en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈寰,男,1988年出生,博士研究生。主要研究方向为核材料设计、制备和服役行为。E-mail:npicchh@163.com;

蔡振兵(通信作者),男,1981年出生,博士,研究员,博士研究生导师。主要研究方向为摩擦学表面工程和材料服役行为。E-mail:caizb@swjtu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220118003

参考文献 1
HAPON Y,KUSTOV M,KALUGIN V,et al.Studying the effect of fuel elements structural materials corrosion on their operating life[J].Materials Science Forum,2021,1038:108-115.
参考文献 2
刘家欢,李争显,王彦峰,等.锆合金包壳事故容错涂层研究进展[J].稀有金属材料与工程,2021,50(8):3003-3010.LIU Jiahuan,LI Zhengxian,WANG Yanfeng,et al.Research progress regarding accident tolerant coating on zirconium alloy cladding[J].School of Metallurgic Engineering,2021,50(8):3003-3010.(in Chinese)
参考文献 3
TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.
参考文献 4
ABE H,ABE T,KISHITA S,et al.Development of advanced expansion due to compression(A-EDC)test method for safety evaluation of degraded nuclear fuel cladding materials[J].Journal of Nuclear Science and Technology,2015,52(10):1232-1239.
参考文献 5
KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531.
参考文献 6
胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)
参考文献 7
BRACHET J C,TRUJILLO I I,FLEM M L,et al.Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.
参考文献 8
QI F P,LIU Z H,LI Q,et al.Pellet-cladding mechanical interaction analysis of Cr-coated Zircaloy clodding[J].Neclear Engineering and Design,2020,367:110792.
参考文献 9
AHN D H,LEE G G,MOON J,et al.Analysis of texture and grain shape effects on the yield anisotropy of Zr-2.5 wt% Nb pressure tube alloy using crystal plasticity finite element method[J].Journal of Nuclear Materials,2021,555:153112.
参考文献 10
EARTHMAN J C,MURTY K L,TANIKELLA B V,et al.Effects of grain-shape anisotropy and texture on balanced-biaxial creep of Ti and Zr alloys[J].JOM,1994,46(10):48-54.
参考文献 11
ERVENKA P,JAKUB K,CVERK L,et al.Experimental study of damaged Cr-coated fuel cladding in post-accident conditions[J].Acta Polytechnica CTU Proceedings,2020,28:1-7.
参考文献 12
邹梦杰,石万凯,肖洋轶,等.重载条件下钢基体表面涂层裂纹及分层失效[J].中国表面工程,2016,29(6):123-128.ZOU Mengjie,SHI Wankai,XIAO Yangyi,et al.Cracking and interfacial delamination in coated steel under heavy load conditions[J].China Surface Engineering,2016,29(6):123-128.(in Chinese)
参考文献 13
HOLMBERG K,LAUKKANEN A,RONKAINEN H,et al.Tribological analysis of fracture conditions in thin surface coatings by 3D FEM modelling and stress simulations[J].Tribology international,2005,38(11-12):1035-1049.
参考文献 14
吕艳红,张启富,吴子健.超音速火焰喷涂CoCrW涂层热震过程中的裂纹扩展行为[J].中国表面工程,2015,28(6):81-87.LÜ Yanhong,ZHANG Qifu,WU Zijian.Extended behavior of crack during thermal shock testing of HVOF sprayed CoCrW coatings[J].China Surface Engineering,2015,28(6):81-87.(in Chinese)
参考文献 15
张晓民,冯杰,李金刚,等.薄膜微桥拉伸法基体梯度裂纹的制备及其稳态扩展[J].中国表面工程,2021,34(3):130-138.ZHANG Xiaomin,FENG Jie,LI Jingang,et al.Preparation of gradient substrate pre-crack and its steady propagation during tensile testing for microbridge method[J].China Surface Engineering,2021,34(3):130-138.(in Chinese)
参考文献 16
OLIVEIRA S,BOWER A F.An analysis of fracture and delamination in thin coatings subjected to contact loading[J].Wear,1996,198(1-2):15-32.
参考文献 17
赵彦辉,史文博,刘忠海,等.沉积工艺参数对电弧离子镀薄膜沉积速率影响的研究进展[J].真空与低温,2020,26(5):385-391.ZHAO Yanhui,SHI Wenbo,LIU Zhonghai,et al.Progress on effects of deposition processing parameters on coatings deposition rate for arc ion plating[J].Vacuum and Cryogenics,2020,26(5):385-391.(in Chinese)
参考文献 18
钟星,王启民,许雨翔,等.占空比对脉冲电弧离子镀AlCrSiN涂层热稳定性和抗氧化性的影响[J].中国表面工程,2018,31(5):99-107.ZHONG Xing,WANG Qimin,XU Yuxiang,et al.Effects of duty cycle on thermal stability and oxidation resistance of AlCrSiN coatings deposited by pulsed arc ion plating[J].China Surface Engineering,2020,26(5):385-391.(in Chinese)
参考文献 19
UMRETIYA R V,ELWARD B,LEE D,et al.Mechanical and chemical properties of PVD and cold spray Cr-coatings on zircaloy-4[J].Journal of Nuclear Materials,2020,541:152420.
参考文献 20
刘丁铭,张波,王杰,等.温度对 Zr-45Ti-5Al-3V 合金准静态力学性能的影响[J].金属学报,2014,50(12):1498-1504.LIU Dingming,ZHANG Bo,WANG Jie,et al.Influence of temperature on quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy[J].Acta Metallurgica Sinica,2014,50(12):1498-1504.(in Chinese)
参考文献 21
YAN L,SF B,ZW B,et al.Tensile properties,shear strength calculation and cracking behavior of bulk composite comprised of thick HVOF sprayed coating and steel substrate[J].Surface and Coatings Technology,2019,374:807-814.
参考文献 22
郎林,朱哲明,万端莹,等.裂纹止裂技术及裂纹动态扩展规律研究[J].振动与冲击,2020,39(4):38-48.LANG Lin,ZHU Zheming,WAN Duanying,et al.A study on crack arrest technology and dynamic propagation law of crack[J].Journal of Vibration and Shock,2020,39(4):38-48.(in Chinese)
参考文献 23
熊银生,孙浩,谈政.镀层厚度变化对周期性裂纹的影响[J].低温建筑技术,2014,36(3):75-77.XIONG Yinsheng,SUN Hao,TAN Zheng.Effect of coating thickness variation on periodic cracks[J].Low Temperature Architecture Technology,2020,39(4):38-48.(in Chinese)
参考文献 24
KOUTSOMICHALIS A,VARDAVOULIAS M,VAXEVANIDIS N.HVOF sprayed WC-CoCr coatings on aluminum:Tensile and tribological properties[J].IOP Conference Series:Materials Science and Engineering,2017,174:012062.
参考文献 25
朱有利,任浩,马世宁.脆性薄膜表面微裂纹对基体次表面后继塑性的影响[J].中国表面工程,2000,13(4):15-18.ZHU Youli,REN Hao,MA Shining,et al.Effects of surface micro-crack of a brittle thin hard film on the subsequent plasticity behaviors in sublayer of substrate[J].China Surface Engineering,2000,13(4):15-18.(in Chinese)
参考文献 26
XIE C,TONG W.Cracking and decohesion of a thin Al2O3 film on a ductile Al-5% Mg substrate[J].Acta Materialia,2005,53(2):477-485.
目录contents

