展望未来发展方向。

    Abstract

    Medical metal implants have been widely used in the clinical bone tissue repair field. However, with the accumulation of clinical operation cases. It is found that the long-term existence of traditional biomaterials such as stainless steel, titanium and tantalum in human body will cause some symptoms such as stress shielding, tissue rejection and inflammation while secondary operation will bring excruciating agonies to patients. The concept of absorbable metal for implant has been proposed and attracted attention. Absorbable metals have the potential to serve as the next generation of temporary medical implant devices by safely dissolving in the human body and promoting vascular tissue healing and bone regeneration. Zn-based alloy havs been a research hotspot because of its excellent biocompatibility and suitable degradation behavior. And, it has great application potential in the fields of cardiovascular stents and orthopedic fixation materials. The rapid development of Zn-Based alloys research requires a comprehensive summary in time. Therefore, the main preparation methods, mechanical properties, degradation behavior and biocompatibility of biodegradable Zn-Based alloys are summarized. Based on the analysis of abundant data, it can be found that the addition of Li and Mg in zinc alloy can refine the grain and significantly improve the strength of zinc alloy, while adding Mn can refine the grain in plastic deformation, which plays a certain role in improving the elongation of zinc alloy. The degradation rate of zinc alloy is higher than pure zinc because that Zn-(Fe,Cu,Ag)x precipitated phase could form a micro cell with Zn matrix. In order to improve the mechanical properties of zinc alloy while matching degradation rate and biocompatibility, this paper proposes to design the multicomponent high strength zinc alloy system guided by Materials Genome Initiative and directly obtain implants with customized structure by additive manufacturing. Based on the systematic summary, the future development direction is prospected from three aspects: performance, material development and additive manufacturing.

  • 0 前言

  • 0.1 医用可降解金属材料

  • 金属内植入物是现代医学的重要组成部分,应用领域繁多,如心脑血管支架、骨科及口腔科内固定材料、血管夹及各种金属修复材料等。传统的非降解金属生物材料,如不锈钢(SS)、钴铬合金 (Co-Cr)、钛(Ti)等合金,通常被用作永久性或临时性植入物,通过对硬组织提供支持来恢复功能[1]。但存在免疫反应、形成血栓、植入物周围应力遮挡、翻修手术困难、植入物相关感染或断裂等问题,给患者带来极大痛苦[2]。因此,可降解金属植入体材料的概念被提出,可降解金属材料可以在体内逐渐被体液腐蚀,在组织愈合时完全溶解。在此过程中,逐渐将负荷转移至愈合组织,无须二次手术取出,减轻了患者痛苦,降低了二次手术风险与医疗成本[3-4]

  • 目前主要的可降解金属材料包括镁基、锌基、铁基三种。在过去十几年里,医用可降解镁合金和铁合金被大量研究[5-7],其中镁合金在近年已开始商业化销售[8-9]。不过,研究中发现镁降解速度过快,且降解过程中伴随氢气的产生,前者使其功能丧失过快,后者则会阻碍愈合[3]。而铁的降解速率过慢,同时,降解产物在体内的存留时间较长,且不利于组织愈合。锌的降解速率介于镁和铁之间,其降解过程不产生氢气,降解产物可完全被机体吸收[10]。因此,相较于镁和铁,锌是更合适的可生物降解金属材料。通过对比主要几种医用金属材料与可降解聚合物,列出表1。

  • 在锌合金发展为可降解金属材料之前,在 2009 年,ZHANG 等[14]就将 Zn 作为 Mg 的合金元素,在体外试验中研究了Mg-Zn合金的降解速率以及生物相容性。在 2011 年,VOJTĔCH 等[15]提出将锌合金作为可降解金属材料,并进一步开发了Zn-Mg合金, Zn-Mg 合金中析出了 Mg2Zn11,使强度提升至 155 MPa。在 2013 年,BOWEN 等[16]研究了纯 Zn 的腐蚀行为,有力支持了锌合金的发展。到 2015 年,LI 等[17]开发了 Zn-Ca、Zn-Sr 合金体系,并研究了其微观结构、力学性能、降解性能以及体内外生物相容性,此时锌合金最高强度已达 260 MPa。到 2016 年,NIU 等[18]开发了 Zn-4Cu 合金,并在体外试验中对其进行系统研究,该合金强度为 270 MPa,且延伸率达到 51%。同样在 2016 年, KUBÁSEK 等 [19] 通过静液挤压工艺制备了 Zn-1.6Mg,使其强度达到 367 MPa。到 2017 年, ZHAO 等 [20] 开发了 Zn-Li 合金,其强度已达 565 MPa,不过延伸率仅为 2.4%。此后,学者对生物医用锌合金进行了大量研究,截至目前,研究论文已超过 150 篇。

  • 目前,在锌合金的研究中,学者已经研究了十种合金体系下的二元合金的组织、力学性能、降解行为以及生物相容性,并进一步研究了多种三元合金体系,且已经对 Zn-Li-Mg、Zn-Li-Mn、 Zn-Li-Sr 合金进行了系统的研究,Zn-0.8Li-0.1Sr 合金在具有 530MPa 强度的同时,有着 68.9%的延伸率[21]。不过,目前的研究中,锌合金的蠕变、疲劳、体液中的强度等力学性能研究较少,体内环境长时间下的力学性能研究较少,在体内的实际降解机理研究较少。

  • 表1 不同医用金属与高分子材料对比

  • Table1 Comparison of different medical metals and polymers

  • 0.2 生物医用锌合金应用前景

  • 锌金属较低的力学性能限制了其在临床植入体的应用。但是通过合金化处理以及变形处理,可以极大改善其机械强度[22]。并且,目前已经开发出了许多极限抗拉强度超过 300 MPa 且延伸率大于 18% 的锌合金[23-26]

  • 锌是骨形成和矿化必需的元素,可刺激成骨细胞,同时通过抑制破骨细胞抑制骨吸收[27],基于此,锌合金可用于治疗骨质疏松,且非常适用于骨科内植物。此外,对可降解锌合金的进一步优化则可赋予其抗感染等特性,达到多重治疗效果。

  • 骨科内植物相关感染是骨科手术并发症之一,可引起骨折不愈合、植入失败甚至危及生命等严重后果。治疗内植物相关感染的主要困难在于细菌在植入物表面形成了致密的生物膜[28],细菌生物膜对多种抗生素耐药并长期存活,造成反复感染,在机体免疫力低下时可使患者面临全身感染的严重风险[29-30]。因此,将内植物由细菌黏附增殖载体转变为具有抗菌作用的骨重建材料有望解决内植物相关感染问题。上海交通大学医学院附属仁济医院的QU 等[31]制备了具有抗菌作用的 Zn-2Ag,该合金在降解过程中释放 Zn2+和 Ag+,可防止细菌粘附和生物膜形成,同时 Zn2+和 Ag+ 扩散到种植体周围组织中促进骨整合,起到抗感染以及抗骨溶解的双重效果。

  • 可降解锌合金也非常适用于血管支架。研究表明锌离子可通过抗氧化以及稳定血管内皮细胞膜保护血管内皮细胞,进而发挥抗动脉粥样硬化作用[32]

  • 力学性能是目前制约锌合金发展的主要因素,因此本文主要对力学性能进行总结,分析不同合金化和制备方式对于锌合金力学性能的影响。此外,可降解是锌合金的主要优势之一,生物相容性是锌合金作为医用材料的基本要求,因此本文也对不同锌合金的降解速率与生物相容性进行了归纳。

  • 1 医用锌合金的制备

  • 1.1 传统医用锌合金制备方式

  • 目前,最常用的锌合金制备方式是基于铸造,其优点是可以通过熔炼来调控成分[33]。目前,大部分锌合金的制备方式为熔炼、铸造、热处理、机械变形等[212633-38],如图1 所示。例如,早在 2011 年,锌合金刚被作为生物医用金属材料时,VOJTĔCH 等[15]在熔炼 Zn、Mg,均匀化后铸造得到 Zn-Mg 合金铸锭。再如,MOSTAED 等[38]在 700℃下熔化化学当量的 Zn(99.995%)、Ag(99.95%)和 Mn (99.995%),铸成铸锭,为了使铸态组织均匀化,将铸锭在 400℃下退火 8 h,然后进行水淬,随后在 310℃、挤压比为 39∶1 的条件下挤压得到圆柱形棒材,最后在室温下多次拉拔得到直径 0.25 mm 的锌合金线材。

  • 图1 传统锌合金制备流程

  • Fig.1 Conventional zinc alloy preparation process

  • 铸造过程一般是在保护环境下,在熔炉内熔化金属部件,然后将熔融金属倒入模具,凝固为所需要的形状。正是在此过程中,可以进行不同锌合金的成分调控,并且形成一定的形状。铸造可细分为压铸和重力铸造。压铸的特点是在高压下将熔融金属压入模具型腔;而在重力铸造中,熔体直接从坩埚倒入模具[3]。但是铸造形成的锌合金一般组织性能都较差,精度也较低,须通过后续处理来提高性能与精度。

  • 铸造之后有时会加上一段时间的热处理,热处理方式包括均质化、退火、淬火等。例如 MOSTAED 等[38]在 400℃下对 Zn-4.0Ag 退火 8 h,然后进行水淬,这样可以先通过退火进行均质化,减轻铸造过程造成的缺陷,最后水淬可以进一步改善组织,从而进一步提高力学性能。ČAPEK 等[39]在 350℃对 Zn-0.8Mg-0.2Ca 进行退火与淬火处理,从而使得组织更加均匀。SHI 等[40]对轧制后的 Zn-0.8Mn 合金进行固溶热处理,使得 MnZn13相溶解于锌基体中,产生了固溶硬化的效果,并且提高了合金的耐腐蚀性。

  • 随后一般会进行塑性变形加工,该过程除了可以进一步成形外,还可以进一步改善锌合金的组织与性能。变形加工技术是一种依靠施加外力使金属塑性变形并形成所需的产品形状的技术。传统的变形加工技术包括挤压、拉拔、轧制和锻造,这些方法通过激活位错滑移和孪晶等塑性变形机制,破坏铸态组织,提高力学性能。例如,JARZĘBSKA 等[41]通过使用传统的热挤压和多道次静液挤压进行强烈的变形,最终制备了强度与塑性都显著提高的 Zn-1Mg(屈服强度为 383 MPa,延伸率为 23%),其中连续动态再结晶过程导致广泛的晶粒细化,从而极大地强化了锌合金。

  • 图2 总结了各种加工工艺对锌合金力学性能的影响,可以看出变形加工是力学性能的一个关键影响因素,不同变形加工都显著提升了锌合金的强度。而铸态锌合金的力学性能较低,经过变形加工才能生产出具有足够强度和延展性和强度的锌合金,以满足力学性能标准[33]

  • 图2 不同加工方式下的综合力学性能

  • Fig.2 Mechanical properties of alloy under different fabrication methods

  • 挤压作为应用最多的一种工艺,也是强化效果最好的工艺之一,对破坏铸态组织、细化晶粒、提高金属材料的力学性能具有很强的作用。湘潭大学材料科学与工程学院的 LIN 等[36]报告挤压态 Zn-3Ge 的强度与塑性均远大于铸态。再如,Zn-0.4Li 合金挤压后晶粒细化[42],其强度达到了 405.3 MPa。

