en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马菱薇,女,1990年出生,博士,副研究员,硕士研究生导师。主要研究方向为表面防护与微观腐蚀机理分析。E-mail:mlw1215@ustb.edu.cn;

卢琳(通信作者),女,1981年出生,博士,研究员,博士研究生导师。主要研究方向为先进高分子材料、涂层老化规律及霉菌腐蚀机理。E-mail:lu_lin@mater.ustb.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20210510001

参考文献 1
刘涛,王胜民,侯云波,等.耐候钢表面锈层稳定化研究现状[J].表面技术,2018,10:240-248.LIU Tao,WANG Shengmin,HOU Yunbo,et al.Research status on surface rust layer stabilization of weathering steel[J].Surface Technology,2018,10:240-248.(in Chinese)
参考文献 2
LIU Pan,HU Lulu,ZHAO Xuyang,et al.Investigation of microstructure and corrosion behavior of weathering steel in aqueous solution containing different anions for simulating service environments[J].Corrosion Science,2020,170:108686.
参考文献 3
潘雪新,姜海昌,胡小锋,等.G-355NH 耐候钢在不同区域气候环境中的大气腐蚀行为研究[J].材料保护,2020,53(5):1-9.PAN Xuexin,JIANG Haichang,HU Xiaofeng,et al.Corrosion behaviors of G-355NH weathering resistant steel in different regional climate[J].Materials Protection,2020,53(5):1-9.(in Chinese)
参考文献 4
BERNARDI E,VASSURA I,RAFFO S,et al.Influence of inorganic anions from atmospheric depositions on weathering steel corrosion and metal release[J].Construction and Building Materials,2020,236:117515.
参考文献 5
ZHANG Xu,YANG Shanwu,GUO Hui,et al.Atmospheric corrosion behavior of weathering steel in periodically changed environment[J].ISIJ International,2014,54(4):909-915.
参考文献 6
朱思远,于强,陈克坚,等.某耐候钢桥锈层稳定化处理技术的探索[J].材料保护,2020,6:139-143.ZHU Siyuan,YU Qiang,CHEN Kejian,et al.Exploration on rust layer stabilization treatment technology for a weathering steel bridge[J].Materials Protection,2020,6:139-143.(in Chinese)
参考文献 7
高立军,杨建炜,张旭,等.耐候钢表面锈层稳定化处理技术研究[J].表面技术,2020,49(3):255-261.GAO Lijun,YANG Jianwei,ZHANG Xu,et al.Rust stabilization treatment of weathering steel surface[J].Surface Technology,2020,49(3):255-261.(in Chinese)
参考文献 8
石振家,王雷,陈楠,等.耐候钢表面锈层及其稳定化处理现状与发展趋势[J].腐蚀科学与防护技术,2015,27(5):503-508.SHI Zhenjia,WANG Lei,CHEN Nan,et al.Status and development trend of the surface rust layer and its stabilization treatment of weathering steel[J].Corrosion Science and Protection Technology,2015,27(5):503-508.(in Chinese)
参考文献 9
PHUONG T D,BACH T N.Compositional and microstructural effect on atmospheric corrosion of weathering steel[J].Journal of Metallurgy and Materials Science,2008,50(1):23-31.
参考文献 10
李明,刘丽宏,李晓刚.耐候钢锈层稳定化处理技术及其评价方法[J].全面腐蚀控制,2006,20(4):5-9.LI Ming,LIU Lihong,LI Xiaogang.Review on methods of rust stabilizing surface treatment and test for weathering steel[J].Total Corrosion Control,2006,20(4):5-9.(in Chinese)
参考文献 11
TRAVASSOS S,ALMEIDA M,CATUOGNO C,et al.Non-destructive thickness measurement as a tool to evaluate the evolution of patina layer formed on weathering steel exposed to the atmosphere[J].Journal of Materials Research and Technology,2020,9(1):687-699.
参考文献 12
刘涛,王胜民,赵晓军.耐候钢锈层的稳定化处理及锈层形成[J].中国表面工程,2019,32(6):98-104.LIU Tao,WANG Shengmin,ZHAO Xiaojun.Stabilization treatment and formation of rust layer on weathering steel[J].China Surface Engineering,2019,32(6):98-104.(in Chinese)
参考文献 13
ZULKIFLI F,ALI N,YUSOF M,et al.Henna leaves extract as a corrosion inhibitor in acrylic resin coating[J].Progress in Organic Coatings,2017,105:310-319.
参考文献 14
肖菲,杨敬霞,孙学军,等.工业用水性丙烯酸面漆的制备[J].现代涂料与涂装,2020,23(4):1-3.XIAO Fei,YANG Jingxia,SUN Xuejun,et al.Preparation of waterborne acrylic topcoat for industry[J].Modern Paint & Finishing,2020,23(4):1-3.(in Chinese)
参考文献 15
SONG Dongdong,WAN Hongxia,TU Xiaohui,et al.A etter understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy[J].Progress in Organic Coatings,2020,142:105558.
参考文献 16
HAO Long,ZHANG Sixun,DONG Junhua,et al.Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments[J].Corrosion Science,2011,53(12):4187-4192.
参考文献 17
HAO Long,ZHANG Sixun,DONG Junhua,et al.A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion[J].Corrosion Science,2012,54:244-250.
参考文献 18
刘丽宏,齐慧滨,卢燕平,等.耐候钢的腐蚀及表面稳定化处理技术[J].腐蚀与防护,2002,23(12):515-518.LIU Lihong,QI Huibin,LU Yanping,et al.Corrosion properties and surface rust scale stabilizing treatments of weathering steels[J].Corrosion and Protection,2002,23(12):515-518.(in Chinese)
参考文献 19
GONG Ke,WU Ming,LIU Guangxin.Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl and HSO3 in a wet–dry cycle environment[J].Corrosion Science,2020,165:108382.
参考文献 20
刘涛.耐候钢表面锈层稳定化及处理液的研究[D].昆明:昆明理工大学,2019.LIU Tao.Study on stabilization of the rust layer on weathering steel surface and treatment liquid[D].Kunming:Kunming University of Science and Technology,2019.(in Chinese)
参考文献 21
LIU Haixia,HUANG Feng,YUAN Wei,et al.Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere[J].Corrosion Science,2020,173:108758.
参考文献 22
杨晓梅.钢大气腐蚀锈层的激光拉曼光谱研究[J].光散射学报,2007,19(2):134-137.YANG Xiaomei.The research of Raman spectrum on steel rusty layer from atmosphere corrosion[J].The Journal of Light Scattering,2007,19(2):134-137.(in Chinese)
参考文献 23
DHAIVEEGAN P,ELANGOVAN N,NISHIMURA T,et al.Weathering steel in industrial-marine-urban environment:Field study[J].Materials Transactions,2016,57(2):148-155.
参考文献 24
刘弘,杨善武,张旭,等.耐候钢表面预处理对其腐蚀行为的影响[J].材料热处理学报,2015,36(5):178-183.LIU Hong,YANG Shanwu,ZHANG Xu,et al.Influence of surface pre-treatment on corrosion behavior of weathering steel[J].Transactions of Materials and Heat Treatment,2015,36(5):178-183.(in Chinese)
参考文献 25
刘建容,黄先球,张万灵,等.耐候钢表面稳定化处理技术[J].武钢技术,2012,50(3):59-62.LIU Jianrong,HUANG Xianqiu,ZHANG Wanling,et al.Surface stabilizing treatment technology for weather resistance steel[J].Wisco Technology,2012,50(3):59-62.(in Chinese)
参考文献 26
张全成,吴建生,郑文龙,等.耐候钢表面锈层稳定化过程研究[J].上海金属,2004,26(3):10-12.ZHANG Quancheng,WU Jiansheng,ZHENG Wenlong,et al.Stabilization process of rust layer on surface of weathering steel[J].Shanghai Metals,2004,26(3):10-12.(in Chinese)
参考文献 27
高立军,杨建炜,张旭,等.耐候钢锈层稳定化处理剂及其耐大气腐蚀性能研究[J].金属材料与冶金工程,2019,5:21-25.GAO Lijun,YANG Jianwei,ZHANG Xu,et al.Study on surface rust stabilizers and corrosion resisting properties for weathering steels[J].Metal Materials and Metallurgy Engineering,2019,5:21-25.(in Chinese)
参考文献 28
于东云,高立军,杨建炜,等.模拟工业环境下耐候钢水性锈层稳定剂耐蚀性的研究[J].电镀与涂饰,2016,35(18):980-984.YU Dongyun,GAO Lijun,YANG Jianwei,et al.Study on corrosion resistance of waterborne rust-layer stabilizer on weathering steel in a simulated industrial environment[J].Electroplating & finishing,2016,35(18):980-984.(in Chinese)
目录contents

