en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

欧宝立,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为机械摩擦学与表面技术、智能材料的设计、合成与应用。E-mail:B.Ou@hnust.edu.cn;

汪雨微,男,1997年出生,硕士研究生。主要研究方向为有机防腐涂层。E-mail:1987391720@qq.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210427001

参考文献 1
SHVETA S,ASHISH K.Recent advances in metallic corrosion inhibition:A review[J].Journal of Molecular Liquids,2020,322:114862.
参考文献 2
XIE P,HE Y,ZHONG F,et al.Cu-BTA complexes coated layered double hydroxide for controlled release of corrosion inhibitors in dual self-healing waterborne epoxy coatings[J].Progress in Organic Coatings,2021,153:106164.
参考文献 3
TAN Z Y,WANG S,HU Z R,et al.PH-responsive self-healing anticorrosion coating based on a lignin microsphere encapsulating inhibitor[J].Industrial & Engineering Chemistry Research,2020,59(7):2657-2666.
参考文献 4
LIU P,WANG Y G,ZHAO Y W,et al.Anti-corrosion mechanisms of 1,2,4-triazole and benzotriazole on the aluminum during chemical mechanical polishing process[J].Materials Protection,2019,5:6-11.
参考文献 5
QUINET M,NEVEU B,MOUTARLIER V,et al.Corrosion protection of sol-gel coatings doped with an organic corrosion inhibitor:Chloranil[J].Progress in Organic Coatings,2007,58(1):46-53.
参考文献 6
ABDULLAYEV E,ABBASOV V,TURSUNBAYEVA A,et al.Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys[J].ACS Applied Materials & Interfaces,2013,5(10):4464-4471.
参考文献 7
QIAN H C,XU D K,DU C W,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J].Journal of Materials Chemistry A,2017,5(5):2355-2364.
参考文献 8
MANPREET K,GWANGYUN T,MINHAN S,et al.Corrigendum to “3D printed stretching-dominated micro-trusses” [Mater.Des.134(15)(2017)272-280][J].Materials & Design,2018,139(5):587.
参考文献 9
LAUCIRICA G,TOIMIL M,TRAUTMANN C,et al.Polyaniline for improved blue energy harvesting:Highly rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization[J].ACS Applied Materials & Interfaces,2020,12(25):1-27.
参考文献 10
WIBOWO A,VYAS C,COOPER G,et al.3D printing of polycaprolactone-polyaniline electroactive scaffolds for bone tissue engineering[J].Materials,2020,13(3):512.
参考文献 11
LUO G F,XIE L L,HE M,et al.Flexible fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH3 detection at room temperature[J].Nanotechnology,2021,32(30):305501.
参考文献 12
ZHANG Y,PAN T,YANG Z J.Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance[J].Chemical Engineering Journal,2020,389:124433.
参考文献 13
ZHOU N,WANG T,CHEN S H,et al.Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment[J].Journal of Colloid and Interface Science,2021,581:314-322.
参考文献 14
LIU L,ZHOU W,CHEN Y W,et al.Pressure-assisted synthesis of a polyaniline–graphite oxide(PANI–GO)hybrid and its friction reducing behavior in liquid paraffin(LP)[J].New Journal of Chemistry,2018,42(2):936-942.
参考文献 15
ZHENG H Y,XU X X,XU S D,et al.The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells[J].Journal of Materials Chemistry C,2019,7(15):4441-4448.
参考文献 16
KUNG Chuiyi,WANG Tzongliu,LIN Hungyin,et al.A high-performance covalently bonded self-doped polyaniline-graphene assembly film with superior stability for supercapacitors[J].Journal of Power Sources,2021,490:229538.
参考文献 17
FAZLI S,NASIRPOURI F,KHATAMIAN M.Epoxymatrix polyaniline/p-phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti-fouling performance[J].RSC Advances,2021,11(19):11627-11641.
参考文献 18
高党鸽,王平平,吕斌,等.POSS/聚合物纳米复合材料制备方法的研究进展[J].材料学报,2019,33(2):550-557.GAO Dangge,WANG Pingping,LÜ Bin,et al.Research progress in preparation methods of poss/polymer nanocomposite[J].Materials Review,2019,33(2):550-557.(in Chinese)
参考文献 19
WU Y L,LI F,HUYAN J N,et al.Low dielectric and high thermal conductivity epoxy nanocomposites filled with NH2-POSS/n-BN hybrid fillers[J].Journal of Applied Polymer Science,2015,132(19):41951.
参考文献 20
NI C H,NI G F,ZHANG L P,et al.Syntheses of silsesquioxane(POSS)-based inorganic/organic hybrid and the application in reinforcement for an epoxy resin[J].Journal of Colloid and Interface Science,2011,362(1):94-99.
参考文献 21
MAO Y H,ZHOU W L,XU J J.Ultraviolet resistance modification of poly(p-phenylene-1,3,4-oxadiazole)and poly(p-phenylene terephthalamide)fibers with polyhedral oligomeric silsesquioxane[J].Journal of Applied Polymer Science,2015,132(41):42643.
参考文献 22
WU Y M,QIU H,SUN J W,et al.A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater[J].Journal of Materials Science,2021,56(4):1-13.
参考文献 23
段俊,欧宝立,郭艳.共价功能化 POSS/PDMS 防腐复合涂层的研究[J].功能材料,2021,52(3):3115-3121.DUAN Jun,OU Baoli,GUO Yan.Research on covalent functionalized POSS/PDMS anticorrosive composite coating[J].Journal of Functional Materials.2021,52(3):3115-3121.(in Chinese)
参考文献 24
GAHLOT S,GUPTA H,JHA P,et al.Enhanced electrochemical performance of stable SPES/SPANI composite polymer electrolyte membranes by enriched ionic nanochannels[J].Acs Omega,2017,2(9):5831-5839.
参考文献 25
LIU X H,ZHANG D W,HOU P M,et al.Preparation and characterization of polyelectrolyte-modified attapulgite as nanocontainers for protection of carbon steel[J].Journal of The Electrochemical Society,2018,165(13):907-915.
参考文献 26
YEH Tzuchun,HUANG Tsaocheng,HUANG Hsiuying,et al.Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyurea[J].Polymer Chemistry,2012,3:2209-2216.
参考文献 27
HUANG Tsaocheng,YEH Tzucheng,HUANG Hsiuying,et al.Electrochemical investigations of the anticorrosive and electrochromic properties of electroactive polyamide[J].Electrochimica Acta,2012,63:185-191.
参考文献 28
QIU S H,LI W,ZHENG W R,et al.Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution[J].ACS Applied Materials Interfaces,2017,9:34294-34304.
参考文献 29
GATTINONI C,MICHAELIDES A.Understanding corrosion inhibition with van der Waals DFT methods:The case of benzotriazole[J].Faraday Discussions,2015,180:439-458.
目录contents