  • 拉拔则可能作为挤压的后续处理而进一步提高性能,但是也存在相对强度丧失的现象[43]。Zn-4.0Ag 经过冷拔后,合金中动态析出了纳米级的 AgZn3相,使得其主导机制由位错滑动机制变为晶界滑移机制,表现为室温超塑性,抗拉强度降低,延伸率达到了 430%[38]

  • 制备方式也会影响锌合金的降解速率。以表2 中 Zn-3Cu 为例,相对于铸态而言,热轧提高了合金的强度、塑性以及降解速率,冷轧则进一步提高了合金的强度、塑性以及降解速率。其主要机理是通过热轧及冷轧细化晶粒,并且 ε-相含量增多,使得微电池腐蚀增多,使得合金降解速率提高[44]

  • 表2 Zn-3Cu 和 Zn-3Cu-0.2Ti 中机械变形的作用[43]

  • Table2 Effect of mechanical deformation in Zn-3Cu and Zn-3Cu-0.2Ti

  • 1.2 基于粉末冶金的制备方式

  • 粉末冶金作为另一种常用的锌合金制备方式可实现原位合金化,并且可以直接得到复杂形状制件,其主要加工方式包括粉末冶金与增材制造技术。目前研究中主要利用粉末冶金制备锌合金多孔材料,并研究粉末冶金制备多孔锌合金的力学性能与降解速率。此外,还有部分学者利用机械合金化来制备锌合金。比如在 2018 年,SOTOUDEH BAGHA 等[45] 将工业纯锌和锰粉通过行星高能球磨机械合金化,制备了均匀的混合合金粉,随后将合金粉在 300 MPa 的压力下进行单轴冷压,置于密封的石英管中,在管式炉中烧结 1 h,最终制得 Zn-Mn 合金样品。上海交通大学的 HOU 等[46]利用 NaCl 模板法制备了多孔锌支架,他们首先用刚玉模内烧结法制备 NaCl 模板,然后采用压力浸渗法将锌合金渗入到 NaCl 模板中,最后用溶出法将氯化钠模板从生坯中浸出,得到了多孔锌合金支架。多孔锌合金一方面可以用于组织再生与营养运输,另一方面具有可控的弹性模量。

  • 增材制造技术被认为是一种理想的生物制造方法,使用它显著降低了定制化生产的技术难度和成本[47],同时增材制造中的选择性激光熔化(SLM) 等技术允许快速凝固,从而可以提高锌合金性能。不过,与增材制造钛或钴铬合金不同,增材制造锌合金存在许多加工挑战,如其极易蒸发和有高的化学活性[48],因此 MONTANI 等[49]、DEMIR 等[50]和 WEN 等[51-52]通过优化粉末粒径、保护气循环条件以及打印工艺参数等,成功制备了致密的纯锌试样,并进一步研究了其力学性能及降解速率。结果表明,增材制造纯 Zn 力学性能(抗拉强度 134 MPa,延伸率 10.1%)优于大多数制造工艺所获得的力学性能,这可归因于较快的冷却速度和定向的温度梯度导致了细小的柱状晶[52]。进一步地,研究人员研究了多孔纯锌的力学行为、降解行为以及细胞相容性[4853],并研究了不同点阵结构的影响[54-55],以及多孔纯锌在兔子体内的成骨作用[56]。为进一步提高锌合金力学性能,YANG 等[57]将 SLM 获得的快速凝固与 Mg 合金化相结合来改善 Zn 的力学性能,从而在快速凝固中使得 Mg 过饱和固溶于 α 锌基体中,同时快速冷却使得晶粒细化从而极大提高了锌合金力学性能。QIN 等[58]则通过 L-PBF 制备了 Zn-xWE43(x=2、5、8),发现快速冷却速度和 WE43 的加入共同起到了细化晶粒的作用,QIN 等[59]还研究了 Zn-x Mg(x=1、2、5 wt.%) 力学性能与细胞相容性。QIN 等[60]制备了 Zn-0.7Li 块体以及多孔试样,块体的极限拉伸强度已经达到 416.5 MPa,弹性模量为 83.3 GPa,多孔试样则抗压强度和弹性模量分别为 18.2 MPa、298.0 MPa,且多孔样品表现出更高的腐蚀速率(46 μm / a),并发现与块体相比,多孔试样的细胞附着力和存活率都更好。

  • 总之,锌合金的增材制造还处于起始阶段,目前主要研究了纯 Zn 的高质量制备、纯 Zn 点阵结构打印以及部分锌合金的增材制造。

  • 1.3 其他制备方式

  • 在医用锌合金的研究中,除了上述制备方式,还有部分学者为进一步优化锌合金的组织与性能而对锌合金的制备方式进行改进,通过先进的制备方式来提高锌合金的强度。等通道转角挤压是一种剧烈塑性变形工艺,可明显改善织构和粒度分布[61],从而提高综合力学性能。比如,Zn-3Mg 合金经过两道次 ECAP 后,晶粒尺寸从 48 μm 降低至 1.8 μm[62],从而极大提高了力学性能。

  • 静液挤压技术有助于极大地细化低合金锌的晶粒。例如,JARZĘBSKA 等[41]得到了抗拉强度为 482 MPa 的Zn-1Mg 锌合金。PACHLA 等[61]也利用静液挤压使得 Zn-Mg 合金中的α 基体晶粒细化为1 μm 左右,且获得了抗拉强度为 514 MPa 的Zn-0.5Mg 锌合金。

  • 定向凝固工艺是对传统铸造工艺的改进,采用了水冷模具,旨在通过控制热流条件来控制组织的形状。SHI 等[63]通过底部循环水冷铸造 Zn-0.3Fe 合金,细化了锌合金中的 FeZn13 相,从而改善了合金的脆性,显著提高了合金的强度。

  • 湘潭大学的 TONG 等[25]利用高压凝固法制备了可生物降解 Zn-3Mg-0.7Mg2Si 复合材料,该材料具有极高的压缩性能(压缩屈服强度 406.2 MPa,极限压缩强度为 1 181.2 MPa)。南方科技大学的 HE 等[64]利用模板辅助电沉积技术制备了以 Fe 为内核层、Zn 为外壳层的多孔 Fe-Zn 复合支架,具有与人类松质骨相似的结构和力学性能,且具有锌合金的降解特性。

  • 2 锌合金的力学性能

  • 锌具有很多优点,但铸态纯 Zn 的强度和塑性均较低,抗拉强度不超过 40 MPa,而支架材料的抗拉强度要求为 300 MPa[33]。为进一步研究锌合金的力学性能,本文在表3~9 中总结了近年来不同锌合金的力学性能与降解速率。

  • 表3 纯 Zn 的力学性能与降解速率

  • Table3 Mechanical properties and corrosion rate of pure Zn

  • 表4 Zn-Mg 合金体系的力学性能与降解速率

  • Table4 Mechanical properties and corrosion rate of Zn-Mg alloy

  • 表5 Zn-Cu 合金体系的力学性能与降解速率

  • Table5 Mechanical properties and corrosion rate of Zn-Cu alloy

  • 表6 Zn-Li 合金体系的力学性能与降解速率

  • Table6 Mechanical properties and corrosion rate of Zn-Li alloy

  • 表7 Zn-Al 合金体系的力学性能与降解速率

  • Table7 Mechanical properties and corrosion rate of Zn-Al alloy

  • 表8 Zn-Mn 合金体系的力学性能与降解速率

  • Table8 Mechanical properties and corrosion rate of Zn-Mn alloy

  • 表9 Zn-Ca、Zn-Sr、Zn-Ag、Zn-Ge、Zn-Fe 合金体系的力学性能与降解速率

  • Table9 Mechanical properties and corrosion rate of Zn-Ca, Zn-Sr, Zn-Ag, Zn-Ge and Zn-Fe alloy

  • Notes: From Table3 to Table9, (C) represents Compression experiment; AC represents As-Cast; DC represents die-cast; AE represents As-Extruded; MHE represents Multi-Pass Hydrostatic Extrusion; HE represents Hydrostatic Extrusion; ECAP represents Equal Channel Angular Pressing; HR represents Hot-Rolled; CR represents Cold-Rolled; WR represents warm rolled; CD represents Cold Drawing; BCWC represents bottom circulating water-cooled casting; PM represents Powder Metallurgy; AM represents Additive Manufacturing; SLM represents Selective laser melting; LPBF represents Laser Powder Bed Fusion; HT represents heat treatment; Hank’ s BSS represents Hanks’ Balanced Salt Solution; SBF represents Simulated Body Fluid; Ringer’ s represents Ringer’ s solution; FeSSIF represents Fed-state simulated intestinal fluid; PBS represents phosphate-buffered saline solution.

  • 经过近年来的研究,锌合金的二元合金体系已经有 Zn-Mn、Zn-Ge、Zn-Ca、Zn-Sr、Zn-Ag、Zn-Cu、 Zn-Al、Zn-Mg、Zn-Li、Zn-Fe 十种,在此基础上进一步合金化可形成三元、多元合金体系。图3 展示了不同合金体系下的强度范围。可以看到,合金的合理加入具有一定强化作用,且通过合金化与变形处理相结合,使得合金的综合性能有了显著提升。

  • 图3 不同挤压态锌合金力学性能

  • Fig.3 Mechanical properties of extruded zinc alloys

  • 从图3 中可以看到,二元合金体系中,满足力学性能要求的有 Zn-Cu、Zn-Al、Zn-Mg 以及 Zn-Li 合金体系,且除了 Al 之外,Li、Mg 元素的强化作用最为显著。

  • 在四种二元体系中,Zn-Al 合金发展最早。Zn-Al 合金在低温下相对容易压铸,还具有良好的抗表面腐蚀性能,以及比许多其他压铸合金更高的强度。不过,虽然 Zn-Al 合金具有良好的力学性能,但是用于生物医学的锌合金必须采用无毒合金元素设计,而 Al 元素对骨骼、神经元和成骨细胞有害,还与痴呆症和阿尔茨海默病有关,因此 Zn-Al 合金不适合作为医用锌合金[3]

  • Zn-Cu 合金是一种常见的锌基合金,其中 Cu 元素可以提高合金的抗蠕变性能、强度[18]。Zn-Cu 合金主要于 2016 年开始研究,NIU 等[18]通过热挤压得到强度为 270MPa 的 Zn-4Cu 合金,在 2017 年, TANG 等[82]通过添加 Mg 元素形成强度为 440MPa 的 Zn-3Cu-0.1Mg 三元合金。如图4i 所示,Zn-Cu 合金经过热轧等变形工艺可形成均匀分布的 CuZn5 相,同时围绕硬质 CuZn5 相形成的变形区加速了动态再结晶过程,细化 Zn 基体晶粒[78],从而提高锌合金力学性能。如图4a 所示,随着 Cu 含量增加,锌合金强度随之增加,这是由于随着 Cu 含量的增加,CuZn5 第二相增加,可以增强强度,同时利用钉扎作用使得晶粒细化,从而既提高强度,又保持塑性。另外,除了微米级与亚微米级的 CuZn5 沉淀,棒状纳米析出相 CuZn4的存在也使得其强度更高[37]。随着 Cu 含量进一步提高,据相图4c,在 Cu 含量超过 2 wt.%后,会出现 CuZn5 枝晶,但是挤压后枝晶初生相被破碎,沿挤压方向分布,且基体发生再结晶,晶粒也明显细化 [1878],因此锌合金保持塑性的同时强度提高。