    摘要

    在事故条件下核反应堆的核心部件镀 Cr 锆合金包壳管容易受到挤压发生变形,导致 Cr 涂层产生裂纹影响涂层的保护性能,因此研究镀 Cr 锆合金在高温压缩下的裂纹扩展行为十分有必要。采用环向压缩试验研究不同厚度 Cr 涂层锆合金在不同温度下的开裂行为,通过扫描电子显微镜(SEM)、X 射线衍射仪(XRD)和维氏硬度计等测试设备研究不同压缩试验温度下的镀 Cr 锆合金包壳管表截面裂纹微观形貌,并统计表截面裂纹密度及截面裂纹最大宽度。分析包壳材料的载荷-位移曲线和裂纹扩展行为,评价温度和涂层厚度对镀 Cr 锆合金包壳管力学性能的影响。研究结果表明:镀 Cr 锆合金包壳管在高温工况下,抗压强度会下降,断裂韧性增加;当涂层厚度增加时,表截面裂纹密度减少,裂纹张开尺寸增大;裂纹首先在表面产生,然后逐渐向基体扩展,并随着变形量的增加逐渐向基体扩展,最终在膜基结合处停止;试样变形量从 10%压缩到 50% 时,截面裂纹的新增主要来自表面主裂纹分叉,且在压缩过程中 Cr 涂层并不会剥落,Cr 涂层与锆基体结合性能良好。研究不同厚度锆合金 Cr 涂层包壳管在高温压缩下的膜基界面裂纹的扩展行为,可为锆合金包壳管的涂层制备提供数据支持。

    Abstract

    Under accident conditions, the Cr-Zr alloy cladding tube, the core component of nuclear reactor, is prone to extrusion deformation, resulting in cracks in the Cr coating and affecting the protective performance of the coating. Therefore, it is necessary to study the crack propagation behavior of Cr-coated zirconium alloy under high temperature compression. The circumferential compression test is used to study the cracking behavior of Cr-coated zirconium alloy with different thicknesses at different temperatures. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vickers hardness tester are used to study the micro-morphology of cross-sectional cracks on the surface of Cr-coated zirconium alloy cladding tubes at different compression test temperatures. The density and maximum width of cross-sectional cracks are counted. The load-displacement curve and crack propagation behavior of the cladding material are analyzed to evaluate the effects of temperature and coating thickness on the mechanical properties of Cr-Zr alloy cladding tube. The results show that under high temperature conditions, the compressive strength of Cr-coated zirconium alloy cladding tube decreases and the fracture toughness increases; when the coating thickness and temperature increase, the crack density of surface section decreases and the crack opening size increases; cracks first appear on the surface and then gradually expand to the matrix, and gradually expand to the matrix with the increase of deformation, and finally stop at the die-base junction; when the deformation of the specimen is compressed from 10% to 50%, the increase of the cross-section cracks is mainly due to the bifurcation of the surface main cracks, and the Cr coating does not peel off during the compression process. The Cr coating has good bonding performance with the zirconium substrate. The propagation behavior of interfacial cracks at the film-substrate interface of zirconium alloy Cr-coated cladding tubes with different thicknesses under high temperature compression is studied, which provides certain data support for the coating preparation of zirconium alloy cladding tubes.

