en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李青,男,1996年出生,博士研究生。主要研究方向为热喷涂金属/陶瓷防护涂层及核电材料表面防护。E-mail:2410594447@qq.com;

宋鹏(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为热喷涂表面涂层技术防护及高温合金氧化。E-mail:songpeng@kust.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210924001

参考文献 1
OTT L J,ROBB K R,WANG D.Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J].Journal of Nuclear Materials,2014,448(1-3):520-533.
参考文献 2
HOFMANN P.Current knowledge on core degradation phenomena,a review[J].Journal of Nuclear Materials,1999,270(1-2):194-211.
参考文献 3
TERRANI K A.Accident tolerant fuel cladding development:Promise,status,and challenges[J].Journal of Nuclear Materials,2018,501:13-30.
参考文献 4
位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAl coating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)
参考文献 5
TERRANI K A,ZINKLE S J,SNEAD L L.Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J].Journal of Nuclear Materials,2014,448(1-3):420-435.
参考文献 6
PARK D J,JUNG Y I,KIM H G,et al.Oxidation behavior of silicon carbide at 1 200 ℃ in both air and water-vapor-rich environments[J].Corrosion Science,2014,88:416-422.
参考文献 7
PAN D,ZHANG R,WANG H,et al.Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J].Journal of Alloys and Compounds,2016,684:549-555.
参考文献 8
BADINI C,LAURELLA F.Oxidation of FeCrAl alloy:Influence of temperature and atmosphere on scale growth rate and mechanism[J].Surface & Coatings Technology,2001,135(2-3):291-298.
参考文献 9
LI Q,SONG P,LI Z,et al.Effect of water vapor on the oxide growth in FeCrAl-based oxide dispersion-strengthened fuel cladding material at 1 100 ℃ and 1 200 ℃[J].Corrosion Science,2021,191(3):109775.
参考文献 10
FETZER R,WEISENBURGER A,JIANU A,et al.Oxide scale formation of modified FeCrAl coatings exposed to liquid lead[J].Corrosion Science,2011,55(2):213-218.
参考文献 11
AL-BADAIRY H,TATLOCK G J.The influence of the moisture content of the atmosphere on alumina scale formation and growth during high temperature oxidation of PM2000[J].Materials at High Temperatures,2000,17(1):133-137.
参考文献 12
ONAL K,MARIS-SIDA M C,MEIER G H,et al.Water vapor effects on the cyclic oxidation resistance of alumina forming alloys[J].Materials at High Temperatures,2003,20(3):327-337.
参考文献 13
GEORGE N M,TERRANI K,POWERS J,et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J].Annals of Nuclear Energy,2015,75:703-712.
参考文献 14
QUADAKKERS W J,NAUMENKO D,WESSEL E,et al.Growth rates of alumina scales on Fe–Cr–Al alloys[J].Oxidation of Metals,2004,61(1):17-37.
参考文献 15
LIU F,GÖTLIND H,SVENSSON J E,et al.Early stages of the oxidation of a FeCrAlRE alloy(Kanthal AF)at 900 ℃:A detailed microstructural investigation[J].Corrosion Science,2008,50(8):2272-2281.
参考文献 16
ŁODZIANA Z,TOPSØE N Y,NØRSKOV J K.A negative surface energy for alumina[J].Nature Materials,2004,3(5):289-293.
参考文献 17
PINT B A,MORE K L.Characterization of alumina interfaces in TBC systems[J].Journal of Materials Science,2009,44(7):1676-1686.
参考文献 18
PINT B A,ALEXANDER K B.Grain boundary segregation of cation dopants in α-Al2O3 scales[J].Journal of the Electrochemical Society,1998,145(6):1819.
参考文献 19
GOLIGHTLY F A,STOTT F H,WOOD G C.The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy[J].Oxidation of Metals,1976,10(3):163-187.
参考文献 20
NAUMENKO D,PINT B A,QUADAKKERS W J.Current thoughts on reactive element effects in alumina-forming systems:in memory of John Stringer[J].Oxidation of Metals,2016,86(1):1-43.
参考文献 21
HOU P Y,STRINGER J.Oxide scale adhesion and impurity segregation at the scale/metal interface[J].Oxidation of Metals,1992,38(5):323-345.
参考文献 22
MORTAZAVI N,GEERS C,ESMAILY M,et al.Interplay of water and reactive elements in oxidation of alumina-forming alloys[J].Nature Materials,2018,17(7):610-617.
参考文献 23
NAUMENKO D,KOCHUBEY V,NIEWOLAK L,et al.Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements[J].Journal of Materials Science,2008,43(13):4550-4560.
参考文献 24
KVERNES I,OLIVEIRA M,KOFSTAD P.High temperature oxidation of Fe-13Cr-xAl alloys in air water vapor mixtures[J].Corrosion Science,1977,17(3):237-252.
参考文献 25
BUSCAIL H,HEINZE S,DUFOUR P,et al.Water-vapor-effect on the oxidation of Fe-21.5 wt.% Cr-5.6 wt.% Al at 1 000 ℃[J].Oxidation of Metals,1997,47(5):445-464.
目录contents

