en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郑会,男,1983年出生,硕士,高级工程师。主要研究方向为核电厂材料腐蚀与老化管理。E-mail:zhengh@snpsc.com;

郭相龙(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为核材料服役失效机理。E-mail:guoxianglong@sjtu.edu.cn

中图分类号:TG178

DOI:10.11933/j.issn.1007−9289.20211009002

参考文献 1
王鹏,柴立强,赵晓宇,等.核环境下的摩擦、磨损与润滑[J].摩擦学学报,2020,40(4):489-503.WANG Peng,CHAI Liqiang,ZHAO Xiaoyu,et al.Friction,wear and lubrication in nuclear environments[J].Tribology,2020,40(4):489-503.(in Chinese)
参考文献 2
丁训慎.蒸汽发生器传热管的微振磨损及其防护[J].核安全,2006(3):27-32.DING Xunshen.Fretting wear and protection of steam generator tubes[J].Nuclear Safety,2006(3):27-32.(in Chinese)
参考文献 3
刘正林.摩擦学原理[M].北京:高等教育出版社,2009.LIU Zhenglin.Principles of tribology[M].Beijing:High Education Press,2009.(in Chinese)
参考文献 4
牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22.NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al.Perspective of influence of temperature on friction and wear behavior[J].China Surface Engineering,2020,33(6):1-22.(in Chinese)
参考文献 5
WATERHOUSE R B.Fretting fatigue[J].Material Science & Engineering,1981(25):201-206.
参考文献 6
刘丽艳,王一鹏,朱勇,等.蒸汽发生器U形管湍流抖振及微动磨损研究[J].振动与冲击,2021,40(8):35-40.LIU Liyan,WANG Yipeng,ZHU Yong,et al.A study on turbulent buffeting and fretting wear of U-tube of a steam generator[J].Journal of Vibration and Shock,2021,40(8):35-40.(in Chinese)
参考文献 7
龚嶷,徐雪莲.压水堆核电厂蒸汽发生器老化机理及其影响因素[J].腐蚀与防护,2014,35(2):163-174.GONG Yi,XU Xuelian.Ageing mechanisms and influencing factors of steam generator in PWR nuclear power plants[J].Corrosion & Protection,2014,35(2):163-174.(in Chinese)
参考文献 8
LEE Y H,KIM H K,KIM H D,et al.A comparative study on the fretting wear of steam generator tubes in Korean power plants[J].Wear,2003,255(7-12):1198-1208.
参考文献 9
HONG J K,KIM I S.Environment effects on the reciprocating wear of Inconel 690 steam generator tubes[J].Wear,2003,255(7-12):1174-1182.
参考文献 10
辛龙,李杰,陆永浩.Inconel 690 合金高温微动磨损特性研究[J].摩擦学学报,2015,35(4):470-476.XIN Long,LI Jie,LU Yonghao.Fretting wear properties of Inconel 690 alloy at elevated temperature[J].Tribology,2015,35(4):470-476.(in Chinese)
参考文献 11
祁学潮.Inconel 690 合金在海水及乙醇胺溶液(ETA)中的微动腐蚀特性研究[D].成都:西南交通大学,2016.QI Xuechao.Fretting corrosion behavior of Inconel 690 alloy in seawater and ETA solution[D].Chengdu:Southwest Jiaotong University,2016.(in Chinese)
参考文献 12
张晓宇,任平弟,蔡振兵,等.300 ℃氮气中交变载荷条件下 Inconel 690 合金的微动磨损特性[J].中国有色金属学报,2016(3):544-550.ZHANG Xiaoyu,REN Pingdi,CAI Zhenbing,et al.Fretting wear behavior of Inconel 690 alloy under alternating load conditions at 300 ℃ in nitrogen environment[J].The Chinese Journal of Nonferrous Metals,2016(3):544-550.(in Chinese)
参考文献 13
GUO Xianglong,LAI Ping,TANG Lichen,et al.Fretting wear of alloy 690 tube mated with different materials in high temperature water[J].Wear,2018,400-401:119-126.
参考文献 14
李杰,陆永浩.位移幅值对 Inconel 600 合金微动磨损性能和机制的影响[J].北京科技大学学报,2014(10):1328-1334.LI Jie,LU Yonghao.Displacement amplitude effect on the fretting wear behavior and mechanism of Inconel 600 alloys[J].Journal of University of Science and Technology,2014(10):1328-1334.(in Chinese)
参考文献 15
张晓宇.核电蒸汽发生器传热管切向微动磨损机理研究[D].成都:西南交通大学,2013.ZHANG Xiaoyu.Studies on tangential fretting wear mechanisms of steam generator tubes in nuclear power systems[D].Chengdu:Southwest Jiaotong University,2013.(in Chinese)
参考文献 16
CAI Z B,PENG J F,QIAN H,et al.Impact fretting wear behavior of alloy 690 tubes in dry and deionized water conditions[J].Chinese Journal of Mechanical Engineering,2017,30(4):819-828.
参考文献 17
LAI Ping,GAO Xiaochuan,TANG Lichen,et al.Effect of temperature on fretting wear behavior and mechanism of alloy 690 in water[J].Nuclear Engineering and Design,2018,327(2):51-60.
目录contents