    摘要

    开发一种新型耐候钢表面锈层稳定化处理剂,促进锈层的快速生长和稳定。以 Q420NH 耐候钢为基材,水性丙烯酸树脂为成膜物,加入两类添加剂——稳定剂(钼酸钠、磷酸钾、硝酸钠)和羟基氧化铁,制备出稳定化处理剂,涂刷于耐候钢的表面,在盐雾环境中研究锈层的生成过程。结果表明,水性丙烯酸树脂具有一定的氧气和水渗透性,适合作为稳定化处理的成膜物。在 90 d 的盐雾试验中,锈层厚度随盐雾时间的增长而不断增加,并且稳定化处理后试样的锈层厚度大于裸钢的锈层厚度。XRD 结果显示,稳定化处理不改变耐候钢锈层的成分,Q420NH 裸钢和稳定化处理的耐候钢的锈层均主要由 Fe3O4、 γ-FeOOH、α-FeOOH、β-FeOOH 组成。SEM 和截面 Raman 光谱结果表明,稳定化处理的试样锈层中保护性的 α-FeOOH 相分布更加广泛。EDS 结果证明 Cr、Cu 合金元素在锈层中富集,电化学阻抗谱说明稳定化处理后的试样具有更佳的耐腐蚀性能。 稳定化处理技术促进了耐候钢表面保护性锈层的生长,缩短了稳定化进程,提高了锈层的保护性能。

    Abstract

    A new stabilization treatment method is developed for the rust layers on weathering steel surface to promote the growth and stability of rust layers. Using Q420NH weathering steel as the substrate material and water-based acrylic resin as the film forming material, two kinds of additives, i.e. stabilizers (Na2MoO4, K3PO4, NaNO3) and α-FeOOH, are added into acrylic resin to prepare the stabilization treatment agent. The formation process of rust layers is investigated during salt spraying. The water-based acrylic resin has good oxygen and water permeability, making it suitable as the stabilization coating. The thickness of rust layer increases with the increase of salt spray time in 90 d , and the rust layer thickness of the stabilized substrate is higher than that of the bare Q420NH steel. X-ray diffraction (XRD) results show that the composition of the rust layer of weathering steel doesn’t change by stabilization treatment, mainly composing of Fe3O4, γ-FeOOH, α-FeOOH, β-FeOOH. Scanning electron microscopy (SEM) and cross-section Raman spectroscopy results indicate that the protective α-FeOOH phase is distributed more widely in the rust layer of the stabilized weathering steel. Energy dispersive spectroscopy (EDS) analysis proves the enrichment of Cr and Cu elements in the rust layer, and electrochemical impedance spectroscopy (EIS) indicated that the stabilized steel has better corrosion resistance property. The stabilization treatment promotes the growth of protective rust layer on the surface of Q420NH weathering steel, which accelerates the stabilization process and improves the protection performance of the rust layer.