    摘要

    为了提高核燃料包壳材料的抗高温氧化性能,采用粉末冶金技术制备 FeCrAl 基氧化物弥散强化合金(FeCrAl-ODS), 在高达 1100 ℃和 1200 ℃的高温湿空气中氧化不同时间,采用 SEM、XRD、EDS 和 TEM 等多种分析技术对 FeCrAl-ODS 合金氧化试样进行显微组织定性和定量分析。FeCrAl-ODS 合金在 1200 ℃的增重比在 1100 ℃的快,但是氧化动力学曲线的增长趋势是一致的,最初几小时氧化增重都很快,然后随着保护性氧化物的形成而减慢。由于氧势梯度的存在,氧化层表面有富 Al-Y-Ti-Zr-O 的析出物,随着氧化时间的延长,析出物相更加明显,致密规则的氧化层很好地黏附在合金材料上。FeCrAl-ODS 合金在高达 1100 ℃和 1200 ℃的高温湿空气中,合金表面形成致密规则的氧化层提高了合金的抗高温氧化性能,能够有效提高核燃料元件的寿命和安全可靠性。通过研究高温湿空气中 FeCrAl-ODS 包壳材料氧化层的显微组织,可对该合金的开发、制备和应用提供一定的理论指导和技术支持。

    Abstract

    To improve the high-temperature oxidation resistance of nuclear fuel cladding materials, FeCrAl-based oxide dispersion strengthened steel (FeCrAl-ODS) is developed by powder metallurgy technology. The FeCrAl-ODS alloy is oxidized in high-temperature moist air at 1100 ℃ and 1200 ℃ for different times. The microstructure of oxidized FeCrAl-ODS alloy is qualitatively and quantitatively analyzed by SEM, XRD, EDS and TEM. The weight gain of FeCrAl-ODS alloy at 1200 ℃ is faster than that at 1100 ℃, but the growth trend of oxidation kinetics curve is consistent. The oxidation weight gain is very fast in the first few hours, and then slows down with the formation of protective oxides. Due to the existence of oxygen potential gradient, Al-Y-Ti-Zr-O-rich precipitates are observed on the surface of the oxide layer. With the extension of oxidation time, the precipitates became more obvious, and the dense and regular oxide layer adhered well to the alloy material. The dense and regular oxide layer formed on the surface of FeCrAl-ODS alloy in high-temperature wet air up to 1100 ℃ and 1200 ℃ can improve the high-temperature oxidation resistance of the alloy, and can effectively improve the service life, safety and reliability of nuclear fuel elements. The study of the microstructure of oxide scale formed on FeCrAl-ODS cladding material under high-temperature moist air can provide some theoretical guidance and technical support for the development, preparation and application of the alloy.

