en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱晶,女,1984年出生,硕士。北京半导体行业协会副秘书长。主要研究方向为集成电路。E-mail:zhujing@cbsia.com.cn;

卓鸿俊,男,1978年出生,硕士。北京半导体行业协会秘书长,中国半导体行业协会封装分会副秘书长。主要研究方向为集成电路。E-mail:zhuohongjun@cbsia.com.cn;

朱立群(通信作者),男,1955年出生,博士,教授,博士研究生导师。主要研究方向为电化学和表面处理技术。E-mail:zhuliqun@buaa.edu.cn

中图分类号:TN304

DOI:10.11933/j.issn.1007−9289.20210429004

参考文献 1
李元勋,陶志华,苏桦,等.电子电路电镀技术[M].北京:科学出版社,2019.LI Yuanxun,TAO Zhihua,SU Hua,et al.Electroplating technology for electronic circuits[M].Beijing:Science Press,2019.(in Chinese)
参考文献 2
刘仁志.芯片与电镀[J].表面工程与再制造.2018,18(3):13-16.LIU Renzhi.Chip and electroplating[J].Information of Surface Engineering,2018,18(3):13-16.(in Chinese)
参考文献 3
廖超慧,张胜涛,陈世金,等.印制线路板电镀铜填盲孔添加剂的正交优化[J].电镀与涂饰,2018,37(13):576-580.LIAO Chaohui,ZHANG Shengtao,CHEN Shijin,et al.Orthogonal optimization of additives for blind via filling of printed circuit board by copper electroplating[J].Electroplating & Finishing,2018,37(13):576-580.(in Chinese)
参考文献 4
DONG Mengya,ZHANG Yumei,HANG Tao,et al.Structural effect of inhibitors on adsorption and desorption behaviors during copper electroplating for through-silicon vias[J].Electrochimica Acta,2021,372(10):1-7.
参考文献 5
程万.高深宽比的TSV电镀铜填充技术研究[D].北京:中国科学院大学,2017.CHENG Wan.The study on copper electro-deposition in high aspect ratio through silicon vias[D].Beijing:University of Chinese Academy of Sciences,2017.(in Chinese)
参考文献 6
朱立群.功能膜层的电沉积理论与技术[M].北京:北京航空航天大学出版社,2005 ZHU Liqun.Electrodeposition theory and technology of functional film[M].Beijing:Beihang University Press,2005.(in Chinese)
参考文献 7
CHAN P F,LEE H,WEN S I,et al.Effect of copper grain size on the interfacial microstructure of a Sn/Cu joint[J].ACS Applied Electronic Materials,2020,25(2):464-472.
参考文献 8
KANG H,SHARMA A,LEE J H,et al.Transient liquid phase bonding of silicon and direct bond copper via electroplating of tin-copper interlayers for power device applications[J].Materials Research Express,2021,8(1):016301.
参考文献 9
余成昇,许高斌,陈兴,等.高深宽比的TSV制作与填充技术[J].真空科学与技术学报,2016,36(1):93-97.YU Chengsheng,XU Gaobin,CHEN Xing,et al.Fabrication of high aspect ratio through-silicon-vias filled with poly-Si[J].Chinese Journal of Vacuum Science and Technology,2016,36(1):93-97.(in Chinese)
参考文献 10
JANG S J,SONG J H,AMALNERKAR D,et al.Effect of secondary inhibitors on material removal rate and nano-roughness of Cu chemical mechanical planarization[J].Materials Express,2016,6(5):383-393.
参考文献 11
LI Jiujuan,CHEN Yuanming,LI Yongqiang,et al.Bottom-up copper plating to form stacked interconnection of HDI printed circuit board for optical module application[C/CD]//4th International Conference on Machinery,Materials and Information Technology Applications,2016-12-10,Xi’ an,China,2016.
参考文献 12
TSAI T C,TSAO W C,LIN W,et al.CMP process development for the via-middle 3D TSV applications at 28 nm technology node [J].Microelectronic Engineering,2012,92:29-33.
参考文献 13
CHEN Biao,XU Jie,WANG Limin,et al.Synthesis of quaternary ammonium salts based on DPP skeleton and their applications in copper electroplating[J].Acs Applied Materials & Interfaces,2017,9(8):7793-7803.
参考文献 14
张振哲.现代芯片制造技术的发展趋势展望[J].集成电路应用,2020,37(6):22-23.ZHANG Zhenzhe.Development of modern chip manufacturing technology[J].Application of IC,2020.37(6):22-23.(in Chinese)
参考文献 15
余泽健.现代芯片制造技术的展望[J].集成电路应用,2021,38(1):4-5.YU Zejian.Prospect of modern chip manufacturing technology[J].Application of IC,2021,38(1):4-5.(in Chinese)
参考文献 16
宋玮.台积电:中美科技博弈“前哨战”[J].中国外资,2020,11(6):82-83.SONG Wei.TSMC:“Outpost war” of science and technology game between China and the United States[J].Foreign investment in China,2020,11(6):82-83.(in Chinese)
参考文献 17
LEEA H,TSAIA S T,WUA P H,et al Influence of additives on electroplated copper films and their solder joints [J].Materials Characterization,2019,147:57-63.
参考文献 18
YAU S,HUANG Yutang,DOW Weiping.Contrasts in copper deposition on Pt(111)modified by 1-Mercaptopropionic and 1-Mercaptoacetic acids as probed by voltammetry and STM [J].Journal of The Electrochemical Society,2018,165(16):761-767
参考文献 19
刘林发.芯片铜互连电镀添加剂浓度对镀层性能的影响[J].集成电路应用,2019,36(6):25-27,30.LIU Linfa.Effect of additive concentration on coating performance of chip copper interconnection plating[J].Application of IC,2019,36(6):25-27,30.(in Chinese)
参考文献 20
CHAN P F,REN R H,WEN S I.Effects of additives and convection on Cu foil fabrication with a low surface roughness[J].Journal of The Electrochemical Society,2017,164(9):660-665.
参考文献 21
李立清,安文娟,王义.MPS 和氯离子在电镀铜盲孔填充工艺中的作用机理[J].表面技术,2018.47(5):122-129.LI Liqing,AN Wenjuan,WANG Yi.Action mechanism of MPS and chloride ions in electroplating copper microvia filling[J].Surface Technology,2018,47(5):122-129.(in Chinese)
参考文献 22
刘旭阳,张保国,王如.硅通孔化学机械平坦化中铜去除的电化学与选择性研究[J].电镀与涂饰,2020,39(9):554-559.LIU Xuyang,ZHANG Baoguo,WANG Ru.Study on electrochemistry and selectivity of copper removal in TSV chemical mechanical planarization[J].Electroplating & Finishing,2020,39(9):554-559.(in Chinese)
参考文献 23
周密愉.铜和碳化硅电化学机械抛光工艺方法研究[D].哈尔滨:哈尔滨工业大学,2019.ZHOU Miyu.Study on electrochemical mechanical polishing process of copper and silicon carbide[J].Harbin:Harbin Institute of Technology,2019.(in Chinese)
参考文献 24
CHO B J,KIM J Y,HAMADA S,et al.Effect of pH and chemical mechanical planarization process conditions on the copper-benzotriazole complex formation[J].Japanese Journal of Applied Physics,2016,55(6S3):06JB01.
参考文献 25
PAN Guoshun,ZHOU Yan,LUO Guihai,et al.Chemical mechanical polishing(CMP)of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface[J].Journal of Materials Science Materials in Electronics,2013,24(12):5040-5047.
参考文献 26
李轶楠,蔡坚,王德君,等.硅通孔电镀铜填充工艺优化研究[J].电子工业专用设备,2012,41(10):6-10.LI Yinan,CAI Jian,WANG Dejun,et al.Optimizing copper filling process for through silicon via(TSV)[J].Equipment for Electronic Products Marufacturing,2012,41(10):6-10.(in Chinese)
参考文献 27
伍恒.硅通孔中电镀铜填充技术研究[D].大连:大连理工大学,2013.WU Heng.The study on copper electro-deposition in through silicon vias[D].Dalian:Dalian University of Technology,2013.(in Chinese)
参考文献 28
薛栋民.应用于TSV互连的电镀填充工艺研究[D].武汉:华中科技大学,2014.XUE Dongmin.Research of electroplating process in through silicon via[D].Wuhuan:Huazhong University of Science and Technology,2014.(in Chinese)
参考文献 29
牛通,李浩,崔凯,等.高深径比TSV填孔电镀技术[J].电子机械工程.2020,36(1):55-59.NIU Tong,LI Hao,CUI Kai,et al.High aspect ratio TSV electroplating filling technology[J].Electro-Mechanical Engineering,2020,36(1):55-59.(in Chinese)
参考文献 30
DOU Weiping.Applications of microvia and through hole filling by copper electroplating[J].Journal of Fudan University,2012,51(2):131-138.
参考文献 31
WANG Chong,ZHANG Jinqiu,YANG Peixia,et al.Electrochemical behaviors of Janus Green B in through-hole copper electroplating:An insight by experiment and density functional theory calculation using Safranine T as a comparison[J].Electrochimica Acta,2013.92(1):356-364.
参考文献 32
CHAN P F,DOW Weiping.Spontaneous potential oscillation resulting in copper deposit with ultra-large grains[J].Journal of The Electrochemical Society,2019,166(16):891-897.
参考文献 33
张宁.三维集成中的TSV技术[J].集成电路应用,2017,34(11):17-22.ZHANG Ning.TSV technology in 3D integration[J].Applications of IC,2017,34(11):17-22.(in Chinese)
参考文献 34
HOFMANN L,ECKE R,SCHULZ S E,et al.Investigations regarding through silicon Via filling for 3D integration by periodic pulse reverse plating with and without additives[J].Microelectronic Engineering,2011,88(5):705-708.
参考文献 35
张康,李婷,刘小洁,等.基于TSV技术的CMP工艺优化研究[J].电子工业专用设备,2019,48(4):1-4,64.ZHANG Kang,LI Ting,LIU Xiaojie,et al.Application of CMP process optimization in TSV technology[J].Equipment for Electronic Products Manufacturing,2019,48(4):1-4,64.(in Chinese)
参考文献 36
周佳凯,牛新环,杨程辉,等.用于铜互连CMP工艺的抛光液研究进展及发展趋势[J].电子元件与材料,2020.39(9):12-17.ZHOU Jiakai,NIU Xinhuan,YANG Chenghui,et al.Advances and directions in polishing slurry for copper interconnection progress[J].Electronic Components & Materials,2020,39(9):12-17.(in Chinese)
参考文献 37
王彦,王胜利,王辰伟,等. 碱性铜精抛液中表面活性剂ADS对平坦化效果的影响[J].半导体技术,2017,42(11):838-843. WANG Yan,WANG Shengli,WANG Chenwei,et al.Effect of the ADS surfactant in the alkaline copper precise slurry on the planarization[J].Semiconductor Technology,2017,42(11):838-843.(in Chinese)
参考文献 38
YAN,Chenqi,LIU,Yuling,ZHANG,Jin,et al.Synergistic effect of glycine and BTA on step height reduction efciency after copper CMP in weakly alkaline slurry[J] . ECS Journal of Solid State Science and Technology,2017,6(1):1-6.
参考文献 39
高晓伟,刘彦利.等离子清洗在引线框架封装工艺中的应用[J].山西电子技术,2020,1:42-44.GAO Xiaowei,LIU Yanli.Application of plasma cleaning in lead frame packaging process[J].Shanxi Electronic Technology,2020,1:42-44.(in Chinese)
参考文献 40
马世杰,任云星,王大伟.集成电路封装中低压等离子清洗及其应用[J].山西电子技术,2016,3:44-46.MA Shijie,REN Yunxing,WANG Dawei.Application of low pressure plasma cleaning to semiconductor packaging[J].Shanxi Electronic Technology,2016,3:44-46.(in Chinese)
参考文献 41
苟辉,张国荣,李坚,等.石墨烯金属化技术在印制电路板的应用[J].科技经济导刊,2021,29(11):83-84.GOU Hui,ZHANG Guorong,LI Jian,et al.Application of graphene metallization technology in printed circuit board[J].Technology and Economic Guide,2021,29(11):83-84.(in Chinese)
参考文献 42
陈伟元.新的环保型PCB金属化孔技术—石墨烯金属化孔工艺和失效模式分析[J].印制电路信息,2020,28(3):43-49.CHEN Weiyuan.New technology of PCB metallization holes with environmental protection-Graphene metallization hole process and failure model effectiveness analysis[J].Printed Circuit Information,2020,28(3):43-49.(in Chinese)
参考文献 43
梅昌荣,陈冠刚,何茂权,等.挠性石墨烯电路板试制及性能测试[J].印制电路信息,2019,27(8):42-47.MEI Changrong,CHEN Guangang,HE Maoquan,et al.Trial-manufacture and performance test of flexible grapheme circuit board[J].Printed Circuit Information,2019,27(8):42-47.(in Chinese)
参考文献 44
方景礼,陈伟元.石墨烯孔金属化制程的重大突破[J].印制电路信息,2019,27(4):33-39.FANF Jingli,CHEN Weiyuan.Isothermal curing kinetics of epoxy resin and its application in copper clad laminate[J].Printed Circuit Information,2019,27(4):33-39.(in Chinese)
参考文献 45
梁志立.石墨烯及其在印制板领域的应用[J].印制电路信息,2019,27(4):1-7.LIANG Zhili.Graphene and its application in the field of printed circuit boards[J].Printed Circuit Information,2019,27(4):1-7.(in Chinese)
参考文献 46
田民波.印制电路板及电子封装今后的技术发展[J].印制电路信息,2015(9):46-50.TIAN Min bo.Technologies for PCB and electronic package in the future[J].Printed Circuit Information,2015(9):46-50.(in Chinese)
参考文献 47
常永嘉,尤晖.基于印制电路板的微流控芯片研究进展及应用[J].分析化学,2019,47(7):965-975.CHANG Yongjia,YOU Hui.Progress of microfluidics based on printed circuit board and its applications[J].Chinese Journal of Analytical Chemistry,2019,47(7):965-975.(in Chinese)
参考文献 48
唐明星,张胜涛,陈世金,等.添加剂对印制线路板微盲孔填铜效果的影响[J].电镀与涂饰.2017,36(13):780-786.TANG Mingxing,ZHANG Shengtao,CHEN Shijin,et al.Effects of additives on microvia copper-filling efficiency of printed circuit board[J].Electroplating & Finishing,2017,36(13):780-786.(in Chinese)
参考文献 49
王旭,张胜涛,陈世金,等.印制电路板通孔电镀铜添加剂的优化[J].电镀与涂饰,2019,38(15):780-786.WANG Xu,ZHANG Shengtao,CHEN Shijin,et al.Optimization of additives for copper electroplating of through holes on printed circuit board[J].Electroplating & Finishing,2019,38(15):780-786.(in Chinese)
参考文献 50
SALVO P,HENRY O Y F,DHAENENS K,et al.Fabrication and functionalization of PCB gold electrodes suitable for DNA-based electrochemical sensing[J].Bio-medical Materials and Engineering,2014,24(4):1705-1714.
目录contents