    摘要

    为提高环氧涂层在腐蚀环境下的防腐性和持久性,合成一种负载有缓蚀剂苯并三唑(BTA)的苯并三唑@磺化聚苯胺功能化倍半硅氧烷(BTA@SPANI-POSS),随后将 BTA@SPANI-POSS 与环氧树脂共混得到 BTA@SPANI-POSS 环氧涂料, 最后在 Q235 碳钢上制备数种复合环氧涂层。通过红外光谱、紫外可见光谱、扫描电子显微镜对 BTA@SPANI-POSS 的结构、 缓蚀性能、表面形貌进行表征,利用接触角测量仪、电化学工作站研究所制备涂层的疏水性能和防腐性能。研究表明,随着 SPANI-POSS 的添加,涂层沾湿性能降低。电化学阻抗谱(EIS)和塔菲尔极化曲线测试结果表明,与 SPANI-POSS 环氧涂层相比,负载有 BTA 的 BTA@SPANI-POSS 环氧涂层对金属基底具有更高和更持久的保护能力,其中试样 EB1.5%的腐蚀电流密度 i corr为 16.67 ո A·cm2 ,其极化电阻 R p为 2.467 MΩ·cm2 ,具有较低的腐蚀动态速率。在 3.5 wt.% NaCl 溶液中浸泡 15 d 后环氧涂层仍具有良好的防腐蚀效果,其阻抗值 Z0.01Hz 仍保留有第 1 d 时的 26.89%,表现出优异的长期稳定性和防腐性能。归因于 SPANI-POSS 与 BTA 之间的协同作用,所制备的 BTA@SPANI-POSS 环氧涂层在浸泡过程中与碳钢基底发生络合反应,从而起到长时间的保护作用。

    Abstract

    Benzotriazole (BTA) is loaded on sulfonated polyaniline functionalized polyhedral oligomeric silsesquioxane (SPANI-POSS) to obtain benzotriazole @ sulfonated polyaniline functionalized polyhedral oligomeric silsesquioxane (BTA@SPANI-POSS). Then BTA@SPANI-POSS is blended with epoxy resin to obtain BTA@SPANI-POSS epoxy coating. Finally, several composite epoxy coatings are prepared on Q235 carbon steel. The structure, slow-release properties and surface morphology of BTA@SPANI-POSS are characterized by infrared spectroscopy, ultraviolet-visible spectroscopy and scanning electron microscopy. The hydrophobic and anticorrosive properties of the coating are studied by contact angle measuring instrument and electrochemical workstation. The results show that with the addition of SPANI-POSS, the wettability of the coating decreases. The electrochemical impedance spectroscopy (EIS) and tafel curve test results show that compared with SPANI-POSS epoxy coating, BTA@SPANI-POSS epoxy coating loaded with BTA have higher and longer protection ability for metal substrate, in which the corrosion current density i corr of EB1.5% is 16.67 ո A·cm2 , and its polarization resistance R p is 2.467 MΩ·cm2 . After soaking in 3.5 wt.% NaCl solution for 15 d, the epoxy coating still has a good anti-corrosion effect, and its impedance value Z0.01Hz is still 26.89% of that of the first day, showing excellent long-term stability and anti-corrosion performance. Owing to the synergistic effect between SPANI-POSS and BTA, the prepared BTA@SPANI-POSS epoxy coating reacts complexly with the carbon steel substrate during soaking, thus playing a long-term protective role.

  • 0 前言

  • 利用聚合物涂层作为物理屏障将金属基体与腐蚀环境隔离,是防止金属材料腐蚀最常用的方法之一。然而,当聚合物涂层受到部分破坏时,基底材料的腐蚀扩散将难以阻止,最终失去防护功能。在涂层系统中加入缓蚀剂,使其具有缓蚀效果,可以确保涂层即使在遭受破坏的情况下也能具备长时间的保护效果。缓蚀剂[1]即一种延缓腐蚀的制剂,又叫腐蚀抑制剂或阻止剂,是指向腐蚀介质中加入少量或微量化学物质,通过物理、化学或物化反应阻止、减缓金属腐蚀速度,同时保持着金属材料原本物理、化学及力学性能的一种材料。

  • 缓蚀剂苯并三唑(Benzotriazole, BTA)是一种环境友好且经济的缓蚀剂,已被证明对包括铜、铁、铝在内的金属材料具有优异防腐效率[2-4],可以通过化学或物理吸附作用吸附在金属表面,形成致密保护膜,从而将腐蚀性介质与金属表面隔离,起到保护金属基材的作用[5]。但是,在涂层中添加BTA作为缓蚀剂也有一些缺点,例如BTA作为水溶性有机物,很容易溶解在溶液中,一旦含有BTA的防腐涂层与腐蚀性介质接触,BTA的溶解便会在涂层中引起微孔,导致缓蚀剂的进一步释放[6-8]

  • PANI是通过重复连接苯胺单体而形成的一种导电聚合物。由于其独特的性能,聚苯胺已应用于二极管[9]、生物组织工程[10]、气体传感器[11]、电磁屏蔽[12]、污水处理[13]、润滑油添加剂[14]、太阳能电池[15]、超级电容器[16]、防腐涂层[17]等多个领域。聚苯胺具有氧化态和还原态两种不同状态,可在特定条件下相互转化,当腐蚀导致金属表面局部电位变化时,PANI通过氧化还原过程以阴离子的形式释放出掺杂剂。PANI释放的掺杂剂通常是腐蚀抑制剂,可以抑制局部腐蚀的发生和发展。且其易于合成、成本低廉、可调节等特性,以及与其他导电聚合物相比更好的稳定性,使其广泛受到学界青睐。

  • POSS作为一种新型的有机/无机杂化纳米材料,是一种由硅、氧元素构成的无机内核和包围在其外围的有机基团R共同组成的笼形化合物,通常可用通式(RSiO1.5)n 表示。其中,R基团可以是活性的,也可以是非活性的,其主要结构包括嵌段、梯形、笼形、半笼形等。POSS分子结构具有很强的可设计性,结构中含有无机的笼型结构和功能化的有机臂,其笼形结构可以通过控制合成条件实现有效的调控,是典型的具有三维纳米结构的有机无机材料[18-21]。POSS独特的笼型结构有助于BTA的负载,且其自身多个Si-O-Si基团可以赋予涂层较低的表面能,从而提高材料防腐方面的表面性能[22]