    关键词

    耐候钢稳定化处理锈层耐蚀性盐雾

  • 0 前言

  • 耐候钢通过添加少量合金元素(如Cu、P、Cr、 Ni、Mn、Mo、Al等),在自然大气环境下表面会形成致密的锈层,阻碍腐蚀性介质的进一步侵入,因此它有优异的耐大气腐蚀性能[1-3]。然而,耐候钢在自然环境中形成稳定的保护性锈层需要数年时间;在使用初期,耐候钢常常出现锈液流挂与飞散等现象,产生环境污染和影响美观等问题,限制了耐候钢的应用与发展。为了解决上述问题,耐候钢表面锈层的稳定化处理技术应运而生[4-7],其目的在于缩短稳定化锈层的形成时间,从而提高钢材的耐腐蚀性能和使用美观性。

  • 稳定化处理技术是指在耐候钢使用之前对其表面进行特殊处理,从而在耐候钢表面形成一种可透气、透水的膜,在膜与钢材的界面处能够进行快速的腐蚀反应[8-9],使耐候钢表面被稳定的致密锈层保护起来[10-11]。稳定化处理不仅可以避免黄色锈液流挂的污染现象,还能通过形成稳定的保护性锈层来提高钢材的耐腐蚀性能。目前,国内的耐候钢锈层稳定化处理技术尚未成熟,需要进一步开发,并阐明稳定化锈层的生长机制和防护性能。

  • 本文以Q420NH耐候钢为基材,常用树脂为成膜物,稳定剂(钼酸钠、磷酸钾、硝酸钠)和羟基氧化铁为添加剂,开发出一种新型耐候钢表面锈层的稳定化处理剂,促进锈层的快速生长。运用扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射图谱(XRD)、激光拉曼光谱仪(Raman)、电化学阻抗谱(EIS)等方法研究了耐候钢在5wt.%NaCl盐雾环境中锈层的生长情况,以及稳定化处理对耐候钢腐蚀行为的影响规律。

  • 1 试验准备

  • 1.1 样品准备

  • 试验所用材料为Q420NH钢,其化学成分(质量分数)见表1。使用前用150#和240#砂纸将耐候钢表面各打磨一道后打花,再依次用丙酮、乙醇擦拭干净,冷风吹干后备用。稳定化处理的成膜物为水性丙烯酸树脂或聚乙烯醇缩丁醛,添加剂包括:磷酸钾(西亚化工)、钼酸钠(麦克林)、硝酸钠 (西亚化工)和羟基氧化铁(Alfa Aesar)。所用溶剂为乙醇和去离子水。

  • 表1 Q420NH耐候钢的化学成分(质量分数)

  • Table1 Chemical composition of Q420NH weathering steel

  • 1.1.1 稳定化处理剂制备

  • 稳定化处理剂制备方法如下。

  • (1)将聚乙烯醇缩丁醛和乙醇混合,用磁力搅拌器剪切搅拌60min,静置10min。

  • (2)将水性丙烯酸树脂和水混合后,用磁力搅拌器剪切搅拌60min,静置10min。

  • (3)将优选的成膜物与各种组分添加剂在去离子水中混合,用磁力搅拌器剪切搅拌60min,然后静置10min,用毛刷均匀涂刷到耐候钢板表面,室温下晾干。具体的成膜物和添加剂的含量见表2。

  • 表2 锈层稳定化处理剂主要组分(质量分数)

  • Table2 Compositions of the rust stabilizer

  • 1.2 结构表征及防腐性能测试

  • 1.2.1 成膜物性能测试

  • 使用Oxford涂膜厚度测定仪测定涂膜的厚度,试验测得涂膜厚度约为8 μm。吸水性测试:将浸泡在去离子水中的无纺布拿出,保证布的湿润度,平整覆盖在刷涂了树脂的钢板上,然后放入湿热箱,温度设定为25℃,湿度95%,间隔不同时间周期测量整块钢板的质量变化。附着力测量:使用美国DeFelsko公司产PosiTest AT-M拉拔式附着力测试仪。

  • 1.2.2 中性盐雾试验

  • 试验仪器为CK/YWX-90C型盐雾腐蚀试验箱,NaCl溶液的浓度为5wt.%,在25℃时溶液的pH值为6.8~7.2;试验箱温度为35℃,压力桶温度为47℃;喷雾压力为1.2MPa,进气压力为2.0MPa;喷雾方式:连续盐雾;试样放置:与垂直面呈30°±5º。盐雾周期为5d、11d、20d、30d、 90d。

  • 1.2.3 锈层分析

  • 采用Quanta250环境扫描电子显微镜观察锈层的微观结构。利用MAC Science-M21X型X射线衍射仪分析锈层的物相结构,2θ扫描范围为10°~40°,扫描速率为4(°)/min。采用inVia-Reflex显微共焦激光拉曼光谱仪对锈层局部位置的成分进行分析,选择532nm激光波长,扫描时间为20s,波谱范围设定为:200~800cm−1。经过90d的盐雾时间后,对样品进行除锈后称取重量,计算腐蚀速率。

  • 1.2.4 电化学阻抗谱测试

  • 采用PARSTAT-2273电化学工作站测试锈层的电化学性能,以Pt片为辅助电极,饱和甘汞电极 (SCE)为参比电极,试样为工作电极,电解质溶液为3.5wt.%NaCl溶液。测试频率为10−2~105 Hz,正弦波激励信号的振幅为20mV。

  • 2 结果与讨论

  • 2.1 成膜物的选择

  • 稳定化处理的主要目的是加速锈层的形成和稳定化过程,因此,成膜物应具有一定的氧气和水渗透性[12-13],以便使腐蚀性介质快速渗透到达涂膜/基体界面,促进膜下耐候钢表面锈层的形成。相较于环氧树脂、醇酸树脂、聚氨酯等,丙烯酸树脂具有较大的氧气渗透和扩散系数,适合作为稳定化处理的成膜物[14-15]。本研究还选择常用的聚乙烯醇缩丁醛作为第二种候选成膜物。图1为两种成膜物吸水量随时间的变化规律。可以看出,聚乙烯醇缩丁醛的吸水量远低于丙烯酸树脂,说明后者的渗水效果较好。在稳定化处理过程中,成膜物在耐候钢表面的附着力过高会抑制膜下腐蚀,而过小的附着力会导致涂膜在稳定化过程未完成时过早失效。因此,需要选择具有合适附着力的成膜体系。拉拔试验测得水性丙烯酸树脂在Q420NH耐候钢表面的附着力为3.54MPa,而聚乙烯醇缩丁醛的附着力为9.85MPa,后者的附着力对于稳定化处理膜来说可能过大,会阻滞锈层的形成。