    摘要

    集成电路制造也称芯片制造,在整个工业产业链中越来越重要,而电化学沉积(电镀)等表面技术起到非常关键的作用。介绍芯片制造中用到的电化学沉积、物理气相沉积(PVD)、化学气相沉积(CVD)、抛光等表面技术的基本情况和特点, 探讨铜互连电镀、化学机械抛光(CMP)、硅通孔(TSV)垂直互连电镀铜填充、芯片表面再布线(RDL)电镀铜工艺、键合凸点(Bump)电镀铜/锡工艺、集成电路引线框架/封装基板的电化学蚀刻工艺等,通过总结电化学沉积等表面技术的发展, 深入分析传统电镀技术在集成电路制造中的新特点,推动集成电路制造技术的进步。

    Abstract

    Integrated circuit manufacturing, also called chip manufacturing, is becoming more and more important to the entire industrial chain, and surface technologies such as electrochemical deposition (electroplating) have played a very key role.This paper introduces surface technologies such as electrochemical deposition, physical vapor deposition(PVD), chemical vapor deposition(CVD), and polishing used in integrated circuit manufacturing. And many processes such as the copper interconnect electroplating, chemical mechanical polishing (CMP), through silicon via (TSV) vertical interconnect electroplating copper filling.Chip surface rewiring (RDL) copper electroplating process, bonding bump (Bump) electroplating copper/tin process, integrated circuit lead frame/package substrate electrochemical etching process, etc are also discussed.This paper aims to summarize the development of surface technologies such as electrochemical deposition, deeply analyze the new characteristics of traditional electroplating technology in integrated circuit manufacturing, and promote the progress of integrated circuit manufacturing technology.