  • 图4 挤压态 Zn-Cu(-X)力学性能与组织

  • Fig.4 Mechanical properties and microstructure of extruded Zn-Cu (-X) alloy

  • Zn-Mg 合金研究得比较多,因为镁合金作为生物降解金属材料研究开始较早,发展较为成熟。早在 2011 年,就已制备 Zn-Mg 合金[15],在 2016 年, KUBÁSEK 等[19]通过热挤压制备了极限拉伸强度为 301 MPa 的 Zn-0.8Mg,在 2018 年,JIN 等[70]发展低 Mg 含量的 Zn-0.08Mg,通过挤压后强度达到 339 MPa。在 2021 年,JARZĘBSKA 等[41]通过多道次静液挤压工艺得到了强度 482 MPa 的 Zn-1Mg 合金。Mg 在 Zn 中的溶解度较低,容易与 Zn 产生 Mg2Zn11金属间化合物(图5c),可以产生第二相强化,同时 Mg2Zn11 可细化晶粒,进一步提高锌合金力学性能[3]。此外,对 Zn-Mg 合金进行变形处理,除了减少铸造缺陷和细化晶粒,其细化的 Mg2Zn11 相还抑制了拉伸变形中的孪晶,从而抑制了裂纹的产生[98]。图5a 可以发现 Zn-Mg 合金在 0~1.5 wt.% 含量时具有较高的强度与塑性,从相图图5c 可以看出,Mg 在 Zn 中的固溶度很低,添加少量 Mg 时会析出 Mg2Zn11 金属间化合物相,随着 Mg 含量增加,析出相增加,锌合金强度增加,但是随着镁含量进一步增加,超过共晶点后产生的脆性网格,反而使得综合性能下降[70]

  • 图5 挤压态 Zn-Mg 力学性能

  • Fig.5 Mechanical properties of extruded Zn-Mg alloy

  • 如图3 所示,Li 元素对 Zn 合金的强化效果最为显著。一方面,Li 元素在锌中的显著溶解性使得其可以产生较强的固溶强化[20],根据第一性原理计算可知[100],在一定浓度下,溶质的强化能力大小顺序为: Mn>Li>Cu,Ag>Mg>Al。另一方面,LiZn4金属间化合物[21]的产生也使得强度进一步提升,同时,LiZn4 相可促进 Zn 基体的动态再结晶,促进晶粒细化[42]。根据锌锂二元相图(图6a),可以发现随着 Li 含量提高, LiZn4相含量增加,锌合金强度随之提高,同时延伸率降低。在 Li 含量超过 0.44%时,第一凝固点转变为 β 相LiZn4,冷却的过程中会形成β / Zn片状结构(图6g), β / Zn 片层结构具有高的强度与韧性[85],因此 Zn-Li 合金具有极高的强度。Zn-Li 合金主要在 2017 年, ZHAO 等[20]通过热轧得到了 Zn-6at.%Li 合金,拥有超过560 MPa的强度,但同时拥有极低的延伸率,在2020 年,YANG 等[24]通过加入 Mg 元素使得强度提高至 646.7 MPa,加入 Mn 元素使得延伸率提高至 63.8%的同时具有 551.7 MPa 的强度。

  • 不过,虽然 Zn-Li 合金在经过适当的合金化和变形工艺处理后,可以显著细化晶粒,提高锌合金力学性能,但是,在 2020 年,ZHU 等[42]发现正是由于晶粒的细化,相应地在人体环境下的蠕变抗力也会降低,因此须控制晶粒的尺寸,使得力学性能与人体温度蠕变性能之间达到平衡。另外,在 2021 年,LI 等[101]发现体液中的加载情况也会影响 Zn-Li 合金的力学性能,锌合金在体内的实际强度仍需大量研究。

  • 在其他二元合金中,Ag、Sr、Ca 与 Zn 的二元体系也具有较好的强度,因此具备与其他元素组成三元合金进一步提升性能的潜力。

  • 在锌合金的三元体系中,除了上述 Zn-Cu 合金、 Zn-Al 合金、Zn-Mg 合金以及 Zn-Li 合金四种合金体系进一步合金化形成的体系,还有 Zn-Mn-Ca 体系也达到了强度要求。另外,在进一步合金化形成三元合金的过程中发现,Li、Mg、Cu、Ca、Mn 元素都可进一步强化二元体系。

  • 图6 Zn-Li 合金微观组织

  • Fig.6 Microstructure of Zn-Li alloy

  • 在 2021 年,CHEN 等[100]进行了第一性原理计算,发现三元锌基合金具有较高的力学性能和较低的第二相含量,并能抑制力学不稳定性。因此为进一步提高强度,接下来可考虑利用 Li、Mg、Ca、 Mn、Ag、Sr 等元素对于 Zn-Mg 和 Zn-Li 体系进行合金化改造,形成多元合金。

  • 图7 展示了不同合金体系下的延伸率,可以看到经过变形处理后所有体系的延伸率可以超过 18% 的塑性要求[33]。通过对相同处理工艺(挤压,AE) 的合金进行比较,可以看到 Mn、Al、Cu、Ag 的加入可以进一步提高纯锌的塑性,其中 Mn 元素对于塑性的提升效果最为显著。

  • Zn-Mn 合金具有良好的延展性,其可归因于 Mn 对动态再结晶有明显的促进作用,具有较强的晶粒细化作用[38],如图8f 所示,MnZn13 相为多角形或不规则形的底心单斜晶系[43],随着 Mn 的增加, MnZn13 相含量增加,晶粒也显著细化,从而提高锌合金的强度与塑性。

  • 图7 不同锌合金延伸率

  • Fig.7 Elongation of different zinc-based alloys

  • 图8 Zn-Mn 合金微观组织

  • Fig.8 Microstructure of Zn-Mn alloy

  • 总之,由图3 可以发现,Zn-Cu、Zn-Al、Zn-Mg、 Zn-Li 二元合金体系及其对应三元体系,再加 Zn-Mn-Ca 体系满足强度与塑性要求,且 Li、Mg 元素对于综合性能提升效果最为显著,Mn 元素对于塑性提高效果最为显著。

  • 3 锌合金的降解速率与生物相容性

  • 3.1 锌合金降解速率

  • 锌合金作为可降解金属材料,研究其降解速率与降解行为至关重要。锌合金的降解速率试验主要有体内试验与体外试验两种,而体外试验又一般可分为电化学试验与浸泡试验。目前的研究中降解速率主要通过体外试验进行确定。

  • 对于体外浸泡试验,一般遵循 ASTM-G31—72 标准,将锌合金浸泡于 HANK 溶液、SBF 模拟体液等中[2134-35],一段时间后根据失重比例进行计算即可得到;对于体外电化学试验,则一般遵循 ASTM-F2129-19a 标准[3],将锌合金置于模拟体液中,最常用的生理电解质有模拟体液(SBF)、 Ringer’ s 溶液和 Hank’ s 溶液。对于体内试验则是将锌合金置于活体内进行试验,最后取出或者利用体外 CT 技术得到失重率。

  • 北京大学郑玉峰团队[21]对 Zn-0.8Li-0.1Mn 合金线在体内外的降解速率进行了研究。在体外试验中,他们在浸泡试验中不同的时间点记录锌合金的降解率,得到锌合金的降解速率,发现降解产物中主要含有 Zn、O、C、P 元素和少量的 Ca 元素。在体内试验中,锌合金植入 12 周后,可明显从 CT 中看到锌合金发生了降解。上海交通大学医学院附属第九人民医院骨科的 JIA 等[35]在体外试验中利用极化曲线和交流阻抗谱评价了 Zn-Mn 合金的腐蚀行为,发现锰合金化对锌的腐蚀电位和腐蚀电流密度影响不大。

  • 锌合金的降解方程主要有方程(1)~(5)[102]

  • ZnZn2+2e
    (1)
  • 2H2O+O2+4e4OH-
    (2)
  • 2Zn+2H2O+O24Zn(OH)2
    (3)
  • ZnZn2++2e
    (4)
  • Zn2++2H2OZn(OH)2+2H+
    (5)
  • 在本文统计中,不同研究之间有不同的试验环境,而不同的沉浸试验液体、不同的沉浸天数会直接影响到试验结果,从而导致不同试验的锌合金降解速率难以比较。因此主要根据图9 进行分析。可以看到,合金化不同程度地提高了纯 Zn 的腐蚀速率,且 Fe、Ag、Cu 加速腐蚀的作用相对最为显著, Li、Mg 元素次之。

  • 图9 腐蚀速率与合金的关系[24]

  • Fig.9 Relationship between corrosion rate and composition [24]

  • 锌合金腐蚀后的形貌如图10 所示[24],在 Zn-0.8Li、Zn-0.8Mn、Zn-0.8Mg、Zn-0.8Ca 和 Zn-0.8Sr 合金中,腐蚀主要发生在金属间化合物相中,而在 Zn-0.8Fe、Zn-2.0Cu 和 Zn-0.8Ag 合金中,金属间化合物相基本完好,周围的 Zn 基体腐蚀严重。可以看出,Fe、Cu、Ag 与 Zn 组成的析出物可以与 Zn 基体形成微电池而加速锌合金的降解。不过,在体内试验中,锌合金降解速率为 0.13~0.26 μm / a,而镁合金为 0.36~1.58 μm / a[24],锌合金降解速率仍旧小于镁合金。锌合金的降解过程也比镁合金缓和得多,其降解过程不会放出气体,且降解产物较致密,不会产生铁降解产生的海绵状产物[10]。因此,锌合金具有广阔的应用前景。

  • 3.2 锌合金体外生物相容性

  • 细胞毒性(杀死细胞的任何物质或过程)和遗传毒性(破坏遗传信息的任何物质或过程)是可生物降解金属生物相容性评估的重要参数。可生物降解金属的测试遵循国际标准化组织(ISO)10993-5 细胞毒性体外评估协议,ISO 10993-3 则提供了基因毒性体外评估方案。

  • 图10 不同锌合金的腐蚀形貌,其中低倍率图像比例尺为 20 μm,插图为 2 μm[24]

  • Fig.10 Corrosion morphology of zinc-based alloys. Scale bar, 20 μm in low magnification, 2 μm in the inserts[24]