    摘要

    由于试验装置的限制,在模拟工程服役环境的高温高压水环境下对三代核电用 690 合金管 / 405 不锈钢抗振条(AVB) 的高频微动磨损研究存在不足,影响了对核电厂蒸汽发生器传热管结构完整性评价的有效性。在模拟压水堆核电厂二回路高温高压水环境下,以 690 合金传热管为研究对象,开展高频切向微动磨损试验。试验研究不同位移幅值(D =20、30、40、80、 120 μm)对 690 合金管微动磨损行为的影响。试验结束后,借助扫描电子显微镜、能谱仪和三维形貌仪对磨损区域进行形貌表征、能谱分析和磨损体积计算。试验结果表明:随着位移幅值的增加,磨损接触面积增大,磨损深度和磨损体积均增加, 磨损加剧。当位移幅值较小时(D =20、30、40 μm),磨屑不易排出接触面,多黏着在磨痕中心,磨损机制主要是黏着磨损; 当位移幅值增加至 80、120 μm 时,磨屑分布均匀,磨损机制向剥层磨损转变。随着磨损机制的转变,磨损率呈现先增加后降低的趋势,在 D =80 μm 时,磨损率最大。通过更符合工程实际的高温高压水环境试验,对比了不同位移幅值下的传热管微动磨损性能,给出了磨损率随位移幅值变化的趋势,初步阐明了磨损机制,有利于核电装备的摩擦学性能提升,对核电厂 690 传热管的结构完整性评价有较好的指导作用。

    Abstract

    Due to the limitation of the test equipment, the research on the high-frequency fretting wear tests of the alloy 690 tube / 405 stainless steel anti-vibration bar (AVB) for the third generation nuclear power plants in the high temperature and high pressure water environment that simulates the service environment is insufficient, which affects the effectiveness of the structural integrity assessment of the steam generator in the nuclear power plant. Hence, high-frequency tangential fretting wear tests of alloy 690 tubes are carried out in high temperature high pressure water which simulates the secondary side environment of PWR. The effects of displacement amplitudes (D =20, 30, 40, 80 and 120 μm) on fretting wear characteristics of alloy 690 tubes is investigated. After tests, the worn surfaces are examined through SEM, EDS and 3D profiler to acquire the wear morphology, wear products composition and wear volume. The results show that the contact area, the wear depth and the wear volume increase with the enlargement of the displacement amplitudes. When the displacement amplitudes are small (D =20, 30 and 40 μm), the wear mechanism mainly is adhesive wear, so that the wear products tend to stuck to the center of the contact surfaces. When the displacement amplitudes increase to 80 μm and 120 μm, the wear mechanism changes into delamination in which the wear products distribute uniformly on the surfaces. With the change of the wear mechanism, the wear rate shows a trend of first increasing and then decreasing, and reaches the maximum at D =80 μm. Through tests in the high temperature and high pressure water environment, which is more in accordance with the actual engineering environment, the fretting wear properties of the heat transfer tubes under different displacement amplitudes are compared. The trend of the wear rates changing with the displacement amplitudes is given, and the wear mechanisms are preliminarily clarified, which is beneficial to the improvements of the tribological property of nuclear power equipment and the directive function for the structural integrity assessments of the 690 heat transfer tubes in nuclear power plants.