  • 0 前言

  • 核燃料元件是核反应堆的核心部件,主要由包壳材料和核燃料芯组成。核燃料元件的寿命和安全可靠性在很大程度上取决于包壳材料的性能[1]。锆基合金在压水堆(PWR)或沸水堆(BWR)的运行条件下表现出相当好的抗腐蚀性,并且中子的吸收截面非常低,辐照生长和蠕变有限。这些特性使其非常适合用作核燃料包壳和常规轻水反应堆 (LWR)的结构部件。然而,如福岛核反应堆事故所示,高温蒸汽环境中锆基合金的侵蚀性氧化和显著的放热会显著增加氢气引起爆炸的风险[2]。因此,提出核电站在严重事故和自然灾害期间的安全问题,并讨论解决办法[3-4]。虽然已经提出各种提高安全性的方法,但用氧化速率较低的先进材料来代替现有的锆基合金燃料包壳是一个基本解决方案[5]。许多先进材料被国际核社会考虑,如FeCrAl合金、MAX相、Mo、SiC[6-7]

  • FeCrAl合金是轻水堆耐事故燃料包壳最合适的候选材料之一,因为它在高温环境下形成保护性的Al2O3氧化层[5]。FeCrAl合金在高达1 300℃的温度下具有优异的抗氧化性,有助于其在高温下工作的部件中使用[8]。对于FeCrAl合金的这些高温应用,已经在广泛的温度范围和不同的环境下研究了其氧化动力学和机理[9-10]。在某些核反应堆事故中,由于冷却剂损失,核燃料包壳可能暴露在高温环境中,因此清楚了解FeCrAl合金在高温环境中的氧化行为对于其在轻水堆中的应用至关重要。尽管许多研究者已经报道了水蒸气对FeCrAl合金氧化的影响,但对其氧化机理的解释仍然存在争议。虽然一些研究人员指出水蒸气加速氧化[11],但其他人声称它对反应几乎没有影响[12]。FeCrAl合金的高温氧化取决于其表面形成的Al2O3 的相态和微观结构。然而,将FeCrAl合金应用于包壳需要将壁厚降低到锆合金的几乎一半,以保持中子经济性[13]

  • 为了克服燃料包壳厚度减小引起的强度下降,开发了FeCrAl基氧化物弥散强化合金 (FeCrAl-ODS),这种合金不仅具有高温抗氧化性,还具有强度和抗辐照性能 [9]。本文旨在研究FeCrAl-ODS合金在高达1 100℃和1 200℃高温湿空气中不同氧化时间氧化层显微组织的演变。目前国内外关于这种合金在高温湿空气中氧化层的生长和微观结构行为的报道有限。本文采用SEM、XRD、 EDS和TEM等多种分析技术对FeCrAl-ODS合金氧化试样进行了显微组织定性和定量分析。

  • 1 试验准备

  • 1.1 合金制备

  • 采用粉末冶金技术制备FeCrAl-ODS合金,其过程如下:①采用雾化工艺获得的Fe-13Cr-4.5Al-2W-0.6Zr-0.4Ti(wt·%)预合金粉末;②预合金粉末与0.35wt·%Y2O3粉末在行星式球磨机上进行机械合金化,球磨转速为300r/min,球料比为10∶1,球磨时间为48h;③球磨后的合金粉末装入包套,经除气、密封后在温度1 150℃、压力160MPa下热等静压烧结成型。最后,经锻造处理后得到FeCrAl-ODS合金试样。采用电火花加工方法将其切割成12.0mm×10.0mm×1.5mm的试样,然后打磨所有试样表面以去除氧化层,并抛光至表面粗糙度小于1.4 μm。在每个试样上钻一个直径为1.2mm的孔,用于悬挂在石英管中。

  • 1.2 高温氧化试验及表征

  • 高温氧化试验在配备蒸汽发生装置的管式炉中进行。在试验过程中,蒸汽发生装置容器内去离子水的温度为60℃,蒸汽通过空气压缩机压入炉中。水蒸气由蒸汽发生器产生。使用Pt丝将样品悬挂于石英管中。一旦达到期望的温度,石英样品管被迅速定位到熔炉的中心。在高温氧化过程中,气氛由20l/h空气和10g/h H2O组成(空气–25%H2O)。试样在1 100℃和1 200℃的高温湿空气中循环5、 10、24、48、96和192h,随后在实验室空气中冷却至室温(约25℃)。冷却过程中的冷却速度为30~40℃/min。用电子天平(精度0.1mg)测量试样的质量变化。经过高温氧化后,用XRD (BRUKER D8Advance)研究试样最外层的相组成。用SEM(Model VEGA3SBH, TESCAN)和EDS (Oxford INCA x-sight 6427)对氧化后的试样表面和抛光截面进行表征。采用TEM(TECNAI G2F30s-twin)对氧化层结构进行分析。