  • 在 2015 年,北卡罗来纳州农业和技术州立大学 MA 等[103]将人原代冠状动脉内皮细胞在 Zn2+溶液中进行培养,观察到细胞反应取决于 Zn2+的浓度,在低浓度下,Zn2+增强了细胞活力、增殖、粘附、扩散和迁移,而高浓度的 Zn2+对细胞活动有不利影响。2016 年,SHEARIER 等[104]针对纯 Zn 进行了研究,将纯 Zn 分别与人皮肤成纤维细胞(hDF)、人主动脉平滑肌细胞(AoSMC)、人主动脉内皮细胞 (HAEC)共培养,结果显示人 HAEC 对 Zn2+有良好的耐受,而另两种细胞的活性随 Zn2+浓度增加而明显降低。2017 年,美国北德克萨斯州大学 ZHU 等[105] 将纯 Zn 与人骨髓间充质干细胞(hMSC)共培养,发现锌支持 hMSC 粘附和增殖,观察到细胞外基质矿化和成骨分化增加,骨相关基因(如碱性磷酸酶、 I 型胶原和骨桥蛋白基因)的表达增加,可能是 Zn2+ 起了重要作用。

  • 2016 年,KUBÁSEK 等[19106]研究了镁含量不同的 Zn-Mg 合金,将其与鼠成纤维细胞 L929 或人骨肉瘤细胞 U-2OS 共培养,测得 U-2OS 和 L929 细胞的最大安全 Zn2+浓度分别为 120 μM 和 80 μM,有成骨样细胞在样品表面生长,锌在遗传毒性和致突变性试验中没有表现出负面作用。SHEN 等[107] 也对 Zn-Mg 合金进行研究,将人骨肉瘤细胞 HOS 或 MG63 与合金提取物共培养,结果表明较高的合金提取物浓度,会降低 HOS 细胞的活力并诱导细胞毒性(细胞活力低于 10%),会使 MG63 细胞活力略有降低,一定水平的合金提取物浓度展示出了良好的细胞相容性,提示一定水平的 Zn2+离子可能促进细胞附着和增殖,从而促进骨愈合和新骨形成。 LI 等[17]的研究发现 Zn-1X(Mg、Ca、Sr)合金的溶血率非常低(<0.2%),远低于 5%的安全值,这表明根据 ISO 10993—4: 2002,Zn-1X 合金不会导致严重的溶血,将金属分别与 ECV304 细胞系、MG63 细胞系、血管平滑肌细胞(VSMC)共培养,与纯 Zn 相比,Zn-1X 合金组的 ECV304、MG63 展示出了更高的细胞活性,ECV304、MG63 细胞形态正常,扩散和增殖良好,且分泌出丰富的细胞外基质,但未改善 VSMC 细胞的活力。最终总结见表10。

  • 表10 锌合金生物相容性体外试验总结

  • Table10 Summary of biocompatibility experiments of zinc-based alloys in vitro

  • 3.3 锌合金体内生物相容性

  • 在体外试验中已经展示了锌及锌合金的细胞毒性和遗传毒性,但是与实际的生物体环境相比,仍旧有所不同,因此需要进行体内相容性试验。

  • 对于纯 Zn,在 2013 年,BOWEN 等[16]将纯 Zn 丝植入大鼠主动脉 2.5 个月后,没有观察到显著的无炎症反应及进行性内膜增生,而观察到了组织在植入物部分降解后的再生,证明了锌具有良好的生物相容性。在大时间尺度下,DRELICH等[108]于2017 年也对纯 Zn 的生物相容性进行研究。他们发现纯 Zn 丝在植入大鼠大动脉后逐渐发生降解,并且在植入后的 20 个月内,纯 Zn 丝表现出稳定的腐蚀且无局部毒性。

  • 对于锌合金的生物相容性,也有大量的研究。密歇根理工大学的 ZHAO 等[109]将纯 Zn 丝与 Zn-Li 合金丝植入大鼠主动脉中,发现尽管二者植入处均发生了中度炎症和新生内膜生长,但种植体周围宽阔的动脉管腔和低的新生内膜生长展示出了良好的生物相容性。美国北德克萨斯州大学 ZHU 等[26]在小鼠的皮下植入 Zn、Zn-Mg、Zn-Sr 丝,发现外膜侧有一些炎性细胞和组织,出现部分炎性细胞浸润和细胞外基质沉积,但并没有观察到广泛的炎症。北京大学 YANG 等[24]利用大鼠股骨髁骨缺损模型,发现纯 Zn 棒或 Zn-Mg 合金棒植入后,表现出良好的生物相容性,没有骨溶解、畸形或脱位的迹象,其中纯 Zn 棒降解较快,并且在降解产物上也发现了新骨组织。KAFRI 等[110]将 Zn-Fe 合金圆片植入大鼠皮下,未观察到感染的迹象,血液中 Zn2+的水平在正常范围内,此后该团队增加了合金中 Fe 元素的比例,仍未观察到贫血、炎症及组织坏死的证据[111]。南昌大学 JIN 等[70]将 Zn-Mg 合金丝植入大鼠主动脉,观察到初期合金均匀降解,后期降解速率增加,且随着 Mg 含量的增加,生物相容性略有下降。LI 等[112]将 Zn-Cu 合金支架植入猪动脉中,结果表明支架力学性能稳定,在植入的 24 个月期间降解速度合理,没有降解产物积累、血栓形成及炎症反应。重庆大学 LIN 等[113]则研究了 Zn-Mg-Cu 三元合金支架,发现植入兔动脉后的支架腐蚀缓慢,至 6 个月未见明显内膜增生,之后腐蚀速率加快,但在植入期间未观察到明显的血栓形成以及全身毒性。LI 等[17]通过将 Zn-1X(Mg、Ca、Sr)合金钉分别植入小鼠股骨中,与纯 Zn 对比,观察到锌合金钉组股骨远端皮质骨周围可见骨膜反应和骨反应性增生,因此钉周围皮质骨比对照组厚,表明锌合金能促进新骨形成,具有良好生物相容性。前述北京大学的 YANG 等[24]观察到在大鼠股骨模型中, Zn-Mg、Zn-Li、Zn-Mn、Zn-Ca、Zn-Sr 等合金植入物周围观察到大量新骨组织,骨细胞有组织的排列,骨形态正常,而在纯 Zn、Zn-Fe、Zn-Cu 和 Zn-Ag 合金组中,发现深棕色降解产物扩散到周围组织,新形成的编织骨分散其中。GUILLORY 等[114]将 Zn-Al 合金丝植入大鼠主动脉,观察到合金腐蚀速率在初期高于纯 Zn,虽然未发现坏死组织,但检测到炎症反应。BAI 等[115]将锌薄膜生物传感器植入到小鼠模型中,测定植入后小鼠血、心、脑、脾、肺、肾和肌肉中的锌浓度,发现在 7 周的植入期内,组织中溶解的锌没有异常积累,在研究的前 3 周,一些组织中出现锌浓度升高,在 7 周内逐渐恢复正常,且没有发现与植入相关的损伤或可识别的免疫细胞,总结见表11。

  • 表11 锌合金生物相容性体内试验总结

  • Table11 Summary of biocompatibility experiments of zinc-based alloys in vivo

  • 可以看出,通过大量体内外试验,锌及锌合金良好的生物相容性得以验证,锌及锌合金在骨植入物和血管支架应用中表现出巨大的潜力。除此之外,锌及锌合金还具有良好的医用功能,例如,Zn-Ag 合金则具有良好的抗菌和抗溶骨性[31],Cu 离子还具有抗菌功能[18]等。

  • 4 结论与展望

  • 4.1 结论

  • 金属内植入物中,可降解金属材料无须二次手术取出,在减轻了患者痛苦的同时降低了手术风险和医疗成本,因此极具前景。截至目前,主要的医用可降解金属材料包括镁基、锌基、铁基三种。相比于镁合金和铁合金,锌合金的降解速率更加理想,其降解过程也较为缓和,降解产物致密,因此其被视为新一代可降解医用金属材料。但纯 Zn 较低的力学性能限制了其发展,因此通过锌的合金化以及后续处理来强化其力学性能。

  • (1)对于力学性能而言,Zn-Cu、Zn-Al、Zn-Mg、 Zn-Li 二元合金体系及其对应三元体系再加 Zn-Mn-Ca 体系满足强度与塑性要求。Li、Mg 元素的添加可生成 LiZn4 和 Mg2Zn11 金属间化合物,同时细化晶粒,显著提高锌合金强度,而 Mn 元素则可与 Zn 生成 MnZn13,可在塑性变形中细化晶粒,对锌合金的延伸率提升有一定作用。未来可以深入探究合金元素与加工方式之间的相互作用,进一步开发三元甚至多元锌合金体系。

  • (2)锌合金的降解速率相对纯 Zn 有所提高,其原理是 Fe、Cu、Ag 与 Zn 基体形成微电池作用。加工工艺也可影响第二相状态从而影响降解速率。不过整体来看,锌合金降解速率仍旧低于镁合金,也正是因此锌合金可以在体内更长时间的保持力学性能。

  • (3)在生物相容性上,锌及锌合金也具有良好的生物相容性,增强了细胞活力,同时锌合金具有合适的的降解速率。在体内试验中,也可以广泛观察到锌合金较少的炎症反应以及促进组织再生。

  • 4.2 展望

  • 不过目前医用可降解锌合金的研究仍处于初级阶段,疲劳行为、蠕变行为、力学性能稳定性等仍须进一步研究,进一步地,不同锌合金的成分和工艺与性能之间的联系,不同锌合金与生物体作用的机理,以及锌合金在活体环境下的力学机理仍有待进一步研究。

  • (1)对锌合金性能来说,锌合金的强度应在满足要求的基础上尽可能地高,如此可减少植入物的尺寸,从而更易实现临床应用。锌合金也应具有足够的疲劳强度。作为骨植入物时,锌合金还应有合适的弹性模量,防止应力屏蔽,作为血管支架时,应有尽可能高的弹性模量,减少急性回弹。锌合金熔点较低,蠕变抗力较低,该问题也亟待解决。锌合金的降解过程也应尽可能均匀,防止失效过快与局部毒性。进一步地,在生物体内锌合金力学性能变化过程及机理也应尽快研究,对于生物体内锌合金的降解行为以及降解机理应被研究,降解产物对于局部环境的影响则关乎具体生物相容性,最终实现生物体内植入体降解-力学性能-生物功能完美匹配的目标。

  • (2)可以知道医用锌合金的力学性能和降解速率与成分体系和加工方式之间有着密切的联系,但是合金体系种类和加工工艺参数繁多,要想进一步寻求其内在联系较为困难,因此可结合材料基因工程,利用高通量计算模拟以及高通量试验技术来建立锌合金数据库,并由此来进一步指导多元锌合金的开发,以期降解速率和力学性能达到平衡。

  • (3)增材制造可以根据不同的需求来定制锌合金,尤其适用于医用材料,增材制造可以形成点阵结构来调节弹性模量,可以利用增材制造得到多孔结构提高成骨性能,可以利用增材制造的自由成形来设计降解曲线,可以制备更接近于骨结构的锌合金材料,并实现可控降解。目前,锌合金的强化方式大多为细化晶粒和沉淀强化,增材制造的快速冷却可以细化晶粒,并且利用增材制造技术或可探索新的强化方式。进一步地,目前增材制造研究仍处于起始阶段,未来应进一步对其加工参数、后处理、结构、成分变化及性能间的相互作用进行研究。

  • 未来,生物医用锌合金可广泛用于血管支架、骨植入物,利用增材制造技术更可以个性定制化地制备锌合金植入物,帮助更多的人免受血管疾病和骨功能损失的困扰。

  • 参考文献

    • [1] KABIR H,MUNIR K,WEN C,et al.Recent research and progress of biodegradable zinc alloys and composites for biomedical applications:Biomechanical and biocorrosion perspectives[J].Bioactive Materials,2021,6(3):836-879.