  • 0 前言

  • 集成电路(Integrated circuit,IC)也称芯片是通过氧化、光刻、扩散、外延、蒸镀、表面处理等制造工艺,把电路设计中所需的晶体管、电阻、电容和电感等元件进行布线互连,在硅晶圆或化合物材料的基板上,再进行封装工艺分割而成。芯片在电子设备、手机通信、电器、汽车、航空航天等数字经济和新基建等行业中起到了重要作用。目前全球芯片供应紧张的局面正在蔓延,大众、通用等多家汽车制造商因芯片短缺而被迫减产,同样其他行业的芯片供应也受到了影响。可见芯片的重要性与日俱增,美国、欧盟、日本等都在积极布局芯片的制造能力,以期占据芯片生产的战略制高点。我国也已连续多年投入巨资支持芯片的设计与制造,以实现芯片生产的自主可控。

  • 芯片的制造过程包括芯片设计、晶圆制造、封装、测试等环节,每个环节的复杂程度和工艺技术含量都非常高。芯片或集成电路的制造涉及学科广泛,包括电子信息材料、精密制造、物理、化学、光学等基础与工程学科。用于制造的材料就有电子特种气体、溅射靶材、抛光、光刻胶、电镀溶液等。从技术层面上讲,芯片的制造工艺等生产需要长期的技术积累,同时也离不开高端设备制造、精密化工材料和精细加工工艺等产业链体系各个细分领域的技术支撑。

  • 实践表明,芯片或集成电路的整个制造链条中,以电化学沉积技术代表的表面工程技术起到了很重要的关键支撑作用,也就是芯片制造对电化学沉积技术(电镀)有较高的依赖[1-2]。电镀是一个传统的工艺技术,通过电镀液中离子的扩散、对流、电迁移等作用,到达产品需要电镀的部位(细孔内部、复杂弯曲内部表面等)进行化学或者电化学沉积而获得镀层。目前很多高技术产业,一些重要的零部件产品都需要进行化学沉积或者电化学沉积(电镀)。当然电镀工艺中存在着废水问题,可以通过专门的废水处理技术进行处理,达到水排放标准。为提升产品零件的表面耐腐蚀,改善摩擦磨损、焊接、电、磁、光学、化学催化等性能,可以在金属、非金属零部件表面实现多种表面功能的镀覆。因此,电镀技术在航空航天、汽车、电子信息、化工机械、手机通信等行业得到了广泛的应用。可以说,电镀及其他表面处理技术是现代高科技产品制造过程中不可或缺的技术[3-5]

  • 电镀或电化学沉积技术是在直流电场的作用下,镀液中的金属离子在零件表面还原沉积而获得功能镀层的过程[6]。在零件表面实现原子、分子级别的金属层的加法制造,一些特殊功能镀层(如锡镍金属间化合物镀层)有时是其他一些表面加工技术所无法获得的。例如在芯片制造中,有很多复杂精细的结构需要用到铜互连,而铜互联一般是采用溶液电化学沉积技术来实现。

  • 用电化学沉积(电镀)技术制造芯片的过程,体现在如将晶圆放入到镀槽中进行电镀,实现键合凸点电镀(如智能手机芯片、液晶显示面版驱动芯片中常用的金凸点电镀、锡凸点电镀等)、PCB线路板电镀、芯片封装等[7-9]。这些都是芯片制造和印制电路板制造中常用的表面技术。除电镀技术外,芯片制造过程中还涉及CVD、PVD、光刻、离子注入、化学(电化学)机械抛光等表面处理技术[10-13]。三星和台积电等公司在生产芯片的制造技术方面,目前是处于领先的地位,其中所涉及到的电镀技术也处于世界前列[14-16]

  • 本文从集成电路制造、封装过程以及印刷电路板封装中涉及的几个主要电镀工艺及其他表面技术进行分析研讨,让大家认识到电镀这个传统的工艺技术在现代高科技发展中所发挥的作用与影响;同时也对芯片制造中涉及到的其他表面处理技术进行介绍,使电镀等表面处理技术在我国的芯片制造、印制电路板制造中发挥出更大的作用,促进我国芯片制造技术的进步,做出电镀等表面处理技术应有的贡献。

  • 1 晶圆制造中涉及的电镀技术

  • 集成电路制造主要流程包括集成电路设计、晶圆制造、封装、测试等环节,晶圆制造、电子封装、印制板生产中离不开电镀以及其他表面处理技术,如晶圆制造就涉及铜互连电镀、晶圆的化学或电化学机械抛光等工艺。

  • 在20世纪80年代,电视机、计算机、冰箱、空调以及后来兴起的手机通信等产品逐渐走入人们的生活,这些产品中的一些元器件、印制线路板等是需要进行电镀处理的。当时电镀又被人们称为电子电镀技术。随着社会的不断进步,科学技术的快速发展,高铁、智能手机、互联网、通信基站、无人机、无人驾驶汽车、先进航空航天等领域也开始大量应用芯片,作为电子电镀技术的迭代,芯片电镀及其他表面处理技术就成了人们关注的热点,而且芯片电镀技术在芯片制造中开始发挥出更重要的作用。当然,芯片电镀涉及的电镀溶液体系、工艺参数等要更复杂、工艺参数控制更严格。晶圆铜柱电镀,就涉及光亮电镀铜工艺(包括柱顶部平坦型和顶部微凸型)和暗铜电镀工艺等,这还是完成倒装芯片的关键工艺。另外,从电镀工艺控制方面,晶圆片上的电镀铜柱的高度均匀拱形率要不高于5%,且电镀铜柱的空洞或者缺陷要少,性能的要求更高,所以芯片电镀比起电子电镀又高了一个层次。

  • 实际上,晶圆片上电镀铜柱的填充性能和镀层质量在很大程度上取决于镀铜液的性能和相应工艺参数。镀液中有机添加剂是改善镀液、影响镀层性能的一个关键因素,填充性能的好坏与镀液中添加剂的成分和浓度相关。人们在研发镀铜液的高性能添加剂,就是获得晶圆片上高质量电镀铜柱的关键[17-19]。由于芯片电镀溶液中的添加剂成分和工艺参数的精细化控制非常重要。也就是说,随着芯片的功能和复杂度的提升,对芯片电镀溶液中起关键作用的添加剂成分的研发和改进就显得非常重要,镀液中成分优选、配比、工艺参数的优化等一直就是芯片电镀技术的发展方向。

  • 此外,晶圆片上大电流密度(3kA/m2)沉积铜柱,对镀液的成分及电镀工艺参数控制要求更严,由于阴极电流密度大,镀液中如果添加剂成分的作用不到位,会造成电沉积铜柱出现了烧焦等故障,导致晶圆片上电镀铜柱内出现空洞等现象,进而引起电镀铜柱的导电性、导热性不良,影响高频信号的传输性能等。解决这个问题的方法就是选择合适的镀铜添加剂,在大的阴极电流密度(3kA/m2)下,调控电镀时间等工艺参数以及溶液其他组分,实现高的电镀效率,获得高质量的电镀铜柱[20-21]

  • 晶圆片上铜柱电镀溶液组分一般有:甲基磺酸铜150~240g/L,甲基磺酸40~70g/L,氯离子30~50mg/L,聚二硫二丙烷磺酸钠2~5mg/L,聚乙二醇40~100mg/L,光亮添加剂40~80mg/L。这种镀液可在晶圆片上以3kA· m 2 的大电流密度进行电镀。但是要注意在晶圆片电镀前,将晶圆片安装后,在真空设备中需要抽真空5~10min;然后再在电镀铜液中电镀,就可以在晶圆上获得满足性能要求的电镀铜柱。

  • 由于芯片需要的大型电镀铜柱的高度和宽度是标准铜柱的5倍多,用常规电镀液制作这种铜柱的沉积过程较长,电镀过程还有可能产生镀层分布不均匀、高度不一致等情况。根据电化学沉积原理,电镀过程中电力线分布受零件尺寸、几何形状的影响较大,电镀铜柱的高度会随局部电镀电流密度的不同而变化,在电镀铜柱顶部表面就会产生一定程度的隆起或凹陷(图1),而不是所需的平坦表面,对于这种表面隆起或凹陷现象,可通过后续的平面化处理方法进行改善(如电化学机械抛光ECMP)[22-25]。如果平面化效果不当,可能会导致电镀铜柱的电连接信号不稳,或降低用晶圆的综合性能等。

  • 图1 芯片电镀铜柱过程中易出现的问题

  • Fig.1 Schematic diagram of the problems that easily occur in the process of chip electroplating copper pillars

  • 实际上,影响电镀铜柱因素有很多,单个晶片的布局差异、特征形状、宽度、深宽比和给定区域的特征密度等,都会演变成为晶圆、单个晶片上特性之间的差异。解决这个问题,可以通过增加电镀铜柱的目标厚度,即多电沉积一些金属镀层,然后用阳极腐蚀的方法,去除多余的电镀金属层,与缩小电镀铜柱的高度分布差,使电镀铜柱顶部表面更平整。但这种方法可能做不到与铜柱尺寸完全一致,有可能还会导致电镀铜柱表面粗糙凹陷,边缘造成腐蚀等情况,因此,需要严格控制阳极腐蚀的工艺参数等。

  • 对晶圆(凸点)电镀来说,涉及的镀液体系有很多,如锡铅,锡银、锡铜等合金电镀以及镀锡技术等镀液体系[1-2],其中有的电镀溶液体系又按照处理速度和精密程度来划分,如高速锡铅电镀、锡铅精密电镀、锡银合金电镀、高速镀锡等。而且每种电镀工艺的镀液组成、工艺参数等都有不同,但都以满足晶圆(凸点)电镀的功能需求为目标。因此,技术人员要针对不同的特点开展电镀工艺的研发,包括镀液组成、工艺参数的优选等。

  • 随着芯片的功能越来越强大,尺寸越来越小,对于芯片制造过程中用到的表面处理技术的要求会越来越高,因此,表面处理技术人员要经常关注集成电路、芯片设计、性能与需求的变化,针对芯片新需求研发电镀等表面处理新技术,以满足芯片制造的需要。

  • 除电镀技术外,芯片制造中还涉及晶圆化学与电化学机械抛光(CMP或ECMP)等工艺,这种抛光技术是发挥抛光过程中的化学、机械作用,以及化学机械的协同作用[22-25]

