en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙丽,女,1996年出生,硕士。主要研究方向为金属材料表面改性。E-mail:1925213021@qq.com.

廖斌(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为材料表面改性。E-mail:liaobingz@bnu.edu.cn.

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211107001

参考文献 1
BHAGYANATHAN C,KARUPPUSWAMY P,KRISHN ARAJ C.Investigation of zirconium coating by sol–gel processes on A216 steel[J].International Journal of Advanced Manufacturing Technology,2018,99(9-12):2647-2657.
参考文献 2
YEN S K,CHIOU S H,WU S J,et al.Characterization of electrolytic HA/ZrO2 double layers coatings on Ti-6Al-4V implant alloy[J].Materials Science & Engineering C,2006,26(1):65-77.
参考文献 3
KOUZNETSOV V,K MACÁK,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.
参考文献 4
欧伊翔,潘伟,雷明凯.深振荡磁控溅射复合沉积 CrN/TiN 超晶格薄膜的结构和性能[J].稀有金属材料与工程,2018,47(S1):330-334.OU Yixiang,PAN Wei,LEI Mingkai.Structure and properties of CrN/TiN superlattice films deposited by deep oscillating magnetron sputtering composite deposition[J].Rare Metal Materials and Engineering,2018,47(S1):330-334.(in Chinese)
参考文献 5
SØNDERBY S,AIJAZ A,HELMERSSON U,et al.Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering[J].Surface & Coatings Technology,2014,240:1-6.
参考文献 6
VLČEK J,REZEK J,HOUŠKA J,et al.Benefits of the controlled reactive high-power impulse magnetron sputtering of stoichiometric ZrO2 films[J].Vacuum,2015,114:131-141.
参考文献 7
LIU Y H,WANG P C,LIN L H,et al.Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications[J].Journal of the European Ceramic Society,2020,41(6):3387-3396.
参考文献 8
管昊,贡湘君,刘荣,等.不同晶型结构纳米 ZrO2 的稳定化制备[J].材料研究学报,2014,28(2):139-143.GUAN Hao,GONG Xiangjun,LIU Rong,et al.Stabilization of Nano-ZrO2 with different crystal structures[J].Journal of Materials Research,2014,28(2):139-143.(in Chinese)
参考文献 9
REDDY C V,REDDY I N,SHIM J,et al.Synthesis and structural,optical,photocatalytic,and electrochemical properties of undoped and yttrium-doped tetragonal ZrO2 nanoparticles[J].Ceramics International,2018,44(11):12329-12339.
参考文献 10
LI X M,DENG J X,GE D L,et al.Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing[J].Applied Surface Science,2020,510(C):145510-145510.
参考文献 11
张新宇.直流、射频磁控溅射制备 Al2O3 薄膜工艺探索及其性能的研究[D].太原:中北大学,2017.ZHANG Xinyu.Study on the process and properties of Al2O3 thin films prepared by DC and RF magnetron sputtering[D].Taiyuan:North University of China,2017.(in Chinese)
参考文献 12
VERMA M,KUMAR V,KATOCH A.Synthesis of ZrO2 nanoparticles using reactive magnetron sputtering and their structural,morphological and thermal studies[J].Materials Chemistry and Physics,2018,212:268-273.
参考文献 13
韩克昌.电弧离子镀过渡金属氮化物硬质薄膜的成分设计基础研究[D].大连:大连理工大学,2017.HAN Kechang.Basic research on composition design of transition metal nitride hard films by arc ion plating [D].Dalian:Dalian University of Technology,2017.(in Chinese)
参考文献 14
彭塞奥,王天齐,金克武,等.溅射功率对二氧化锆薄膜结构及力学性能的影响研究[J].硅酸盐通报,2019,38(10):3133-3138,3144.PENG Saiao,WANG Tianqi,JIN Kewu,et al.Effect of sputtering power on microstructure and mechanical properties of zirconia thin films[J].Bulletin of the Chinese Ceramic Society,2019,38(10):3133-3138,3144.(in Chinese)
参考文献 15
王金清,刘晓红,单小东,等.ZrO2 薄膜的力学性能和摩擦学性能研究[J].材料科学与工程学报,2004,22(5):669-673.WANG Jinqing,LIU Xiaohong,SHAN Xiaodong,et al.Study on mechanical and tribological properties of ZrO2 thin films[J].Journal of Materials Science and Engineering,2004,22(5):669-673.(in Chinese)
参考文献 16
BERNARD O,HUNTZ A M,ANDRIEUX M,et al.Synthesis,structure,microstructure and mechanical characteristics of MOCVD deposited zirconia films[J].Applied Surface Science,2007,253(10):4626-4640.
参考文献 17
薛旭斌.正偏压作用下离子复合沉积 ZrO2 薄膜的结构与力学性能[D].哈尔滨:哈尔滨工业大学,2007.XUE Xubin.Structure and mechanical properties of ZrO2 films deposited by ion composite under positive bias Pressure[D].Harbin:Harbin Institute of Technology,2007.(in Chinese)
参考文献 18
许文举,鞠鹏飞,李红轩,等.O2/Ar 流量比及退火对氧化锆薄膜结构及摩擦学性能的影响[J].中国表面工程,2020,33(5):65-74.XU Wenju,JU Pengfei,LI Hongxuan,et al.Effect of O2/Ar Flow ratio and annealing on structure and tribological properties of zirconia thin films[J].China Surface Engineering,2020,33(5):65-74.(in Chinese)
参考文献 19
MATTHEWS A,FRANKLIN S,HOLMBERG K.Tribological coatings:Contact mechanisms and selection[J].Journal of Physics D Applied Physics,2007,40(18):5463-5475.
参考文献 20
MUSIL J,JIROUT M.Toughness of hard nanostructured ceramic thin films[J].Surface and Coatings Technology,2007,201(9-11):5148-5152.
参考文献 21
LI J L,ZHANG S,LI M.Influence of the C2H2 flow rate on gradient TiCN films deposited by multi-arc ion plating[J].Applied Surface Science,2013,283:134-144.
参考文献 22
魏克俭,薛文斌,曲尧,等.锆微弧氧化表面处理技术研究进展[J].表面技术,2019,48(7):11-23.WEI Keijian,XUE Wenbin,QU Yao,et al.Research progress in surface treatment technology of zirconium micro-arc oxidation[J].Surface Technology,2019,48(7):11-23.(in Chinese)
参考文献 23
SHIN D Y,KIM K N,NAM I T,et al.Improvement of corrosion resistance of stainless steel by ZrO2-SiO2 sol-gel coatings[C]//7th International Symposium on EcoMaterials Processing and Design.Materials Science Forum,2006,545(510-511):442-445.
参考文献 24
MALINOVSCHI V,MARIN A,NEGREA D,et al.Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation[J].Applied Surface Science,2018,451(Sep.1):169-179.
参考文献 25
GARG N,BERA S,VELMURUGAN S.Effect of coating thickness and grain size on the electrochemical properties of hydrothermally deposited nano-ZrO2 coatings on stainless steel surface[J].Thin Solid Films,2018,670:60-67.
参考文献 26
ZHANG X G.Corrosion and electrochemistry of zinc[J].Corrosion in Soil,1996,10:305-314.
参考文献 27
CHEN Y,NIE X,NORTHWOOD D O.Investigation of Plasma Electrolytic Oxidation(PEO)coatings on a Zr-2.5Nb alloy using high temperature/pressure autoclave and tribological tests[J].Surface and Coating Technology,2010,205(6):1774-1482.
参考文献 28
VAKILIFARD M,MAHMOODI M J.Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation[J].Composites Part B:Engineering,2019,167:277-301.
参考文献 29
DAN L,YING L,LIU X,et al.Corrosion behavior of Ti3AlC2 in NaOH and H2SO4[J].Journal of the European Ceramic Society,2010,30(15):3227-3234.
参考文献 30
YEH T H,LIN R D,CHERNG B R,et al.Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films[J].Journal of Crystal Growth,2018,489:57-62.
参考文献 31
TIAN W L,MENG F D,LIU L,et al.The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure[J].Progress in Organic Coatings,2015,82:101-112.
参考文献 32
JIANG M Y,WU L K,HU J M,et al.Silane-incorporated epoxy coatings on aluminum alloy(AA2024).Part 1:Improved corrosion performance[J].Corrosion Science,2015,92:118-126.
参考文献 33
CAO Y W,GUO C S,WU D T,et al.Synthesis and corrosion resistance of solid solution Ti3(Al1-xSix)C2[J].Journal of Alloys and Compounds,2021,867:159126.
目录contents