    • [2] WANG J,XU J,HOPKINS C,et al.Biodegradable magnesium-based implants in orthopedics— a general review and perspectives[J].Advanced Science,2020,7(8):1-19.

    • [3] HERNANDEZ ESCOBAR D,CHAMPAGNE S,YILMAZER H,et al.Current status and perspectives of zinc-based absorbable alloys for biomedical applications[J].Acta Biomaterialia,2019,97:1-22.

    • [4] 代晓军,杨西荣,王昌,等.生物医用可降解锌基合金的研究进展[J].材料导报,2018,32(21):3754-9.DAI Xiaojun,YANG Xirong,WANG Chang,et al.Research progress on biomedical degradable zinc-based alloys[J].Materials Review,2018,32(21):3754-3759.(in Chinese)

    • [5] MOSTAED E,SIKORA JASINSKA M,DRELICH J W,et al.Zinc-based alloys for degradable vascular scent applications[J].Acta Biomaterialia,2018,71:1-23.

    • [6] YIN Y,ZHOU C,SHI Y,et al.Hemocompatibility of biodegradable Zn-0.8 wt%(Cu,Mn,Li)alloys[J].Materials Science & Engineering C-Materials for Biological Applications,2019,104:1-7.

    • [7] SU Y,COCKERILL I,WANG Y,et al.Zinc-based biomaterials for regeneration and therapy[J].Trends in Biotechnology,2019,37(4):428-441.

    • [8] CERRATO E,BARBERO U,ROMERO J,et al.Magmaris™ resorbable magnesium scaffold:State-of-art review[J].Future Cardiology,2019,15:1-13.

    • [9] SEITZ J M,LUCAS A,KIRSCHNER M.Magnesium-based compression screws:A novelty in the clinical use of implants[J].The Minerals,Metals & Materials Society,2016,68(4):1177-1182.

    • [10] BOWEN P K,DRELICH J,GOLDMAN J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J].Advanced Materials,2013,25(18):2577-2582.

    • [11] 王洋洋,吴红枚,甄文强,等.生物可降解血管支架研究进展[J].中国医疗器械杂志,2021,45(4):410-415.WANG Yangyang,WU Hongmei,ZHEN Wenqiang,et al.Research progress of biodegradable vascular stent[J].Chinese Journal of Medical Instrumentation,2021,45(4):410-415.(in Chinese)

    • [12] 孙钰晟,左保齐.高分子聚合物硬骨缺损修复材料研究进展[J].纺织学报,2021,42(8):175-84.SUN Yusheng,ZUO Baoqi.Research progress of high-molecular polymer material for bone defect repair[J].Journal of Textile Research,2021,42(8):175-184.(in Chinese)

    • [13] SONG R,MURPHY M,LI C,et al.Current development of biodegradable polymeric materials for biomedical applications[J].Drug Design,Development and Therapy,2018,12:3117-3145.

    • [14] ZHANG S,LI J,SONG Y,et al.In vitro degradation,hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2009,29(6):1907-1912.

    • [15] VOJTĔCH D,KUBÁSEK J,SERAK J,et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515-22.

    • [16] BOWEN P K,GUILLORY R J,SHEARIER E R,et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J].Materials Science & Engineering C-Materials for Biological Applications,2015,56:467-472.

    • [17] LI H,XIE X,ZHENG Y,et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr[J].Scientific Reports,2015,5:10719-10732.

    • [18] NIU J,TANG Z,HUANG H,et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J].Materials Science & Engineering C-Materials for Biological Applications,2016,69:407-413.

    • [19] KUBÁSEK J,VOJTĔCH D,JABLONSKÁ E,et al.Structure,mechanical characteristics and in vitro degradation,cytotoxicity,genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J].Materials Science & Engineering C-Materials for Biological Applications,2016,58:24-35.

    • [20] ZHAO S,MCNAMARA C T,BOWEN P K,et al.Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J].Metallurgical and Materials Transactions A,2017,48(3):1204-1215.

    • [21] GUO H,HU J,SHEN Z,et al.In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis[J].Acta Biomaterialia,2021,121:713-723.

    • [22] MOSTAED E,SIKORA JASINSKA M,MOSTAED A,et al.Novel Zn-based alloys for biodegradable stent applications:design,development and in vitro degradation[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,60:581-602.

    • [23] LI G,YANG H,ZHENG Y,et al.Challenges in the use of zinc and its alloys as biodegradable metals:Perspective from biomechanical compatibility[J].Acta Biomaterialia,2019,97:23-45.

    • [24] YANG H,JIA B,ZHANG Z,et al.Alloying design of biodegradable zinc as promising bone implants for load-bearing applications[J].Nature Communications,2020,11(1):1-16.

    • [25] TONG X,CAI W,LIN J,et al.Biodegradable Zn-3Mg-0.7Mg(2)Si composite fabricated by highpressure solidification for bone implant applications[J].Acta Biomaterialia,2021,123:407-417.

    • [26] ZHU D,COCKERILL I,SU Y,et al.Mechanical strength,biodegradation,and in vitro and in vivo biocompatibility of Zn biomaterials[J].ACS Applied Materials & Interfaces,2019,11(7):6809-6819.

    • [27] QIAO Y,ZHANG W,TIAN P,et al.Stimulation of bone growth following zinc incorporation into biomaterials[J].Biomaterials,2014,35(25):6882-6897.

    • [28] INZANA J A,SCHWARZ E M,KATES S L,et al.Biomaterials approaches to treating implant-associated osteomyelitis[J].Biomaterials,2016,81:58-71.

    • [29] ARCIOLA C R,CAMPOCCIA D,SPEZIALE P,et al.Biofilm formation in staphylococcus implant infections.a review of molecular mechanisms and implications for biofilm-resistant materials[J].Biomaterials,2012,33(26):5967-5982.

    • [30] CAMPOCCIA D,MONTANARO L,ARCIOLA C R.A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces[J].Biomaterials,2013,34(33):8018-8029.

    • [31] QU X,YANG H,JIA B,et al.Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties[J].Bioactive Materials,2021,6(12):4607-4624.

    • [32] HENNIG B,TOBOREK M,MCCLAIN C J.Antiatherogenic properties of zinc:implications in endothelial cell metabolism[J].Nutrition,1996,12(10):711-717.

    • [33] VENEZUELA J,DARGUSCH M S.The influence of alloying and fabrication techniques on the mechanical properties,biodegradability and biocompatibility of zinc:A comprehensive review[J].Acta Biomaterialia,2019,87:1-40.

    • [34] BAO G,FAN Q,GE D,et al.In vitro and in vivo studies to evaluate the feasibility of Zn-0.1Li and Zn-0.8Mg application in the uterine cavity microenvironment compared to pure zinc[J].Acta Biomaterialia,2021,123:393-406.

    • [35] JIA B,YANG H,HAN Y,et al.In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications[J].Acta Biomaterialia,2020,108:358-372.

    • [36] LIN J,TONG X,SUN Q,et al.Biodegradable ternary Zn-3Ge-0.5X(X=Cu,Mg,and Fe)alloys for orthopedic applications[J].Acta Biomaterialia,2020,115:432-446.

    • [37] JIANG J,HUANG H,NIU J,et al.Characterization of nano precipitate phase in an as-extruded Zn-Cu alloy[J].Scripta Materialia,2021,200:1-6.

    • [38] MOSTAED E,SIKORA JASINSKA M,ARDAKANI M S,et al.Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting[J].Acta Biomaterialia,2020,105:319-335.

    • [39] ČAPEK J,KUBÁSEK J,PINC J,et al.ZnMg0.8Ca0.2(wt.%)biodegradable alloy—The influence of thermal treatment and extrusion on microstructural and mechanical characteristics[J].Materials Characterization,2020,162:1-17.

    • [40] SUN J,ZHANG X,SHI Z Z,et al.Adjusting comprehensive properties of biodegradable Zn-Mn alloy through solution heat-treatment[J].Materials Today Communications,2020,23:1-4.

    • [41] JARZĘBSKA A,BIEDA M,MAJ L,et al.Controlled grain refinement of biodegradable Zn-Mg alloy:The effect of magnesium alloying and multi-pass hydrostatic extrusion preceded by hot extrusion[J].Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2020,51(12):6784-6796.

    • [42] ZHU S,WU C,LI G,et al.Microstructure,mechanical properties and creep behaviour of extruded Zn-xLi(x=0.1,0.3 and 0.4)alloys for biodegradable vascular[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2020,777:1-7.

    • [43] GUO P,ZHU X,YANG L,et al.Ultrafine-and uniform-grained biodegradable Zn-0.5Mn alloy:Grain refinement mechanism,corrosion behavior,and biocompatibility in vivo[J].Materials Science & Engineering C-Materials for Biological Applications,2021,118:1-12.

    • [44] LIN J,TONG X,WANG K,et al.Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications[J].Journal of Materials Science & Technology,2021,68:76-90.

    • [45] SOTOUDEH BAGHA P,KHALEGHPANAH S,SHEIBANI S,et al.Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying[J].Journal of Alloys and Compounds,2018,735:1319-1327.

    • [46] HOU Y,JIA G,YUE R,et al.Synthesis of biodegradable Zn-based scaffolds using NaCl templates:Relationship between porosity,compressive properties and degradation behavior[J].Materials Characterization,2018,137:162-169.

    • [47] QIN Y,WEN P,XIA D,et al.Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn[J].Additive Manufacturing,2020,33:1-10.

    • [48] LI Y,PAVANRAM P,ZHOU J,et al.Additively manufactured biodegradable porous zinc[J].Acta Biomaterialia,2020,101:609-623.

    • [49] MONTANI M,DEMIR A G,MOSTAED E,et al.Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing[J].Rapid Prototyping Journal,2017,23(3):514-523.

    • [50] DEMIR A G,MONGUZZI L,PREVITALI B.Selective laser melting of pure Zn with high density for biodegradable implant manufacturing[J].Additive Manufacturing,2017,15:20-28.

    • [51] WEN P,JAUER L,VOSHAGE M,et al.Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants[J].Journal of Materials Processing Technology,2018,258:128-137.

    • [52] WEN P,VOSHAGE M,JAUER L,et al.Laser additive manufacturing of Zn metal parts for biodegradable applications:Processing,formation quality and mechanical properties[J].Materials & Design,2018,155:36-45.

    • [53] LI Y,LI W,BOBBERT F S L,et al.Corrosion fatigue behavior of additively manufactured biodegradable porous zinc[J].Acta Biomaterialia,2020,106:439-449.

    • [54] LI Y,PAVANRAM P,ZHOU J,et al.Additively manufactured functionally graded biodegradable porous zinc[J].Biomaterials Science,2020,8(9):2404-2419.

    • [55] LIETAERT K,ZADPOOR A A,SONNAERT M,et al.Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications[J].Acta Biomaterialia,2020,110:289-302.