  • 0 前言

  • 微动是指在交变载荷的作用下,两个“紧密” 接触部件发生微米量级的相对运动,交变载荷包括气流波动、热循环应力、疲劳载荷等[1-2]。磨损是指在相对运动过程中接触面的物质不断发生损耗的过程[3-4]。位移是微动的基本参数之一,位移幅值的大小直接影响两个接触面的相对大小,继而影响应力的接触分布和磨屑的排出。一般来说,当位移幅值较小时,接触表面的相对位移主要通过材料弹性变形调节,微动损伤轻微;但当位移幅值较大时,接触表面发生的相对位移较大,在微动磨损过程中,磨屑不断排出,损伤较为严重。

  • 在压水堆核电厂(PWR)中,蒸汽发生器(SG) 传热管作为一二回路的热交换部件位于~280℃、~10MPa的高温高压水中。在运行过程中,高温高压的流体介质通常会引发传热管的流致振动,其激振力会驱动传热管与其支撑构件如抗振条 (AVB)、支撑板(SP)等发生相对位移,从而在接触区域产生微动磨损损伤,导致SG传热管表面出现减薄和穿孔[5-7]

  • 目前,对SG传热管的微动磨损损伤研究主要以试验为主。其中对于载荷和滑动位移的研究最为普遍,LEE和HONG等[8-9]通过试验分析了690合金管在不同滑移距离和法向载荷下的磨损系数,发现当法向载荷小于40N或者滑动距离小于100 μm时,不会出现剧烈磨损情况,当发生剧烈磨损时,磨损量是温和磨损的数十倍甚至上百倍,应该尽量避免剧烈磨损的发生。辛龙等[10]研究了不同法向力对690传热管与304不锈钢磨损机理的影响,研究结果表明在磨损过程中存在黏着磨损、分层、氧化等行为,微动磨损促进了材料的氧化,在磨损截面最外层存在富铁尖晶石,内层存在Cr2O3。祁学潮[11] 针对介质化学腐蚀对磨损的影响进行了试验研究,发现在乙醇胺溶液中690合金的微动腐蚀与磨损呈“负交互作用”。张晓宇等[12]研究了交变载荷条件下690合金在300℃氮气中的磨损动力学行为,结果表明微动行为与激振频率密切相关,由于交变法向力和切向力共同作用,微动产生叠加效应,使剥层现象更加突出。郭相龙等[13]对690合金管进行高温磨试试验,对法向载荷的大小和滑动距离影响进行了分析,结果表明,随着滑动幅值和法向载荷的增大,690合金管的磨损量逐渐增大,但磨损系数先减小后趋于相对恒定,这是由磨损方式转变引起的。

  • 目前,针对SG传热管微动磨损研究主要以球面接触为主,材料多为600或690合金管与304不锈钢配副[14],且试验环境与服役环境具有很大的差异性[15],并与工程实际有一定的差距[16-17]。本文以三代核电用690合金管/405不锈钢AVB为研究对象,采用管板接触模式,研究在模拟PWR二回路高温高压水环境下,位移幅值对690合金管高频微动磨损的影响。

  • 1 材料和方法

  • 试验材料为690合金管和405不锈钢AVB,试验采用管/板接触方式。采用机械加工的方式将690合金管(φ17.5×1mm)切割为长度为16mm的管状试样,对磨副405不锈钢AVB加工为12mm× 10mm×4mm的板状试样。将加工好的试样利用超声波清洗机依次采用丙酮和无水乙醇进行清洗,去除机械加工残留的杂质。试验装置及试验过程中管/板摩擦副的接触方式和相对运动状态如图1。

  • 试验环境为高温高压纯水,试验温度(T)为285℃,试验压力(P)为10.5MPa,采用氩气除氧,保证溶液中溶解氧(DO)浓度小于5 μg/L。微动磨损试验参数如下:试验过程中采用高温弹簧加载,法向载荷(F n)为15N,试验频率(f)为30Hz,循环周次(N)为518.4万次,位移幅值(D)分别为20、30、40、80和120 μm。为保证试验数据的准确性和可靠性,每组试验进行了重复试验。

  • 图1 试验装置及摩擦副示意图

  • Fig.1 Test Equipment and scheme of friction pair

  • 为探究690传热管的磨损机理,试验结束后,采用扫描电子显微镜(拉曼图像-扫描电子显微镜联用仪,RISE-MAGNA)对摩擦副的磨损区域进行形貌分析。采用白光干涉仪(Bruker, ContourGT-I)对磨损区域进行三维测量,得到磨损轮廓和磨损量,包括磨损体积和磨损率。磨损率指单位长度内单位载荷下所磨损的体积,可按下式计算:

  • Vr=VN2DFn

  • 式中,V r 为磨损率,V 为磨损体积,N 为循环周次, D 为位移幅值,F n 为法向载荷。

  • 2 结果与讨论

  • 2.1 磨痕全貌表征

  • 如图2所示为690合金管与405AVB在五组不同位移幅值条件下微动运行后的磨损形貌,传热管与AVB的磨损形貌一一对应。从图2a~2f中可以看出,当 D=20、30、40 μm时,磨损形貌比较轻微,各组磨痕形状比较一致。如图2g~2j,当 D=80、 120 μm时,磨损痕迹分布比较明显,且沿微动方向上的磨损特征更为明显,当 D=80 μm时,磨痕出现高低不平的现象,但当 D=120 μm时,因位移幅值增加,磨痕更为均匀。

  • 图2 不同位移幅值下690传热管/405抗振条磨损全貌

  • Fig.2 Morphology of worn area between 690tubes and 405AVBs with different displacement amplitudes

  • 2.2 磨痕特征形貌及能谱分析

  • 为进一步明确不同位移幅值的磨损机理,对传热管磨损区域进行放大表征,结果如图3~7所示。图3为690合金管与405AVB在 D=20 μm时磨损特征形貌表征,磨痕表面磨损轻微,主要是氧化颗粒和小的片层脱离。图4为 D=30 μm时磨损特征形貌表征,此时磨痕并不连续,但对比 D=20 μm时磨痕区域的片层脱离更为明显,脱离的片层面积更大,在磨痕边缘主要是细碎的磨屑。D=20、30 μm时磨痕的磨损机制主要为黏着磨损。在图5中,D=40 μm时,690传热管的磨痕主要为流动涂抹层的形成,表面磨痕平整、均匀,在磨痕边界可以发现存在一个与未磨损区域明显的片层状材料,那是在磨损过程中,摩擦副的表面微凸体剥落,随着运动的迁移,由磨痕中心向边缘过渡,且存在挤压力,使材料细化黏着,形成一层流动的涂抹层,也会覆盖最初材料表面产生的损伤。

  • 图6 为传热管690与抗振条405在 D=80 μm时磨损特征形貌表征,对于磨痕中颜色不均匀的区域放大观察可知,多为不均匀脱落导致,且在脱落凹处多为磨屑颗粒。在磨痕边缘可以观察到明显的片层状脱落,部分脱落材料未完全脱离表面,磨损机制主要为剥层磨损。

  • 图3 传热管磨痕特征表征(D=20 μm)

  • Fig.3 Characters of the worn area on the tube (D=20 μm)

  • 图4 传热管磨痕特征表征(D=30 μm)

  • Fig.4 Characters of the worn area on the tube (D=30 μm)

  • 图7 为传热管690在 D=120 μm时磨损特征形貌表征,因为位移幅值较大,材料分布均匀,材料细化,多为细小的磨屑颗粒,磨痕边缘为剥层区域。为确认在磨损过程中690合金管磨损区域是否发生了摩擦氧化反应及磨屑颗粒的性质,选择磨痕中心和磨痕边缘特征点进行了EDS分析。

  • 图5 传热管磨痕特征表征(D=40 μm)

  • Fig.5 Characters of the worn area on the tube (D=40 μm)

  • 图6 传热管磨痕特征表征(D=80 μm)

  • Fig.6 Characters of the worn area on the tube (D=80 μm)

  • 图7 传热管磨痕特征表征(D=120 μm)

  • Fig.7 Characters of the worn area on the tube (D=120 μm)

  • 如图8及表1、2所示,在磨痕中心,氧元素含量最高的位置为点1,为明显的氧化颗粒,说明在图7中的颗粒多为氧化的磨屑,其次是点3,点3为磨痕中心的“脊状”区域的最高点,说明在磨痕中心形成了一层氧化层,摩擦热和氧化作用促进了氧化反应的进行,点2为材料剥落后裸露出来的新鲜组织材料,未被完全氧化,所以氧元素含量相对较少。在磨痕边缘,氧元素含量最高的是点4深色区域,说明在磨痕边缘形成了磨屑氧化层。对比磨痕中心和磨痕边缘氧元素含量发现,在磨痕中心氧元素含量普遍较高,说明磨痕中心的摩擦热具有促进氧化反应的作用,在磨痕中心散热困难。在磨痕边缘有水流动,具有一定的散热作用。

  • 图8 传热管磨痕能谱分析(D=120 μm)