  • 0 前言

  • 锆合金在辐射环境中具有较高的耐腐蚀性能和较低的中子吸收能力,广泛应用于核燃料棒的包覆材料[1]。而自2011年福岛核事故以后,如何提高锆合金事故容错能力,引发了国内外广泛的研究[2]。 TANG等[3-4]发现对锆合金包壳管进行涂层处理得到事故容错燃料(ATF)包壳,能够延缓事故条件下堆芯发生退化的时间,以及降低包壳温度升高的速率,从而延缓事故进展。由于镀Cr锆合金包壳管在事故条件下,会受到外部冲击发生机械形变,导致涂层产生裂纹,使锆合金包壳的事故容错能力降低,因此研究镀Cr包壳管涂层的开裂行为有较大的意义。

  • 国内外学者对镀Cr锆合金的化学、力学性能等方面做了广泛的研究。KIM等[5]发现镀Cr锆合金包壳管表面形成的氧化层厚度比锆合金包壳管表面形成的氧化层厚度低25倍左右,且镀Cr锆合金包壳管在高温高压下的抗腐蚀性能优于未镀Cr锆合金包壳管。胡小刚等[6]发现在锆合金包壳管上镀覆20 μm的Cr涂层具有充分的耐事故能力,它在严苛的事故条件测试下,各缺陷均未能使Zr-4合金基体暴露。BRACHET等[7-8]对比镀Cr锆合金包壳管与未镀Cr涂层包壳管的力学性能,结果表明镀Cr涂层包壳管具有较高的抗拉强度和界面附着力。AHN与EARTHMAN[9-10]发现锆合金包壳管在制造过程中,经过挤压、拉拔、焊补等严重的塑性变形,会导致锆合金包壳管的力学性能和塑性流动各向异性增强。ERVENKA等[11]发现18.6 μm的Cr涂层,可防止试样连续9min高温氧化,并延缓包壳材料的力学性能退化。邹梦杰等[12]发现在Hertz接触状态下,裂纹大部分产生在接触边缘区域,且涂层弹性模量越大涂层表面越易产生裂纹,裂纹扩展越深。 HOLMBERG等[13]发现涂层的裂纹产生是由涂层表面的弯曲应力和拉伸应力造成的。吕艳红等[14]发现热应力和组织应力是裂纹产生和扩展的主要驱动力。张晓民等[15]发现梯度裂纹有效抑制了基体裂纹的失稳扩展。当涂层特性和涂层厚度的变化时,断裂载荷可能发生多达10倍的变化[16]。本文利用ETM104B型电子力学试验机对不同厚度Cr涂层包壳管进行不同温度下的环向压缩试验,对表截面裂纹进行微观结构表征和统计,研究了不同厚度Cr涂层包壳管在不同温度下受到压缩时的涂层裂纹扩展行为。

  • 1 试验准备

  • 1.1 试样制备和结构表征

  • 本试验选用N36锆合金包壳管为基体,其外径、壁厚分别为9.5mm和0.57mm,化学成分(以质量分数计)为1.0%Nb、1.0%Sn、0.3%Fe、和Zr。通过FE-A-1800型真空电弧离子镀膜设备在长度为800mm的N36锆合金管材表面分别制备了约10 μm、20 μm、30 μm的Cr涂层。选用Cr(质量分数≥99.9%)作为靶材,沉积参数为:弧电流90A,负偏压53V,气压为1.6Pa,镀膜温度400℃。

  • Cr涂层表截面的微观结构如图1所示,当涂层厚度增加时,表面粗糙度逐渐增大,这是因为电弧离子镀在沉积薄膜的过程中,高温半固态和液态Cr颗粒与基体表面温差较大,在接触到锆基体表面时,半固态和液态的Cr快速冷却,最终形成固态的“大颗粒”[17];这些“大颗粒”跟随蒸发的靶材粒子一起沉积在涂层中成为缺陷,并残留在涂层表面,增大了表面粗糙度[18]。虽然涂层表面存在大颗粒,但观察试样截面情况可知,膜基结合处结合紧密,无明显微观缺陷,这表明涂层与基体有良好的的界面附着力。