    • [56] XIA D,QIN Y,GUO H,et al.Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur[J].Bioactive Materials,2023,19:12-23.

    • [57] YANG Y,YUAN F,GAO C,et al.A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,82:51-60.

    • [58] QIN Y,WEN P,VOSHAGE M,et al.Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds:Formation quality,microstructure and mechanical properties[J].Materials & Design,2019,181:1-10.

    • [59] QIN Y,LIU A,GUO H,et al.Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration:In vitro and in vivo studies[J].Acta Biomaterialia,2022,145:403-415.

    • [60] QIN Y,YANG H,LIU A,et al.Processing optimization,mechanical properties,corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals[J].Acta Biomaterialia,2022,142:388-401.

    • [61] PACHLA W,PRZYBYSZ S,JARZĘBSKA A,et al.Structural and mechanical aspects of hypoeutectic Zn-Mg binary alloys for biodegradable vascular stent applications[J].Bioactive Materials,2021,6(1):26-44.

    • [62] DAMBATTA M S,IZMAN S,KURNIAWAN D,et al.Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants[J].Journal of King Saud University Science,2017,29(4):455-461.

    • [63] SHI Z,GAO X,CHEN H,et al.Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement[J].Materials Science & Engineering C-Materials for Biological Applications,2020,116:111197.

    • [64] HE J,FANG J,WEI P,et al.Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants[J].Acta Biomaterialia,2021,121:665-681.

    • [65] QU X,YANG H,JIA B,et al.Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation[J].Acta Biomaterialia,2020,117:400-417.

    • [66] TONG X,ZHANG D,ZHANG X,et al.Microstructure,mechanical properties,biocompatibility,and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials[J].Acta Biomaterialia,2018,82:197-204.

    • [67] ZHANG W,LI P,SHEN G,et al.Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application[J].Bioactive Materials,2021,6(4):975-989.

    • [68] FARABI E,SHARP J A,VAHID A,et al.Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices[J].Materials Science & Engineering C-Materials for Biological Applications,2021,122:111897.

    • [69] KRALOVA Z O,GOREJOVA R,ORINAKOVA R,et al.Biodegradable zinc-iron alloys:Complex study of corrosion behavior,mechanical properties and hemocompatibility[J].Progress in Natural ScienceMaterials International,2021,31(2):279-287.

    • [70] JIN H,ZHAO S,GUILLORY R,et al.Novel high-strength,low-alloys Zn-Mg(< 0.1 wt% Mg)and their arterial biodegradation[J].Materials Science & Engineering C-Materials for Biological Applications,2018,84:67-79.

    • [71] KUSTRA P,WROBEL M,BYRSKA WOJCIK D,et al.Manufacture technology,mechanical and biocorrosion properties of the Zn and ZnMg 0.008 alloy wires designed for biodegradable surgical threads[J].Journal of Manufacturing Processes,2021,67:513-520.

    • [72] TONG X,ZHANG D,LIN J,et al.Development of biodegradable Zn-1Mg-0.1RE(RE = Er,Dy,and Ho)alloys for biomedical applications[J].Acta Biomaterialia,2020,117:384-399.

    • [73] WU H,XIE X,WANG J,et al.Biological properties of Zn-0.04Mg-2Ag:A new degradable zinc alloy scaffold for repairing large-scale bone defects[J].Journal of Materials Research and Technology,2021,13:1779-1789.

    • [74] LI H,SHEN C,RUAN D,et al.Microstructure,mechanical properties,and in vitro behavior of biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca[J].Journal of Materials Science-Materials in Medicine,2020,31(10):1-8.

    • [75] ČAPEK J,KUBÁSEK J,PINC J,et al.Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy — The influence of extrusion parameters on microstructure and mechanical characteristics[J].Journal of the Mechanical Behavior of Biomedical Materials,2020,108:103796.

    • [76] LIU X,SUN J,ZHOU F,et al.Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J].Materials & Design,2016,94:95-104.

    • [77] TANG Z,NIU J,HUANG H,et al.Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,72:182-191.

    • [78] LI P,ZHANG W,DAI J,et al.Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants[J].Materials Science & Engineering C-Materials for Biological Applications,2019,103:1-13.

    • [79] YUE R,HUANG H,KE G,et al.Microstructure,mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys[J].Materials Characterization,2017,134:114-122.

    • [80] YUE R,ZHANG J,KE G,et al.Effects of extrusion temperature on microstructure,mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2019,105:1-9.

    • [81] LIN J,TONG X,SHI Z,et al.A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications[J].Acta Biomaterialia,2020,106:410-427.

    • [82] TANG Z,HUANG H,NIU J,et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J].Materials & Design,2017,117:84-94.

    • [83] CHEN C,YUE R,ZHANG J,et al.Biodegradable Zn-1.5Cu-1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents[J].Materials Science & Engineering C-Materials for Biological Applications,2020,116:1-15.

    • [84] AMANO H,MIYAKE K,HINOKI A,et al.Novel zinc alloys for biodegradable surgical staples[J].World Journal of Clinical Cases,2020,8(3):504-516.

    • [85] LI Z,SHI Z,HAO Y,et al.Insight into role and mechanism of Li on the key aspects of biodegradable Zn-Li alloys:Microstructure evolution,mechanical properties,corrosion behavior and cytotoxicity[J].Materials Science & Engineering C-Materials for Biological Applications,2020,114:1-17.

    • [86] YANG H,QU X,WANG M,et al.Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites[J].Chemical Engineering Journal,2021,417:1-12.

    • [87] ZHANG Y,YAN Y,XU X,et al.Investigation on themicrostructure,mechanical properties,in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg,Ag)alloys for guided bone regeneration[J].Materials Science & Engineering C-Materials for Biological Applications,2019,99:1021-1034.

    • [88] LI Z,SHI Z,HAO Y,et al.High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents[J].Journal of Materials Science & Technology,2019,35(11):2618-2624.

    • [89] LU Y,XU X,LIU H,et al.Biodegradable behavior and antibacterial activities of a novel Zn-0.5%Li-(Ag)alloys[J].Materials Research Express,2021,8(5):055405.

    • [90] ZHANG Z,JIA B,YANG H,et al.Zn0.8Li0.1Sr-a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures:In vitro and in vivo studies[J].Biomaterials,2021,275:120905.

    • [91] SHUAI C,XUE L,GAO C,et al.Rod-like eutectic structure in biodegradable Zn-Al-Sn alloy exhibiting enhanced mechanical strength[J].ACS Biomaterials Science & Engineering,2020,6(7):3821-31.

    • [92] BOWEN P K,SEITZ J M,GUILLORY R J,2ND,et al.Evaluation of wrought Zn-Al alloys(1,3,and 5 wt % Al)through mechanical and in vivo testing for stent applications[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2018,106(1):245-258.

    • [93] BAKHSHESHI RAD H R,HAMZAH E,LOW H T,et al.Fabrication of biodegradable Zn-Al-Mg alloy:Mechanical properties,corrosion behavior,cytotoxicity and antibacterial activities[J].Materials Science & Engineering C-Materials for Biological Applications,2017,73:215-219.

    • [94] SHI Z,YU J,LIU X,et al.Effects of Ag,Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2019,99:969-978.

    • [95] CHEN H,SHI Z,LIU X.Microstructure and mechanical properties of extruded and caliber rolled biodegradable Zn-0.8Mn-0.4Ag alloy with high ductility[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2020,770:138543.

    • [96] LI P,SCHILLE C,SCHWEIZER E,et al.Mechanical characteristics,in vitro degradation,cytotoxicity,and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material[J].International Journal of Molecular Sciences,2018,19(755):1-15.

    • [97] AVIOR O,BEN GHEDALIA PELED N,RON T,et al.The effect of Ca on in vitro behavior of biodegradable Zn-Fe alloy in simulated physiological environments[J].Metals,2020,10(12):1-14.

    • [98] LIU S,KENT D,NGHIEM D,et al.Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys[J].Bioactive Materials,2019,4:8-16.

    • [99] DONG A,LI B,LU Y,et al.Effect of Mg on the microstructure and corrosion resistance of the continuously hot-dip galvanizing Zn-Mg coating[J].Materials,2017,10(8):1-14.

    • [100] CHEN C,FAN S,NIU J,et al.Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening[J].Materials & Design,2021,204:1-11.

    • [101] LI G,ZHU S,NIE J,et al.Investigating the stress corrosion cracking of a biodegradable Zn-0.8 wt%Li alloy in simulated body fluid[J].Bioactive Materials,2021,6(5):1468-1478.

    • [102] LIU X,SUN J,QIU K,et al.Effects of alloying elements(Ca and Sr)on microstructure,mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J].Journal of Alloys and Compounds,2016,664:444-452.

    • [103] MA J,ZHAO N,ZHU D.Endothelial cellular responses to biodegradable metal zinc[J].ACS Biomaterials Science & Engineering,2015,1(11):1174-1182.

    • [104] SHEARIER E R,BOWEN P K,HE W,et al.In vitro cytotoxicity,adhesion,and proliferation of human vascular cells exposed to zinc[J].ACS Biomaterials Science & Engineering,2016,2(4):634-642.

    • [105] ZHU D,SU Y,YOUNG M L,et al.Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials[J].ACS Applied Materials & Interfaces,2017,9(33):27453-27461.

    • [106] JABLONSKÁ E,VOJTĚCH D,FOUSOVÁ M,et al.Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy[J].Materials Science & Engineering:C,2016,68:198-204.

    • [107] SHEN C,LIU X,FAN B,et al.Mechanical properties,in vitro degradation behavior,hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants[J].Rsc Advances,2016,6(89):86410-86419.

    • [108] DRELICH A J,ZHAO S,GUILLORY R J,et al.Long-term surveillance of zinc implant in murine artery:Surprisingly steady biocorrosion rate[J].Acta Biomaterialia,2017,58:539-549.

    • [109] ZHAO S,SEITZ J M,EIFLER R,et al.Zn-Li alloy after extrusion and drawing:Structural,mechanical characterization,and biodegradation in abdominal aorta of rat[J].Materials Science & Engineering C-Materials for Biological Applications,2017,76:301-312.

    • [110] KAFRI A,OVADIA S,GOLDMAN J,et al.The suitability of Zn-1.3% Fe alloy as a biodegradable implant material[J].Metals,2018,8(3):1-15.

    • [111] KAFRI A,OVADIA S,YOSAFOVICH DOITCH G,et al.The effects of 4%Fe on the performance of pure zinc as biodegradable implant material[J].Annals of Biomedical Engineering,2019,47(6):1400-1408.

    • [112] ZHOU C,LI H,YIN Y,et al.Long-term in vivo study of biodegradable Zn-Cu stent:A 2-year implantation evaluation in porcine coronary artery[J].Acta Biomaterialia,2019,97:657-670.

    • [113] LIN S,RAN X,YAN X,et al.Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2019,107(6):1814-1823.

    • [114] GUILLORY R J,BOWEN P K,HOPKINS S P,et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J].ACS Biomaterials Science & Engineering,2016,2(12):2355-2364.

    • [115] BAI W,SHIN J,FU R,et al.Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity[J].Nature Biomedical Engineering,2019,3(8):644-654.