  • 电镀铜柱表面的凹凸不平,也可通过物理方法去除表面的高点,并在低应力条件下不断进行循环,以达到电镀铜柱的表面光滑和去除高点的效果。电化学机械抛光的作用是除机械作用外,按电解电流随电位增大而增大以及法拉第定律,通过阳极抛光中的电化学溶解作用提高去除电镀铜柱表面多余金属层的效率。

  • 实际上,在电化学抛光过程中,对溶液成分及抛光工艺参数的控制非常重要。因为精确控制电镀铜柱沉积层的质量,如表面光滑平整和电镀沉积形状尺寸,对提高芯片电镀产品的效率十分关键。电镀铜的尺寸控制精准,获得的表面光滑平整,这有助于减少化学、电化学与机械抛光的电镀铜去除量,从而提高电镀铜柱的质量,并且可以提高电镀铜柱的生产效率。

  • 总之,晶圆制造中所涉及到的电镀、抛光等表面技术的要求都非常高,且工序繁杂,因此针对晶圆表面电镀技术的研发要给予足够重视。

  • 2 芯片封装涉及的表面技术

  • 在芯片封装环节,大量用到电镀与其他表面技术[1-2],如硅通孔(Through silicon via,TSV)垂直互连电镀铜填充、芯片表面再布线(Re-distribution layer,RDL)电镀铜、键合凸点电镀铜/锡工艺等。

  • 目前芯片、集成电路设计是将更复杂的功能嵌入到更狭小的空间,其中,异构集成(包括器件的3D堆叠)是混合与连接各种功能更实用方法。高密度扇出型晶圆级封装的优势在于其封装的基片更少,热阻更低,电性能更好。关键是重布线层(RDL) 金属与大的铜柱镀层,重布线层连通硅芯片上的高密度连接和印制电路板的低密度连接。通常只有使用多层重布线层,才能让信号路由至电路板。

  • 图2 是2.5D封装中的中介层结构示意图,可以看出2.5D封装中涉及某种中介层,如硅中介层,可以互联芯片上的微凸点(Micro-bumps)。其中电镀铜柱是垂直连接不同层级的金属支柱,顶部单个晶片的焊锡凸块被放置于大的电镀铜柱上,并通过回流焊完成连接。

  • 图2 2.5D封装中的中介层结构示意图

  • Fig.2 Schematic diagram of the interposer structure in 2.5D packaging

  • 硅通孔TSV技术是在芯片中建造高速电梯实现上下互联,芯片在进行2.5D/3D堆叠后,要满足各层间的供电与通信连线,就必须在芯片上进行钻孔,并通过金属导线(填孔电镀)来实现电路的导通[26-28],并且对于高深径比的硅通孔进行电镀填孔[29]

  • 硅通孔技术正逐渐取代工艺较成熟的引线键合互联技术。TSV可通过垂直互联减小互联长度,减小信号延迟,降低电容/电感,实现芯片间的低功耗,高速通信,增加宽带并实现器件集成的小型化[30]

  • 但TSV制作工艺的流程复杂且产品良率低,因为在硅晶圆这种高硬度、韧性差的材质上进行高效、快速、精确的钻孔是一件难事,同时高效高良率实现在纳米级尺寸上让铜电沉积到通孔中完成填孔,更是一个工艺难点问题。

  • 实际上,TSV技术流程涉及的工序有:深硅刻蚀/钻孔,绝缘层/阻挡层/种子层的沉积,深孔填充,化学机械抛光,晶圆减薄,RDL与微凸点制作等。这些需要一定的基础材料,如光刻胶、靶材、化学(电化学)抛光材料、电镀溶液等。还需要光刻机、刻蚀机、CVD、PVD设备、电镀设备等。

  • 在芯片制造过程中,刻蚀晶圆可以使其电学性能更加均匀。用CVD或原子层沉积(Atomic layer deposition,ALD)的方法在晶圆沉积SiO2 绝缘层, PVD沉积钛阻挡层、铜作为种子层。在绝缘层和金属Cu之间引入一层扩散阻挡层,以防止Cu元素向硅中扩散,扩散会影响硅的半导体性能,造成器件性能退化。因此,阻挡层要有好的热稳定性,还要与种子层和绝缘层有较好的结合。阻挡层主要有难熔金属Ru、Ta、Ti及其氮化物TaN、TiN、WN以及三元化合物TaSiN、WNC等材料。

  • 用PVD、CVD的方法实现通孔中的黏附/阻挡层,种子层是通过后续溅射或先PVD沉积然后电镀铜来完成,这样做会使工艺控制显得复杂。如果用PVD的方法沉积种子层,其台阶覆盖性差,底部种子层的厚度只有开口处的10%~15%,导致底部和开口处电阻出现差异;进而后续电镀时的沉积速度不同,因为在电镀过程中,底部铜离子的消耗速率比扩散速率快,引起底部铜离子浓度比开口处的铜离子浓度小,使得底部的电镀速率比开口处的慢,产生镀层空洞等缺陷[31-32]

  • 可以不用PVD的方法沉积种子层,而通过改进电镀铜溶液的成分,调整工艺参数,直接在扩散阻挡层上按图形电镀形成覆盖性好且连续的种子层,厚度在10~20nm。用PVD的方法制备TaN (400nm)/Ta(10nm)双层薄膜阻挡层,TaN通过反应磁控溅射的方法获得,Ta用磁控溅射的方法获得。这种方式也比较复杂,且对镀液成分的要求高,电镀工艺参数控制的要求更高,可见传统的电镀技术在芯片制造中显得非常重要。

  • 绝缘层应具有好的阶梯覆盖性,无漏电流,低应力,高击穿电压,以满足不同TSV集成引起的加工温度变化等情况。用等离子体增强化学气相沉积或减压化学气相沉积可以获得二氧化硅(SiO2)或氮化硅(Si3N4)绝缘层,当TSV直径小于3 μm时,绝缘层更适合用原子层沉积技术获得,因为ALD可以实现更好的阶梯覆盖率,无须再进行其他表面处理。

  • 这里提到的CVD/ALD和PVD沉积钛阻挡层的方法,既需要设备精度高、功能强、靶材纯度高,又要能够精确控制物理或化学沉积的工艺参数。目前国内外各气相沉积设备厂商主要研发的热点就是关于高性能沉积设备及高纯度靶材等,以满足芯片封装中晶圆沉积钛阻挡层等的需要。

  • 在低温下对高纵横比的TSV的阻挡层和铜种子层进行化学镀,利用金纳米粒子或钯纳米粒子作镀液中的催化剂,实现钴-钨和铜的阻挡层/种子层的化学沉积。这种方法获得的阻挡层和种子层在较低温度下有好的阶梯覆盖率。

  • 深孔填充是用电镀的方法在盲孔中进行沉积铜进行填充,电镀溶液尤其是镀铜添加剂非常关键[1830-31]。TSV填充电镀铜的方法有共形电镀、自下而上的密封凸点电镀、超共形电镀等[33-34]

  • 在优化小直径、高深宽比硅盲孔侧壁绝缘介质层以及电镀种子层沉积工艺的基础上,优化铜电镀液的组分,包括电镀种子层沉积溶液中的添加剂、促进剂等关键组分、电流密度和电镀时间,实现硅盲孔内自底向上超共形无孔缝镀铜的高效填充。也可以将真空辅助旋涂技术与自底向上超共形电镀铜技术相结合,实现开口直径6.8 μm、底部直径4.5 μm、深度54 μm、深宽比约9∶1的电镀加工。

  • 实际上,TSV填充的难点在于用电镀的方法进行填孔,电镀时避免在孔内形成空洞或者缝隙,并尽量让孔壁保持光滑。随着通孔直径缩小以及半导体制程、芯片制程工艺的变化,通孔的深宽比会不断提高,传统的电镀方法会越来越难以满足TSV填孔的需求。因此,研发出适合于高深宽比的通孔镀铜技术,包括这种特殊要求的镀液体系、添加剂成分及工艺控制参数等是非常关键的[1-2,32]

  • 在深度超过200 μm的深通孔或沟槽中进行电镀,要保持深通孔或沟槽中高速电沉积填孔的均匀性。对凸点进行高速电沉积铜,会遇到镀液中离子传质的限制,导致镀铜沉积速率下降,并产生不均匀的凸点顶部粗糙轮廓等。一些新研发的高速电镀技术可以解决镀液中离子传质的难题,得到好的凸点顶部轮廓,并在保持高产能的同时提升电镀铜柱的高度均一性[1]

  • 用化学机械平坦化抛光(CMP)方法将硅晶圆表面上多余的铜层去除,背面磨削法打磨晶圆的背面,让电镀铜柱的另一端暴露出来,形成通孔。在暴露出电镀铜后的硅晶圆的背面开始制作电路层和微凸点,来实现与其余芯片或者基板的互联。