    摘要

    高质量的金属氧化物薄膜在航天航空、海洋船舶等极端环境下的关键部件有着广泛的应用需求,但传统制备技术易导致薄膜疏松多孔,产生空隙裂纹等缺陷,高功率脉冲磁控溅射技术(HiPIMS)已被证明是一种有效制备无空洞和无弧滴致密薄膜的有效方法。通过 HiPIMS 技术在不锈钢表面制备超薄致密 ZrO2 薄膜,重点研究不同 O2流量下耐腐蚀性能的调控规律。 通过扫描电子显微镜(SEM)、光电子能谱仪(XPS)、X 射线衍射仪(XRD)、原子力显微镜(AFM)、纳米压痕仪(Nano Test P3)、电化学设备(CS300)等对 ZrO2薄膜的表面形貌、物相结构、力学性能、耐腐蚀性能等方面进行研究。研究结果显示, 在 O2流量为 40 mL/ min 时,ZrO2 薄膜的纳米硬度 H 最高为 26.38 GPa,弹性模量 E 为 290.9 GPa;同时,在电化学腐蚀试验中,其自腐蚀电流密度 I corr达到 45.802 pA / cm2 ,与 304L 不锈钢相比降低了 4 个数量级;电化学阻抗谱(EIS)显示,随 O2流量的增加,容抗弧半径、低频区阻抗值和相角均随之不断增大,进一步表明 O2 流量为 40 min / mL 制备薄膜的耐腐蚀性能最优。通过 HiPIMS 技术能够制备出高质量的 ZrO2 薄膜,其高耐腐蚀性对基体起到了强效的防护作用,对防腐薄膜的研究和应用具有一定参考价值。

    Abstract

    Corrosion-resistant metal oxide films are widely used in the key parts of aerospace, ocean ships and other extreme environments, but the traditional preparation technology deposits films easily with voids and cracks, and high power impulse magnetron sputtering (HiPIMS) has proven to be an effective method of depositing dense films without voids and cracks. Ultra-thin ZrO2 films are prepared on stainless steel by HiPIMS. The law of variation for corrosion resistance of the films following the O2 flow rate is studied with scanning electron microscope (SEM), photoelectron spectrometer (XPS), X-ray diffractometer (XRD), atomic force microscope (AFM), nano-indenter (Nano Test P3) and electrochemical equipment (CS300). The results reveals that when the O2 flow rate is 40 mL / min, the nano-hardness H and the elastic modulus E achieve to the highest value of 26.38 GPa and 290.9 GPa respectively. Meanwhile, the film prepared under 40 mL / min O2 flow rate exhibits excellent corrosion resistance. The self-corrosion current density I corr is 45.802 pA / cm2 , four orders of magnitude lower than that of 304L stainless steel. The EIS spectrum shows that the radius of capacitive reactance arc, the impedance value of low frequency region and the phase angle increase continuously with the increase of O2 flow. The strong corrosion-resistant metal oxide films can be achieved by HiPIMS, which plays an important role on protecting the stainless steel.

  • 0 前言

  • 奥氏体不锈钢良好的耐蚀性、延展性和低成本等优势,使其成为各行业理想合金材料的首选。其中,304L不锈钢(ASS)在核工业、海洋工程等领域应用广泛。但其抗局部腐蚀能力较弱,尤其是含有氯离子的盐类大量存在时,氯离子的富集破坏不锈钢表面的钝化膜,导致设备腐蚀失效,造成严重的经济损失和安全威胁。氧化物陶瓷由于具备优异的化学稳定性和耐腐蚀性能,广泛应用于金属材料的防护涂层。其中,氧化锆(ZrO2)陶瓷材料具有较高的力学性能、化学惰性、耐磨性、耐腐蚀性[1];热膨胀系数 (10.3×10−6/K) 与不锈钢材料 (19.6×10−6/K)接近,使得ZrO2 薄膜既能提高不锈钢基体的耐磨损性和抗腐蚀性能,还能有效避免薄膜因多次热循环而脱落。同时导热系数较低,对合金的附着力较强[2],因而可以用作热障薄膜,如涡轮发动机叶片和热交换机等工件表面。