  • 2 结果与讨论

  • 2.1 氧化动力学

  • 图1 显示了FeCrAl-ODS合金在1 100℃和1 200℃的高温湿空气氧化192h的氧化动力学曲线。为了分析氧化动力学,绘制FeCrAl-ODS合金在1 100℃和1 200℃氧化增重随时间的变化曲线。如图1所示,可以发现FeCrAl-ODS合金在1 200℃的增重比在1 100℃的快,但是氧化动力学曲线的增长趋势是一致的。根据Wagner氧化定律[14],FeCrAl-ODS合金的氧化增重满足抛物线规律,即

  • Δmx2=Kpt
    (1)
  • 图1 FeCrAl-ODS合金在1 100和1 200℃的高温湿空气氧化192h的氧化动力学曲线

  • Fig.1 Oxidation kinetics curve of FeCrAl-ODS alloy in moist air after oxidation at 1 100and 1 200℃ for 192h

  • 根据式(1),可以计算出FeCrAl-ODS合金在不同氧化条件下的氧化增重速率常数,见表1。由表1可以看出,FeCrAl-ODS试样在1 200℃的抛物线氧化速率常数比在1 100℃的高。

  • 表1 FeCrAl-ODS合金在湿空气中的抛物线氧化速率常数

  • Table1 Parabolic oxidation rate constants of FeCrAl-ODS alloy in moist air

  • 在这两种不同氧化温度中,氧化在最初几个小时都很快,然后随着保护性氧化物的形成而减慢。该氧化过程可分为三个主要阶段:①初始氧化阶段; ②快速氧化物生长阶段;③由于连续内部 α-Al2O3的形成而减缓氧化物生长阶段[15]。前两个阶段对应于非常早期的氧化阶段,而第三阶段对应于大概1h后的氧化情况。在初始氧化阶段,氧化物混合物在表面成核,大致相当于合金的成分,在此阶段形成保护性差的混合型氧化物和 γ-Al2O3。随后,在快速氧化物生长阶段,γ-Al2O3 快速向外生长,导致快速的质量增加。同时,α-Al2O3 在初始混合氧化物上成核,并向内和向外缓慢生长[16]。最后,在氧化过程第三阶段,向内生长的 α-Al2O3 现在形成了连续层,限制了外部层(γ-Al2O3)生长所需的阳离子供应,这导致氧化速率慢得多。

  • 2.2 氧化层的显微组织

  • 图2 显示了FeCrAl-ODS合金在1 200℃高温湿空气中不同氧化时间的表面XRD图谱。结果表明, 1 200℃高温湿空气氧化后的物相主要为 α-Al2O3 和Fe(Cr),但氧化192h后可以发现FeAl2O4尖晶石相衍射峰。XRD图谱中出现的Fe(Cr)相特征峰可能是由氧化层较薄和合金基体层噪音所致。

  • 图2 FeCrAl-ODS合金在1 200℃的高温湿空气中不同氧化时间的表面XRD图谱

  • Fig.2 Surface XRD pattern of FeCrAl-ODS alloy in moist air after oxidation at 1 200℃ for different oxidation times

  • 为了进一步了解FeCrAl-ODS合金的氧化行为,在1 200℃高温湿空气中不同氧化时间的表面进行表征,并对不同氧化时间形成的氧化皮进行比较。图3显示了1 200℃高温湿空气中不同氧化时间的的表面形貌。随着氧化时间的延长,氧化物晶粒尺寸增长。表2显示了图3中EDS点扫描的化学成分。SEM和EDS分析表明,在1 200℃高温湿空气中不同氧化时间的表面观察到富Y、Ti和Zr析出物在氧化层表面形核和生长,随着氧化时间的延长析出物相更加明显。