  • 为了提高涂层对基体的防腐性能和长期稳定性,开发了一种SPANI-POSS,并通过在SPANI-POSS上负载BTA,制备BTA@SPANI-POSS,将BTA@SPANI-POSS与环氧树脂共混得到BTA@SPANI-POSS环氧复合涂层,并研究涂层的疏水性能和防腐性能。研究表明,随着BTA@SPANI-POSS的添加,涂层防腐性能有显著提升,经过长时间3.5wt.%NaCl溶液浸泡,仍具备对金属基底相当的保护效果。

  • 1 试验准备

  • 1.1 试验材料及试剂

  • 环氧树脂(DQ200E)和固化剂(DQ204H)由四川舒冬新材料有限公司提供,该树脂在室温下混合黏度低,甚至不必添加溶剂,25℃下固化时间为12h;POSS,自制;盐酸、丙酮、甲苯、过硫酸铵 (Ammonium persulfate, APS)、苯胺、氨基苯磺酸、 BTA均为分析纯,均购于上海阿拉丁试剂公司;无水乙醇,分析纯,湖南汇虹试剂有限公司;NaCl,分析纯,天津市永大化学试剂有限公司;去离子水,自制。

  • 1.2 试验方法

  • SPANI-POSS的制备:SPANI-POSS的制备方法已在前文介绍[23],将4.564g APS分散在25mL 1M盐酸水溶液中配成APS混合液,冷藏待用。将2.5g自制的POSS-NH2 和3.46g氨基苯磺酸分散在25mL 1M盐酸水溶液中,超声10min,配置成POSS-NH2/氨基苯磺酸混合液。磁力搅拌下,将1.86g苯胺逐滴加入POSS-NH2/氨基苯磺酸混合液中。向上述混合液中,逐滴加入APS混合液,滴加完毕后,得到墨绿色悬浊液体系,保持该体系在室温下搅拌24h。反应结束后,将悬浊液体系用去离子水稀释,并利用离心机沉淀,而后,用大量的去离子水洗涤离心沉淀若干次,直到最终产物为中性,得到墨绿色SPANI-POSS凝胶,最后使用真空干燥箱60℃下真空干燥48h,得到SPANI-POSS。

  • BTA@SPANI-POSS的制备:如图1所示,在40℃的圆底烧瓶中制备含有4wt.%BTA的100mL去离子水。随后在连续搅拌下将少量SPANI-POSS加入到烧杯中,并保持中速搅拌6h。将颗粒过滤,用无水乙醇洗涤,除去在SPANI-POSS表面上松散附着的BTA,最后在40℃下真空干燥12h。

  • 图1 BTA@SPANI-POSS环氧涂层制备过程图

  • Fig.1 Preparation process diagram of BTA@SPANI-POSS epoxy coating

  • 复合环氧涂层的制备:将BTA@SPANI-POSS按比例加入无水乙醇中,超声分散10min备用。取一定量的环氧树脂,将完全分散的BTA@SPANIPOSS混合液倒入环氧树脂中,搅拌混合15min,待混合均匀后加入少量固化剂磁力搅拌2h后得到未固化的BTA@SPANI-POSS环氧涂料。以Q235碳钢(50mm×20mm×1mm)为成膜基底,用金刚石砂纸将碳钢片两侧细细打磨成镜面,并利用无水乙醇和丙酮混合液超声清洗10min以洗去油性物质,洗涤干净后将碳钢片放在室温条件下干燥备用。将未固化完全的BTA@SPANI-POSS环氧涂料均匀涂敷于碳钢片表面,涂敷厚度控制在100 μm,室温下固化24h。其中,环氧树脂与固化剂的质量比为100∶32,环氧树脂与无水乙醇的质量比为100∶ 20,BTA@SPANI-POSS添加质量取环氧树脂、固化剂、BTA@SPANI-POSS三者质量之和的0.5%、 1.0%、1.5%、2.0%,所制备的BTA@SPANI-POSS环氧涂层分别命名为EB0.5%、EB1.0%、EB1.5%、EB2.0%,为比较BTA的存在与否对涂层防腐性能的影响,这里将SPANI-POSS按上述操作,添加入环氧树脂,制备出含量为1.5%的复合涂层,并命名为ES1.5%

  • 1.3 测试及表征

  • 红外光谱:仪器为Perkin-Elmer公司生产的FTIR-2000型的红外光谱仪。具体操作为将试样与溴化钾(KBr)均匀混合,研磨压片后进行测试。

  • 紫外可见光谱:仪器型号为PE Lambda35的紫外可见分光光度计,在波长范围250~800nm对材料进行分析。

  • 扫描电镜( Scanning electron microscope, SEM):仪器为型号为JSM6360LV的扫描电子显微镜(加速电压25kV),观察试样表面形貌。

  • 接触角测试:仪器型号为JY-82B Kruss DSA,测试液滴为去离子水。表征涂层材料在室温下的润湿性。

  • 防腐性能分析:上海辰华仪器有限公司CHI660E型电化学工作站。通过对浸泡在3.5wt.%NaCl溶液中涂覆有涂层的Q235碳钢进行Tafel极化曲线和EIS阻抗测试。其中以试样作为工作电极,其暴露面积控制为2cm2;饱和甘汞电极作为参比电极;铂电极为辅助电极。测试时电解液为3.5wt.%NaCl溶液,Tafel极化曲线测量的扫描速率为10−2 V/s;EIS阻抗频率范围为105~10−2 Hz,正弦信号扰动为10−2 V,交流阻抗图采用ZSimpWin软件进行拟合。

  • 2 结果与分析

  • 2.1 结构表征

  • 图2 为BTA、SPANI-POSS和BTA@SPANIPOSS的红外光谱。对于BTA:2 500~3 400cm−1 范围的宽多峰带由强氢键结合的>N-H基团贡献, 1 617、1 269和1 208cm−1 处的峰分别为C=C(伸缩振动峰),C-H(伸缩振动峰)和N=N(键合), 739cm−1 处的峰为BTA结构中苯环上的1, 2-取代特征峰。对于SPANI-POSS:2 797cm−1 处为SPANI结构中苯环的C-H拉伸振动吸收峰;1 579、1 495、 1 306和1 144cm−1 处的吸收峰分别由醌式结构中的C-N拉伸振动,苯环的C-N拉伸振动和掺杂的PANI的C-N弯曲振动所引起;144cm−1 处的吸收峰为苯环上的1, 4-取代特征峰[24];1 190cm−1 和630cm−1 处的吸收峰为磺酸基的特征峰。在BTA@SPANI-POSS的红外光谱上,3 473cm−1 处的N-H宽峰受到抑制,这是由于在SPANI-POSS上负载BTA的缘故。1 305cm−1 处的C-N伸缩振动(PANI-PA链中的N-H)被C-H(1 270cm−1,BTA中伸缩振动峰)所取代。图2中744cm−1 处为为BTA结构中苯环上的1, 2-取代特征峰。由红外光谱图可知,SPANI-POSS表面被成功负载一层BTA。