  • 但传统制备技术易出现薄膜疏松多孔、空隙裂纹多等缺点,高功率脉冲磁控溅射技术(High power impulse magnetron sputtering, HiPIMS)已被证明是一种有效制备无空洞和无弧滴致密薄膜的有效方法。HiPIMS是一种基于磁控溅射技术而发展的新型等离子体物理气相沉积方法(PVD),具备高靶材离化率和高等离子体密度,能够有效制备出表面均匀致密的膜层。相比溶胶-凝胶法(Sol-gel)、多弧离子镀(MAIP)和直流反应磁控溅射(DC magnetron sputtering,DCMS)等技术,HiPIMS技术所制备薄膜的孔隙率明显降低,疏松多孔、裂纹多等缺陷明显减少。DCMS是较早发展起来的磁控溅射技术,但该技术存在严重的靶中毒问题,使得等离子体放电不稳定,甚至出现放电中断的现象。随后,射频磁控溅射技术(Radio-frequency magnetron sputtering, RF)的发展,能够直接溅射一定种类的绝缘靶材,在一定程度上缓解了靶中毒问题,减少了靶材打弧问题,使得镀膜过程更加稳定。但它存在电源昂贵、功率低、沉积速率慢等缺点。因而,自1999年以来, KOUZNETSOV等[3]提出了HiPIMS技术,通过对靶材施加高功率脉冲,使得靶材离化率高达70%[4],弥补了靶中毒、功率低等缺点,这种设计可以降低薄膜表面粗糙度,提高沉积密度和改善结晶度。 HiPIMS在制备介电材料和绝缘材料时有明显的优势,能制备出结构和性能优良的氧化物薄膜。 SØNDERBY等[5]利用HiPIMS在Si(100)衬底和NiO-YSZ燃料电池阳极沉积YSZ薄膜,研究发现在衬底偏压为−25至−50V时,能够制备出无空洞和裂纹的非柱状晶薄膜。VLČEK等[6]利用脉冲反应气流控制的HiPIMS技术低温高速沉积得到致密的、化学计量比、光学性能良好的ZrO2 薄膜,其硬度高达16GPa,折射率为2.19。LIU等[7]利用HiPIMS技术沉积得到Ti掺杂的ZrO2 薄膜,研究发现掺杂适量的Ti,可以提高薄膜内四方相的含量,同时Ti掺杂的ZrO2 MIM电容器具有较强的抗疲劳性能和较短的极化响应时间。但是目前利用HiPIMS技术制备ZrO2 薄膜的研究还较少,而O2 流量等参数在薄膜制备过程中起重要作用,因而使用HiPIMS技术制备均匀致密的ZrO2 薄膜具有一定的研究价值。

  • 本文主要工作是基于HiPIMS技术快速制备不同O2 流量下的单层ZrO2 薄膜,通过不断优化试验参数,获得超薄致密的单层ZrO2 薄膜,增强薄膜的力学性能和抗腐蚀性能,有效解决多元复合涂层界面结合强度低、界面增多导致的耐腐蚀性能下降等问题,消除薄膜表面空洞、裂纹等缺陷,获得较低的薄膜孔隙率,实现超薄涂层高耐腐蚀性的功能。同时,利用动电位扫描曲线和电化学阻抗谱(EIS)系统研究O含量在膜层腐蚀过程中作用规律。

  • 1 试验准备

  • 1.1 样品制备

  • 本试验利用高功率脉冲磁控溅射设备,在不锈钢表面进行薄膜沉积。选用304L不锈钢作基片 (20mm×20mm×5mm),在基片放入真空腔室之前,先将其放入装有无水乙醇的烧杯中,进行超声清洗。选用纯度为99.99%的Zr金属靶作为溅射靶材,将清洗后的基片放置于真空室中,距靶面12cm处。为减小基片表面杂质的干扰,增大薄膜与基片的结合力,对腔室内的基片进行刻蚀。在腔室的压力下降至5MPa、温度稳定在200℃时,打开气体离子源对基片进行刻蚀,分别设置Ar(纯度99.99%) 气流速为100mL/min(sccm),偏压为-60V,功率为3kW,刻蚀时长为15min。刻蚀结束后,关闭气体离子源,保持偏压为−60V,设置靶功率为5kW。为增强薄膜与基体的界面结合强度,在基片表面沉积纯金属Zr作过渡层,沉积时长为3~5min。将O2(纯度99.99%)以16~40mL/min的流速沿腔体侧壁通入,气体粒子加速撞击锆靶,溅射出Zr等离子体,Zr等离子体与O等离子体碰撞反应,沉积到基片生成ZrO2 薄膜。通过改变O2 的流量,研究ZrO2 薄膜结构成分的差异及性能的变化。具体试验参数如表1所示。

  • 表1 ZrO2薄膜的沉积参数

  • Table1 Deposition parameters of the ZrO2 coatings

  • 1.2 结构表征及力学性能测试

  • 采用PANalytica公司生产的多功能粉末衍射仪 (XPert Pro MPD)对薄膜的物相结构进行分析,以Cu源为激发源,发射Kα 特征X射线,对薄膜样品以2(°)/min的速度进行扫描,其扫描范围设置为20°~80°;采用Thermofisher公司生产的X射线光电子能谱仪(ESCALAB 250Xi)对薄膜的化学态及成键结构进行分析;采用Hitachi厂家生产的扫描电子显微镜(S-4800)观察薄膜的表面形貌及截面形貌,利用其自带的能谱仪对感兴趣区进行元素种类及含量的分析;采用Anton Paar公司生产的原子力显微镜(AFM,ToscarTM400)在表面积为1 μm× 1 μm的区域内进行扫描,从而获得样品的表面粗糙度等信息。

  • 采用英国MML公司生产的纳米压痕仪(Nano Test P3)对薄膜的纳米硬度(H)和弹性模量(E) 进行测量,为减小试验误差,分别随机选取3个点,取平均值,且压入深度为薄膜厚度的10%左右。通过对ZrO2 薄膜硬度 H 和弹性模量 E 的综合分析来研究其力学性能。对于ZrO2 薄膜耐腐蚀性能的研究,通过CS300电化学设备,在平衡盐溶液中对薄膜进行测试。不锈钢基片上的ZrO2 薄膜作为工作电极,铂片(Pt)作为辅助电极,饱和氯化钾(KCl) 溶液作为参比电极,测试样品面积为0.5cm2、盐溶液浓度为3.5%的NaCl溶液。利用电化学测试系统进行动电位极化曲线测试和电化学阻抗谱(EIS)采集。通过极化曲线和电化学阻抗谱(EIS)综合分析ZrO2 薄膜的耐腐蚀性能。