  • 图1 聚乙烯醇缩丁醛和水性丙烯酸两种成膜物吸水量随时间的变化规律

  • Fig.1 Water absorption amount of polyvinyl butyral and acrylic resin as a function of immersion time

  • 进一步观察水性丙烯酸树脂和聚乙烯醇缩丁醛两种涂膜体系下耐候钢在3.5wt.%NaCl溶液中浸泡不同时间(1h、8h、1d、4d、9d)后的腐蚀形貌,用裸钢作为对比。如图2所示,Q420NH裸钢在浸泡1d后即发生明显的腐蚀现象,出现大量的腐蚀产物。在添加了成膜物后,两种涂膜下耐候钢的腐蚀程度减轻,但丙烯酸树脂下耐候钢的腐蚀程度比聚乙烯醇缩丁醛严重。观察各浸泡阶段的腐蚀形貌,聚乙烯醇缩丁醛表面在1d内只出现细密的黑褐色锈点,涂膜没有明显的起泡破坏,这与其较低的吸水性和较高的附着力有关,使溶液和氧气难以渗入到涂膜/金属界面;水性丙烯酸涂膜产生了明显的起泡现象,并且它的锈层均匀性优于聚乙烯醇缩丁醛。针对本工作稳定化处理的目的,根据以上成膜物的吸水性、附着力以及锈层均匀性测试结果,选择水性丙烯酸树脂作为稳定化处理的成膜物。

  • 图2 不同涂膜体系下耐候钢在3.5wt.%NaCl溶液中浸泡不同时间后的腐蚀形貌

  • Fig.2 Corrosion morphologies of different coated weathering steels after immersion in 3.5%NaCl solution for different periods

  • 之后在树脂中添加稳定化处理剂包括钼酸钠、磷酸钾、硝酸钠和羟基氧化铁。磷酸钾可以使Fe2+ 产生不溶物,吸附在耐候钢表面,使基体表面钝化; 同时Fe2+在涂膜中会逐渐与氧气反应,由此加速热力学稳定性和保护性能较好的 α-FeOOH的形成[16]。钼酸钠分散在锈层中能够起到缓蚀剂的作用,促进难溶性钼酸盐的生成并附着于基体表面,有助于抑制氯离子渗透,达到增强锈层耐蚀性的目的[17]。硝酸钠可促进保护性锈层生成;羟基氧化铁促进锈核形成和生长,加速锈层形成稳定的 α-FeOOH[18-19]。同时,采用水作为溶剂可以减轻环境污染。

  • 2.2 锈层的厚度变化和失重分析

  • 锈层的宏观厚度变化可以直观地反映耐候钢锈层的生长情况。图3为盐雾5d、11d、20d、30d、90d后锈层的宏观截面照片;计算图中6个不同位置(标尺处)锈层的厚度平均值,以表征锈层厚度随盐雾时间的变化规律。由图4可以看出,在30d内两种试样的锈层厚度均随盐雾时间的增长而不断增加,30~90d时锈层的生成速度趋于平稳;稳定化处理后试样的锈层厚度在各个阶段均明显大于裸钢的锈层厚度。对于经过稳定化处理的试样,随着盐雾试验中电解质溶液的渗透,涂膜中稳定剂为锈层的加速形成制造了有利的环境,而羟基氧化铁为锈层生长提供了优先形核的位置,两种因素协同作用促进了锈层的形核和长大,因此稳定化处理有利于形成较厚的耐候钢锈层。

  • 2.3 锈层物相结构与微观形貌

  • 图5 为Q420NH裸钢和稳定化处理的耐候钢试样在盐雾试验90d后表面锈层的XRD谱图。两种锈层的主要成分均为Fe3O4、γ-FeOOH、α-FeOOH,以及少量的 β-FeOOH,可见稳定化处理对锈层物相成分无明显影响。在腐蚀初期,耐候钢首先生成热力学状态不稳定的FeO和Fe(OH)2,然后被空气氧化生成 γ-FeOOH、γ-Fe2O3 和Fe3O4;随薄液膜或电解质溶液的碱度上升,最终生成稳定的腐蚀产物 α-FeOOH[7]。图6为Q420NH裸钢在盐雾90d后的锈层微观扫描电镜图。从整体形貌图看出,锈层粘结成板状。将锈层分层结构放大后发现,最外层锈层Ⅰ为绒球状的 γ-FeOOH形貌,向内延伸Ⅱ层为圆柱棒状的 β-FeOOH形貌,Ⅲ层为堆叠的层片状 γ-FeOOH形貌,内锈层Ⅳ 为不规则的Fe3O4以及低结晶度的Fe5HO8 · 4H2O[20, 21]

  • 图3 不同盐雾时间后Q420NH裸钢和稳定化处理耐候钢的锈层变化(标尺:200 μm)

  • Fig.3 Rust layers of Q420NH steel and Q420NH with stabilizer after different salt spray times(scale bar: 200 μm)

  • 为了进一步确定不同深度的产物分布情况,使用显微拉曼光谱对其进行表征。图7为Q420NH裸钢在盐雾90d后的锈层截面拉曼光谱。在裸钢最外层和次外层的锈层中均看到250cm−1 和378cm−1 处的拉曼峰,代表典型的 γ-FeOOH拉曼峰。同时,在外面两层的产物中还出现了 α-FeOOH和Fe3O4分别在385~390cm−1 和670cm−1 处的拉曼峰。在中间及靠近基板的锈层中,γ-FeOOH的峰不再出现,说明从外向内的锈层中 γ-FeOOH含量在逐渐减少。在靠近内锈层的位置,能看到 γ-Fe2O3(700~720cm-1) 以及Fe5HO8·4H2O(710cm−1)的拉曼峰存在[22]

  • 图4 Q420NH裸钢和稳定化处理的耐候钢锈层厚度随盐雾时间的变化

  • Fig.4 Thickness of the rust layers of Q420NH steel and Q420NH with stabilizer after different salt spray times