  • 图2 BTA、SPANI-POSS和BTA@SPANI-POSS的红外光谱

  • Fig.2 FT-IR spectra of BTA, SPANI-POSS and BTA@SPANI-POSS

  • 图3 为SPANI-POSS以及BTA@SPANI-POSS的紫外光谱,由图3可知,这两种物质的特殊吸收峰峰型一致,BTA@SPANI-POSS的吸收峰强度略小于SPANI-POSS的吸收峰。SPANI-POSS曲线在286nm处有一条较强吸收峰,该吸收峰属于SPANI中苯环结构中的 π-π*电子跃迁,在613nm处有一条宽吸收峰,该峰属于SPANI中苯式到醌式的n-π* 极化子转变,而BTA@SPANI-POSS相对应的峰位于579nm,发生蓝移现象,这是BTA结构中N=N键的存在所导致[25]

  • 图3 SPANI-POSS和BTA@SPANI-POSS的紫外光谱

  • Fig.3 UV spectra of SPANI-POSS and BTA@SPANI-POSS

  • 为了解腐蚀介质存在的环境下, BTA从BTA@SPANI-POSS中的释放情况,这里在磁力搅拌下将0.05g BTA@SPANI-POSS分散在40ml3.5wt.%NaCl溶液中。恒温搅拌一段时间后,利用离心机进行沉淀,得到上清液。基于BTA在3.5wt.%NaCl溶液下波长为258nm处的特征吸光度特性,通过紫外可见光谱分析不同搅拌时间段溶液中释放出的BTA含量变化。图4为BTA@SPANI-POSS浸泡在3.5wt.%NaCl溶液中一系列时间段后得到的上清液紫外可见光谱。由图4可以看出,经过8h的搅拌,BTA@SPANI-POSS中负载的BTA成功脱负载进入溶液,说明BTA@SPANI-POSS具备缓蚀效果。

  • 图4 一系列浸泡时间下的上清液紫外可见光谱

  • Fig.4 Ultraviolet-visible spectra of supernatant under a series of soaking times

  • 图5 显示了BTA@SPANI-POSS在不同放大倍数下的SEM图像。从图5可以看出,颗粒状BTA@SPANI-POSS存在着大量空隙且具有粗糙和不平坦的表面,以及100~500nm的球状纳米结构。 100~500nm的球状纳米结构赋予BTA@SPANI-POSS巨大且粗糙的表面积。通常,粗糙的表面和高的比表面积有助于BTA@SPANI-POSS对BTA的高吸收性,为BTA@SPANI-POSS中BTA的负载提供优势,并且可以提升颗粒状BTA@SPANI-POSS在环氧树脂中的分散性能,使BTA@SPANI-POSS能够稳定地分散在环氧树脂基质中。此外,POSS的笼型结构也能使BTA@SPANI-POSS具备大量纳米级的微观空隙,进一步提升BTA@SPANI-POSS对BTA的负载量。BTA@SPANI-POSS对BTA的负载量的提升,有助于进一步的加强改进其在涂层材料中对BTA缓蚀剂的缓蚀性能。而BTA缓蚀剂的释放能力增加,最终赋予BTA@SPANI-POSS提升环氧树脂防腐性能的能力。

  • 图5 BTA@SPANI-POSS的扫描电镜图

  • Fig.5 SEM images of BTA@SPANI-POSS

  • 2.2 疏水性能分析

  • 图6 为EP、ES1.5%和EB1.5%的静态水接触角对比图,EP的接触角为53°,而ES1.5%和EB1.5%的接触角分别为76.26°和88.81°,这是SPANI-POSS的存在赋予环氧树脂更低的表面能,使环氧树脂接触角提升的缘故。两种涂层的接触角都小于90°,这是环氧涂层中SPANI-POSS和BTA@SPANI-POSS添加量较少的缘故。进一步提高SPANI-POSS和BTA@SPANI-POSS的添加量,可以有效降低复合环氧涂层的表面能,但随着纳米粒子含量的进一步增大,磺化聚苯胺将不能有效地完全溶解在有机溶剂中,而导致涂层中会存在较大颗粒,容易产生孔洞等缺陷,导致腐蚀介质渗入,对涂层的防腐性能造成影响。ES1.5%和EB1.5%的静态水接触角都在70°以上,接近90°润湿极限,液体不容易在ES1.5%和EB1.5% 表面进行铺展,这一特性为ES1.5%和EB1.5%的防腐性能带来一定的优势,能够在一定程度上提升复合环氧涂层在腐蚀介质浸润过程中的防腐性能。

  • 图6 复合涂层的水接触角

  • Fig.6 WCA of composite coating

  • 2.3 防腐性能分析

  • 图7 为裸露Q235碳钢以及分别涂有EP、 ES1.5%、EB0.5%、EB1.0%、EB1.5%和EB2.0%六种涂层的Q235碳钢在3.5wt.%NaCl溶液中浸泡1d所测得的Tafel极化曲线,表1为相应的极化曲线数据。通过对阳极曲线和阴极曲线外推得到腐蚀电位 E corr、腐蚀电流密度 i corr、阳极Tafel斜率 b a 和阴极Tafel斜率 b c;腐蚀速率 v corr 通过以下公式计算[26]

  • vcorr=AicorrnρF×87600
    (1)
  • 式中,A代表铁元素的相对原子质量55.85g·mol−1i corr代表试样电极的腐蚀电流密度;n 代表腐蚀产生的Fe2+的化合价+2;ρ 代表Q235碳钢的密度7.85g·cm−3F 代表法拉第常数(F=96485C·mol−1=26.8Ah·mol−1)。

  • 极化电阻 R p通过以下公式计算[27]

  • Rp=babc2.303ba+bc1icorr
    (2)
  • 式中,b a 为极化曲线阳极斜率;b c 为极化曲线阴极斜率。

  • 抑制效率 IE 通过以下公式计算

  • IE=icorr bare -icorr icorr bare
    (3)
  • 式中,icorr bare 为Q235碳钢在没有涂层的情况下所测得的腐蚀电流密度;i corr为Q235碳钢在涂敷涂层的情况下所测得的腐蚀电流密度。

  • 图7 Q235碳钢以及分别涂有EP、ES1.5%、EB0.5%、EB1.0%、 EB1.5%和EB2.0%的Q235碳钢浸泡1d的Tafel极化曲线

  • Fig.7 Tafel Polarization curves of Q235carbon steel sheet and Q235carbon steel sheet coated with EP, ES1.5%, EB0.5%, EB1.0%, EB1.5% and EB2.0% after immersion 1d