  • 图3 FeCrAl-ODS合金在1 200℃湿空气中不同氧化时间的表面形貌SEM

  • Fig.3 Surface morphology SEM of FeCrAl-ODS alloy in moist air at 1 200℃ for different oxidation times

  • 表2 图3中EDS点扫描的化学成分

  • Table2 Chemical composition of points in Fig.1 (at.%)

  • 图4 显示了FeCrAl-ODS合金在1 200℃高温湿空气中不同氧化时间的截面形貌SEM和EDS线扫描结果。从截面形貌SEM结果可以发现致密规则的氧化层很好地黏附在合金材料上。在1 200℃高温湿空气中不同氧化时间氧化层的测量厚度结果如图5所示。随着氧化时间的延长,氧化层厚度逐渐增加。图4所示的EDS线扫描结果表明每个试样上存在氧化铝层。氧化层中白色析出相在横截面上也很明显,白色析出相富含Y、Ti和Zr。这些活性元素在1 200℃下的快速向外传输可能是由于氧势梯度的存在[9, 17]。当添加活性元素作为氧化物分散体时,不会发生内部氧化。在FeCrAl-ODS合金上形成富Y、Ti和Zr氧化物。由于氧势梯度的存在,活性元素的向外输运已经在很大范围内得到了很好的证实,并且扩散通量似乎随着活性元素离子尺寸的减小而增加[18]

  • 图4 FeCrAl-ODS合金在1 200℃湿空气中不同氧化时间的截面形貌SEM和EDS线扫描结果

  • Fig.4 SEM and EDS line scan results of cross-sectional morphology of FeCrAl-ODS alloy in moist air at 1 200℃ for different oxidation times

  • 图5 FeCrAl-ODS合金在1 200℃湿空气中不同氧化时间的氧化层厚度

  • Fig.5 Thickness of oxide layer formed on FeCrAl-ODS alloy in moist air at 1 200℃ for different oxidation times

  • 近年来,很多文献已报道在FeCrAlY合金的研究中观察到类似的两层氧化铝结构[19]。内部氧化铝的柱状晶结构主要是向内生长的氧化层,这是掺Y的FeCrAl的典型特征[9]。外层等轴晶可能是在氧化早期氧化物向外生长形成的,也可能是氧化物在稳态生长期间向外生长的一小部分。为了更加深入分析FeCrAl-ODS合金表面氧化铝的结构,采用TEM和HRTEM对1 100℃湿空气氧化96h合金表面生成的氧化层结构进行表征。需要补充的是,为了方便FIB制备TEM试样,选择用1 100℃湿空气氧化96h生成的氧化层。图6和图7分别显示了FeCrAl-ODS合金在1 100℃湿空气中氧化96h后氧化层上方等轴晶和下方柱状晶的TEM图像和相应的选区电子衍射花样(SAED)图像,以及HRTEM图像。等轴晶和柱状晶相应的SAED图像分别如图6b、6c和图7b、7c所示。图6d和图7d分别显示了等轴晶和柱状晶的HRTEM图像。可以观察到等轴晶(1¯00)和柱状晶(101¯)的晶格条纹,其界面间距分别为0.416nm(如图6e)和0.275nm(如图7e)。

  • 传统FeCrAl合金具有优异的高温抗氧化性,因为形成了致密、连续且生长缓慢的 α-Al2O3 氧化层。添加少量活性元素,例如Y、Zr和Ti,通过降低氧化物剥落的趋势来改善这些合金的氧化行为。人们对活性元素效应提出了不同的解释。据报道,添加活性元素会导致“钉扎物”在合金和氧化层界面处生长,从而将氧化层固定在合金上[20]。相关研究已经表明,合金中的固有杂质硫,会增强氧化物/金属界面处的空隙或裂纹生长,从而导致黏附力丧失。活性元素可以与合金中的固有杂质硫反应,生成稳定的硫化物,空隙数量减少,氧化物黏附性提高[21]。活性元素的添加还可以将氧化物的生长机制从Al和O的组合扩散改变为O的主要向内扩散[22]。因此,避免了氧化物的横向生长,并获得了更好的附着氧化皮。另外,由于Y、Zr和Ti等活性元素在FeCrAl合金中的高氧亲和力和迁移率,发现它们在氧化的初始阶段富集在氧化物表面。在较长的暴露时间内, Y、Zr和Ti以内部氧化物偏析的形式结合到氧化铝中。在偏析到氧化铝晶界时,偏析物减小了氧化铝晶粒尺寸,并为快速O传输以及通过相关孔隙提供了固态扩散路径,从而增加了氧化铝层的生长速率[23]