  • 图1 镀Cr涂层表截面微观形貌

  • Fig.1 Microstructure of Cr coating surface section

  • N36锆合金基体和不同厚度Cr涂层锆合金包壳管的XRD衍射图谱如图2a所示。N36锆合金基体主要是六方封闭堆积(HCP)晶体结构的 α-Zr相[19],而Cr涂层是具有体心立方(BCC)结构的纯Cr,两者晶体结构的晶格常数较大,较薄涂层在表面更易形成颗粒效应,导致结晶度增加,最强峰峰值高度增加。不同厚度涂层样品的XRD衍射峰中并未发现锆合金基体的峰,这说明X射线无法穿透涂层到达基体,Cr涂层覆盖性良好。不同厚度涂层镀Cr锆合金表面维氏硬度如图2b所示,由于镀层厚度增加,电弧离子镀Cr的致密性更高,其硬度也随之增大。

  • 图2 锆合金基体及Cr涂层XRD衍射图谱和维氏硬度

  • Fig.2 Zirconium alloy substrates and Cr coatings XRD diffraction patterns and Vickers hardness

  • 1.2 环向压缩试验和表截面裂纹密度统计方法

  • 使用线切割设备从镀Cr锆合金包壳管上切取长度为5mm的等宽圆环向压缩试样,然后在ETM104B型电子力学试验机上对不同厚度Cr涂层的锆合金包壳管试样进行室温和350℃的环向压缩试验,并对试样压缩接触点进行标记,如图3a所示。控制试验机下压速率为0.5mm/min,压缩变形量为10%和50%,变形量 δ 的计算公式如下:

  • δ=D-HD×100%

  • 式中,D 为包壳管外径,H 为试验机压缩时的加载位移。试验完成后,采用JSM7800F型扫描电子显微镜观察Cr涂层的表面形貌和截面形貌,并统计赤道位置(θ=0º)到90°处(图3b)的截面裂纹数量和截面最大裂纹宽度。对赤道位置处的表面裂纹数量进行统计,将统计的表截面裂纹数量除以4.75 π/18mm得到裂纹密度。

  • 图3 环向压缩试验示意图及试样位置的定义

  • Fig.3 Schematic diagram of circumferential compression test and definition of specimen position

  • 2 结果与讨论

  • 2.1 载荷-位移曲线

  • 在不同温度下对不同厚度Cr涂层锆合金压缩50%的载荷-位移曲线如图4所示。镀Cr锆合金包壳管在压缩过程中会经历两个阶段。第一阶段会经历弹性形变。在这一阶段,涂层厚度的增加对弹性变形量的影响较小,这是因为涂层的厚度远小于基体厚度,涂层释放的弹性应变不足以影响整个载荷-位移曲线。由于包壳管在受热时会变软,导致试样的断裂韧性增加,同时材料屈服极限降低[20],因此随着温度增加,试样弹性变形量会明显降低。在第二阶段试样会经历塑性形变,涂层厚度增加,试样的承载力有所增加,且30 μm涂层试样能承受的最大载荷相对于其他厚度明显增加,但10 μm和20 μm涂层的变化不是特别明显。在压缩变形量为50%时,温度增加,试样能承受的最大载荷下降了63%。观察试样宏观形貌可知,当压缩量继续增加到50%时,试样从最开始的线接触逐渐变为面接触,试样的压缩中心逐渐向内侧移动,受力处逐渐向内部凹陷,整体形状变为倒八字形。

  • 图4 Cr涂层在不同温度下压缩50%的载荷-位移曲线

  • Fig.4 Load-displacement curve of Cr coating compressed by 50%at different temperatures

  • 2.2 表截面裂纹形貌和裂纹密度

  • 不同厚度和温度下Cr涂层表面裂纹形貌如图5所示,试样在受到一定的径向压力时,涂层表面产生了较多裂纹,裂纹清晰可见,且未发现涂层剥落,膜基结合性能良好。这主要是因为在压缩过程中,整个包壳会发生严重的变形,但由于基体与涂层的材料特性有差异,导致镀Cr锆合金包壳在压缩过程中存在强烈的泊松效应。在包壳管受到一定压应力时,锆基体发生弹塑性变形,且产生较高的应变,但Cr涂层产生的应变较低,这导致了基体与涂层之间的变形不协调[21],涂层会受到基体的挤压而先产生裂纹。而涂层厚度改变表面裂纹产生的情况有所不同,涂层厚度为10 μm时,表面裂纹主要呈现直线型; 涂层厚度增加到20 μm时,表面裂纹呈现树状型,且会产生较多微裂纹,当包壳从10%变形量压缩至50%变形量时,这些微裂纹会与相邻主裂纹相交,导致主裂纹发生折弯;涂层厚度为30 μm时,裂纹明显减少,但裂纹也发生了分叉现象。这主要是因为涂层厚度增加,涂层与基体的应变相差增大,基体在发生变形时,涂层受到基体的横向张力增加,裂纹迅速扩展并逐渐分叉,导致这些差异的产生。当压缩变形量增加、表面裂纹扩展时所释放的弹性应变能超过了维持裂纹扩展所吸收的的表面能,裂纹数量迅速增加,主裂纹数量趋向饱和,但这时涂层仍然受到较大的正应力,主裂纹开始衍生出分叉裂纹。图6统计了不同温度下试样在赤道位置处的表面裂纹密度,由于在常温工况下包壳材料的断裂韧性较低,且裂纹在萌生阶段的起裂韧度大于扩展韧度[22]。当压缩量增加时,常温工况下的裂纹密度比350℃的裂纹密度增加更明显,这是因为温度增加,涂层抗拉强度增加,涂层受到热应力的影响增加,裂纹扩展速度降低,但扩展宽度增加。且由于表面裂纹数量主要受到径向压应力的影响,而涂层受到的正应力随着涂层厚度的增加而减小[23],其表面裂纹密度也随之减小,因此当涂层厚度增加时,裂纹密度逐渐减小。