  • 硅通孔TSV技术是在纳米级尺寸上让铜电沉积到硅晶圆通孔中,可能会出现由不均匀沉积导致的凸点顶部粗糙轮廓等现象。采用CMP工艺就是对大马士革铜沉积后的晶圆正面粗糙部位进行化学机械平坦化抛光,对晶圆背面硅通孔铜沉积结构的凸点暴露部分进行平坦化处理。因此,要求CMP满足去除效率高、时间可控、晶圆碎片的风险小、凹陷及凸起缺陷少等要求。例如铜沉积层的去除率只有大于1 000nm/min,铜的凹陷不平要小于15nm,经过平坦化抛光处理后的表面粗糙度要小于1nm,不均匀度小于5%,才能满足TSV技术中晶圆表面平坦化的性能要求[35]

  • 从铜的化学机械平坦化抛光中用的化学抛光液体系以及基于TSV技术的CMP优化工艺看,CMP溶液是向着弱碱性、绿色环保、一剂多用和复配协同的研发方向发展[36-38],从而满足芯片制造快速发展的需要。

  • 近年来技术人员虽然提出了一些具有优异平坦化性能的抛光液组分和工艺,但对于实现平坦化性能的作用机理研究还不够深入,多是局限在抛光液组分与抛光材料之间的化学反应以及抛光效果方面;还需要进一步探索化学机械抛光液中各成分的相互作用特点,降低镀铜表面凸处和凹处的反应活化能差异,优化CMP后的平坦化效果与尺寸精度,才能满足高性能芯片制造的新需求。

  • 在先进晶圆级封装领域,新的高速电镀技术不但支持铜、镍、锡银(SnAg)电镀的互连铜凸点、重布线层和锡银合金,还有高密度扇出先进封装产品的翘曲晶圆也需要电镀技术的支撑[1]

  • 另外,IC引线框架/封装基板需要进行等离子清洗[39]或者低压等离子清洗[40],也是芯片制造中常用的表面处理技术。引线框架是一种借助于键合材料(金丝、铝丝、铜丝)实现芯片内部电路引出端与外引线的电连接,形成电气回路的关键结构部件,起到和外部导线连接的桥梁作用,大部分半导体集成块中都要使用引线框架,但是为了引线框架/封装基板连接的可靠性,需要进行等离子清洗[39]或者低压等离子清洗[40]

  • 3 印制板制造中的表面技术

  • 焊接在印制电路板上的芯片,是通过相互电连接,来实现各种功能,所以印制电路板成为很多电子仪器的基础部件。印制电路板的制造通常使用化学镀铜技术,但化学镀铜存在着工序繁杂(粗化、活化等步骤)、废水污染等问题。因此,从环保角度看,需要新的表面处理技术代替传统的化学镀铜技术。随着石墨烯孔金属化技术的发展,人们利用石墨烯的高导电性以及其微片结构、高比表面积(80~2 630)m 2 /g(1~30层)和强的吸附特性,将石墨烯材料用于印制线路板的孔金属化,来代替传统的化学镀铜工序[41-42]。这种由石墨烯材料构成的优异导电层为印制线路板后续电镀打下了良好的基础,而且环保、易操作,还可以利用石墨烯的抗高温、耐酸碱、抗氧化等特性,进一步提升印制线路板孔金属化的性能[43-45]

  • 在印制线路板用石墨烯进行孔金属化后,还需要进行化学镀、电镀处理,如化学镀锡、镀钯磷合金、电镀铜等处理工艺。由于印制电路板用石墨烯进行孔金属化后,表面状态出现变化(原来的化学镀铜),因此这些化学镀、电镀工艺也需要进行相应的镀液体系与工艺参数调整,如化学镀锡就有pH为4.8的镀暗锡工艺,以及pH为7的中性镀暗锡工艺,需要根据印制电路板的性能进行选择。

  • 连接器加工需要的电镀溶液有锡铋合金高速镀 (光亮、暗)和低速镀(光亮、暗)工艺;还有高速镀锡(光亮、暗)和低速镀锡(光亮、暗);锡铜合金的高速镀(暗)和低速镀(光亮、暗)工艺以及高速镀暗锡银合金工艺等。

  • 随着芯片向高速、高集成化方向发展,电子通信设备以半导体芯片为主的许多元器件的集合体,并非单独由半导体芯片构成。所以,对于高速、大量信息处理设备用的印制电路板,在组装部分需要表面处理技术的要求就会越来越高,如印制板镀覆铜板的电化学蚀刻工艺、印制板金属布线电化学沉积工艺等[46-47]

  • 印制线路板的镀铜技术涉及的镀液类型有:通孔填孔用镀液、盲孔/通孔混在线印制板用镀液、高均匀性镀液和X型盲孔用镀液等[48]

  • 王旭等[49]在75g/L CuSO4·5H2O和230g/L硫酸组成的镀液中添加50~70mg/L Cl、8~11mg/L SPS、200~300mg/L PEG-10000和9~13mg/L 2-PDS时,填孔效果好,平均填孔率为9 1.7%,凹陷值为13.6 μm,铜层表面均匀、致密、平整,无明显的铜瘤。经冷热循环和热应力冲击测试后无爆板、气泡、孔裂、铜层断裂等现象,可以满足PCB生产对可靠性的要求。

  • SALVO等[50]制作了低密度DNA微阵列用于检测乳腺癌标志物,DNA生物传感器就是通过电镀工艺在PCB上制得,检出达0.05nmol/L,检测灵敏度大大提升。此外,还有等离子清洗在引线框架封装工艺中的应用[39]。这些均涉及电镀等表面处理技术,因此在提升我国芯片制造能力的同时,重视电镀等表面处理技术的进步是非常必要的。

  • 另外,印制线路板制造过程中涉及的电镀种类、溶液体系、工艺参数等比较复杂,比普通产品的电镀工艺控制、镀层的特殊性能等要求更高,需要从事芯片制品电镀的相关技术人员不断努力,提升印制电路板电镀的技术水平,才能适应高功能芯片制作的高性能需求。

  • 4 结论

  • 芯片制造是一个复杂的精细加工工程,其中芯片电镀与其他表面处理技术在整个芯片制造生产链中,发挥了重要作用,因为在晶圆制造、电子封装、印制板组装中都离不开电镀等表面处理技术。

  • 根据芯片设计、制造技术的发展需要,以及结合电镀技术发展趋势分析,可以看出在晶圆电镀、封装、电路板制造中涉及的镀液成分体系,添加剂、促进剂等成分的优化,工艺参数的精确控制等方面都有很大的研发空间,既要满足芯片设计中新的功能需求,又要在满足芯片制造性能、品质的基础上,尽可能使芯片制造中用到的电镀工艺朝着绿色环保、低碳减排的方向发展。

  • 尤其是芯片电镀专用添加剂成分、活性促进剂成分的研发非常重要。除电镀技术外,还要关注芯片制造过程中需要的CVD、PCD、光刻、离子注入、化学(电化学)机械抛光、等离子清洗等技术的发展与应用,如在引线框架精度要求高且国家对环保的高度重视的情况下,研发高效环保的引线框架蚀刻液已成为引线框架制造面临的重要问题之一。研发在保证引线框架高精度蚀刻的前提下,实现酸性氯化铜蚀刻液的再生,是表面技术工作者的重要责任。

  • 芯片制造中的电镀等表面处理技术的发展与芯片发展息息相关,需要从事电镀等表面技术的科技工作者不断跟踪集成电路、芯片设计、制造的发展趋势,努力开展表面工艺技术的研发,以适应芯片制造的快速发展。

  • 参考文献

    • [1] 李元勋,陶志华,苏桦,等.电子电路电镀技术[M].北京:科学出版社,2019.LI Yuanxun,TAO Zhihua,SU Hua,et al.Electroplating technology for electronic circuits[M].Beijing:Science Press,2019.(in Chinese)

    • [2] 刘仁志.芯片与电镀[J].表面工程与再制造.2018,18(3):13-16.LIU Renzhi.Chip and electroplating[J].Information of Surface Engineering,2018,18(3):13-16.(in Chinese)

    • [3] 廖超慧,张胜涛,陈世金,等.印制线路板电镀铜填盲孔添加剂的正交优化[J].电镀与涂饰,2018,37(13):576-580.LIAO Chaohui,ZHANG Shengtao,CHEN Shijin,et al.Orthogonal optimization of additives for blind via filling of printed circuit board by copper electroplating[J].Electroplating & Finishing,2018,37(13):576-580.(in Chinese)

    • [4] DONG Mengya,ZHANG Yumei,HANG Tao,et al.Structural effect of inhibitors on adsorption and desorption behaviors during copper electroplating for through-silicon vias[J].Electrochimica Acta,2021,372(10):1-7.

    • [5] 程万.高深宽比的TSV电镀铜填充技术研究[D].北京:中国科学院大学,2017.CHENG Wan.The study on copper electro-deposition in high aspect ratio through silicon vias[D].Beijing:University of Chinese Academy of Sciences,2017.(in Chinese)

    • [6] 朱立群.功能膜层的电沉积理论与技术[M].北京:北京航空航天大学出版社,2005 ZHU Liqun.Electrodeposition theory and technology of functional film[M].Beijing:Beihang University Press,2005.(in Chinese)

    • [7] CHAN P F,LEE H,WEN S I,et al.Effect of copper grain size on the interfacial microstructure of a Sn/Cu joint[J].ACS Applied Electronic Materials,2020,25(2):464-472.