  • 图6 FeCrAl-ODS合金在1 100℃高温湿空气中氧化96h后氧化层上方等轴晶的TEM分析

  • Fig.6 TEM analysis of the equiaxed grains above the oxide layer of FeCrAl-ODS alloy in moist air after oxidation at 1 100℃ for 96h

  • 一些研究人员报道了水蒸气对氧化铝形成合金氧化行为的影响。在680~980℃,水蒸气对FeCrAl合金的氧化性能影响微乎其微[24]。水蒸气减缓了FeCrAl合金在1 000℃时的早期氧化[25]。水蒸气影响氧化皮和合金之间界面的韧性,可能通过产生羟基和氢离子改变通过氧化皮的传输,并降低氧化皮的黏附性[12]。最近的研究表明,在1 100℃,水蒸气加速了FeCrAl-ODS合金的氧化[9]。在水蒸气的作用下,柱状氧化铝的晶粒尺寸要小得多。氧化铝的晶粒越小,晶界就越多,晶界作为快速扩散路径,在水蒸气存在的情况下,离子的快速扩散可能导致较高的氧化速率。

  • 图7 FeCrAl-ODS合金在1 100℃高温湿空气中氧化96h后氧化层下方柱状晶的TEM分析

  • Fig.7 TEM analysis of the columnar grains beneath the oxide layer of FeCrAl-ODS alloy in moist air after oxidation at 1 100℃ for 96h

  • 3 结论

  • 系统研究FeCrAl-ODS合金在高达1 100℃和1 200℃高温湿空气中氧化后的物相组成、显微组织与氧化性能,得到如下结论:

  • (1) FeCrAl-ODS合金在高达1 100℃ 和1 200℃高温湿空气中,合金表面形成致密规则的氧化层。Y、Zr、Ti等活性元素向外输运,在氧化层外层形成偏析相。氧化铝形成两层晶粒结构,内部柱状晶和外部等轴晶。

  • (2)在高温湿空气中,FeCrAl-ODS合金表面形成致密规则的氧化层提高了合金的抗高温氧化性能。FeCrAl-ODS合金作为潜在的核燃料包壳材料具有充分的耐事故能力,可以为救援和维护提供宝贵的反应时间。

  • (3)所得结果为FeCrAl-ODS合金的制备提供一定的技术支持。后续将继续对活性元素含量对合金高温氧化行为的影响进行探究,完善活性元素对合金氧化性能影响规律的探究。

  • 参考文献

    • [1] OTT L J,ROBB K R,WANG D.Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J].Journal of Nuclear Materials,2014,448(1-3):520-533.

    • [2] HOFMANN P.Current knowledge on core degradation phenomena,a review[J].Journal of Nuclear Materials,1999,270(1-2):194-211.

    • [3] TERRANI K A.Accident tolerant fuel cladding development:Promise,status,and challenges[J].Journal of Nuclear Materials,2018,501:13-30.

    • [4] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAl coating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)

    • [5] TERRANI K A,ZINKLE S J,SNEAD L L.Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J].Journal of Nuclear Materials,2014,448(1-3):420-435.

    • [6] PARK D J,JUNG Y I,KIM H G,et al.Oxidation behavior of silicon carbide at 1 200 ℃ in both air and water-vapor-rich environments[J].Corrosion Science,2014,88:416-422.

    • [7] PAN D,ZHANG R,WANG H,et al.Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J].Journal of Alloys and Compounds,2016,684:549-555.

    • [8] BADINI C,LAURELLA F.Oxidation of FeCrAl alloy:Influence of temperature and atmosphere on scale growth rate and mechanism[J].Surface & Coatings Technology,2001,135(2-3):291-298.