  • Fig.8 EDS of the worn area on the tube (D=120 μm)

  • 表1 磨痕中心各点EDS结果

  • Table1 EDS results of the the center of the worn area

  • 表2 磨痕边缘各点EDS结果

  • Table2 EDS results of the the edge of the worn area

  • 2.3 三维形貌表征

  • 图9 为传热管在五种位移幅值条件下的三维形貌。对比可见,在低位移幅值时磨损较轻微,磨痕被表面初始粗糙度覆盖影响。在 D=80 μm和 D=120 μm时,磨痕轮廓较清晰,且磨损较深的地方多分布在磨痕两端,磨痕中心区域多为红色,说明在磨痕中心区域材料不易排出,多被挤压变形堆积在中心。当 D=120 μm时,中心红色区域减少,说明位移幅值的增加有助于脱落的材料排出磨痕区域。

  • 图9 传热管磨损区域在不同位移幅值下的三维形貌

  • Fig.9 3D morphology of worn area on the690tubes with different displacement amplitudes

  • 为便于直观对比磨损深度和宽度二维轮廓,选择磨损最深的区域,平行于微动磨损方向提取二维轮廓信息,如图10所示。由图可知,在 D=20、30和40 μm时,磨损深度较轻,磨痕的轮廓多为原始表面的起伏。当 D=80 μm时,最大磨损深度增加为27.71 μm;当 D=120 μm时,最大磨损深度增加为49.37 μm;最深处增加了接近一倍。

  • 图10 传热管磨损最深处的二轮廓形貌

  • Fig.10 2D profile of the tubes at the maximum worn depth

  • 图11为传热管690与抗振条对磨后的磨损体积和磨损率对比。通过对比发现,随着位移幅值的增加,690传热管的磨损体积逐渐增加,当 D ≤40 μm时,磨损体积增长速率较慢,当 D 从40 μm增加至80 μm时,磨损体积从0.20×108 μm 3 急剧增加至3.04×108 μm 3。磨损率随着位移幅值的增加呈现先降低后增加再降低的趋势,在 D=30 μm时,磨损率降至最低为2.63×10-6 mm 3/(N·m),当 D=80 μm时,磨损率最大,为24.46×10−6 mm 3/(N·m),主要是由磨损机制的转变导致。

  • 图11 传热管在不同位移幅值下的磨损体积与磨损率

  • Fig.11 Wear volume and wear rate of the690tubes with different displacement amplitudes

  • 3 结论

  • (1)突破了以往球面磨损及高温气态环境的局限,在模拟工程服役环境的高温高压水环境下对三代核电用690合金管/405不锈钢AVB,采用管板接触模式开展了切向微动磨损试验,研究了位移幅值对690传热管与405不锈钢AVB在高温高压水环境下高频微动磨损行为的影响。

  • (2)随位移幅值增大,磨损体积逐渐增加,且690传热管磨损机制由黏着磨损转变为剥层磨损; 磨损率呈现先增加后降低的趋势,在 D=80 μm时最大。

  • (3)通过高温高压水环境试验,对比了不同位移幅值下的传热管微动磨损性能,给出了磨损率随位移幅值变化的趋势,初步阐明了磨损机制,有利于核电装备的摩擦学性能提升,对核电厂690传热管的结构完整性评价有较好的指导作用。

  • (4)通过进一步系统地研究其它影响因素如微动频率、法向载荷、磨损时间等对690合金传热管微动磨损性能、磨损机制的影响,可更全面地掌握其磨损规律,支撑蒸汽发生器设计、评审和老化管理,支撑核电厂长期安全、可靠、经济运行。

  • 参考文献

    • [1] 王鹏,柴立强,赵晓宇,等.核环境下的摩擦、磨损与润滑[J].摩擦学学报,2020,40(4):489-503.WANG Peng,CHAI Liqiang,ZHAO Xiaoyu,et al.Friction,wear and lubrication in nuclear environments[J].Tribology,2020,40(4):489-503.(in Chinese)

    • [2] 丁训慎.蒸汽发生器传热管的微振磨损及其防护[J].核安全,2006(3):27-32.DING Xunshen.Fretting wear and protection of steam generator tubes[J].Nuclear Safety,2006(3):27-32.(in Chinese)

    • [3] 刘正林.摩擦学原理[M].北京:高等教育出版社,2009.LIU Zhenglin.Principles of tribology[M].Beijing:High Education Press,2009.(in Chinese)

    • [4] 牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22.NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al.Perspective of influence of temperature on friction and wear behavior[J].China Surface Engineering,2020,33(6):1-22.(in Chinese)

    • [5] WATERHOUSE R B.Fretting fatigue[J].Material Science & Engineering,1981(25):201-206.