    • [8] KANG H,SHARMA A,LEE J H,et al.Transient liquid phase bonding of silicon and direct bond copper via electroplating of tin-copper interlayers for power device applications[J].Materials Research Express,2021,8(1):016301.

    • [9] 余成昇,许高斌,陈兴,等.高深宽比的TSV制作与填充技术[J].真空科学与技术学报,2016,36(1):93-97.YU Chengsheng,XU Gaobin,CHEN Xing,et al.Fabrication of high aspect ratio through-silicon-vias filled with poly-Si[J].Chinese Journal of Vacuum Science and Technology,2016,36(1):93-97.(in Chinese)

    • [10] JANG S J,SONG J H,AMALNERKAR D,et al.Effect of secondary inhibitors on material removal rate and nano-roughness of Cu chemical mechanical planarization[J].Materials Express,2016,6(5):383-393.

    • [11] LI Jiujuan,CHEN Yuanming,LI Yongqiang,et al.Bottom-up copper plating to form stacked interconnection of HDI printed circuit board for optical module application[C/CD]//4th International Conference on Machinery,Materials and Information Technology Applications,2016-12-10,Xi’ an,China,2016.

    • [12] TSAI T C,TSAO W C,LIN W,et al.CMP process development for the via-middle 3D TSV applications at 28 nm technology node [J].Microelectronic Engineering,2012,92:29-33.

    • [13] CHEN Biao,XU Jie,WANG Limin,et al.Synthesis of quaternary ammonium salts based on DPP skeleton and their applications in copper electroplating[J].Acs Applied Materials & Interfaces,2017,9(8):7793-7803.

    • [14] 张振哲.现代芯片制造技术的发展趋势展望[J].集成电路应用,2020,37(6):22-23.ZHANG Zhenzhe.Development of modern chip manufacturing technology[J].Application of IC,2020.37(6):22-23.(in Chinese)

    • [15] 余泽健.现代芯片制造技术的展望[J].集成电路应用,2021,38(1):4-5.YU Zejian.Prospect of modern chip manufacturing technology[J].Application of IC,2021,38(1):4-5.(in Chinese)

    • [16] 宋玮.台积电:中美科技博弈“前哨战”[J].中国外资,2020,11(6):82-83.SONG Wei.TSMC:“Outpost war” of science and technology game between China and the United States[J].Foreign investment in China,2020,11(6):82-83.(in Chinese)

    • [17] LEEA H,TSAIA S T,WUA P H,et al Influence of additives on electroplated copper films and their solder joints [J].Materials Characterization,2019,147:57-63.

    • [18] YAU S,HUANG Yutang,DOW Weiping.Contrasts in copper deposition on Pt(111)modified by 1-Mercaptopropionic and 1-Mercaptoacetic acids as probed by voltammetry and STM [J].Journal of The Electrochemical Society,2018,165(16):761-767

    • [19] 刘林发.芯片铜互连电镀添加剂浓度对镀层性能的影响[J].集成电路应用,2019,36(6):25-27,30.LIU Linfa.Effect of additive concentration on coating performance of chip copper interconnection plating[J].Application of IC,2019,36(6):25-27,30.(in Chinese)

    • [20] CHAN P F,REN R H,WEN S I.Effects of additives and convection on Cu foil fabrication with a low surface roughness[J].Journal of The Electrochemical Society,2017,164(9):660-665.

    • [21] 李立清,安文娟,王义.MPS 和氯离子在电镀铜盲孔填充工艺中的作用机理[J].表面技术,2018.47(5):122-129.LI Liqing,AN Wenjuan,WANG Yi.Action mechanism of MPS and chloride ions in electroplating copper microvia filling[J].Surface Technology,2018,47(5):122-129.(in Chinese)

    • [22] 刘旭阳,张保国,王如.硅通孔化学机械平坦化中铜去除的电化学与选择性研究[J].电镀与涂饰,2020,39(9):554-559.LIU Xuyang,ZHANG Baoguo,WANG Ru.Study on electrochemistry and selectivity of copper removal in TSV chemical mechanical planarization[J].Electroplating & Finishing,2020,39(9):554-559.(in Chinese)

    • [23] 周密愉.铜和碳化硅电化学机械抛光工艺方法研究[D].哈尔滨:哈尔滨工业大学,2019.ZHOU Miyu.Study on electrochemical mechanical polishing process of copper and silicon carbide[J].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [24] CHO B J,KIM J Y,HAMADA S,et al.Effect of pH and chemical mechanical planarization process conditions on the copper-benzotriazole complex formation[J].Japanese Journal of Applied Physics,2016,55(6S3):06JB01.

    • [25] PAN Guoshun,ZHOU Yan,LUO Guihai,et al.Chemical mechanical polishing(CMP)of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface[J].Journal of Materials Science Materials in Electronics,2013,24(12):5040-5047.

    • [26] 李轶楠,蔡坚,王德君,等.硅通孔电镀铜填充工艺优化研究[J].电子工业专用设备,2012,41(10):6-10.LI Yinan,CAI Jian,WANG Dejun,et al.Optimizing copper filling process for through silicon via(TSV)[J].Equipment for Electronic Products Marufacturing,2012,41(10):6-10.(in Chinese)

    • [27] 伍恒.硅通孔中电镀铜填充技术研究[D].大连:大连理工大学,2013.WU Heng.The study on copper electro-deposition in through silicon vias[D].Dalian:Dalian University of Technology,2013.(in Chinese)

    • [28] 薛栋民.应用于TSV互连的电镀填充工艺研究[D].武汉:华中科技大学,2014.XUE Dongmin.Research of electroplating process in through silicon via[D].Wuhuan:Huazhong University of Science and Technology,2014.(in Chinese)

    • [29] 牛通,李浩,崔凯,等.高深径比TSV填孔电镀技术[J].电子机械工程.2020,36(1):55-59.NIU Tong,LI Hao,CUI Kai,et al.High aspect ratio TSV electroplating filling technology[J].Electro-Mechanical Engineering,2020,36(1):55-59.(in Chinese)

    • [30] DOU Weiping.Applications of microvia and through hole filling by copper electroplating[J].Journal of Fudan University,2012,51(2):131-138.

    • [31] WANG Chong,ZHANG Jinqiu,YANG Peixia,et al.Electrochemical behaviors of Janus Green B in through-hole copper electroplating:An insight by experiment and density functional theory calculation using Safranine T as a comparison[J].Electrochimica Acta,2013.92(1):356-364.

    • [32] CHAN P F,DOW Weiping.Spontaneous potential oscillation resulting in copper deposit with ultra-large grains[J].Journal of The Electrochemical Society,2019,166(16):891-897.

    • [33] 张宁.三维集成中的TSV技术[J].集成电路应用,2017,34(11):17-22.ZHANG Ning.TSV technology in 3D integration[J].Applications of IC,2017,34(11):17-22.(in Chinese)

    • [34] HOFMANN L,ECKE R,SCHULZ S E,et al.Investigations regarding through silicon Via filling for 3D integration by periodic pulse reverse plating with and without additives[J].Microelectronic Engineering,2011,88(5):705-708.

    • [35] 张康,李婷,刘小洁,等.基于TSV技术的CMP工艺优化研究[J].电子工业专用设备,2019,48(4):1-4,64.ZHANG Kang,LI Ting,LIU Xiaojie,et al.Application of CMP process optimization in TSV technology[J].Equipment for Electronic Products Manufacturing,2019,48(4):1-4,64.(in Chinese)

    • [36] 周佳凯,牛新环,杨程辉,等.用于铜互连CMP工艺的抛光液研究进展及发展趋势[J].电子元件与材料,2020.39(9):12-17.ZHOU Jiakai,NIU Xinhuan,YANG Chenghui,et al.Advances and directions in polishing slurry for copper interconnection progress[J].Electronic Components & Materials,2020,39(9):12-17.(in Chinese)

    • [37] 王彦,王胜利,王辰伟,等. 碱性铜精抛液中表面活性剂ADS对平坦化效果的影响[J].半导体技术,2017,42(11):838-843. WANG Yan,WANG Shengli,WANG Chenwei,et al.Effect of the ADS surfactant in the alkaline copper precise slurry on the planarization[J].Semiconductor Technology,2017,42(11):838-843.(in Chinese)

    • [38] YAN,Chenqi,LIU,Yuling,ZHANG,Jin,et al.Synergistic effect of glycine and BTA on step height reduction efciency after copper CMP in weakly alkaline slurry[J] . ECS Journal of Solid State Science and Technology,2017,6(1):1-6.