  • 图5 Q420NH裸钢和稳定化处理的耐候钢在盐雾90d后表面锈层的XRD谱图

  • Fig.5 XRD patterns of rust layers of Q420NH steel and the steel with stabilizer after 90d of salt spray test

  • 图6 Q420NH裸钢在盐雾90d后的锈层微观SEM电镜图

  • Fig.6 SEM images of the rust layer of Q420NH steel after 90d of salt spray test

  • 图7 Q420NH裸钢在盐雾90d后的锈层截面拉曼光谱

  • Fig.7 Raman spectra of the rust layer of Q420NH steel after 90d of salt spray test

  • 图8 为稳定化处理后Q420NH钢在90d盐雾后的锈层微观形貌。最外层Ⅰ为球状蜂窝形 γ-FeOOH相以及针状 α-FeOOH相,Ⅱ层为柱形 β-FeOOH形貌,中间层Ⅲ为针状 α-FeOOH相,最内层Ⅳ为黑色扁平形貌,上面有圆状凸起,为Fe3O4 和Fe5HO8·4H2O的混合结构。图9为稳定化处理后Q420NH钢在90d盐雾后的锈层截面拉曼光谱,锈层最外层主要为 γ-FeOOH和Fe3O4 的特征峰,结合图8的锈层微观形貌观察,可以判定稳定化处理后锈层的最外层以 γ-FeOOH为主,锈层中部的拉曼光谱主峰均为 α-FeOOH(385~390cm−1,549~552cm−1,680~685cm−1)的特征峰,最内侧锈层出现Fe3O4和Fe5HO8·4H2O的拉曼峰。

  • 从锈层截面拉曼光谱看出,裸钢每一层的锈层成分都比较单一,锈层分层现象明显,而稳定化处理后的耐候钢锈层成分混杂,锈层成分相互转化现象明显。同时,稳定化处理后的耐候钢锈层可以在更宽的截面范围内检测到 α-FeOOH的存在,说明 α-FeOOH在稳定化处理后锈层中的厚度更大,有助于提高锈层的保护性能[23-25]

  • 图8 稳定化处理的Q420NH耐候钢在盐雾90d后的锈层微观SEM电镜图

  • Fig.8 SEM images of rust layers of the Q420NH weathering steel with stabilizer after 90d of salt spray test

  • 图9 稳定化处理后Q420NH钢盐雾在盐雾90d后的锈层截面拉曼光谱

  • Fig.9 Raman spectra of rust layers of the Q420NH weathering steel with stabilizer after 90d of salt spray test

  • 2.4 锈层结构特征

  • 使用SEM-EDS对盐雾90d后的锈层横截面进行元素分析,结果如图10所示。在裸钢以及稳定化处理耐候钢的截面元素分布图中,Cr元素均聚集到贴近钢基体的锈层处。Cu元素在裸钢锈层中没有出现富集,而在稳定化处理后的耐候钢锈层中出现了较为明显的富集现象。Ni元素在稳定化处理前后均没有明显的富集现象。

  • 图10 在盐雾90d后的锈层截面元素分布图

  • Fig.10 SEM and EDS mapping of the rust layers of Q420NH steel and Q420NH steel with stabilizer after 90d of salt spray test

  • Cu元素在稳定化处理试样中富集可以从两个方面解释:一是涂膜能够防止Cu元素向外流失; 二是涂膜中的羟基氧化铁颗粒细小、化学性质稳定、比表面积高、羟基含量高,作为重金属的吸附剂促进了Cu元素向表面的富集。Cr元素在锈层中可以置换 α-FeOOH中的Fe,促进 α-(Fe1-xCrx)OOH等非晶态羟基氧化物的生成[1],提高了锈层致密性。Cu元素可以细化锈层晶粒,提高锈层的电化学保护性[7]。Ni元素可缩短 γ-FeOOH向 α-FeOOH相的相转变时间,催生并细化 α-FeOOH相,同时还能增强锈层的黏附能力[26]。因此,从合金元素的分布和富集现象可以判断,稳定化处理体系的锈层对钢基体具有更好的保护效果。

  • 盐雾90d后去除样品表面锈层,Q420NH裸钢的腐蚀率为1.05g/(m2 ·h),而稳定化处理耐候钢的腐蚀率为0.61g/(m2 ·h),相较裸钢下降约40%,说明稳定化处理显著提高了样品的耐蚀性。

  • 2.5 锈层电化学分析

  • 图11 为盐雾5天、30天和90d后Q420NH裸钢和稳定化处理的耐候钢在3.5wt.%NaCl溶液中浸泡的电化学阻抗谱。在盐雾5d时,两种试样的Nyquist图都只包含一个容抗弧;当盐雾30d和90d时,两种试样的Nyquist图均由高频区的不完整半圆和低频区的扩散尾组成。这是由于随着盐雾时间增长,完整的锈层逐渐覆盖在钢表面,在一定程度上阻碍了O2 和Cl 向基体的传输,此时扩散控制变为主导因素[27-28];随着腐蚀反应进行,锈层不断增厚,传质过程变得困难,因此90d时扩散特征更加显著。在整个盐雾过程中,稳定化处理后耐候钢的高频半圆弧半径和低频阻抗|Z|0.01Hz值均大于裸钢锈层,说明稳定化处理后锈层具有更好的保护性。

  • 利用图12所示的模拟电路拟合阻抗谱[12, 27]R s 代表溶液电阻,R r 为锈层电阻,C r 代表锈层与溶液构成的电容,R t 为钢基体的电荷转移电阻, C t代表钢基体与电解液构成的电容,W 为Warburg阻抗。锈层电阻 R r 可以反映锈层抵挡腐蚀介质传输的能力,可以作为评价锈层保护性的主要指标。经过拟合,30d盐雾后Q420NH裸钢的 R r 值为22.8 Ω·cm 2,稳定化处理后耐候钢的 R r 值为58.4 Ω·cm 2;90d盐雾后Q420NH裸钢的 R r 值为67.5 Ω·cm 2 ,稳定化处理后耐候钢的 R r 值为89.6 Ω·cm 2。两种样品的 R r 值均随盐雾时间的增长而增大,但稳定化处理耐候钢的 R r 值均大于同时期的裸钢样品,说明稳定化处理提高了锈层的电化学保护性能。