  • 参考文献

    • [1] KABIR H,MUNIR K,WEN C,et al.Recent research and progress of biodegradable zinc alloys and composites for biomedical applications:Biomechanical and biocorrosion perspectives[J].Bioactive Materials,2021,6(3):836-879.

    • [2] WANG J,XU J,HOPKINS C,et al.Biodegradable magnesium-based implants in orthopedics— a general review and perspectives[J].Advanced Science,2020,7(8):1-19.

    • [3] HERNANDEZ ESCOBAR D,CHAMPAGNE S,YILMAZER H,et al.Current status and perspectives of zinc-based absorbable alloys for biomedical applications[J].Acta Biomaterialia,2019,97:1-22.

    • [4] 代晓军,杨西荣,王昌,等.生物医用可降解锌基合金的研究进展[J].材料导报,2018,32(21):3754-9.DAI Xiaojun,YANG Xirong,WANG Chang,et al.Research progress on biomedical degradable zinc-based alloys[J].Materials Review,2018,32(21):3754-3759.(in Chinese)

    • [5] MOSTAED E,SIKORA JASINSKA M,DRELICH J W,et al.Zinc-based alloys for degradable vascular scent applications[J].Acta Biomaterialia,2018,71:1-23.

    • [6] YIN Y,ZHOU C,SHI Y,et al.Hemocompatibility of biodegradable Zn-0.8 wt%(Cu,Mn,Li)alloys[J].Materials Science & Engineering C-Materials for Biological Applications,2019,104:1-7.

    • [7] SU Y,COCKERILL I,WANG Y,et al.Zinc-based biomaterials for regeneration and therapy[J].Trends in Biotechnology,2019,37(4):428-441.

    • [8] CERRATO E,BARBERO U,ROMERO J,et al.Magmaris™ resorbable magnesium scaffold:State-of-art review[J].Future Cardiology,2019,15:1-13.

    • [9] SEITZ J M,LUCAS A,KIRSCHNER M.Magnesium-based compression screws:A novelty in the clinical use of implants[J].The Minerals,Metals & Materials Society,2016,68(4):1177-1182.

    • [10] BOWEN P K,DRELICH J,GOLDMAN J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J].Advanced Materials,2013,25(18):2577-2582.

    • [11] 王洋洋,吴红枚,甄文强,等.生物可降解血管支架研究进展[J].中国医疗器械杂志,2021,45(4):410-415.WANG Yangyang,WU Hongmei,ZHEN Wenqiang,et al.Research progress of biodegradable vascular stent[J].Chinese Journal of Medical Instrumentation,2021,45(4):410-415.(in Chinese)

    • [12] 孙钰晟,左保齐.高分子聚合物硬骨缺损修复材料研究进展[J].纺织学报,2021,42(8):175-84.SUN Yusheng,ZUO Baoqi.Research progress of high-molecular polymer material for bone defect repair[J].Journal of Textile Research,2021,42(8):175-184.(in Chinese)

    • [13] SONG R,MURPHY M,LI C,et al.Current development of biodegradable polymeric materials for biomedical applications[J].Drug Design,Development and Therapy,2018,12:3117-3145.

    • [14] ZHANG S,LI J,SONG Y,et al.In vitro degradation,hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2009,29(6):1907-1912.

    • [15] VOJTĔCH D,KUBÁSEK J,SERAK J,et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515-22.

    • [16] BOWEN P K,GUILLORY R J,SHEARIER E R,et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J].Materials Science & Engineering C-Materials for Biological Applications,2015,56:467-472.

    • [17] LI H,XIE X,ZHENG Y,et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr[J].Scientific Reports,2015,5:10719-10732.

    • [18] NIU J,TANG Z,HUANG H,et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J].Materials Science & Engineering C-Materials for Biological Applications,2016,69:407-413.

    • [19] KUBÁSEK J,VOJTĔCH D,JABLONSKÁ E,et al.Structure,mechanical characteristics and in vitro degradation,cytotoxicity,genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J].Materials Science & Engineering C-Materials for Biological Applications,2016,58:24-35.

    • [20] ZHAO S,MCNAMARA C T,BOWEN P K,et al.Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J].Metallurgical and Materials Transactions A,2017,48(3):1204-1215.

    • [21] GUO H,HU J,SHEN Z,et al.In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis[J].Acta Biomaterialia,2021,121:713-723.

    • [22] MOSTAED E,SIKORA JASINSKA M,MOSTAED A,et al.Novel Zn-based alloys for biodegradable stent applications:design,development and in vitro degradation[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,60:581-602.

    • [23] LI G,YANG H,ZHENG Y,et al.Challenges in the use of zinc and its alloys as biodegradable metals:Perspective from biomechanical compatibility[J].Acta Biomaterialia,2019,97:23-45.

    • [24] YANG H,JIA B,ZHANG Z,et al.Alloying design of biodegradable zinc as promising bone implants for load-bearing applications[J].Nature Communications,2020,11(1):1-16.

    • [25] TONG X,CAI W,LIN J,et al.Biodegradable Zn-3Mg-0.7Mg(2)Si composite fabricated by highpressure solidification for bone implant applications[J].Acta Biomaterialia,2021,123:407-417.

    • [26] ZHU D,COCKERILL I,SU Y,et al.Mechanical strength,biodegradation,and in vitro and in vivo biocompatibility of Zn biomaterials[J].ACS Applied Materials & Interfaces,2019,11(7):6809-6819.

    • [27] QIAO Y,ZHANG W,TIAN P,et al.Stimulation of bone growth following zinc incorporation into biomaterials[J].Biomaterials,2014,35(25):6882-6897.

    • [28] INZANA J A,SCHWARZ E M,KATES S L,et al.Biomaterials approaches to treating implant-associated osteomyelitis[J].Biomaterials,2016,81:58-71.

    • [29] ARCIOLA C R,CAMPOCCIA D,SPEZIALE P,et al.Biofilm formation in staphylococcus implant infections.a review of molecular mechanisms and implications for biofilm-resistant materials[J].Biomaterials,2012,33(26):5967-5982.

    • [30] CAMPOCCIA D,MONTANARO L,ARCIOLA C R.A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces[J].Biomaterials,2013,34(33):8018-8029.

    • [31] QU X,YANG H,JIA B,et al.Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties[J].Bioactive Materials,2021,6(12):4607-4624.

    • [32] HENNIG B,TOBOREK M,MCCLAIN C J.Antiatherogenic properties of zinc:implications in endothelial cell metabolism[J].Nutrition,1996,12(10):711-717.

    • [33] VENEZUELA J,DARGUSCH M S.The influence of alloying and fabrication techniques on the mechanical properties,biodegradability and biocompatibility of zinc:A comprehensive review[J].Acta Biomaterialia,2019,87:1-40.

    • [34] BAO G,FAN Q,GE D,et al.In vitro and in vivo studies to evaluate the feasibility of Zn-0.1Li and Zn-0.8Mg application in the uterine cavity microenvironment compared to pure zinc[J].Acta Biomaterialia,2021,123:393-406.

    • [35] JIA B,YANG H,HAN Y,et al.In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications[J].Acta Biomaterialia,2020,108:358-372.

    • [36] LIN J,TONG X,SUN Q,et al.Biodegradable ternary Zn-3Ge-0.5X(X=Cu,Mg,and Fe)alloys for orthopedic applications[J].Acta Biomaterialia,2020,115:432-446.

    • [37] JIANG J,HUANG H,NIU J,et al.Characterization of nano precipitate phase in an as-extruded Zn-Cu alloy[J].Scripta Materialia,2021,200:1-6.

    • [38] MOSTAED E,SIKORA JASINSKA M,ARDAKANI M S,et al.Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting[J].Acta Biomaterialia,2020,105:319-335.

    • [39] ČAPEK J,KUBÁSEK J,PINC J,et al.ZnMg0.8Ca0.2(wt.%)biodegradable alloy—The influence of thermal treatment and extrusion on microstructural and mechanical characteristics[J].Materials Characterization,2020,162:1-17.

    • [40] SUN J,ZHANG X,SHI Z Z,et al.Adjusting comprehensive properties of biodegradable Zn-Mn alloy through solution heat-treatment[J].Materials Today Communications,2020,23:1-4.

    • [41] JARZĘBSKA A,BIEDA M,MAJ L,et al.Controlled grain refinement of biodegradable Zn-Mg alloy:The effect of magnesium alloying and multi-pass hydrostatic extrusion preceded by hot extrusion[J].Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2020,51(12):6784-6796.

    • [42] ZHU S,WU C,LI G,et al.Microstructure,mechanical properties and creep behaviour of extruded Zn-xLi(x=0.1,0.3 and 0.4)alloys for biodegradable vascular[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2020,777:1-7.

    • [43] GUO P,ZHU X,YANG L,et al.Ultrafine-and uniform-grained biodegradable Zn-0.5Mn alloy:Grain refinement mechanism,corrosion behavior,and biocompatibility in vivo[J].Materials Science & Engineering C-Materials for Biological Applications,2021,118:1-12.

    • [44] LIN J,TONG X,WANG K,et al.Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications[J].Journal of Materials Science & Technology,2021,68:76-90.

    • [45] SOTOUDEH BAGHA P,KHALEGHPANAH S,SHEIBANI S,et al.Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying[J].Journal of Alloys and Compounds,2018,735:1319-1327.

    • [46] HOU Y,JIA G,YUE R,et al.Synthesis of biodegradable Zn-based scaffolds using NaCl templates:Relationship between porosity,compressive properties and degradation behavior[J].Materials Characterization,2018,137:162-169.

    • [47] QIN Y,WEN P,XIA D,et al.Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn[J].Additive Manufacturing,2020,33:1-10.

    • [48] LI Y,PAVANRAM P,ZHOU J,et al.Additively manufactured biodegradable porous zinc[J].Acta Biomaterialia,2020,101:609-623.

    • [49] MONTANI M,DEMIR A G,MOSTAED E,et al.Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing[J].Rapid Prototyping Journal,2017,23(3):514-523.

    • [50] DEMIR A G,MONGUZZI L,PREVITALI B.Selective laser melting of pure Zn with high density for biodegradable implant manufacturing[J].Additive Manufacturing,2017,15:20-28.

    • [51] WEN P,JAUER L,VOSHAGE M,et al.Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants[J].Journal of Materials Processing Technology,2018,258:128-137.

    • [52] WEN P,VOSHAGE M,JAUER L,et al.Laser additive manufacturing of Zn metal parts for biodegradable applications:Processing,formation quality and mechanical properties[J].Materials & Design,2018,155:36-45.

    • [53] LI Y,LI W,BOBBERT F S L,et al.Corrosion fatigue behavior of additively manufactured biodegradable porous zinc[J].Acta Biomaterialia,2020,106:439-449.

    • [54] LI Y,PAVANRAM P,ZHOU J,et al.Additively manufactured functionally graded biodegradable porous zinc[J].Biomaterials Science,2020,8(9):2404-2419.

    • [55] LIETAERT K,ZADPOOR A A,SONNAERT M,et al.Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications[J].Acta Biomaterialia,2020,110:289-302.