    • [9] LI Q,SONG P,LI Z,et al.Effect of water vapor on the oxide growth in FeCrAl-based oxide dispersion-strengthened fuel cladding material at 1 100 ℃ and 1 200 ℃[J].Corrosion Science,2021,191(3):109775.

    • [10] FETZER R,WEISENBURGER A,JIANU A,et al.Oxide scale formation of modified FeCrAl coatings exposed to liquid lead[J].Corrosion Science,2011,55(2):213-218.

    • [11] AL-BADAIRY H,TATLOCK G J.The influence of the moisture content of the atmosphere on alumina scale formation and growth during high temperature oxidation of PM2000[J].Materials at High Temperatures,2000,17(1):133-137.

    • [12] ONAL K,MARIS-SIDA M C,MEIER G H,et al.Water vapor effects on the cyclic oxidation resistance of alumina forming alloys[J].Materials at High Temperatures,2003,20(3):327-337.

    • [13] GEORGE N M,TERRANI K,POWERS J,et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J].Annals of Nuclear Energy,2015,75:703-712.

    • [14] QUADAKKERS W J,NAUMENKO D,WESSEL E,et al.Growth rates of alumina scales on Fe–Cr–Al alloys[J].Oxidation of Metals,2004,61(1):17-37.

    • [15] LIU F,GÖTLIND H,SVENSSON J E,et al.Early stages of the oxidation of a FeCrAlRE alloy(Kanthal AF)at 900 ℃:A detailed microstructural investigation[J].Corrosion Science,2008,50(8):2272-2281.

    • [16] ŁODZIANA Z,TOPSØE N Y,NØRSKOV J K.A negative surface energy for alumina[J].Nature Materials,2004,3(5):289-293.

    • [17] PINT B A,MORE K L.Characterization of alumina interfaces in TBC systems[J].Journal of Materials Science,2009,44(7):1676-1686.

    • [18] PINT B A,ALEXANDER K B.Grain boundary segregation of cation dopants in α-Al2O3 scales[J].Journal of the Electrochemical Society,1998,145(6):1819.

    • [19] GOLIGHTLY F A,STOTT F H,WOOD G C.The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy[J].Oxidation of Metals,1976,10(3):163-187.

    • [20] NAUMENKO D,PINT B A,QUADAKKERS W J.Current thoughts on reactive element effects in alumina-forming systems:in memory of John Stringer[J].Oxidation of Metals,2016,86(1):1-43.

    • [21] HOU P Y,STRINGER J.Oxide scale adhesion and impurity segregation at the scale/metal interface[J].Oxidation of Metals,1992,38(5):323-345.

    • [22] MORTAZAVI N,GEERS C,ESMAILY M,et al.Interplay of water and reactive elements in oxidation of alumina-forming alloys[J].Nature Materials,2018,17(7):610-617.

    • [23] NAUMENKO D,KOCHUBEY V,NIEWOLAK L,et al.Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements[J].Journal of Materials Science,2008,43(13):4550-4560.

    • [24] KVERNES I,OLIVEIRA M,KOFSTAD P.High temperature oxidation of Fe-13Cr-xAl alloys in air water vapor mixtures[J].Corrosion Science,1977,17(3):237-252.

    • [25] BUSCAIL H,HEINZE S,DUFOUR P,et al.Water-vapor-effect on the oxidation of Fe-21.5 wt.% Cr-5.6 wt.% Al at 1 000 ℃[J].Oxidation of Metals,1997,47(5):445-464.

  • 参考文献

    • [1] OTT L J,ROBB K R,WANG D.Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J].Journal of Nuclear Materials,2014,448(1-3):520-533.

    • [2] HOFMANN P.Current knowledge on core degradation phenomena,a review[J].Journal of Nuclear Materials,1999,270(1-2):194-211.

    • [3] TERRANI K A.Accident tolerant fuel cladding development:Promise,status,and challenges[J].Journal of Nuclear Materials,2018,501:13-30.

    • [4] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAl coating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)

    • [5] TERRANI K A,ZINKLE S J,SNEAD L L.Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J].Journal of Nuclear Materials,2014,448(1-3):420-435.