  • 图11 Q420NH裸钢和稳定化处理的耐候钢在3.5wt.%NaCl溶液中的电化学阻抗谱

  • Fig.11 Electrochemical impedance spectroscopy of Q420NH steel and Q420NH steel with stabilizer in 3.5wt.%NaCl solution

  • 图12 EIS拟合电路

  • Fig.12 EIS equivalent circuit model

  • 3 结论

  • (1)稳定化处理不改变耐候钢锈层的成分,两种试样的锈层均主要由Fe3O4、γ-FeOOH、α-FeOOH、 β-FeOOH及低结晶度的Fe5HO8·4H2O组成。稳定化处理的试样锈层中保护性的 α-FeOOH相分布更加广泛。

  • (2)稳定化处理剂有助于促进腐蚀微电池反应、加速耐候钢生锈,还可以起到缓蚀剂和促进 α-FeOOH形成的作用;羟基氧化铁为锈层生长提供了优先形核的位置,二者协同作用促进了致密性锈层的生长和稳定。

  • (3)稳定化处理技术促进了耐候钢表面保护性锈层的快速生长,以及Cr、Cu等合金元素在锈层中的富集,稳定化处理后的试样具有更佳的耐腐蚀性能。

  • 参考文献

    • [1] 刘涛,王胜民,侯云波,等.耐候钢表面锈层稳定化研究现状[J].表面技术,2018,10:240-248.LIU Tao,WANG Shengmin,HOU Yunbo,et al.Research status on surface rust layer stabilization of weathering steel[J].Surface Technology,2018,10:240-248.(in Chinese)

    • [2] LIU Pan,HU Lulu,ZHAO Xuyang,et al.Investigation of microstructure and corrosion behavior of weathering steel in aqueous solution containing different anions for simulating service environments[J].Corrosion Science,2020,170:108686.

    • [3] 潘雪新,姜海昌,胡小锋,等.G-355NH 耐候钢在不同区域气候环境中的大气腐蚀行为研究[J].材料保护,2020,53(5):1-9.PAN Xuexin,JIANG Haichang,HU Xiaofeng,et al.Corrosion behaviors of G-355NH weathering resistant steel in different regional climate[J].Materials Protection,2020,53(5):1-9.(in Chinese)

    • [4] BERNARDI E,VASSURA I,RAFFO S,et al.Influence of inorganic anions from atmospheric depositions on weathering steel corrosion and metal release[J].Construction and Building Materials,2020,236:117515.

    • [5] ZHANG Xu,YANG Shanwu,GUO Hui,et al.Atmospheric corrosion behavior of weathering steel in periodically changed environment[J].ISIJ International,2014,54(4):909-915.

    • [6] 朱思远,于强,陈克坚,等.某耐候钢桥锈层稳定化处理技术的探索[J].材料保护,2020,6:139-143.ZHU Siyuan,YU Qiang,CHEN Kejian,et al.Exploration on rust layer stabilization treatment technology for a weathering steel bridge[J].Materials Protection,2020,6:139-143.(in Chinese)

    • [7] 高立军,杨建炜,张旭,等.耐候钢表面锈层稳定化处理技术研究[J].表面技术,2020,49(3):255-261.GAO Lijun,YANG Jianwei,ZHANG Xu,et al.Rust stabilization treatment of weathering steel surface[J].Surface Technology,2020,49(3):255-261.(in Chinese)

    • [8] 石振家,王雷,陈楠,等.耐候钢表面锈层及其稳定化处理现状与发展趋势[J].腐蚀科学与防护技术,2015,27(5):503-508.SHI Zhenjia,WANG Lei,CHEN Nan,et al.Status and development trend of the surface rust layer and its stabilization treatment of weathering steel[J].Corrosion Science and Protection Technology,2015,27(5):503-508.(in Chinese)

    • [9] PHUONG T D,BACH T N.Compositional and microstructural effect on atmospheric corrosion of weathering steel[J].Journal of Metallurgy and Materials Science,2008,50(1):23-31.

    • [10] 李明,刘丽宏,李晓刚.耐候钢锈层稳定化处理技术及其评价方法[J].全面腐蚀控制,2006,20(4):5-9.LI Ming,LIU Lihong,LI Xiaogang.Review on methods of rust stabilizing surface treatment and test for weathering steel[J].Total Corrosion Control,2006,20(4):5-9.(in Chinese)

    • [11] TRAVASSOS S,ALMEIDA M,CATUOGNO C,et al.Non-destructive thickness measurement as a tool to evaluate the evolution of patina layer formed on weathering steel exposed to the atmosphere[J].Journal of Materials Research and Technology,2020,9(1):687-699.

    • [12] 刘涛,王胜民,赵晓军.耐候钢锈层的稳定化处理及锈层形成[J].中国表面工程,2019,32(6):98-104.LIU Tao,WANG Shengmin,ZHAO Xiaojun.Stabilization treatment and formation of rust layer on weathering steel[J].China Surface Engineering,2019,32(6):98-104.(in Chinese)

    • [13] ZULKIFLI F,ALI N,YUSOF M,et al.Henna leaves extract as a corrosion inhibitor in acrylic resin coating[J].Progress in Organic Coatings,2017,105:310-319.

    • [14] 肖菲,杨敬霞,孙学军,等.工业用水性丙烯酸面漆的制备[J].现代涂料与涂装,2020,23(4):1-3.XIAO Fei,YANG Jingxia,SUN Xuejun,et al.Preparation of waterborne acrylic topcoat for industry[J].Modern Paint & Finishing,2020,23(4):1-3.(in Chinese)

    • [15] SONG Dongdong,WAN Hongxia,TU Xiaohui,et al.A etter understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy[J].Progress in Organic Coatings,2020,142:105558.