    • [39] 高晓伟,刘彦利.等离子清洗在引线框架封装工艺中的应用[J].山西电子技术,2020,1:42-44.GAO Xiaowei,LIU Yanli.Application of plasma cleaning in lead frame packaging process[J].Shanxi Electronic Technology,2020,1:42-44.(in Chinese)

    • [40] 马世杰,任云星,王大伟.集成电路封装中低压等离子清洗及其应用[J].山西电子技术,2016,3:44-46.MA Shijie,REN Yunxing,WANG Dawei.Application of low pressure plasma cleaning to semiconductor packaging[J].Shanxi Electronic Technology,2016,3:44-46.(in Chinese)

    • [41] 苟辉,张国荣,李坚,等.石墨烯金属化技术在印制电路板的应用[J].科技经济导刊,2021,29(11):83-84.GOU Hui,ZHANG Guorong,LI Jian,et al.Application of graphene metallization technology in printed circuit board[J].Technology and Economic Guide,2021,29(11):83-84.(in Chinese)

    • [42] 陈伟元.新的环保型PCB金属化孔技术—石墨烯金属化孔工艺和失效模式分析[J].印制电路信息,2020,28(3):43-49.CHEN Weiyuan.New technology of PCB metallization holes with environmental protection-Graphene metallization hole process and failure model effectiveness analysis[J].Printed Circuit Information,2020,28(3):43-49.(in Chinese)

    • [43] 梅昌荣,陈冠刚,何茂权,等.挠性石墨烯电路板试制及性能测试[J].印制电路信息,2019,27(8):42-47.MEI Changrong,CHEN Guangang,HE Maoquan,et al.Trial-manufacture and performance test of flexible grapheme circuit board[J].Printed Circuit Information,2019,27(8):42-47.(in Chinese)

    • [44] 方景礼,陈伟元.石墨烯孔金属化制程的重大突破[J].印制电路信息,2019,27(4):33-39.FANF Jingli,CHEN Weiyuan.Isothermal curing kinetics of epoxy resin and its application in copper clad laminate[J].Printed Circuit Information,2019,27(4):33-39.(in Chinese)

    • [45] 梁志立.石墨烯及其在印制板领域的应用[J].印制电路信息,2019,27(4):1-7.LIANG Zhili.Graphene and its application in the field of printed circuit boards[J].Printed Circuit Information,2019,27(4):1-7.(in Chinese)

    • [46] 田民波.印制电路板及电子封装今后的技术发展[J].印制电路信息,2015(9):46-50.TIAN Min bo.Technologies for PCB and electronic package in the future[J].Printed Circuit Information,2015(9):46-50.(in Chinese)

    • [47] 常永嘉,尤晖.基于印制电路板的微流控芯片研究进展及应用[J].分析化学,2019,47(7):965-975.CHANG Yongjia,YOU Hui.Progress of microfluidics based on printed circuit board and its applications[J].Chinese Journal of Analytical Chemistry,2019,47(7):965-975.(in Chinese)

    • [48] 唐明星,张胜涛,陈世金,等.添加剂对印制线路板微盲孔填铜效果的影响[J].电镀与涂饰.2017,36(13):780-786.TANG Mingxing,ZHANG Shengtao,CHEN Shijin,et al.Effects of additives on microvia copper-filling efficiency of printed circuit board[J].Electroplating & Finishing,2017,36(13):780-786.(in Chinese)

    • [49] 王旭,张胜涛,陈世金,等.印制电路板通孔电镀铜添加剂的优化[J].电镀与涂饰,2019,38(15):780-786.WANG Xu,ZHANG Shengtao,CHEN Shijin,et al.Optimization of additives for copper electroplating of through holes on printed circuit board[J].Electroplating & Finishing,2019,38(15):780-786.(in Chinese)

    • [50] SALVO P,HENRY O Y F,DHAENENS K,et al.Fabrication and functionalization of PCB gold electrodes suitable for DNA-based electrochemical sensing[J].Bio-medical Materials and Engineering,2014,24(4):1705-1714.

  • 参考文献

    • [1] 李元勋,陶志华,苏桦,等.电子电路电镀技术[M].北京:科学出版社,2019.LI Yuanxun,TAO Zhihua,SU Hua,et al.Electroplating technology for electronic circuits[M].Beijing:Science Press,2019.(in Chinese)

    • [2] 刘仁志.芯片与电镀[J].表面工程与再制造.2018,18(3):13-16.LIU Renzhi.Chip and electroplating[J].Information of Surface Engineering,2018,18(3):13-16.(in Chinese)

    • [3] 廖超慧,张胜涛,陈世金,等.印制线路板电镀铜填盲孔添加剂的正交优化[J].电镀与涂饰,2018,37(13):576-580.LIAO Chaohui,ZHANG Shengtao,CHEN Shijin,et al.Orthogonal optimization of additives for blind via filling of printed circuit board by copper electroplating[J].Electroplating & Finishing,2018,37(13):576-580.(in Chinese)

    • [4] DONG Mengya,ZHANG Yumei,HANG Tao,et al.Structural effect of inhibitors on adsorption and desorption behaviors during copper electroplating for through-silicon vias[J].Electrochimica Acta,2021,372(10):1-7.

    • [5] 程万.高深宽比的TSV电镀铜填充技术研究[D].北京:中国科学院大学,2017.CHENG Wan.The study on copper electro-deposition in high aspect ratio through silicon vias[D].Beijing:University of Chinese Academy of Sciences,2017.(in Chinese)

    • [6] 朱立群.功能膜层的电沉积理论与技术[M].北京:北京航空航天大学出版社,2005 ZHU Liqun.Electrodeposition theory and technology of functional film[M].Beijing:Beihang University Press,2005.(in Chinese)

    • [7] CHAN P F,LEE H,WEN S I,et al.Effect of copper grain size on the interfacial microstructure of a Sn/Cu joint[J].ACS Applied Electronic Materials,2020,25(2):464-472.

    • [8] KANG H,SHARMA A,LEE J H,et al.Transient liquid phase bonding of silicon and direct bond copper via electroplating of tin-copper interlayers for power device applications[J].Materials Research Express,2021,8(1):016301.

    • [9] 余成昇,许高斌,陈兴,等.高深宽比的TSV制作与填充技术[J].真空科学与技术学报,2016,36(1):93-97.YU Chengsheng,XU Gaobin,CHEN Xing,et al.Fabrication of high aspect ratio through-silicon-vias filled with poly-Si[J].Chinese Journal of Vacuum Science and Technology,2016,36(1):93-97.(in Chinese)

    • [10] JANG S J,SONG J H,AMALNERKAR D,et al.Effect of secondary inhibitors on material removal rate and nano-roughness of Cu chemical mechanical planarization[J].Materials Express,2016,6(5):383-393.

    • [11] LI Jiujuan,CHEN Yuanming,LI Yongqiang,et al.Bottom-up copper plating to form stacked interconnection of HDI printed circuit board for optical module application[C/CD]//4th International Conference on Machinery,Materials and Information Technology Applications,2016-12-10,Xi’ an,China,2016.

    • [12] TSAI T C,TSAO W C,LIN W,et al.CMP process development for the via-middle 3D TSV applications at 28 nm technology node [J].Microelectronic Engineering,2012,92:29-33.

    • [13] CHEN Biao,XU Jie,WANG Limin,et al.Synthesis of quaternary ammonium salts based on DPP skeleton and their applications in copper electroplating[J].Acs Applied Materials & Interfaces,2017,9(8):7793-7803.

    • [14] 张振哲.现代芯片制造技术的发展趋势展望[J].集成电路应用,2020,37(6):22-23.ZHANG Zhenzhe.Development of modern chip manufacturing technology[J].Application of IC,2020.37(6):22-23.(in Chinese)

    • [15] 余泽健.现代芯片制造技术的展望[J].集成电路应用,2021,38(1):4-5.YU Zejian.Prospect of modern chip manufacturing technology[J].Application of IC,2021,38(1):4-5.(in Chinese)

    • [16] 宋玮.台积电:中美科技博弈“前哨战”[J].中国外资,2020,11(6):82-83.SONG Wei.TSMC:“Outpost war” of science and technology game between China and the United States[J].Foreign investment in China,2020,11(6):82-83.(in Chinese)

    • [17] LEEA H,TSAIA S T,WUA P H,et al Influence of additives on electroplated copper films and their solder joints [J].Materials Characterization,2019,147:57-63.

    • [18] YAU S,HUANG Yutang,DOW Weiping.Contrasts in copper deposition on Pt(111)modified by 1-Mercaptopropionic and 1-Mercaptoacetic acids as probed by voltammetry and STM [J].Journal of The Electrochemical Society,2018,165(16):761-767

    • [19] 刘林发.芯片铜互连电镀添加剂浓度对镀层性能的影响[J].集成电路应用,2019,36(6):25-27,30.LIU Linfa.Effect of additive concentration on coating performance of chip copper interconnection plating[J].Application of IC,2019,36(6):25-27,30.(in Chinese)

    • [20] CHAN P F,REN R H,WEN S I.Effects of additives and convection on Cu foil fabrication with a low surface roughness[J].Journal of The Electrochemical Society,2017,164(9):660-665.