  • 图5 Cr涂层在不同温度下压缩的表面电镜形貌

  • Fig.5 Surface morphology of Cr coating compressed at different temperatures under electron microscope

  • 图6 Cr涂层在不同温度下压缩的表面裂纹密度

  • Fig.6 Surface crack density of Cr coating compressed at different temperatures

  • 图7 为镀Cr锆合金在赤道位置处压缩变形量为10%的截面裂纹形貌图,当温度和涂层厚度增加时,涂层截面裂纹数量减少,裂纹宽度增加,且截面裂纹扩展到基体时便停止扩展,涂层并未发生剥落。这表明包壳管在压缩变形过程中,基体与Cr涂层结合性良好,且锆基体的断裂韧性明显高于Cr涂层。随着压缩应变的增加,涂层表面产生的裂纹向基体扩展,在扩展过程中裂纹会发生偏转,导致涂层分层[24]。涂层截面裂纹密度如图8所示,由于涂层在赤道位置处受到的剪切应力最大,涂层开裂最严重。当压缩变形量为50%时,不同温度下的裂纹密度随着角度增加逐渐减少,试样在常温工况下,涂层裂纹在50°位置处不再萌生,而温度增加到350℃,涂层裂纹仅在0~40°的范围内产生。这是因为温度增加,包壳材料的断裂韧性增加,当涂层受到的应力小于材料的断裂韧性时,裂纹便不再萌生。结合表面裂纹密度图6可知,截面的裂纹密度明显低于表面裂纹密度,这是可能是因为涂层表面产生了一些微裂纹和分叉裂纹,而这些裂纹并不会全部贯穿整个截面,但由于多弧离子镀Cr涂层表面存在较多“大颗粒”,这些“大颗粒”导致试样在压缩过程中存在局部应力集中,引起截面裂纹发生了弯曲现象。由于表面裂纹密度和截面裂纹密度相差较大,可以推断出在压缩过程中,裂纹首先在涂层表面产生,然后随着压应力的增加,裂纹逐渐向基体扩展。如图9统计了赤道位置处最大裂纹宽度,当压缩变形量从10%增加到50%时,裂纹的开口尺寸增加了1 500%,且温度越高开口尺寸越大。这是因为随着温度增加,材料的断裂韧性增加,裂纹达到失稳扩展时的临界尺寸就愈大,且当载荷超过材料的屈服极限后,其塑性区尺寸将迅速长大[25]。在相同压缩变形量时,涂层厚度增加,张向应力增加,导致裂纹张开位移随之增加,裂纹扩展主要延横向扩展,直至涂层内部应力完全释放。

  • 图7 Cr涂层压缩变形量为10%的截面电镜形貌

  • Fig.7 Cross section morphology of Cr coating with 10%compression deformation

  • 图8 Cr涂层在不同温度下压缩的表面裂纹密度极图

  • Fig.8 Surface crack density polar diagram of Cr coating compressed at different temperatures

  • 图9 Cr涂层在不同温度下压缩的最大裂纹宽度

  • Fig.9 Maximum crack width of Cr coating compressed at different temperatures

  • 2.3 温度和涂层厚度对裂纹扩展的影响

  • 锆合金表面Cr涂层在不同温度压缩下的裂纹扩展行为如图10所示,由于锆基体的断裂韧性较高,Cr涂层的断裂韧性较低,因此包壳管在压缩变形时,锆基体的变形量相对Cr涂层更大。且由于涂层结合在基体表面,基体发生变形时,膜基结合处会产生剪切应力 τ,产生的剪切应力会向涂层内部转移[26],使Cr涂层中的拉应力达到断裂强度水平,导致表面裂纹产生。分析涂层厚度以及温度对裂纹扩展行为的影响发现:

  • (1)由于涂层会受到来自外界的压应力和膜基结合处的剪切应力,当压应力一定时,涂层厚度增加,Cr涂层抵抗剪切应力的能力增强,涂层产生裂纹的临界尺寸越大。

  • (2)当温度增加时,涂层抗拉强度增加,导致涂层新增裂纹减少,但裂纹宽度增加。

  • 总的来说,试样压缩过程中,裂纹先从表面萌生,并逐渐向基体扩展,并随着压缩量的增加外部裂纹开口尺寸逐渐增加,裂纹从外向内逐步扩展。

  • 图10 锆合金表面Cr涂层在不同温度压缩下的裂纹扩展行为

  • Fig.10 Crack propagation behavior of Cr coating on Zirconium alloy under compression at different temperatures