  • 2 结果与讨论

  • 2.1 结构与成分

  • 利用EDS能谱仪对不同O2 流量下制备的ZrO2 薄膜进行测试。随着O2流量的不断增加,薄膜内O含量升高。O2 含量为16mL/min时,薄膜内氧含量较低,O/Zr原子比为0.719;当O2 流量增大至32mL/min时,薄膜内O/Zr原子比达到1.474; 当O2 流量增加至40mL/min时,薄膜中O含量明显增大,O/Zr原子比为1.718。薄膜的化学配比与Zr、O离子到达基片的相对速率有关,当氧分压不断增加时,O离子的数目增多,溅射出来的Zr离子与O离子碰撞的概率增大,Zr、O离子到达基片的相对速率变缓,从而导致薄膜中氧原子的比例不断增加。具体变化规律如图1所示。

  • 图1 不同O2流量下制备薄膜的元素原子比

  • Fig.1 Elemental atomic ratio of the coating prepared at different oxygen flow rates

  • 图2 为ZrO2 薄膜的XRD谱,在O2 流量低于32mL/min时,薄膜仅存在m-ZrO2,薄膜沿着M(002)面生长。当O2 流量增大至32mL/min时,薄膜物相结构开始发生转变,t-ZrO2 衍射峰出现,四方相沿M(101)面择优生长,单斜相M(002)面的衍射峰强度下降,表明ZrO2 薄膜由m-ZrO2 开始向t-ZrO2 转化。在O2 流量进一步增大至40mL/min时,单斜相M(002)面的衍射峰强度迅速降低,但衍射峰宽化,证明薄膜中的晶粒逐渐细化。同时,四方相M(101)衍射面的强度逐渐增强,薄膜中m-ZrO2 和t-ZrO2 混合共存,但薄膜内t-ZrO2的含量明显增多。可知,O2 流量的增大,使得ZrO2 薄膜由单斜相向四方相转化,并未制备出纯的t-ZrO2

  • 图2 不同O2流量下制备薄膜的XRD图谱

  • Fig.2 XRD patterns of coatings prepared at different oxygen flow rates

  • 表2 为XRD图谱的定量分析结果,在O2 量为16mL/min时,薄膜内O含量较低,主要物质为m-ZrO2 和亚化学计量比的ZrOx;当O2 流量增大至32mL/min时,m-ZrO2、t-ZrO2 的相对含量分别为69.5%、30.5%;当O2 流量增加至40mL/min时,薄膜中O含量明显增大,t-ZrO2 的含量超过一半, m-ZrO2、t-ZrO2 的相对含量分别为44.4%、55.6%,与EDS能谱测试结果相吻合。

  • 表2 不同O2流量下制备的ZrO2薄膜不同物相结构的相对含量

  • Table2 Relative contents of different phase structures of ZrO2 films prepared at different O2 flow rates

  • 为进一步确定晶粒细化程度,通过谢乐公式[8] 对晶粒尺寸进行计算:

  • D=Kλβcosθ
    (1)
  • 式中,K为谢乐常数,通常取0.9;λ为入射X射线的波长,Cu的Kα射线的波长为0.154 06nm;β为为衍射线半高峰宽处FWHM,它由于晶粒细化而引起的衍射峰的宽化;θ为衍射线的峰位;

  • 由式(1)计算得到样品C1、C2、C3的平均晶粒尺寸为25nm、17.3nm、9.1nm。进一步表明薄膜晶粒尺寸随O2 流量增加而逐渐细化。

  • 为进一步研究ZrO2 薄膜的成分,对薄膜进行了XPS分析测试,分别对不同氧流量下制备的ZrO2 薄膜的Zr 3d和O 1s进行光谱拟合,如图3所示。

  • 图3 不同O2流量下制备薄膜的XPS图谱

  • Fig.3 XPS spectra of coatings were prepared at different oxygen flow rates

  • 从图3a、3c、3e可以观察到Zr 3d光谱由Peak 1和Peak 2组成,Peak 1和Peak 2的峰位分别为182.0eV、184.3eV。对比元素结合能表,可知Peak 1为Zr 3d5/2,Peak 2为Zr 3d3/2,从而证明了薄膜中Zr元素的存在,且与之前报道的t-ZrO2的Zr 3d峰位一致[9]。图3b、3d、3f为O 1s的XPS图谱,其光谱分布接近高斯分布,经过泰勒解谱后,其中包含的两个峰Peak 3、Peak 4的结合能分别为530.0eV、531.2eV。根据图中峰位的不同(即结合能的大小差别)和峰强度的关系,位于530.0eV位置的峰应为ZrO2 化合物中O 1s的峰,位于531.2eV位置的峰与C=O键有关。其中C=O键的形成是由于腔室内含有少量碳杂质,对ZrO2 薄膜造成了污染。根据LI等[10]报道表明,通常情况下,结合能低于531eV的多与金属氧化物相关,结合能高于531eV的多与氢氧化物有关。可以判断出薄膜中含有ZrO2,这与XRD的分析结果相一致。

  • 2.2 表面与截面形貌

  • 图4 所示为不同O2流量下制备的ZrO2薄膜的表面和截面形貌。图4a表明,当O2 流量为16mL/min时,其表面趋于波浪形。随着O2 流量的增大,如图4b、4c所示,样品表面趋于平整,更加均匀致密。在被放大5万倍的情况下,薄膜表面没有出现空洞,裂纹等缺陷。截面形貌图4d、4e、4f显示了薄膜的生长结构变化,其柱状晶结构逐渐消失,形成细小的纳米线结构。随着O2流量进一步增大,纳米线被打碎成纳米颗粒。纳米晶结构的出现,增强了薄膜的致密性,使得膜基的界面结合强度增加,降低残余应力。

  • 图4 不同O2流量薄膜的表面和截面形貌

  • Fig.4 Surface morphology and cross-section morphology of the coating prepared at different oxygen flow rates