  • 由表1可以看出,ES1.5%的腐蚀电流密度 i corr 为407.4nA·cm−2,腐蚀速率 v corr 为4.737× 10−3 mm·a −1,极化电阻 R p 为84.31kΩ·cm 2,其防腐性能略优于纯环氧涂层(i corr=1.005 μA·cm−2 v corr=1.169×10−2 mm·a −1R p=31.86kΩ·cm 2)。而EB普遍具有更低的腐蚀电流密度、更慢的腐蚀速率以及更高的极化电阻,且随着BTA@SPANI-POSS含量的增高,防腐性能逐渐增强,当BTA@SPANI-POSS含量为1.5%时,EB1.5%具备最佳的防腐性能,其腐蚀电流密度 i corr为16.67nA·cm−2,腐蚀速率 v corr 为1.938×10−4 mm·a −1,极化电阻 R p 为24.67kΩ·cm 2,当BTA@SPANI-POSS含量增加至2.0%时,EB2.0%的防腐性能开始降低。抑制效率 IE 呈现出相应的结果,各试样抑制效率依次增大, EB1.5%具有最大的抑制效率,而后抑制效率开始降低。其中EP、ES1.5%、EB0.5%、EB1.0%、EB1.5%、EB2.0% 的抑制效率分别为99.60%、99.84%、99.93%、 99.98%、99.99%,EB2.0%的抑制效率为99.98%。 ES1.5%由于其对水的沾湿性降低,导致腐蚀介质浸入金属基体的难度增高,防腐性能提升。EB1.5%防腐性能的进一步提高是由于负载的BTA被腐蚀介质浸出,造成缓蚀作用,在金属表面形成保护层的缘故,而EB2.0% 防腐性能的降低是由于BTA@SPANI-POSS含量过高,分散困难而发生团聚现象,团聚现象的发生将最终导致涂层缺陷增多的结果[28]

  • 表1 Q235碳钢以及分别涂有EP、ES1.5%、EB0.5%、EB1.0%、EB1.5%和EB2.0%的Q235碳钢在浸泡1d的极化曲线参数

  • Table1 Polarization curves parameters of Q235carbon steel sheet and Q235carbon steel sheet coated with EP,ES1.5%,EB0.5%,EB1.0%,EB1.5% and EB2.0% after immersion 1days

  • 图8 为Q235碳钢以及分别涂有EP、ES1.5%、 EB0.5%、EB1.0%、EB1.5%和EB2.0%的Q235碳钢在3.5wt.%NaCl溶液中浸泡1d的Nyquist图(图8a) 和Bode图(图8b)。Nyquist图中半圆曲线的直径与极化电阻 Z 有关,一般情况下曲线直径越大,说明涂层材料的防腐性能越好,而低频端阻抗值的大小在一定程度上揭示了涂层防腐性能的优劣。结合图8可以看出,各试样阻抗曲线直径大小依次为: EB1.5%> EB2.0%> EB1.0%> EB0.5%> ES1.5%> EP> Bare,而10−2 Hz处的阻抗值Z0.01Hz 大小依次为: EB1.5% (5.21MΩ·cm 2)> EB2.0% (2.12MΩ·cm 2)> EB1.0%(1.51MΩ·cm 2)> EB0.5%(1.23MΩ·cm 2 )> EP (0.523MΩ·cm 2)> ES1.5% (0.481MΩ·cm 2)> Bare (8.79 Ω·cm 2),该测试结果能够与Tafel极化曲线结果相匹配。其中试样EB1.5%的阻抗曲线直径和Z0.01Hz 最大,说明1.5%BTA@SPANI-POSS环氧涂层的防腐性能更强,对基底具有良好的保护能力。一方面,这是由于BTA@SPANI-POSS的存在降低涂层材料的表面能,提高腐蚀性介质进入金属基底的难度,另一方面,是因为BTA的缓蚀作用在金属表面形成一层保护层。值得注意的是,EB1.5%和EB2.0%两件试样在Nyquist图中显示出两个电容性回路,其中阻抗谱曲线左下部分为高频区,代表电容性回路,阻抗谱曲线右上部分为低频区,代表电感性回路。电感性回路的出现是由于金属基底的溶解,表明该试样金属基底已经开始遭受腐蚀,这可能是BTA@SPANI-POSS含量过高引发团聚现象,导致涂层内部缺陷增加,腐蚀介质通道增多的缘故。然而阻抗谱曲线显示,其高频区的阻抗值巨大,造成这一现象的原因是BTA@SPANI-POSS含量的增加导致BTA缓蚀能力提高,从而降低金属基底受腐蚀介质的危害。EB1.5%具备最佳的防腐性能,是涂层对腐蚀性介质沾湿能力、涂层缺陷数量以及BTA缓蚀作用三者间相互耦合的结果。

  • 图8 Q235碳钢以及分别涂有EP、ES1.5%、EB0.5%、EB1.0%、EB1.5%和EB2.0%的Q235碳钢在3.5wt.%NaCl溶液中浸泡1d的EIS阻抗谱

  • Fig.8 EIS impedance spectrum of Q235carbon steel sheet and Q235carbon steel sheet coated with EP, ES1.5%, EB0.5%, EB1.0%, EB1.5% and EB2.0% respectively immersed in 3.5wt.%NaCl solution for 1d

  • 为进一步研究BTA@SPANI-POSS的存在对涂层防腐性能的影响,使用ZSimpWin软件对电化学阻抗谱进行拟合。根据各试样阻抗谱特征建立相应的等效电路模型,图9为裸露的Q235碳钢的等效电路模型R s(R ctQ dl)以及分别涂有EP、ES1.5%、EB0.5%、 EB1.0%、EB1.5%和EB2.0%的Q235碳钢的等效电路模型 R s(Q c(R c(R ctQ dl))),表2为7种试样在3.5wt.%NaCl溶液中浸泡1d的电化学阻抗参数。其中 R s 代表溶液电阻;R cQ c分别代表涂层电阻和涂层恒定相位;R ctQ dl 分别代表电荷转移电阻和双层恒定相位,各参数的数值与涂层以及金属表面电化学反应有关;其中恒定相位 Qn cn ct=1时等价于理想电容,在 n cn c=0时等价于理想电阻,n cn c处于0和1之间时,恒定相位 Q 处于电容与电阻之间。就表2的拟合数据来看,裸露的Q235碳钢表面的电荷转移电阻极小,仅为10.04 Ω,则表示Q235碳钢在腐蚀介质中将迅速发生电化学腐蚀,完全不具备防腐性能。在6种涂敷有复合涂层的试样中,就涂层电阻 R c来看,EB1.0%的涂层电阻 R c最高,其次是EB1.5%和EB0.5%,而后按照表格的排列顺序向两侧单调递减,这一结果指出, BTA@SPANI-POSS在沾湿性和涂层缺陷方面的理论最佳添加量为1.0%;就电荷转移电阻 R ct 来看, EB2.0%的电荷转移电阻 R ct最高,剩余试样依次单调递减,说明BTA@SPANI-POSS含量的增加有利于BTA@SPANI-POSS环氧涂层的抗腐蚀性能的提升,证明BTA的存在确实起到缓蚀效果,这也证实上述三种作用相互耦合的推论。