  • 3 结论

  • 通过研究不同厚度Cr涂层锆合金包壳在不同温度下的界面裂纹开裂行为,得出以下结论:

  • (1)涂层厚度增加,产生的裂纹的开口尺寸越大,裂纹密度显著减少,裂纹扩展延横向扩展。

  • (2)Cr涂层锆合金包壳管在高温压缩过程中产生的裂纹数量相对常温工况下较少,且温度增加涂层内部受到热应力影响,裂纹开口尺寸增加。

  • (3)镀Cr锆合金包壳材料在受到径向压应力时,温度和涂层厚度的增加并不会直接导致涂层从基体剥落,且裂纹首先在表面萌生,然后向基体扩展。

  • 本文主要研究了高温工况下涂层裂纹扩展行为,所得结果为镀Cr锆合金包壳管的涂层制备提供了一定的数据支持。但在事故条件下,温度可能远高于正常工况温度,因此后续将继续对事故工况下的裂纹扩展行为进行探究,完善不同温度下对涂层性能影响规律的探究。

  • 参考文献

    • [1] HAPON Y,KUSTOV M,KALUGIN V,et al.Studying the effect of fuel elements structural materials corrosion on their operating life[J].Materials Science Forum,2021,1038:108-115.

    • [2] 刘家欢,李争显,王彦峰,等.锆合金包壳事故容错涂层研究进展[J].稀有金属材料与工程,2021,50(8):3003-3010.LIU Jiahuan,LI Zhengxian,WANG Yanfeng,et al.Research progress regarding accident tolerant coating on zirconium alloy cladding[J].School of Metallurgic Engineering,2021,50(8):3003-3010.(in Chinese)

    • [3] TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.

    • [4] ABE H,ABE T,KISHITA S,et al.Development of advanced expansion due to compression(A-EDC)test method for safety evaluation of degraded nuclear fuel cladding materials[J].Journal of Nuclear Science and Technology,2015,52(10):1232-1239.

    • [5] KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531.

    • [6] 胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)

    • [7] BRACHET J C,TRUJILLO I I,FLEM M L,et al.Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.

    • [8] QI F P,LIU Z H,LI Q,et al.Pellet-cladding mechanical interaction analysis of Cr-coated Zircaloy clodding[J].Neclear Engineering and Design,2020,367:110792.

    • [9] AHN D H,LEE G G,MOON J,et al.Analysis of texture and grain shape effects on the yield anisotropy of Zr-2.5 wt% Nb pressure tube alloy using crystal plasticity finite element method[J].Journal of Nuclear Materials,2021,555:153112.

    • [10] EARTHMAN J C,MURTY K L,TANIKELLA B V,et al.Effects of grain-shape anisotropy and texture on balanced-biaxial creep of Ti and Zr alloys[J].JOM,1994,46(10):48-54.

    • [11] ERVENKA P,JAKUB K,CVERK L,et al.Experimental study of damaged Cr-coated fuel cladding in post-accident conditions[J].Acta Polytechnica CTU Proceedings,2020,28:1-7.

    • [12] 邹梦杰,石万凯,肖洋轶,等.重载条件下钢基体表面涂层裂纹及分层失效[J].中国表面工程,2016,29(6):123-128.ZOU Mengjie,SHI Wankai,XIAO Yangyi,et al.Cracking and interfacial delamination in coated steel under heavy load conditions[J].China Surface Engineering,2016,29(6):123-128.(in Chinese)

    • [13] HOLMBERG K,LAUKKANEN A,RONKAINEN H,et al.Tribological analysis of fracture conditions in thin surface coatings by 3D FEM modelling and stress simulations[J].Tribology international,2005,38(11-12):1035-1049.

    • [14] 吕艳红,张启富,吴子健.超音速火焰喷涂CoCrW涂层热震过程中的裂纹扩展行为[J].中国表面工程,2015,28(6):81-87.LÜ Yanhong,ZHANG Qifu,WU Zijian.Extended behavior of crack during thermal shock testing of HVOF sprayed CoCrW coatings[J].China Surface Engineering,2015,28(6):81-87.(in Chinese)

    • [15] 张晓民,冯杰,李金刚,等.薄膜微桥拉伸法基体梯度裂纹的制备及其稳态扩展[J].中国表面工程,2021,34(3):130-138.ZHANG Xiaomin,FENG Jie,LI Jingang,et al.Preparation of gradient substrate pre-crack and its steady propagation during tensile testing for microbridge method[J].China Surface Engineering,2021,34(3):130-138.(in Chinese)

    • [16] OLIVEIRA S,BOWER A F.An analysis of fracture and delamination in thin coatings subjected to contact loading[J].Wear,1996,198(1-2):15-32.