  • 图5 为不同O2流量条件下的ZrO2涂层的沉积速率,可以看到,样品C1、C2、C3的沉积速率分别为2.1 μm/h、1.4 μm/h、0.5 μm/h。随着O2流量的不断增加,涂层的沉积速率不断下降。引起沉积速率下降的原因有两个方面:一方面,根据能量守恒定律和动量守恒定律,O分压的增大,使得Zr、O原子的碰撞比例增加,到达基底的溅射粒子比例和能量下降,从而薄膜沉积速率下降;另一方面,就磁控溅射沉积过程而言,O2 流量较低时,Zr靶表面生长的ZrO2 远低于其被轰击剥离的速度,因而Zr靶表面处于金属状态,靶面没有ZrO2薄膜的生成,可保持与纯Ar气溅射时相近的沉积速率。但随着O分压的增大,其沉积速率逐渐下降,且超过某一临界值时,就会出现ZrO2 膜层的生成速率大于分解速率,从而导致沉积速率明显下降。沉积速率快时,溅射出的Zr原子能量相对较大,容易在基片表面相互沉积形成团簇,导致膜层表面均匀性差,表面粗糙度增大。当沉积速率变慢时,溅射出的Zr原子有更多的时间来扩散到低能量区域,从而可以提高薄膜的致密度,进一步细化晶粒。这与文献[11]中的报道相一致。

  • 图5 不同氧气流量下的ZrO2薄膜的沉积速率

  • Fig.5 Deposition rates of ZrO2 films at different oxygen flow rates

  • 从AFM形貌图6中可以清晰观察到样品表面呈球状颗粒分布,纳米颗粒成球形聚集是由于内聚力作用和较高的表面能的影响[12],同时,晶粒表面能越高,表明其晶粒尺寸越小。由于尺寸约束效应的作用,因而t-ZrO2 能够稳定存在,即晶粒尺寸超出一定范围时,t-ZrO2 容易向m-ZrO2 转变[12],所以晶粒尺寸越小,t-ZrO2 越稳定,进一步证实XRD图谱的分析结果。

  • 由图6a可以观察到,O2流量为16mL/min时,样品的表面粗糙度较大,颗粒分布的界面不明显; 随O2 流量增大至40mL/min时,样品C3表面的粗糙度下降至最小。对比在O2流量32mL/min条件下制备的样品C2,样品C3表面凹陷处减少,颗粒分布更加均匀。进一步表明晶粒尺寸不断细化,佐证了薄膜SEM截面形貌图4f中纳米颗粒结构的生成。

  • 图6 不同O2流量下制备薄膜的AFM形貌

  • Fig.6 AFM morphology of coatings prepared at different oxygen flow rates

  • 2.3 纳米力学性能

  • 图7a、7b、7c分别是样品C1、C2、C3的三个点纳米压痕载荷-位移(p-h)曲线。从图中可以看出载荷位移曲线均比较光滑,无间断点,表明薄膜内部结构缺陷少,薄膜较为致密均匀;样品C1、C2各点的加载曲线在压入初始阶段重合性较好,随着压入深度的增大,受薄膜内部残余应力等因素的影响,加载曲线和卸载曲线出现一定的偏移。C3各点的加载卸载曲线具有较好的重合性,可见样品C3在纳米压痕测试中表现出很好的重复性和可靠性。

  • 图7 不同O2流量下制备薄膜的载荷-位移p-h曲线

  • Fig.7 Load-displacement curves of the coatings prepared at different oxygen flow rates

  • 图8 所示为不同O2 流量下制备ZrO2薄膜的 HE 变化曲线。当O2 流量逐渐增大时,薄膜的 HE 先减小后增大,二者变化趋势一致。文献[13] 报道显示,薄膜 HE 的变化与薄膜的物相组成和生长结构相关。由XRD图谱2可知,随着O含量的增大,薄膜的主要物相结构由少量单斜相及亚化学计量比氧化物转向单斜相和四方相这种硬质相转化。截面形貌图4显示,当O含量为41.83%时,薄膜的生长结构为柱状晶结构,在施加压力时,柱状晶容易发生变形和断裂[14],从而导致了薄膜的 HE 较低;随O含量至增大63.21%,可以观察到薄膜的柱状晶结构消失,出现了纳米颗粒结构,薄膜的HE 均明显增大。

  • 图8 不同O2流量下制备薄膜的纳米硬度 H 及弹性模量 E

  • Fig.8 Hardness H, elastic modulus E of the coatings prepared at different oxygen flow rates

  • 2004年,王金清等[15]采用静电自组装技术获得ZrO2 薄膜的 H 为8.88GPa,E 为193.93GPa;2007年,BERNARD等[16]利用金属有机化学气相沉积法制备了ZrO2 薄膜测得t-ZrO2H 为15GPa,E 为220GPa,m-ZrO2 分别为7GPa、160GPa,证明了t-ZrO2 的韧性优于m-ZrO2。2007年,薛旭斌[17]采用离子复合沉积技术在正偏压为400V制备的ZrO2 薄膜的H和E的值分别为18.1GPa和214Gpa。2020年,许文举等[18]采用多弧离子镀(MAIP)方法在Inconel718上沉积了ZrO2 薄膜,随着O2/Ar流量比的增大,薄膜硬度逐渐升高,在比值为1.5时,测得薄膜的 H 为16.7GPa,E 约为240GPa。本试验通过不断优化试验参数,制备出力学性能更加优异的ZrO2 薄膜,结果显示,随着O2 流量的增加, ZrO2 薄膜的硬度和弹性模量明显提高。当O2 流量为40mL/min时,由于t-ZrO2的相对含量超过一半,同时纳米晶结构出现,使得ZrO2 薄膜的 H 达到26.38GPa,E 为290.9GPa,达到了超硬薄膜的标准。

  • 薄膜的 H/EH3/E2 通常用来评定薄膜抵抗塑性形变的程度[19-20],比值越大,表明其抵抗塑性变形的能力越强。H/E 的值越大,表示薄膜的耐磨性越好;H 3/E 2 的值越大,表示薄膜的韧性越好[21]。从图9中可看到,在O2流量为40mL/min时,ZrO2 薄膜的 H/EH 3/E 2 的值最大,表明薄膜的综合性能最佳。H/EH 3/E 2 变化趋势为先下降后上升,分析这种现象产生的主要原因是,样品C2处于柱状晶结构向纳米晶结构转变的过渡态,没有稳定的柱状晶结构,也没有致密的纳米晶结构,从而导致其抗磨损性能和韧性下降。H/EH 3/E 2 的变化趋势表明,纳米晶结构的ZrO2 薄膜比柱状晶结构的韧性更好,抗磨损的性能更强,这与文献[13] 报道的ZrO2薄膜的性能变化情况相似。