  • 表2 Q235碳钢以及分别涂有EP、ES1.5%、EB0.5%、EB1.0%、EB1.5%和EB2.0%的Q235碳钢在3.5wt.%NaCl溶液中浸泡1d的电化学阻抗参数

  • Table2 Electrochemical impedance parameters of Q235carbon steel sheet and Q235carbon steel sheet coated with EP, ES1.5%, EB0.5%, EB1.0%, EB1.5% and EB2.0% respectively immersed in 3.5wt.%NaCl solution for 1d

  • Notes: R s is solution resistance, Q a is constant phase of air layer, R a is air layer resistance, Q c is constant phase of coating, R c is coating resistance, Q dl is constant phase of double-layer, R ct is charge transfer resistance, Y represents the proportional factor, n is adjustable parameter.

  • 图9 不同试样3.5wt.%NaCl溶液中的等效电路

  • Fig.9 Equivalent circuit in 3.5wt.%NaCl solution of different samples

  • 在腐蚀环境中的长期稳定性也是判断材料性能的重要指标。为了进一步探讨BTA@SPANI-POSS环氧复合涂层在腐蚀性介质中的长期防腐性能,将涂有EB1.5%的Q235碳钢浸泡在3.5wt.%NaCl溶液中15d,然后分别在第1、2、4、6、9、12、15d取出进行电化学测量。EIS阻抗测试结果如图10所示,随着浸泡时间的增加,EB1.5%的阻抗值总体呈现逐步降低的趋势,1、2d降低的速度较大,这是腐蚀介质沿涂层缺陷渗透进入涂层内部所致;之后4至15d的阻抗值下降速度缓慢,说明浸泡4d后腐蚀介质对涂层的渗透作用已经达到饱和,之后转由BTA缓蚀剂承担防腐效果。由图10b所示,浸泡试验进行至第15d时,EB1.5%的Z0.01Hz反而出现阻抗增大的现象,其原因有可能是涂层材料中BTA@SPANI-POSS负载的BTA经由3.5wt.%NaCl溶液浸泡后,与碳钢金属基底发生络合反应,BTA在碳钢基底反应生成BTA-Fe-BTA络合物钝化膜,从而赋予BTA@SPANI-POSS环氧涂层对腐蚀较好的抗性,因此BTA@SPANI-POSS环氧涂层的整体阻抗值较大,其具体过程见2.3节缓蚀机理。15d时EB1.5%仍表现出良好的防腐效果,其Z0.01Hz 维持在1.4MΩ·cm 2 以上,其数值较之第1d时的阻抗值保留26.89%,表现出优异的长期稳定性与防腐性能。

  • 图10 涂有EB1.5%的Q235碳钢在3.5wt.%NaCl溶液中浸泡15d的EIS阻抗谱

  • Fig.10 EIS impedance spectrum of Q235carbon steel sheet coated with EB1.5% immersed in 3.5wt.%NaCl solution for 15d

  • 进一步比较BTA的负载与否对涂层防腐性能的影响发现,与试样EB1.5%形成明显对照。这里将涂有ES1.5%的Q235碳钢浸泡在3.5wt.%NaCl溶液中15d,然后分别在第1、2、4、6、9、12、15d取出进行电化学测量。EIS阻抗测试结果如图11所示,随着浸泡时间的增加,ES1.5%的阻抗值总体呈现快速降低的趋势。当浸泡时间达到15d时,ES1.5%的Z0.01Hz下降至3.98kΩ·cm 2,其数值较第1d时的阻抗值仅保留0.83%,已不再具备防腐效果,这说明BTA的存在,对涂层长期防腐能力起到关键作用。

  • 图11 涂有ES1.5%的Q235碳钢在3.5wt.%NaCl溶液中浸泡15d的EIS阻抗谱

  • Fig.11 EIS impedance spectrum of Q235carbon steel sheet coated with ES1.5% immersed in 3.5wt.%NaCl solution for 15d

  • 2.4 缓蚀机理

  • BTA@SPANI-POSS的抑制机理如下: SPANI-POSS的存在为BTA的负载提供良好的平台,SPANI-POSS结构中大量存在的褶皱结构所带来的巨大比表面积以及POSS特有的笼型结构皆有助于缓蚀剂BTA的负载和扩散行为。BTA的抑制作用包括两个方面,一种是它可以溶于水并从缺陷部位迁移到碳钢基底表面与Fe2+形成络合物,形成的络合物将沉积在缺陷部位形成一层BTA-Fe-BTA络合物钝化膜并阻止水、氯离子和氧气的进一步扩散。缺陷位置生成[BTA-Fe-BTA]n 配合物的反应方程式如式(4)和式(5)所示。解离后的氢原子可以吸附在复合物表面或结合形成气相氢分子[29]

  • FeFe2++2e-
    (4)
  • nFe2++2nBTABTA-Fe-BTAn+2nH+
    (5)
  • 另一种是BTA能快速迁移到碳钢表面,与Fe发生反应,从而在未腐蚀区域形成较强的保护层,其反应方程式如式(6)所示:

  • Fe+BTAFe-BTA
    (6)
  • 3 结论

  • 通过在SPANI-POSS上负载缓蚀剂BTA,得到BTA@SPANI-POSS,并将其与环氧树脂共混得到BTA@SPANI-POSS环氧涂层材料,最后涂敷在Q235碳钢上制备了复合环氧涂层,并研究了BTA@SPANI-POSS的含量以及BTA存在与否对金属基底防腐性能的影响,并得到以下结论:

  • (1)SPANI-POSS具备较大的比表面积、存在密集内部空隙以及POSS特有的笼型结构而被用作负载缓蚀剂BTA的载体,这些因素有助于其获得较高的缓蚀剂负载率,同时促进缓蚀剂分子的释放作用,并表现出较好的缓蚀作用。

  • (2)电化学阻抗谱和塔菲尔极化曲线测试结果表明,与未负载BTA的SPANI-POSS环氧涂层相比,负载有BTA的BTA@SPANI-POSS环氧涂层具有更优良的保护能力和更长期的防腐效果,其中EB1.5% 具有最低的腐蚀速率。

  • (3)归因于SPANI-POSS与BTA之间的协同作用,所制备的BTA@SPANI-POSS环氧涂层在浸泡过程中与碳钢基底发生络合反应,从而起到长时间的保护作用,在3.5wt.%NaCl溶液中浸泡15d的环氧涂层仍具有良好的防腐蚀效果。

  • 参考文献

    • [1] SHVETA S,ASHISH K.Recent advances in metallic corrosion inhibition:A review[J].Journal of Molecular Liquids,2020,322:114862.