    • [56] XIA D,QIN Y,GUO H,et al.Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur[J].Bioactive Materials,2023,19:12-23.

    • [57] YANG Y,YUAN F,GAO C,et al.A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,82:51-60.

    • [58] QIN Y,WEN P,VOSHAGE M,et al.Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds:Formation quality,microstructure and mechanical properties[J].Materials & Design,2019,181:1-10.

    • [59] QIN Y,LIU A,GUO H,et al.Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration:In vitro and in vivo studies[J].Acta Biomaterialia,2022,145:403-415.

    • [60] QIN Y,YANG H,LIU A,et al.Processing optimization,mechanical properties,corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals[J].Acta Biomaterialia,2022,142:388-401.

    • [61] PACHLA W,PRZYBYSZ S,JARZĘBSKA A,et al.Structural and mechanical aspects of hypoeutectic Zn-Mg binary alloys for biodegradable vascular stent applications[J].Bioactive Materials,2021,6(1):26-44.

    • [62] DAMBATTA M S,IZMAN S,KURNIAWAN D,et al.Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants[J].Journal of King Saud University Science,2017,29(4):455-461.

    • [63] SHI Z,GAO X,CHEN H,et al.Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement[J].Materials Science & Engineering C-Materials for Biological Applications,2020,116:111197.

    • [64] HE J,FANG J,WEI P,et al.Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants[J].Acta Biomaterialia,2021,121:665-681.

    • [65] QU X,YANG H,JIA B,et al.Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation[J].Acta Biomaterialia,2020,117:400-417.

    • [66] TONG X,ZHANG D,ZHANG X,et al.Microstructure,mechanical properties,biocompatibility,and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials[J].Acta Biomaterialia,2018,82:197-204.

    • [67] ZHANG W,LI P,SHEN G,et al.Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application[J].Bioactive Materials,2021,6(4):975-989.

    • [68] FARABI E,SHARP J A,VAHID A,et al.Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices[J].Materials Science & Engineering C-Materials for Biological Applications,2021,122:111897.

    • [69] KRALOVA Z O,GOREJOVA R,ORINAKOVA R,et al.Biodegradable zinc-iron alloys:Complex study of corrosion behavior,mechanical properties and hemocompatibility[J].Progress in Natural ScienceMaterials International,2021,31(2):279-287.

    • [70] JIN H,ZHAO S,GUILLORY R,et al.Novel high-strength,low-alloys Zn-Mg(< 0.1 wt% Mg)and their arterial biodegradation[J].Materials Science & Engineering C-Materials for Biological Applications,2018,84:67-79.

    • [71] KUSTRA P,WROBEL M,BYRSKA WOJCIK D,et al.Manufacture technology,mechanical and biocorrosion properties of the Zn and ZnMg 0.008 alloy wires designed for biodegradable surgical threads[J].Journal of Manufacturing Processes,2021,67:513-520.

    • [72] TONG X,ZHANG D,LIN J,et al.Development of biodegradable Zn-1Mg-0.1RE(RE = Er,Dy,and Ho)alloys for biomedical applications[J].Acta Biomaterialia,2020,117:384-399.

    • [73] WU H,XIE X,WANG J,et al.Biological properties of Zn-0.04Mg-2Ag:A new degradable zinc alloy scaffold for repairing large-scale bone defects[J].Journal of Materials Research and Technology,2021,13:1779-1789.

    • [74] LI H,SHEN C,RUAN D,et al.Microstructure,mechanical properties,and in vitro behavior of biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca[J].Journal of Materials Science-Materials in Medicine,2020,31(10):1-8.

    • [75] ČAPEK J,KUBÁSEK J,PINC J,et al.Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy — The influence of extrusion parameters on microstructure and mechanical characteristics[J].Journal of the Mechanical Behavior of Biomedical Materials,2020,108:103796.

    • [76] LIU X,SUN J,ZHOU F,et al.Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J].Materials & Design,2016,94:95-104.

    • [77] TANG Z,NIU J,HUANG H,et al.Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,72:182-191.

    • [78] LI P,ZHANG W,DAI J,et al.Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants[J].Materials Science & Engineering C-Materials for Biological Applications,2019,103:1-13.

    • [79] YUE R,HUANG H,KE G,et al.Microstructure,mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys[J].Materials Characterization,2017,134:114-122.

    • [80] YUE R,ZHANG J,KE G,et al.Effects of extrusion temperature on microstructure,mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2019,105:1-9.

    • [81] LIN J,TONG X,SHI Z,et al.A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications[J].Acta Biomaterialia,2020,106:410-427.

    • [82] TANG Z,HUANG H,NIU J,et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J].Materials & Design,2017,117:84-94.

    • [83] CHEN C,YUE R,ZHANG J,et al.Biodegradable Zn-1.5Cu-1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents[J].Materials Science & Engineering C-Materials for Biological Applications,2020,116:1-15.

    • [84] AMANO H,MIYAKE K,HINOKI A,et al.Novel zinc alloys for biodegradable surgical staples[J].World Journal of Clinical Cases,2020,8(3):504-516.

    • [85] LI Z,SHI Z,HAO Y,et al.Insight into role and mechanism of Li on the key aspects of biodegradable Zn-Li alloys:Microstructure evolution,mechanical properties,corrosion behavior and cytotoxicity[J].Materials Science & Engineering C-Materials for Biological Applications,2020,114:1-17.

    • [86] YANG H,QU X,WANG M,et al.Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites[J].Chemical Engineering Journal,2021,417:1-12.

    • [87] ZHANG Y,YAN Y,XU X,et al.Investigation on themicrostructure,mechanical properties,in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg,Ag)alloys for guided bone regeneration[J].Materials Science & Engineering C-Materials for Biological Applications,2019,99:1021-1034.

    • [88] LI Z,SHI Z,HAO Y,et al.High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents[J].Journal of Materials Science & Technology,2019,35(11):2618-2624.

    • [89] LU Y,XU X,LIU H,et al.Biodegradable behavior and antibacterial activities of a novel Zn-0.5%Li-(Ag)alloys[J].Materials Research Express,2021,8(5):055405.

    • [90] ZHANG Z,JIA B,YANG H,et al.Zn0.8Li0.1Sr-a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures:In vitro and in vivo studies[J].Biomaterials,2021,275:120905.

    • [91] SHUAI C,XUE L,GAO C,et al.Rod-like eutectic structure in biodegradable Zn-Al-Sn alloy exhibiting enhanced mechanical strength[J].ACS Biomaterials Science & Engineering,2020,6(7):3821-31.

    • [92] BOWEN P K,SEITZ J M,GUILLORY R J,2ND,et al.Evaluation of wrought Zn-Al alloys(1,3,and 5 wt % Al)through mechanical and in vivo testing for stent applications[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2018,106(1):245-258.

    • [93] BAKHSHESHI RAD H R,HAMZAH E,LOW H T,et al.Fabrication of biodegradable Zn-Al-Mg alloy:Mechanical properties,corrosion behavior,cytotoxicity and antibacterial activities[J].Materials Science & Engineering C-Materials for Biological Applications,2017,73:215-219.

    • [94] SHI Z,YU J,LIU X,et al.Effects of Ag,Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2019,99:969-978.

    • [95] CHEN H,SHI Z,LIU X.Microstructure and mechanical properties of extruded and caliber rolled biodegradable Zn-0.8Mn-0.4Ag alloy with high ductility[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2020,770:138543.

    • [96] LI P,SCHILLE C,SCHWEIZER E,et al.Mechanical characteristics,in vitro degradation,cytotoxicity,and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material[J].International Journal of Molecular Sciences,2018,19(755):1-15.

    • [97] AVIOR O,BEN GHEDALIA PELED N,RON T,et al.The effect of Ca on in vitro behavior of biodegradable Zn-Fe alloy in simulated physiological environments[J].Metals,2020,10(12):1-14.

    • [98] LIU S,KENT D,NGHIEM D,et al.Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys[J].Bioactive Materials,2019,4:8-16.

    • [99] DONG A,LI B,LU Y,et al.Effect of Mg on the microstructure and corrosion resistance of the continuously hot-dip galvanizing Zn-Mg coating[J].Materials,2017,10(8):1-14.

    • [100] CHEN C,FAN S,NIU J,et al.Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening[J].Materials & Design,2021,204:1-11.

    • [101] LI G,ZHU S,NIE J,et al.Investigating the stress corrosion cracking of a biodegradable Zn-0.8 wt%Li alloy in simulated body fluid[J].Bioactive Materials,2021,6(5):1468-1478.

    • [102] LIU X,SUN J,QIU K,et al.Effects of alloying elements(Ca and Sr)on microstructure,mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J].Journal of Alloys and Compounds,2016,664:444-452.

    • [103] MA J,ZHAO N,ZHU D.Endothelial cellular responses to biodegradable metal zinc[J].ACS Biomaterials Science & Engineering,2015,1(11):1174-1182.

    • [104] SHEARIER E R,BOWEN P K,HE W,et al.In vitro cytotoxicity,adhesion,and proliferation of human vascular cells exposed to zinc[J].ACS Biomaterials Science & Engineering,2016,2(4):634-642.

    • [105] ZHU D,SU Y,YOUNG M L,et al.Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials[J].ACS Applied Materials & Interfaces,2017,9(33):27453-27461.

    • [106] JABLONSKÁ E,VOJTĚCH D,FOUSOVÁ M,et al.Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy[J].Materials Science & Engineering:C,2016,68:198-204.

    • [107] SHEN C,LIU X,FAN B,et al.Mechanical properties,in vitro degradation behavior,hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants[J].Rsc Advances,2016,6(89):86410-86419.

    • [108] DRELICH A J,ZHAO S,GUILLORY R J,et al.Long-term surveillance of zinc implant in murine artery:Surprisingly steady biocorrosion rate[J].Acta Biomaterialia,2017,58:539-549.

    • [109] ZHAO S,SEITZ J M,EIFLER R,et al.Zn-Li alloy after extrusion and drawing:Structural,mechanical characterization,and biodegradation in abdominal aorta of rat[J].Materials Science & Engineering C-Materials for Biological Applications,2017,76:301-312.

    • [110] KAFRI A,OVADIA S,GOLDMAN J,et al.The suitability of Zn-1.3% Fe alloy as a biodegradable implant material[J].Metals,2018,8(3):1-15.

    • [111] KAFRI A,OVADIA S,YOSAFOVICH DOITCH G,et al.The effects of 4%Fe on the performance of pure zinc as biodegradable implant material[J].Annals of Biomedical Engineering,2019,47(6):1400-1408.

    • [112] ZHOU C,LI H,YIN Y,et al.Long-term in vivo study of biodegradable Zn-Cu stent:A 2-year implantation evaluation in porcine coronary artery[J].Acta Biomaterialia,2019,97:657-670.

    • [113] LIN S,RAN X,YAN X,et al.Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2019,107(6):1814-1823.

    • [114] GUILLORY R J,BOWEN P K,HOPKINS S P,et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J].ACS Biomaterials Science & Engineering,2016,2(12):2355-2364.

    • [115] BAI W,SHIN J,FU R,et al.Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity[J].Nature Biomedical Engineering,2019,3(8):644-654.

  • 手机扫一扫看