  • 图9 不同O2流量下制备薄膜的 H/EH 3/E 2

  • Fig.9 H/E and H 3/E 2 of the coatings prepared at different oxygen flow rates

  • 2.4 耐腐蚀性能

  • 通过Tafel曲线拟合得到不同O2流量条件下薄膜的自腐蚀电位 E corr和自腐蚀电流密度 I corr等电化学参数,如表3所示。可知,不锈钢基体的腐蚀电位 E corr 为−0.280 36V,腐蚀电流密度 I corr 为103.78nA/cm2。随着O2 流量从16mL/min增加至40mL/min,薄膜的自腐蚀电流密度 I corr 分别为2.707 4、0.543 1、0.045 802nA·cm-2,腐蚀速率 R corr分别为31.845、6.388、0.538 73nm·A,对比不锈钢基底,薄膜展现了良好的耐腐蚀性能。测试结果表明,薄膜在O2 流量为40mL/min时,其自腐蚀电流密度最低,腐蚀电位最高,腐蚀速率最慢,故其耐腐蚀性能最佳。

  • 表3 不同O2流量下制备的ZrO2薄膜的极化数据

  • Table3 Polarization data of ZrO2 coatings prepared at different oxygen flow rates

  • βa: Tafel slope of anodic branch; βc: Tafel slope of cathodic branch; I corr: Corrosion current density; E corr: Corrosion potential; R corr: Corrosion rate.

  • 图10 为不同O2流量下ZrO2薄膜的动电位极化曲线,腐蚀液为浓度为3.5%的NaCl溶液,反映了ZrO2 薄膜的自腐蚀电流密度 I corr和腐蚀电位 E corr的变化趋势,I corr处于持续降低状态,E corr呈不断增大的趋势。这充分说明腐蚀速率不断减缓,基材处于阴极保护的状态之中,同时薄膜钝化区域扩大。在O2 流量为40mL/min时,样品C3的极化曲线出现明显的钝化平台,且击穿电位 E b较不锈钢基体明显增大,由0.422V增大至1.195V,接近不锈钢基体的3倍。究其原因可得,一方面,随薄膜内O含量的增加,晶粒尺寸不断细化,柱状晶结构逐渐消失,出现纳米晶颗粒堆叠生长结构。纳米晶粒的堆叠有利于对薄膜内部孔隙、裂纹进行填补,薄膜内部孔隙率降低,从而有效阻碍腐蚀溶液通过孔隙进入膜层,达到保护基体隔离腐蚀液侵蚀的目的。另一方面,单斜相向四方相不断转变,四方相含量增加。 t-ZrO2 的稳定存在,能够有效减少微裂纹的产生,从而提高薄膜的耐腐蚀性能,这与魏克俭等[22]报道结果相一致。

  • 图10 不同O2流量下制备薄膜的极化曲线

  • Fig.10 Polarization curves of coatings prepared at different oxygen flow rates

  • 2006年,SHIN等[23]采用溶胶-凝胶法(Sol-gel) 在316L不锈钢上制备了0.8 μm的ZrO2-SiO2 复合薄膜的 I corr 达到10 μA/cm2 数量级。2018年, MALINOVSCHI等[24]利用等离子体电解氧化法 (PEO)在Zr-2.5Nb合金基体上制备38~60 μm的Al2O3/ZrO2复合薄膜的 I corr达到1nA/cm2 数量级, R corr为10nm·A。2019年,GARG等[25]利用水热法多轮沉积,制备了厚度为2.6 μm的4层ZrO2 薄膜,随着厚度增加,I corr 从10nA/cm2 减小至0.1nA/cm2 数量级,但晶粒尺寸增大至0.5~1 μm。本文基于HiPIMS技术的高离化率及高等离子体密度的优势,在相同时间内制备了厚度为2.1 μm、 1.4 μm、500nm的ZrO2 薄膜,均具备较强的耐腐蚀性能。其中,在O2 流量为40mL/min下制备的样品C3,其厚度为纳米数量级,但 I corr 达到45.802pA · cm-2E corr 为20.79mV, R corr 为538.73pm·A。通过对薄膜极化曲线的数据分析,结果表明样品C3的对腐蚀液具有较强的阻挡能力,耐腐蚀性能最好。进一步表明HiPIMS技术能有效解决薄膜表面的缺陷问题,是快速制备均匀致密ZrO2 薄膜的有效方法。

  • EIS也是评价薄膜耐腐蚀性能的有效方法之一。图11为利用电化学阻抗谱对薄膜耐腐蚀性能进一步表征的结果。图11a为不同O2流量下ZrO2薄膜的电化学阻抗谱(Nyquist图谱),Nyquist图谱由两部分组成,分别为阻抗的实部与虚部。图11a中容抗弧的半径反应了薄膜的耐腐蚀性能的强度,容抗弧的半径越大,薄膜阻隔腐蚀液的能力越强,耐腐蚀性越好[26]。由Nyquist图可以观察到,随着O含量的增加,容抗弧的半径逐渐增大,表明腐蚀反应的速率逐渐降低,因而ZrO2薄膜具有较好的致密性,耐腐蚀性能优异,这与极化曲线的测试结果相一致。

  • 图11 不同O2 流量下制备薄膜的电化学阻抗谱

  • Fig.11 Electrochemical impedance spectroscopy of coatings prepared at different oxygen flow rates

  • 阻抗-频率谱图11b表明,随着O2 流量的增加,低频区的阻抗值呈增长趋势。高频区的阻抗值与薄膜和溶液的界面相关;低频区的阻抗值与基材和薄膜的界面相关。低频区的阻抗值是衡量膜层耐腐蚀性能的重要指标,阻抗值越大,表明膜层的抵抗腐蚀的能力增强。从图11b可以观察到,当O2 流量从16mL/min增大至40mL/min时,低频区的阻抗模量从1.041 41MΩ·cm 2 增大至100.155MΩ·cm 2。这也充分表明,薄膜内部O含量的增加,使得薄膜内部致密性增强,孔隙率降低,因而样品C3对不锈钢基体起到良好的抗腐蚀防护作用。充分说明了高温相t-ZrO2 的生成有利于提高薄膜的致密性,增强膜层的抗腐蚀性能,与文献报道结果[27-28] 一致。

  • 通过相角-频率谱图11c可以看到所有样品的曲线是由两部分组成的,分别由低频区的半圆弧和高频区的半圆弧合成,对应两个不同的时间常数。其中,高频区的时间常数与电荷转移过程相关,低频区的时间常数与腐蚀过程相关[29]。低频区的相角随着膜层内O含量的增加而增大,从而证明薄膜对腐蚀过程形成的阻力不断增大[30]