    • [2] XIE P,HE Y,ZHONG F,et al.Cu-BTA complexes coated layered double hydroxide for controlled release of corrosion inhibitors in dual self-healing waterborne epoxy coatings[J].Progress in Organic Coatings,2021,153:106164.

    • [3] TAN Z Y,WANG S,HU Z R,et al.PH-responsive self-healing anticorrosion coating based on a lignin microsphere encapsulating inhibitor[J].Industrial & Engineering Chemistry Research,2020,59(7):2657-2666.

    • [4] LIU P,WANG Y G,ZHAO Y W,et al.Anti-corrosion mechanisms of 1,2,4-triazole and benzotriazole on the aluminum during chemical mechanical polishing process[J].Materials Protection,2019,5:6-11.

    • [5] QUINET M,NEVEU B,MOUTARLIER V,et al.Corrosion protection of sol-gel coatings doped with an organic corrosion inhibitor:Chloranil[J].Progress in Organic Coatings,2007,58(1):46-53.

    • [6] ABDULLAYEV E,ABBASOV V,TURSUNBAYEVA A,et al.Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys[J].ACS Applied Materials & Interfaces,2013,5(10):4464-4471.

    • [7] QIAN H C,XU D K,DU C W,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J].Journal of Materials Chemistry A,2017,5(5):2355-2364.

    • [8] MANPREET K,GWANGYUN T,MINHAN S,et al.Corrigendum to “3D printed stretching-dominated micro-trusses” [Mater.Des.134(15)(2017)272-280][J].Materials & Design,2018,139(5):587.

    • [9] LAUCIRICA G,TOIMIL M,TRAUTMANN C,et al.Polyaniline for improved blue energy harvesting:Highly rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization[J].ACS Applied Materials & Interfaces,2020,12(25):1-27.

    • [10] WIBOWO A,VYAS C,COOPER G,et al.3D printing of polycaprolactone-polyaniline electroactive scaffolds for bone tissue engineering[J].Materials,2020,13(3):512.

    • [11] LUO G F,XIE L L,HE M,et al.Flexible fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH3 detection at room temperature[J].Nanotechnology,2021,32(30):305501.

    • [12] ZHANG Y,PAN T,YANG Z J.Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance[J].Chemical Engineering Journal,2020,389:124433.

    • [13] ZHOU N,WANG T,CHEN S H,et al.Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment[J].Journal of Colloid and Interface Science,2021,581:314-322.

    • [14] LIU L,ZHOU W,CHEN Y W,et al.Pressure-assisted synthesis of a polyaniline–graphite oxide(PANI–GO)hybrid and its friction reducing behavior in liquid paraffin(LP)[J].New Journal of Chemistry,2018,42(2):936-942.

    • [15] ZHENG H Y,XU X X,XU S D,et al.The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells[J].Journal of Materials Chemistry C,2019,7(15):4441-4448.

    • [16] KUNG Chuiyi,WANG Tzongliu,LIN Hungyin,et al.A high-performance covalently bonded self-doped polyaniline-graphene assembly film with superior stability for supercapacitors[J].Journal of Power Sources,2021,490:229538.

    • [17] FAZLI S,NASIRPOURI F,KHATAMIAN M.Epoxymatrix polyaniline/p-phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti-fouling performance[J].RSC Advances,2021,11(19):11627-11641.

    • [18] 高党鸽,王平平,吕斌,等.POSS/聚合物纳米复合材料制备方法的研究进展[J].材料学报,2019,33(2):550-557.GAO Dangge,WANG Pingping,LÜ Bin,et al.Research progress in preparation methods of poss/polymer nanocomposite[J].Materials Review,2019,33(2):550-557.(in Chinese)

    • [19] WU Y L,LI F,HUYAN J N,et al.Low dielectric and high thermal conductivity epoxy nanocomposites filled with NH2-POSS/n-BN hybrid fillers[J].Journal of Applied Polymer Science,2015,132(19):41951.

    • [20] NI C H,NI G F,ZHANG L P,et al.Syntheses of silsesquioxane(POSS)-based inorganic/organic hybrid and the application in reinforcement for an epoxy resin[J].Journal of Colloid and Interface Science,2011,362(1):94-99.

    • [21] MAO Y H,ZHOU W L,XU J J.Ultraviolet resistance modification of poly(p-phenylene-1,3,4-oxadiazole)and poly(p-phenylene terephthalamide)fibers with polyhedral oligomeric silsesquioxane[J].Journal of Applied Polymer Science,2015,132(41):42643.

    • [22] WU Y M,QIU H,SUN J W,et al.A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater[J].Journal of Materials Science,2021,56(4):1-13.

    • [23] 段俊,欧宝立,郭艳.共价功能化 POSS/PDMS 防腐复合涂层的研究[J].功能材料,2021,52(3):3115-3121.DUAN Jun,OU Baoli,GUO Yan.Research on covalent functionalized POSS/PDMS anticorrosive composite coating[J].Journal of Functional Materials.2021,52(3):3115-3121.(in Chinese)

    • [24] GAHLOT S,GUPTA H,JHA P,et al.Enhanced electrochemical performance of stable SPES/SPANI composite polymer electrolyte membranes by enriched ionic nanochannels[J].Acs Omega,2017,2(9):5831-5839.

    • [25] LIU X H,ZHANG D W,HOU P M,et al.Preparation and characterization of polyelectrolyte-modified attapulgite as nanocontainers for protection of carbon steel[J].Journal of The Electrochemical Society,2018,165(13):907-915.

    • [26] YEH Tzuchun,HUANG Tsaocheng,HUANG Hsiuying,et al.Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyurea[J].Polymer Chemistry,2012,3:2209-2216.

    • [27] HUANG Tsaocheng,YEH Tzucheng,HUANG Hsiuying,et al.Electrochemical investigations of the anticorrosive and electrochromic properties of electroactive polyamide[J].Electrochimica Acta,2012,63:185-191.

    • [28] QIU S H,LI W,ZHENG W R,et al.Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution[J].ACS Applied Materials Interfaces,2017,9:34294-34304.