    • [21] 李立清,安文娟,王义.MPS 和氯离子在电镀铜盲孔填充工艺中的作用机理[J].表面技术,2018.47(5):122-129.LI Liqing,AN Wenjuan,WANG Yi.Action mechanism of MPS and chloride ions in electroplating copper microvia filling[J].Surface Technology,2018,47(5):122-129.(in Chinese)

    • [22] 刘旭阳,张保国,王如.硅通孔化学机械平坦化中铜去除的电化学与选择性研究[J].电镀与涂饰,2020,39(9):554-559.LIU Xuyang,ZHANG Baoguo,WANG Ru.Study on electrochemistry and selectivity of copper removal in TSV chemical mechanical planarization[J].Electroplating & Finishing,2020,39(9):554-559.(in Chinese)

    • [23] 周密愉.铜和碳化硅电化学机械抛光工艺方法研究[D].哈尔滨:哈尔滨工业大学,2019.ZHOU Miyu.Study on electrochemical mechanical polishing process of copper and silicon carbide[J].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [24] CHO B J,KIM J Y,HAMADA S,et al.Effect of pH and chemical mechanical planarization process conditions on the copper-benzotriazole complex formation[J].Japanese Journal of Applied Physics,2016,55(6S3):06JB01.

    • [25] PAN Guoshun,ZHOU Yan,LUO Guihai,et al.Chemical mechanical polishing(CMP)of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface[J].Journal of Materials Science Materials in Electronics,2013,24(12):5040-5047.

    • [26] 李轶楠,蔡坚,王德君,等.硅通孔电镀铜填充工艺优化研究[J].电子工业专用设备,2012,41(10):6-10.LI Yinan,CAI Jian,WANG Dejun,et al.Optimizing copper filling process for through silicon via(TSV)[J].Equipment for Electronic Products Marufacturing,2012,41(10):6-10.(in Chinese)

    • [27] 伍恒.硅通孔中电镀铜填充技术研究[D].大连:大连理工大学,2013.WU Heng.The study on copper electro-deposition in through silicon vias[D].Dalian:Dalian University of Technology,2013.(in Chinese)

    • [28] 薛栋民.应用于TSV互连的电镀填充工艺研究[D].武汉:华中科技大学,2014.XUE Dongmin.Research of electroplating process in through silicon via[D].Wuhuan:Huazhong University of Science and Technology,2014.(in Chinese)

    • [29] 牛通,李浩,崔凯,等.高深径比TSV填孔电镀技术[J].电子机械工程.2020,36(1):55-59.NIU Tong,LI Hao,CUI Kai,et al.High aspect ratio TSV electroplating filling technology[J].Electro-Mechanical Engineering,2020,36(1):55-59.(in Chinese)

    • [30] DOU Weiping.Applications of microvia and through hole filling by copper electroplating[J].Journal of Fudan University,2012,51(2):131-138.

    • [31] WANG Chong,ZHANG Jinqiu,YANG Peixia,et al.Electrochemical behaviors of Janus Green B in through-hole copper electroplating:An insight by experiment and density functional theory calculation using Safranine T as a comparison[J].Electrochimica Acta,2013.92(1):356-364.

    • [32] CHAN P F,DOW Weiping.Spontaneous potential oscillation resulting in copper deposit with ultra-large grains[J].Journal of The Electrochemical Society,2019,166(16):891-897.

    • [33] 张宁.三维集成中的TSV技术[J].集成电路应用,2017,34(11):17-22.ZHANG Ning.TSV technology in 3D integration[J].Applications of IC,2017,34(11):17-22.(in Chinese)

    • [34] HOFMANN L,ECKE R,SCHULZ S E,et al.Investigations regarding through silicon Via filling for 3D integration by periodic pulse reverse plating with and without additives[J].Microelectronic Engineering,2011,88(5):705-708.

    • [35] 张康,李婷,刘小洁,等.基于TSV技术的CMP工艺优化研究[J].电子工业专用设备,2019,48(4):1-4,64.ZHANG Kang,LI Ting,LIU Xiaojie,et al.Application of CMP process optimization in TSV technology[J].Equipment for Electronic Products Manufacturing,2019,48(4):1-4,64.(in Chinese)

    • [36] 周佳凯,牛新环,杨程辉,等.用于铜互连CMP工艺的抛光液研究进展及发展趋势[J].电子元件与材料,2020.39(9):12-17.ZHOU Jiakai,NIU Xinhuan,YANG Chenghui,et al.Advances and directions in polishing slurry for copper interconnection progress[J].Electronic Components & Materials,2020,39(9):12-17.(in Chinese)

    • [37] 王彦,王胜利,王辰伟,等. 碱性铜精抛液中表面活性剂ADS对平坦化效果的影响[J].半导体技术,2017,42(11):838-843. WANG Yan,WANG Shengli,WANG Chenwei,et al.Effect of the ADS surfactant in the alkaline copper precise slurry on the planarization[J].Semiconductor Technology,2017,42(11):838-843.(in Chinese)

    • [38] YAN,Chenqi,LIU,Yuling,ZHANG,Jin,et al.Synergistic effect of glycine and BTA on step height reduction efciency after copper CMP in weakly alkaline slurry[J] . ECS Journal of Solid State Science and Technology,2017,6(1):1-6.

    • [39] 高晓伟,刘彦利.等离子清洗在引线框架封装工艺中的应用[J].山西电子技术,2020,1:42-44.GAO Xiaowei,LIU Yanli.Application of plasma cleaning in lead frame packaging process[J].Shanxi Electronic Technology,2020,1:42-44.(in Chinese)

    • [40] 马世杰,任云星,王大伟.集成电路封装中低压等离子清洗及其应用[J].山西电子技术,2016,3:44-46.MA Shijie,REN Yunxing,WANG Dawei.Application of low pressure plasma cleaning to semiconductor packaging[J].Shanxi Electronic Technology,2016,3:44-46.(in Chinese)

    • [41] 苟辉,张国荣,李坚,等.石墨烯金属化技术在印制电路板的应用[J].科技经济导刊,2021,29(11):83-84.GOU Hui,ZHANG Guorong,LI Jian,et al.Application of graphene metallization technology in printed circuit board[J].Technology and Economic Guide,2021,29(11):83-84.(in Chinese)

    • [42] 陈伟元.新的环保型PCB金属化孔技术—石墨烯金属化孔工艺和失效模式分析[J].印制电路信息,2020,28(3):43-49.CHEN Weiyuan.New technology of PCB metallization holes with environmental protection-Graphene metallization hole process and failure model effectiveness analysis[J].Printed Circuit Information,2020,28(3):43-49.(in Chinese)

    • [43] 梅昌荣,陈冠刚,何茂权,等.挠性石墨烯电路板试制及性能测试[J].印制电路信息,2019,27(8):42-47.MEI Changrong,CHEN Guangang,HE Maoquan,et al.Trial-manufacture and performance test of flexible grapheme circuit board[J].Printed Circuit Information,2019,27(8):42-47.(in Chinese)

    • [44] 方景礼,陈伟元.石墨烯孔金属化制程的重大突破[J].印制电路信息,2019,27(4):33-39.FANF Jingli,CHEN Weiyuan.Isothermal curing kinetics of epoxy resin and its application in copper clad laminate[J].Printed Circuit Information,2019,27(4):33-39.(in Chinese)

    • [45] 梁志立.石墨烯及其在印制板领域的应用[J].印制电路信息,2019,27(4):1-7.LIANG Zhili.Graphene and its application in the field of printed circuit boards[J].Printed Circuit Information,2019,27(4):1-7.(in Chinese)

    • [46] 田民波.印制电路板及电子封装今后的技术发展[J].印制电路信息,2015(9):46-50.TIAN Min bo.Technologies for PCB and electronic package in the future[J].Printed Circuit Information,2015(9):46-50.(in Chinese)

    • [47] 常永嘉,尤晖.基于印制电路板的微流控芯片研究进展及应用[J].分析化学,2019,47(7):965-975.CHANG Yongjia,YOU Hui.Progress of microfluidics based on printed circuit board and its applications[J].Chinese Journal of Analytical Chemistry,2019,47(7):965-975.(in Chinese)

    • [48] 唐明星,张胜涛,陈世金,等.添加剂对印制线路板微盲孔填铜效果的影响[J].电镀与涂饰.2017,36(13):780-786.TANG Mingxing,ZHANG Shengtao,CHEN Shijin,et al.Effects of additives on microvia copper-filling efficiency of printed circuit board[J].Electroplating & Finishing,2017,36(13):780-786.(in Chinese)

    • [49] 王旭,张胜涛,陈世金,等.印制电路板通孔电镀铜添加剂的优化[J].电镀与涂饰,2019,38(15):780-786.WANG Xu,ZHANG Shengtao,CHEN Shijin,et al.Optimization of additives for copper electroplating of through holes on printed circuit board[J].Electroplating & Finishing,2019,38(15):780-786.(in Chinese)

    • [50] SALVO P,HENRY O Y F,DHAENENS K,et al.Fabrication and functionalization of PCB gold electrodes suitable for DNA-based electrochemical sensing[J].Bio-medical Materials and Engineering,2014,24(4):1705-1714.

  • 手机扫一扫看