  • 根据EIS的曲线进行数据拟合,得到如图12所示的等效电路图。R s 为溶液电阻;R f为薄膜电阻,表示薄膜对腐蚀液的阻隔能力;R ct为膜基界面处的电荷转移电阻;C f 为薄膜电容;Q fQ dl(CPE,恒相位元件)分别为薄膜的非理想电容、膜基界面处电化学反应的非理想双电层电容[31-32]。CPE为恒相位元件,是一种非理想电容,由于样品表面粗糙度和均匀性的不同,被用来代替理想电容 CQ=Zcpe=Y(jw)n-1Z cpe是相位元件的阻抗,n 是指偏离理想电容状态的指数,n=1为理想电容,n=0为纯电阻,n=−1为电感[33]

  • 图12 不同O2流量下薄膜EIS拟合后的等效电路图

  • Fig.12 Equivalent circuit diagram of different oxygen flow coating after EIS fitting

  • 表4 显示等效电路的电化学参数值,随着薄膜内O含量的增加,电化学参数 R fR ct的值不断增大,说明t-ZrO2 的生成提高了薄膜的耐蚀性,这与EIS图谱中容抗弧半径增大、低频区阻抗值增加相一致。充分表明样品C3对腐蚀溶液的阻隔能力较强,抗腐蚀性能最佳。

  • 表4 NaCl溶液中EIS数据的拟合结果

  • Table4 Fitting results for EIS data in NaCl solution

  • R s: Solution resistance; R f: Film resistance; R ct: Charge transfer resistance; C f: Film capacitance; Q f: Film capacitance; Q dl: Double layer capacitance.

  • 3 结论

  • (1)利用HiPIMS技术通过对O2 流量的控制,调控薄膜成分和生长结构,快速制备高耐腐蚀性能的致密ZrO2 薄膜,系统研究O含量变化在膜层腐蚀过程中的作用规律。

  • (2)薄膜微观结构的分析测试表明,O2 流量对薄膜的物相组成和生长结构有明显的影响作用。随着O2流量的不断增大,m-ZrO2向t-ZrO2转化,t-ZrO2 的稳定存在能够有效阻止裂纹的发生,降低裂纹孔隙等缺陷的产生率;同时薄膜生长结构由粗大的柱状晶结构向致密的纳米晶结构转变,纳米颗粒的堆叠有效阻止了腐蚀过程中裂纹的扩散,降低了腐蚀速率,提高了涂层的耐腐蚀性能。

  • (3)对ZrO2薄膜耐腐蚀性能的研究显示,随O2 流量的不断增大,薄膜的耐腐蚀性能显著提高。在O2 流量为40mL/min下制备的0.5 μm的ZrO2薄膜具有最低的自腐蚀电流密度、最高的腐蚀电位和击穿电位,尤其是 I corr达到了10−11数量级,较不锈钢基体提高至4个数量级。同时,薄膜的硬度 H、弹性模量 E 达到26.38GPa、290.9GPa。表明高致密性、低孔隙率的ZrO2 薄膜具备良好的力学性能和耐腐蚀性能,能够为不锈钢基体材料提供有效的防护作用。

  • 参考文献

    • [1] BHAGYANATHAN C,KARUPPUSWAMY P,KRISHN ARAJ C.Investigation of zirconium coating by sol–gel processes on A216 steel[J].International Journal of Advanced Manufacturing Technology,2018,99(9-12):2647-2657.

    • [2] YEN S K,CHIOU S H,WU S J,et al.Characterization of electrolytic HA/ZrO2 double layers coatings on Ti-6Al-4V implant alloy[J].Materials Science & Engineering C,2006,26(1):65-77.

    • [3] KOUZNETSOV V,K MACÁK,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [4] 欧伊翔,潘伟,雷明凯.深振荡磁控溅射复合沉积 CrN/TiN 超晶格薄膜的结构和性能[J].稀有金属材料与工程,2018,47(S1):330-334.OU Yixiang,PAN Wei,LEI Mingkai.Structure and properties of CrN/TiN superlattice films deposited by deep oscillating magnetron sputtering composite deposition[J].Rare Metal Materials and Engineering,2018,47(S1):330-334.(in Chinese)

    • [5] SØNDERBY S,AIJAZ A,HELMERSSON U,et al.Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering[J].Surface & Coatings Technology,2014,240:1-6.

    • [6] VLČEK J,REZEK J,HOUŠKA J,et al.Benefits of the controlled reactive high-power impulse magnetron sputtering of stoichiometric ZrO2 films[J].Vacuum,2015,114:131-141.

    • [7] LIU Y H,WANG P C,LIN L H,et al.Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications[J].Journal of the European Ceramic Society,2020,41(6):3387-3396.

    • [8] 管昊,贡湘君,刘荣,等.不同晶型结构纳米 ZrO2 的稳定化制备[J].材料研究学报,2014,28(2):139-143.GUAN Hao,GONG Xiangjun,LIU Rong,et al.Stabilization of Nano-ZrO2 with different crystal structures[J].Journal of Materials Research,2014,28(2):139-143.(in Chinese)

    • [9] REDDY C V,REDDY I N,SHIM J,et al.Synthesis and structural,optical,photocatalytic,and electrochemical properties of undoped and yttrium-doped tetragonal ZrO2 nanoparticles[J].Ceramics International,2018,44(11):12329-12339.

    • [10] LI X M,DENG J X,GE D L,et al.Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing[J].Applied Surface Science,2020,510(C):145510-145510.

    • [11] 张新宇.直流、射频磁控溅射制备 Al2O3 薄膜工艺探索及其性能的研究[D].太原:中北大学,2017.ZHANG Xinyu.Study on the process and properties of Al2O3 thin films prepared by DC and RF magnetron sputtering[D].Taiyuan:North University of China,2017.(in Chinese)

    • [12] VERMA M,KUMAR V,KATOCH A.Synthesis of ZrO2 nanoparticles using reactive magnetron sputtering and their structural,morphological and thermal studies[J].Materials Chemistry and Physics,2018,212:268-273.