    • [29] GATTINONI C,MICHAELIDES A.Understanding corrosion inhibition with van der Waals DFT methods:The case of benzotriazole[J].Faraday Discussions,2015,180:439-458.

  • 参考文献

    • [1] SHVETA S,ASHISH K.Recent advances in metallic corrosion inhibition:A review[J].Journal of Molecular Liquids,2020,322:114862.

    • [2] XIE P,HE Y,ZHONG F,et al.Cu-BTA complexes coated layered double hydroxide for controlled release of corrosion inhibitors in dual self-healing waterborne epoxy coatings[J].Progress in Organic Coatings,2021,153:106164.

    • [3] TAN Z Y,WANG S,HU Z R,et al.PH-responsive self-healing anticorrosion coating based on a lignin microsphere encapsulating inhibitor[J].Industrial & Engineering Chemistry Research,2020,59(7):2657-2666.

    • [4] LIU P,WANG Y G,ZHAO Y W,et al.Anti-corrosion mechanisms of 1,2,4-triazole and benzotriazole on the aluminum during chemical mechanical polishing process[J].Materials Protection,2019,5:6-11.

    • [5] QUINET M,NEVEU B,MOUTARLIER V,et al.Corrosion protection of sol-gel coatings doped with an organic corrosion inhibitor:Chloranil[J].Progress in Organic Coatings,2007,58(1):46-53.

    • [6] ABDULLAYEV E,ABBASOV V,TURSUNBAYEVA A,et al.Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys[J].ACS Applied Materials & Interfaces,2013,5(10):4464-4471.

    • [7] QIAN H C,XU D K,DU C W,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J].Journal of Materials Chemistry A,2017,5(5):2355-2364.

    • [8] MANPREET K,GWANGYUN T,MINHAN S,et al.Corrigendum to “3D printed stretching-dominated micro-trusses” [Mater.Des.134(15)(2017)272-280][J].Materials & Design,2018,139(5):587.

    • [9] LAUCIRICA G,TOIMIL M,TRAUTMANN C,et al.Polyaniline for improved blue energy harvesting:Highly rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization[J].ACS Applied Materials & Interfaces,2020,12(25):1-27.

    • [10] WIBOWO A,VYAS C,COOPER G,et al.3D printing of polycaprolactone-polyaniline electroactive scaffolds for bone tissue engineering[J].Materials,2020,13(3):512.

    • [11] LUO G F,XIE L L,HE M,et al.Flexible fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH3 detection at room temperature[J].Nanotechnology,2021,32(30):305501.

    • [12] ZHANG Y,PAN T,YANG Z J.Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance[J].Chemical Engineering Journal,2020,389:124433.

    • [13] ZHOU N,WANG T,CHEN S H,et al.Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment[J].Journal of Colloid and Interface Science,2021,581:314-322.

    • [14] LIU L,ZHOU W,CHEN Y W,et al.Pressure-assisted synthesis of a polyaniline–graphite oxide(PANI–GO)hybrid and its friction reducing behavior in liquid paraffin(LP)[J].New Journal of Chemistry,2018,42(2):936-942.

    • [15] ZHENG H Y,XU X X,XU S D,et al.The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells[J].Journal of Materials Chemistry C,2019,7(15):4441-4448.

    • [16] KUNG Chuiyi,WANG Tzongliu,LIN Hungyin,et al.A high-performance covalently bonded self-doped polyaniline-graphene assembly film with superior stability for supercapacitors[J].Journal of Power Sources,2021,490:229538.

    • [17] FAZLI S,NASIRPOURI F,KHATAMIAN M.Epoxymatrix polyaniline/p-phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti-fouling performance[J].RSC Advances,2021,11(19):11627-11641.

    • [18] 高党鸽,王平平,吕斌,等.POSS/聚合物纳米复合材料制备方法的研究进展[J].材料学报,2019,33(2):550-557.GAO Dangge,WANG Pingping,LÜ Bin,et al.Research progress in preparation methods of poss/polymer nanocomposite[J].Materials Review,2019,33(2):550-557.(in Chinese)

    • [19] WU Y L,LI F,HUYAN J N,et al.Low dielectric and high thermal conductivity epoxy nanocomposites filled with NH2-POSS/n-BN hybrid fillers[J].Journal of Applied Polymer Science,2015,132(19):41951.

    • [20] NI C H,NI G F,ZHANG L P,et al.Syntheses of silsesquioxane(POSS)-based inorganic/organic hybrid and the application in reinforcement for an epoxy resin[J].Journal of Colloid and Interface Science,2011,362(1):94-99.

    • [21] MAO Y H,ZHOU W L,XU J J.Ultraviolet resistance modification of poly(p-phenylene-1,3,4-oxadiazole)and poly(p-phenylene terephthalamide)fibers with polyhedral oligomeric silsesquioxane[J].Journal of Applied Polymer Science,2015,132(41):42643.

    • [22] WU Y M,QIU H,SUN J W,et al.A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater[J].Journal of Materials Science,2021,56(4):1-13.

    • [23] 段俊,欧宝立,郭艳.共价功能化 POSS/PDMS 防腐复合涂层的研究[J].功能材料,2021,52(3):3115-3121.DUAN Jun,OU Baoli,GUO Yan.Research on covalent functionalized POSS/PDMS anticorrosive composite coating[J].Journal of Functional Materials.2021,52(3):3115-3121.(in Chinese)

    • [24] GAHLOT S,GUPTA H,JHA P,et al.Enhanced electrochemical performance of stable SPES/SPANI composite polymer electrolyte membranes by enriched ionic nanochannels[J].Acs Omega,2017,2(9):5831-5839.

    • [25] LIU X H,ZHANG D W,HOU P M,et al.Preparation and characterization of polyelectrolyte-modified attapulgite as nanocontainers for protection of carbon steel[J].Journal of The Electrochemical Society,2018,165(13):907-915.

    • [26] YEH Tzuchun,HUANG Tsaocheng,HUANG Hsiuying,et al.Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyurea[J].Polymer Chemistry,2012,3:2209-2216.

    • [27] HUANG Tsaocheng,YEH Tzucheng,HUANG Hsiuying,et al.Electrochemical investigations of the anticorrosive and electrochromic properties of electroactive polyamide[J].Electrochimica Acta,2012,63:185-191.

    • [28] QIU S H,LI W,ZHENG W R,et al.Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution[J].ACS Applied Materials Interfaces,2017,9:34294-34304.

    • [29] GATTINONI C,MICHAELIDES A.Understanding corrosion inhibition with van der Waals DFT methods:The case of benzotriazole[J].Faraday Discussions,2015,180:439-458.

  • 手机扫一扫看