    • [6] PARK D J,JUNG Y I,KIM H G,et al.Oxidation behavior of silicon carbide at 1 200 ℃ in both air and water-vapor-rich environments[J].Corrosion Science,2014,88:416-422.

    • [7] PAN D,ZHANG R,WANG H,et al.Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J].Journal of Alloys and Compounds,2016,684:549-555.

    • [8] BADINI C,LAURELLA F.Oxidation of FeCrAl alloy:Influence of temperature and atmosphere on scale growth rate and mechanism[J].Surface & Coatings Technology,2001,135(2-3):291-298.

    • [9] LI Q,SONG P,LI Z,et al.Effect of water vapor on the oxide growth in FeCrAl-based oxide dispersion-strengthened fuel cladding material at 1 100 ℃ and 1 200 ℃[J].Corrosion Science,2021,191(3):109775.

    • [10] FETZER R,WEISENBURGER A,JIANU A,et al.Oxide scale formation of modified FeCrAl coatings exposed to liquid lead[J].Corrosion Science,2011,55(2):213-218.

    • [11] AL-BADAIRY H,TATLOCK G J.The influence of the moisture content of the atmosphere on alumina scale formation and growth during high temperature oxidation of PM2000[J].Materials at High Temperatures,2000,17(1):133-137.

    • [12] ONAL K,MARIS-SIDA M C,MEIER G H,et al.Water vapor effects on the cyclic oxidation resistance of alumina forming alloys[J].Materials at High Temperatures,2003,20(3):327-337.

    • [13] GEORGE N M,TERRANI K,POWERS J,et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J].Annals of Nuclear Energy,2015,75:703-712.

    • [14] QUADAKKERS W J,NAUMENKO D,WESSEL E,et al.Growth rates of alumina scales on Fe–Cr–Al alloys[J].Oxidation of Metals,2004,61(1):17-37.

    • [15] LIU F,GÖTLIND H,SVENSSON J E,et al.Early stages of the oxidation of a FeCrAlRE alloy(Kanthal AF)at 900 ℃:A detailed microstructural investigation[J].Corrosion Science,2008,50(8):2272-2281.

    • [16] ŁODZIANA Z,TOPSØE N Y,NØRSKOV J K.A negative surface energy for alumina[J].Nature Materials,2004,3(5):289-293.

    • [17] PINT B A,MORE K L.Characterization of alumina interfaces in TBC systems[J].Journal of Materials Science,2009,44(7):1676-1686.

    • [18] PINT B A,ALEXANDER K B.Grain boundary segregation of cation dopants in α-Al2O3 scales[J].Journal of the Electrochemical Society,1998,145(6):1819.

    • [19] GOLIGHTLY F A,STOTT F H,WOOD G C.The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy[J].Oxidation of Metals,1976,10(3):163-187.

    • [20] NAUMENKO D,PINT B A,QUADAKKERS W J.Current thoughts on reactive element effects in alumina-forming systems:in memory of John Stringer[J].Oxidation of Metals,2016,86(1):1-43.

    • [21] HOU P Y,STRINGER J.Oxide scale adhesion and impurity segregation at the scale/metal interface[J].Oxidation of Metals,1992,38(5):323-345.

    • [22] MORTAZAVI N,GEERS C,ESMAILY M,et al.Interplay of water and reactive elements in oxidation of alumina-forming alloys[J].Nature Materials,2018,17(7):610-617.

    • [23] NAUMENKO D,KOCHUBEY V,NIEWOLAK L,et al.Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements[J].Journal of Materials Science,2008,43(13):4550-4560.

    • [24] KVERNES I,OLIVEIRA M,KOFSTAD P.High temperature oxidation of Fe-13Cr-xAl alloys in air water vapor mixtures[J].Corrosion Science,1977,17(3):237-252.

    • [25] BUSCAIL H,HEINZE S,DUFOUR P,et al.Water-vapor-effect on the oxidation of Fe-21.5 wt.% Cr-5.6 wt.% Al at 1 000 ℃[J].Oxidation of Metals,1997,47(5):445-464.

  • 手机扫一扫看