    • [6] 刘丽艳,王一鹏,朱勇,等.蒸汽发生器U形管湍流抖振及微动磨损研究[J].振动与冲击,2021,40(8):35-40.LIU Liyan,WANG Yipeng,ZHU Yong,et al.A study on turbulent buffeting and fretting wear of U-tube of a steam generator[J].Journal of Vibration and Shock,2021,40(8):35-40.(in Chinese)

    • [7] 龚嶷,徐雪莲.压水堆核电厂蒸汽发生器老化机理及其影响因素[J].腐蚀与防护,2014,35(2):163-174.GONG Yi,XU Xuelian.Ageing mechanisms and influencing factors of steam generator in PWR nuclear power plants[J].Corrosion & Protection,2014,35(2):163-174.(in Chinese)

    • [8] LEE Y H,KIM H K,KIM H D,et al.A comparative study on the fretting wear of steam generator tubes in Korean power plants[J].Wear,2003,255(7-12):1198-1208.

    • [9] HONG J K,KIM I S.Environment effects on the reciprocating wear of Inconel 690 steam generator tubes[J].Wear,2003,255(7-12):1174-1182.

    • [10] 辛龙,李杰,陆永浩.Inconel 690 合金高温微动磨损特性研究[J].摩擦学学报,2015,35(4):470-476.XIN Long,LI Jie,LU Yonghao.Fretting wear properties of Inconel 690 alloy at elevated temperature[J].Tribology,2015,35(4):470-476.(in Chinese)

    • [11] 祁学潮.Inconel 690 合金在海水及乙醇胺溶液(ETA)中的微动腐蚀特性研究[D].成都:西南交通大学,2016.QI Xuechao.Fretting corrosion behavior of Inconel 690 alloy in seawater and ETA solution[D].Chengdu:Southwest Jiaotong University,2016.(in Chinese)

    • [12] 张晓宇,任平弟,蔡振兵,等.300 ℃氮气中交变载荷条件下 Inconel 690 合金的微动磨损特性[J].中国有色金属学报,2016(3):544-550.ZHANG Xiaoyu,REN Pingdi,CAI Zhenbing,et al.Fretting wear behavior of Inconel 690 alloy under alternating load conditions at 300 ℃ in nitrogen environment[J].The Chinese Journal of Nonferrous Metals,2016(3):544-550.(in Chinese)

    • [13] GUO Xianglong,LAI Ping,TANG Lichen,et al.Fretting wear of alloy 690 tube mated with different materials in high temperature water[J].Wear,2018,400-401:119-126.

    • [14] 李杰,陆永浩.位移幅值对 Inconel 600 合金微动磨损性能和机制的影响[J].北京科技大学学报,2014(10):1328-1334.LI Jie,LU Yonghao.Displacement amplitude effect on the fretting wear behavior and mechanism of Inconel 600 alloys[J].Journal of University of Science and Technology,2014(10):1328-1334.(in Chinese)

    • [15] 张晓宇.核电蒸汽发生器传热管切向微动磨损机理研究[D].成都:西南交通大学,2013.ZHANG Xiaoyu.Studies on tangential fretting wear mechanisms of steam generator tubes in nuclear power systems[D].Chengdu:Southwest Jiaotong University,2013.(in Chinese)

    • [16] CAI Z B,PENG J F,QIAN H,et al.Impact fretting wear behavior of alloy 690 tubes in dry and deionized water conditions[J].Chinese Journal of Mechanical Engineering,2017,30(4):819-828.

    • [17] LAI Ping,GAO Xiaochuan,TANG Lichen,et al.Effect of temperature on fretting wear behavior and mechanism of alloy 690 in water[J].Nuclear Engineering and Design,2018,327(2):51-60.