    • [16] HAO Long,ZHANG Sixun,DONG Junhua,et al.Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments[J].Corrosion Science,2011,53(12):4187-4192.

    • [17] HAO Long,ZHANG Sixun,DONG Junhua,et al.A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion[J].Corrosion Science,2012,54:244-250.

    • [18] 刘丽宏,齐慧滨,卢燕平,等.耐候钢的腐蚀及表面稳定化处理技术[J].腐蚀与防护,2002,23(12):515-518.LIU Lihong,QI Huibin,LU Yanping,et al.Corrosion properties and surface rust scale stabilizing treatments of weathering steels[J].Corrosion and Protection,2002,23(12):515-518.(in Chinese)

    • [19] GONG Ke,WU Ming,LIU Guangxin.Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl and HSO3 in a wet–dry cycle environment[J].Corrosion Science,2020,165:108382.

    • [20] 刘涛.耐候钢表面锈层稳定化及处理液的研究[D].昆明:昆明理工大学,2019.LIU Tao.Study on stabilization of the rust layer on weathering steel surface and treatment liquid[D].Kunming:Kunming University of Science and Technology,2019.(in Chinese)

    • [21] LIU Haixia,HUANG Feng,YUAN Wei,et al.Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere[J].Corrosion Science,2020,173:108758.

    • [22] 杨晓梅.钢大气腐蚀锈层的激光拉曼光谱研究[J].光散射学报,2007,19(2):134-137.YANG Xiaomei.The research of Raman spectrum on steel rusty layer from atmosphere corrosion[J].The Journal of Light Scattering,2007,19(2):134-137.(in Chinese)

    • [23] DHAIVEEGAN P,ELANGOVAN N,NISHIMURA T,et al.Weathering steel in industrial-marine-urban environment:Field study[J].Materials Transactions,2016,57(2):148-155.

    • [24] 刘弘,杨善武,张旭,等.耐候钢表面预处理对其腐蚀行为的影响[J].材料热处理学报,2015,36(5):178-183.LIU Hong,YANG Shanwu,ZHANG Xu,et al.Influence of surface pre-treatment on corrosion behavior of weathering steel[J].Transactions of Materials and Heat Treatment,2015,36(5):178-183.(in Chinese)

    • [25] 刘建容,黄先球,张万灵,等.耐候钢表面稳定化处理技术[J].武钢技术,2012,50(3):59-62.LIU Jianrong,HUANG Xianqiu,ZHANG Wanling,et al.Surface stabilizing treatment technology for weather resistance steel[J].Wisco Technology,2012,50(3):59-62.(in Chinese)

    • [26] 张全成,吴建生,郑文龙,等.耐候钢表面锈层稳定化过程研究[J].上海金属,2004,26(3):10-12.ZHANG Quancheng,WU Jiansheng,ZHENG Wenlong,et al.Stabilization process of rust layer on surface of weathering steel[J].Shanghai Metals,2004,26(3):10-12.(in Chinese)

    • [27] 高立军,杨建炜,张旭,等.耐候钢锈层稳定化处理剂及其耐大气腐蚀性能研究[J].金属材料与冶金工程,2019,5:21-25.GAO Lijun,YANG Jianwei,ZHANG Xu,et al.Study on surface rust stabilizers and corrosion resisting properties for weathering steels[J].Metal Materials and Metallurgy Engineering,2019,5:21-25.(in Chinese)

    • [28] 于东云,高立军,杨建炜,等.模拟工业环境下耐候钢水性锈层稳定剂耐蚀性的研究[J].电镀与涂饰,2016,35(18):980-984.YU Dongyun,GAO Lijun,YANG Jianwei,et al.Study on corrosion resistance of waterborne rust-layer stabilizer on weathering steel in a simulated industrial environment[J].Electroplating & finishing,2016,35(18):980-984.(in Chinese)

  • 参考文献

    • [1] 刘涛,王胜民,侯云波,等.耐候钢表面锈层稳定化研究现状[J].表面技术,2018,10:240-248.LIU Tao,WANG Shengmin,HOU Yunbo,et al.Research status on surface rust layer stabilization of weathering steel[J].Surface Technology,2018,10:240-248.(in Chinese)

    • [2] LIU Pan,HU Lulu,ZHAO Xuyang,et al.Investigation of microstructure and corrosion behavior of weathering steel in aqueous solution containing different anions for simulating service environments[J].Corrosion Science,2020,170:108686.

    • [3] 潘雪新,姜海昌,胡小锋,等.G-355NH 耐候钢在不同区域气候环境中的大气腐蚀行为研究[J].材料保护,2020,53(5):1-9.PAN Xuexin,JIANG Haichang,HU Xiaofeng,et al.Corrosion behaviors of G-355NH weathering resistant steel in different regional climate[J].Materials Protection,2020,53(5):1-9.(in Chinese)

    • [4] BERNARDI E,VASSURA I,RAFFO S,et al.Influence of inorganic anions from atmospheric depositions on weathering steel corrosion and metal release[J].Construction and Building Materials,2020,236:117515.

    • [5] ZHANG Xu,YANG Shanwu,GUO Hui,et al.Atmospheric corrosion behavior of weathering steel in periodically changed environment[J].ISIJ International,2014,54(4):909-915.

    • [6] 朱思远,于强,陈克坚,等.某耐候钢桥锈层稳定化处理技术的探索[J].材料保护,2020,6:139-143.ZHU Siyuan,YU Qiang,CHEN Kejian,et al.Exploration on rust layer stabilization treatment technology for a weathering steel bridge[J].Materials Protection,2020,6:139-143.(in Chinese)

    • [7] 高立军,杨建炜,张旭,等.耐候钢表面锈层稳定化处理技术研究[J].表面技术,2020,49(3):255-261.GAO Lijun,YANG Jianwei,ZHANG Xu,et al.Rust stabilization treatment of weathering steel surface[J].Surface Technology,2020,49(3):255-261.(in Chinese)

    • [8] 石振家,王雷,陈楠,等.耐候钢表面锈层及其稳定化处理现状与发展趋势[J].腐蚀科学与防护技术,2015,27(5):503-508.SHI Zhenjia,WANG Lei,CHEN Nan,et al.Status and development trend of the surface rust layer and its stabilization treatment of weathering steel[J].Corrosion Science and Protection Technology,2015,27(5):503-508.(in Chinese)

    • [9] PHUONG T D,BACH T N.Compositional and microstructural effect on atmospheric corrosion of weathering steel[J].Journal of Metallurgy and Materials Science,2008,50(1):23-31.