    • [17] 赵彦辉,史文博,刘忠海,等.沉积工艺参数对电弧离子镀薄膜沉积速率影响的研究进展[J].真空与低温,2020,26(5):385-391.ZHAO Yanhui,SHI Wenbo,LIU Zhonghai,et al.Progress on effects of deposition processing parameters on coatings deposition rate for arc ion plating[J].Vacuum and Cryogenics,2020,26(5):385-391.(in Chinese)

    • [18] 钟星,王启民,许雨翔,等.占空比对脉冲电弧离子镀AlCrSiN涂层热稳定性和抗氧化性的影响[J].中国表面工程,2018,31(5):99-107.ZHONG Xing,WANG Qimin,XU Yuxiang,et al.Effects of duty cycle on thermal stability and oxidation resistance of AlCrSiN coatings deposited by pulsed arc ion plating[J].China Surface Engineering,2020,26(5):385-391.(in Chinese)

    • [19] UMRETIYA R V,ELWARD B,LEE D,et al.Mechanical and chemical properties of PVD and cold spray Cr-coatings on zircaloy-4[J].Journal of Nuclear Materials,2020,541:152420.

    • [20] 刘丁铭,张波,王杰,等.温度对 Zr-45Ti-5Al-3V 合金准静态力学性能的影响[J].金属学报,2014,50(12):1498-1504.LIU Dingming,ZHANG Bo,WANG Jie,et al.Influence of temperature on quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy[J].Acta Metallurgica Sinica,2014,50(12):1498-1504.(in Chinese)

    • [21] YAN L,SF B,ZW B,et al.Tensile properties,shear strength calculation and cracking behavior of bulk composite comprised of thick HVOF sprayed coating and steel substrate[J].Surface and Coatings Technology,2019,374:807-814.

    • [22] 郎林,朱哲明,万端莹,等.裂纹止裂技术及裂纹动态扩展规律研究[J].振动与冲击,2020,39(4):38-48.LANG Lin,ZHU Zheming,WAN Duanying,et al.A study on crack arrest technology and dynamic propagation law of crack[J].Journal of Vibration and Shock,2020,39(4):38-48.(in Chinese)

    • [23] 熊银生,孙浩,谈政.镀层厚度变化对周期性裂纹的影响[J].低温建筑技术,2014,36(3):75-77.XIONG Yinsheng,SUN Hao,TAN Zheng.Effect of coating thickness variation on periodic cracks[J].Low Temperature Architecture Technology,2020,39(4):38-48.(in Chinese)

    • [24] KOUTSOMICHALIS A,VARDAVOULIAS M,VAXEVANIDIS N.HVOF sprayed WC-CoCr coatings on aluminum:Tensile and tribological properties[J].IOP Conference Series:Materials Science and Engineering,2017,174:012062.

    • [25] 朱有利,任浩,马世宁.脆性薄膜表面微裂纹对基体次表面后继塑性的影响[J].中国表面工程,2000,13(4):15-18.ZHU Youli,REN Hao,MA Shining,et al.Effects of surface micro-crack of a brittle thin hard film on the subsequent plasticity behaviors in sublayer of substrate[J].China Surface Engineering,2000,13(4):15-18.(in Chinese)

    • [26] XIE C,TONG W.Cracking and decohesion of a thin Al2O3 film on a ductile Al-5% Mg substrate[J].Acta Materialia,2005,53(2):477-485.

  • 参考文献

    • [1] HAPON Y,KUSTOV M,KALUGIN V,et al.Studying the effect of fuel elements structural materials corrosion on their operating life[J].Materials Science Forum,2021,1038:108-115.

    • [2] 刘家欢,李争显,王彦峰,等.锆合金包壳事故容错涂层研究进展[J].稀有金属材料与工程,2021,50(8):3003-3010.LIU Jiahuan,LI Zhengxian,WANG Yanfeng,et al.Research progress regarding accident tolerant coating on zirconium alloy cladding[J].School of Metallurgic Engineering,2021,50(8):3003-3010.(in Chinese)

    • [3] TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.

    • [4] ABE H,ABE T,KISHITA S,et al.Development of advanced expansion due to compression(A-EDC)test method for safety evaluation of degraded nuclear fuel cladding materials[J].Journal of Nuclear Science and Technology,2015,52(10):1232-1239.

    • [5] KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531.

    • [6] 胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)

    • [7] BRACHET J C,TRUJILLO I I,FLEM M L,et al.Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.

    • [8] QI F P,LIU Z H,LI Q,et al.Pellet-cladding mechanical interaction analysis of Cr-coated Zircaloy clodding[J].Neclear Engineering and Design,2020,367:110792.

    • [9] AHN D H,LEE G G,MOON J,et al.Analysis of texture and grain shape effects on the yield anisotropy of Zr-2.5 wt% Nb pressure tube alloy using crystal plasticity finite element method[J].Journal of Nuclear Materials,2021,555:153112.

    • [10] EARTHMAN J C,MURTY K L,TANIKELLA B V,et al.Effects of grain-shape anisotropy and texture on balanced-biaxial creep of Ti and Zr alloys[J].JOM,1994,46(10):48-54.

    • [11] ERVENKA P,JAKUB K,CVERK L,et al.Experimental study of damaged Cr-coated fuel cladding in post-accident conditions[J].Acta Polytechnica CTU Proceedings,2020,28:1-7.