  • 参考文献

    • [1] 王鹏,柴立强,赵晓宇,等.核环境下的摩擦、磨损与润滑[J].摩擦学学报,2020,40(4):489-503.WANG Peng,CHAI Liqiang,ZHAO Xiaoyu,et al.Friction,wear and lubrication in nuclear environments[J].Tribology,2020,40(4):489-503.(in Chinese)

    • [2] 丁训慎.蒸汽发生器传热管的微振磨损及其防护[J].核安全,2006(3):27-32.DING Xunshen.Fretting wear and protection of steam generator tubes[J].Nuclear Safety,2006(3):27-32.(in Chinese)

    • [3] 刘正林.摩擦学原理[M].北京:高等教育出版社,2009.LIU Zhenglin.Principles of tribology[M].Beijing:High Education Press,2009.(in Chinese)

    • [4] 牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22.NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al.Perspective of influence of temperature on friction and wear behavior[J].China Surface Engineering,2020,33(6):1-22.(in Chinese)

    • [5] WATERHOUSE R B.Fretting fatigue[J].Material Science & Engineering,1981(25):201-206.

    • [6] 刘丽艳,王一鹏,朱勇,等.蒸汽发生器U形管湍流抖振及微动磨损研究[J].振动与冲击,2021,40(8):35-40.LIU Liyan,WANG Yipeng,ZHU Yong,et al.A study on turbulent buffeting and fretting wear of U-tube of a steam generator[J].Journal of Vibration and Shock,2021,40(8):35-40.(in Chinese)

    • [7] 龚嶷,徐雪莲.压水堆核电厂蒸汽发生器老化机理及其影响因素[J].腐蚀与防护,2014,35(2):163-174.GONG Yi,XU Xuelian.Ageing mechanisms and influencing factors of steam generator in PWR nuclear power plants[J].Corrosion & Protection,2014,35(2):163-174.(in Chinese)

    • [8] LEE Y H,KIM H K,KIM H D,et al.A comparative study on the fretting wear of steam generator tubes in Korean power plants[J].Wear,2003,255(7-12):1198-1208.

    • [9] HONG J K,KIM I S.Environment effects on the reciprocating wear of Inconel 690 steam generator tubes[J].Wear,2003,255(7-12):1174-1182.

    • [10] 辛龙,李杰,陆永浩.Inconel 690 合金高温微动磨损特性研究[J].摩擦学学报,2015,35(4):470-476.XIN Long,LI Jie,LU Yonghao.Fretting wear properties of Inconel 690 alloy at elevated temperature[J].Tribology,2015,35(4):470-476.(in Chinese)

    • [11] 祁学潮.Inconel 690 合金在海水及乙醇胺溶液(ETA)中的微动腐蚀特性研究[D].成都:西南交通大学,2016.QI Xuechao.Fretting corrosion behavior of Inconel 690 alloy in seawater and ETA solution[D].Chengdu:Southwest Jiaotong University,2016.(in Chinese)

    • [12] 张晓宇,任平弟,蔡振兵,等.300 ℃氮气中交变载荷条件下 Inconel 690 合金的微动磨损特性[J].中国有色金属学报,2016(3):544-550.ZHANG Xiaoyu,REN Pingdi,CAI Zhenbing,et al.Fretting wear behavior of Inconel 690 alloy under alternating load conditions at 300 ℃ in nitrogen environment[J].The Chinese Journal of Nonferrous Metals,2016(3):544-550.(in Chinese)

    • [13] GUO Xianglong,LAI Ping,TANG Lichen,et al.Fretting wear of alloy 690 tube mated with different materials in high temperature water[J].Wear,2018,400-401:119-126.

    • [14] 李杰,陆永浩.位移幅值对 Inconel 600 合金微动磨损性能和机制的影响[J].北京科技大学学报,2014(10):1328-1334.LI Jie,LU Yonghao.Displacement amplitude effect on the fretting wear behavior and mechanism of Inconel 600 alloys[J].Journal of University of Science and Technology,2014(10):1328-1334.(in Chinese)

    • [15] 张晓宇.核电蒸汽发生器传热管切向微动磨损机理研究[D].成都:西南交通大学,2013.ZHANG Xiaoyu.Studies on tangential fretting wear mechanisms of steam generator tubes in nuclear power systems[D].Chengdu:Southwest Jiaotong University,2013.(in Chinese)

    • [16] CAI Z B,PENG J F,QIAN H,et al.Impact fretting wear behavior of alloy 690 tubes in dry and deionized water conditions[J].Chinese Journal of Mechanical Engineering,2017,30(4):819-828.

    • [17] LAI Ping,GAO Xiaochuan,TANG Lichen,et al.Effect of temperature on fretting wear behavior and mechanism of alloy 690 in water[J].Nuclear Engineering and Design,2018,327(2):51-60.

  • 手机扫一扫看