    • [10] 李明,刘丽宏,李晓刚.耐候钢锈层稳定化处理技术及其评价方法[J].全面腐蚀控制,2006,20(4):5-9.LI Ming,LIU Lihong,LI Xiaogang.Review on methods of rust stabilizing surface treatment and test for weathering steel[J].Total Corrosion Control,2006,20(4):5-9.(in Chinese)

    • [11] TRAVASSOS S,ALMEIDA M,CATUOGNO C,et al.Non-destructive thickness measurement as a tool to evaluate the evolution of patina layer formed on weathering steel exposed to the atmosphere[J].Journal of Materials Research and Technology,2020,9(1):687-699.

    • [12] 刘涛,王胜民,赵晓军.耐候钢锈层的稳定化处理及锈层形成[J].中国表面工程,2019,32(6):98-104.LIU Tao,WANG Shengmin,ZHAO Xiaojun.Stabilization treatment and formation of rust layer on weathering steel[J].China Surface Engineering,2019,32(6):98-104.(in Chinese)

    • [13] ZULKIFLI F,ALI N,YUSOF M,et al.Henna leaves extract as a corrosion inhibitor in acrylic resin coating[J].Progress in Organic Coatings,2017,105:310-319.

    • [14] 肖菲,杨敬霞,孙学军,等.工业用水性丙烯酸面漆的制备[J].现代涂料与涂装,2020,23(4):1-3.XIAO Fei,YANG Jingxia,SUN Xuejun,et al.Preparation of waterborne acrylic topcoat for industry[J].Modern Paint & Finishing,2020,23(4):1-3.(in Chinese)

    • [15] SONG Dongdong,WAN Hongxia,TU Xiaohui,et al.A etter understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy[J].Progress in Organic Coatings,2020,142:105558.

    • [16] HAO Long,ZHANG Sixun,DONG Junhua,et al.Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments[J].Corrosion Science,2011,53(12):4187-4192.

    • [17] HAO Long,ZHANG Sixun,DONG Junhua,et al.A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion[J].Corrosion Science,2012,54:244-250.

    • [18] 刘丽宏,齐慧滨,卢燕平,等.耐候钢的腐蚀及表面稳定化处理技术[J].腐蚀与防护,2002,23(12):515-518.LIU Lihong,QI Huibin,LU Yanping,et al.Corrosion properties and surface rust scale stabilizing treatments of weathering steels[J].Corrosion and Protection,2002,23(12):515-518.(in Chinese)

    • [19] GONG Ke,WU Ming,LIU Guangxin.Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl and HSO3 in a wet–dry cycle environment[J].Corrosion Science,2020,165:108382.

    • [20] 刘涛.耐候钢表面锈层稳定化及处理液的研究[D].昆明:昆明理工大学,2019.LIU Tao.Study on stabilization of the rust layer on weathering steel surface and treatment liquid[D].Kunming:Kunming University of Science and Technology,2019.(in Chinese)

    • [21] LIU Haixia,HUANG Feng,YUAN Wei,et al.Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere[J].Corrosion Science,2020,173:108758.

    • [22] 杨晓梅.钢大气腐蚀锈层的激光拉曼光谱研究[J].光散射学报,2007,19(2):134-137.YANG Xiaomei.The research of Raman spectrum on steel rusty layer from atmosphere corrosion[J].The Journal of Light Scattering,2007,19(2):134-137.(in Chinese)

    • [23] DHAIVEEGAN P,ELANGOVAN N,NISHIMURA T,et al.Weathering steel in industrial-marine-urban environment:Field study[J].Materials Transactions,2016,57(2):148-155.

    • [24] 刘弘,杨善武,张旭,等.耐候钢表面预处理对其腐蚀行为的影响[J].材料热处理学报,2015,36(5):178-183.LIU Hong,YANG Shanwu,ZHANG Xu,et al.Influence of surface pre-treatment on corrosion behavior of weathering steel[J].Transactions of Materials and Heat Treatment,2015,36(5):178-183.(in Chinese)

    • [25] 刘建容,黄先球,张万灵,等.耐候钢表面稳定化处理技术[J].武钢技术,2012,50(3):59-62.LIU Jianrong,HUANG Xianqiu,ZHANG Wanling,et al.Surface stabilizing treatment technology for weather resistance steel[J].Wisco Technology,2012,50(3):59-62.(in Chinese)

    • [26] 张全成,吴建生,郑文龙,等.耐候钢表面锈层稳定化过程研究[J].上海金属,2004,26(3):10-12.ZHANG Quancheng,WU Jiansheng,ZHENG Wenlong,et al.Stabilization process of rust layer on surface of weathering steel[J].Shanghai Metals,2004,26(3):10-12.(in Chinese)

    • [27] 高立军,杨建炜,张旭,等.耐候钢锈层稳定化处理剂及其耐大气腐蚀性能研究[J].金属材料与冶金工程,2019,5:21-25.GAO Lijun,YANG Jianwei,ZHANG Xu,et al.Study on surface rust stabilizers and corrosion resisting properties for weathering steels[J].Metal Materials and Metallurgy Engineering,2019,5:21-25.(in Chinese)

    • [28] 于东云,高立军,杨建炜,等.模拟工业环境下耐候钢水性锈层稳定剂耐蚀性的研究[J].电镀与涂饰,2016,35(18):980-984.YU Dongyun,GAO Lijun,YANG Jianwei,et al.Study on corrosion resistance of waterborne rust-layer stabilizer on weathering steel in a simulated industrial environment[J].Electroplating & finishing,2016,35(18):980-984.(in Chinese)

  • 手机扫一扫看