    • [12] 邹梦杰,石万凯,肖洋轶,等.重载条件下钢基体表面涂层裂纹及分层失效[J].中国表面工程,2016,29(6):123-128.ZOU Mengjie,SHI Wankai,XIAO Yangyi,et al.Cracking and interfacial delamination in coated steel under heavy load conditions[J].China Surface Engineering,2016,29(6):123-128.(in Chinese)

    • [13] HOLMBERG K,LAUKKANEN A,RONKAINEN H,et al.Tribological analysis of fracture conditions in thin surface coatings by 3D FEM modelling and stress simulations[J].Tribology international,2005,38(11-12):1035-1049.

    • [14] 吕艳红,张启富,吴子健.超音速火焰喷涂CoCrW涂层热震过程中的裂纹扩展行为[J].中国表面工程,2015,28(6):81-87.LÜ Yanhong,ZHANG Qifu,WU Zijian.Extended behavior of crack during thermal shock testing of HVOF sprayed CoCrW coatings[J].China Surface Engineering,2015,28(6):81-87.(in Chinese)

    • [15] 张晓民,冯杰,李金刚,等.薄膜微桥拉伸法基体梯度裂纹的制备及其稳态扩展[J].中国表面工程,2021,34(3):130-138.ZHANG Xiaomin,FENG Jie,LI Jingang,et al.Preparation of gradient substrate pre-crack and its steady propagation during tensile testing for microbridge method[J].China Surface Engineering,2021,34(3):130-138.(in Chinese)

    • [16] OLIVEIRA S,BOWER A F.An analysis of fracture and delamination in thin coatings subjected to contact loading[J].Wear,1996,198(1-2):15-32.

    • [17] 赵彦辉,史文博,刘忠海,等.沉积工艺参数对电弧离子镀薄膜沉积速率影响的研究进展[J].真空与低温,2020,26(5):385-391.ZHAO Yanhui,SHI Wenbo,LIU Zhonghai,et al.Progress on effects of deposition processing parameters on coatings deposition rate for arc ion plating[J].Vacuum and Cryogenics,2020,26(5):385-391.(in Chinese)

    • [18] 钟星,王启民,许雨翔,等.占空比对脉冲电弧离子镀AlCrSiN涂层热稳定性和抗氧化性的影响[J].中国表面工程,2018,31(5):99-107.ZHONG Xing,WANG Qimin,XU Yuxiang,et al.Effects of duty cycle on thermal stability and oxidation resistance of AlCrSiN coatings deposited by pulsed arc ion plating[J].China Surface Engineering,2020,26(5):385-391.(in Chinese)

    • [19] UMRETIYA R V,ELWARD B,LEE D,et al.Mechanical and chemical properties of PVD and cold spray Cr-coatings on zircaloy-4[J].Journal of Nuclear Materials,2020,541:152420.

    • [20] 刘丁铭,张波,王杰,等.温度对 Zr-45Ti-5Al-3V 合金准静态力学性能的影响[J].金属学报,2014,50(12):1498-1504.LIU Dingming,ZHANG Bo,WANG Jie,et al.Influence of temperature on quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy[J].Acta Metallurgica Sinica,2014,50(12):1498-1504.(in Chinese)

    • [21] YAN L,SF B,ZW B,et al.Tensile properties,shear strength calculation and cracking behavior of bulk composite comprised of thick HVOF sprayed coating and steel substrate[J].Surface and Coatings Technology,2019,374:807-814.

    • [22] 郎林,朱哲明,万端莹,等.裂纹止裂技术及裂纹动态扩展规律研究[J].振动与冲击,2020,39(4):38-48.LANG Lin,ZHU Zheming,WAN Duanying,et al.A study on crack arrest technology and dynamic propagation law of crack[J].Journal of Vibration and Shock,2020,39(4):38-48.(in Chinese)

    • [23] 熊银生,孙浩,谈政.镀层厚度变化对周期性裂纹的影响[J].低温建筑技术,2014,36(3):75-77.XIONG Yinsheng,SUN Hao,TAN Zheng.Effect of coating thickness variation on periodic cracks[J].Low Temperature Architecture Technology,2020,39(4):38-48.(in Chinese)

    • [24] KOUTSOMICHALIS A,VARDAVOULIAS M,VAXEVANIDIS N.HVOF sprayed WC-CoCr coatings on aluminum:Tensile and tribological properties[J].IOP Conference Series:Materials Science and Engineering,2017,174:012062.

    • [25] 朱有利,任浩,马世宁.脆性薄膜表面微裂纹对基体次表面后继塑性的影响[J].中国表面工程,2000,13(4):15-18.ZHU Youli,REN Hao,MA Shining,et al.Effects of surface micro-crack of a brittle thin hard film on the subsequent plasticity behaviors in sublayer of substrate[J].China Surface Engineering,2000,13(4):15-18.(in Chinese)

    • [26] XIE C,TONG W.Cracking and decohesion of a thin Al2O3 film on a ductile Al-5% Mg substrate[J].Acta Materialia,2005,53(2):477-485.

  • 手机扫一扫看