    • [13] 韩克昌.电弧离子镀过渡金属氮化物硬质薄膜的成分设计基础研究[D].大连:大连理工大学,2017.HAN Kechang.Basic research on composition design of transition metal nitride hard films by arc ion plating [D].Dalian:Dalian University of Technology,2017.(in Chinese)

    • [14] 彭塞奥,王天齐,金克武,等.溅射功率对二氧化锆薄膜结构及力学性能的影响研究[J].硅酸盐通报,2019,38(10):3133-3138,3144.PENG Saiao,WANG Tianqi,JIN Kewu,et al.Effect of sputtering power on microstructure and mechanical properties of zirconia thin films[J].Bulletin of the Chinese Ceramic Society,2019,38(10):3133-3138,3144.(in Chinese)

    • [15] 王金清,刘晓红,单小东,等.ZrO2 薄膜的力学性能和摩擦学性能研究[J].材料科学与工程学报,2004,22(5):669-673.WANG Jinqing,LIU Xiaohong,SHAN Xiaodong,et al.Study on mechanical and tribological properties of ZrO2 thin films[J].Journal of Materials Science and Engineering,2004,22(5):669-673.(in Chinese)

    • [16] BERNARD O,HUNTZ A M,ANDRIEUX M,et al.Synthesis,structure,microstructure and mechanical characteristics of MOCVD deposited zirconia films[J].Applied Surface Science,2007,253(10):4626-4640.

    • [17] 薛旭斌.正偏压作用下离子复合沉积 ZrO2 薄膜的结构与力学性能[D].哈尔滨:哈尔滨工业大学,2007.XUE Xubin.Structure and mechanical properties of ZrO2 films deposited by ion composite under positive bias Pressure[D].Harbin:Harbin Institute of Technology,2007.(in Chinese)

    • [18] 许文举,鞠鹏飞,李红轩,等.O2/Ar 流量比及退火对氧化锆薄膜结构及摩擦学性能的影响[J].中国表面工程,2020,33(5):65-74.XU Wenju,JU Pengfei,LI Hongxuan,et al.Effect of O2/Ar Flow ratio and annealing on structure and tribological properties of zirconia thin films[J].China Surface Engineering,2020,33(5):65-74.(in Chinese)

    • [19] MATTHEWS A,FRANKLIN S,HOLMBERG K.Tribological coatings:Contact mechanisms and selection[J].Journal of Physics D Applied Physics,2007,40(18):5463-5475.

    • [20] MUSIL J,JIROUT M.Toughness of hard nanostructured ceramic thin films[J].Surface and Coatings Technology,2007,201(9-11):5148-5152.

    • [21] LI J L,ZHANG S,LI M.Influence of the C2H2 flow rate on gradient TiCN films deposited by multi-arc ion plating[J].Applied Surface Science,2013,283:134-144.

    • [22] 魏克俭,薛文斌,曲尧,等.锆微弧氧化表面处理技术研究进展[J].表面技术,2019,48(7):11-23.WEI Keijian,XUE Wenbin,QU Yao,et al.Research progress in surface treatment technology of zirconium micro-arc oxidation[J].Surface Technology,2019,48(7):11-23.(in Chinese)

    • [23] SHIN D Y,KIM K N,NAM I T,et al.Improvement of corrosion resistance of stainless steel by ZrO2-SiO2 sol-gel coatings[C]//7th International Symposium on EcoMaterials Processing and Design.Materials Science Forum,2006,545(510-511):442-445.

    • [24] MALINOVSCHI V,MARIN A,NEGREA D,et al.Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation[J].Applied Surface Science,2018,451(Sep.1):169-179.

    • [25] GARG N,BERA S,VELMURUGAN S.Effect of coating thickness and grain size on the electrochemical properties of hydrothermally deposited nano-ZrO2 coatings on stainless steel surface[J].Thin Solid Films,2018,670:60-67.

    • [26] ZHANG X G.Corrosion and electrochemistry of zinc[J].Corrosion in Soil,1996,10:305-314.

    • [27] CHEN Y,NIE X,NORTHWOOD D O.Investigation of Plasma Electrolytic Oxidation(PEO)coatings on a Zr-2.5Nb alloy using high temperature/pressure autoclave and tribological tests[J].Surface and Coating Technology,2010,205(6):1774-1482.

    • [28] VAKILIFARD M,MAHMOODI M J.Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation[J].Composites Part B:Engineering,2019,167:277-301.

    • [29] DAN L,YING L,LIU X,et al.Corrosion behavior of Ti3AlC2 in NaOH and H2SO4[J].Journal of the European Ceramic Society,2010,30(15):3227-3234.

    • [30] YEH T H,LIN R D,CHERNG B R,et al.Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films[J].Journal of Crystal Growth,2018,489:57-62.

    • [31] TIAN W L,MENG F D,LIU L,et al.The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure[J].Progress in Organic Coatings,2015,82:101-112.

    • [32] JIANG M Y,WU L K,HU J M,et al.Silane-incorporated epoxy coatings on aluminum alloy(AA2024).Part 1:Improved corrosion performance[J].Corrosion Science,2015,92:118-126.

    • [33] CAO Y W,GUO C S,WU D T,et al.Synthesis and corrosion resistance of solid solution Ti3(Al1-xSix)C2[J].Journal of Alloys and Compounds,2021,867:159126.

  • 参考文献

    • [1] BHAGYANATHAN C,KARUPPUSWAMY P,KRISHN ARAJ C.Investigation of zirconium coating by sol–gel processes on A216 steel[J].International Journal of Advanced Manufacturing Technology,2018,99(9-12):2647-2657.

    • [2] YEN S K,CHIOU S H,WU S J,et al.Characterization of electrolytic HA/ZrO2 double layers coatings on Ti-6Al-4V implant alloy[J].Materials Science & Engineering C,2006,26(1):65-77.

    • [3] KOUZNETSOV V,K MACÁK,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [4] 欧伊翔,潘伟,雷明凯.深振荡磁控溅射复合沉积 CrN/TiN 超晶格薄膜的结构和性能[J].稀有金属材料与工程,2018,47(S1):330-334.OU Yixiang,PAN Wei,LEI Mingkai.Structure and properties of CrN/TiN superlattice films deposited by deep oscillating magnetron sputtering composite deposition[J].Rare Metal Materials and Engineering,2018,47(S1):330-334.(in Chinese)

    • [5] SØNDERBY S,AIJAZ A,HELMERSSON U,et al.Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering[J].Surface & Coatings Technology,2014,240:1-6.

    • [6] VLČEK J,REZEK J,HOUŠKA J,et al.Benefits of the controlled reactive high-power impulse magnetron sputtering of stoichiometric ZrO2 films[J].Vacuum,2015,114:131-141.

    • [7] LIU Y H,WANG P C,LIN L H,et al.Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications[J].Journal of the European Ceramic Society,2020,41(6):3387-3396.

    • [8] 管昊,贡湘君,刘荣,等.不同晶型结构纳米 ZrO2 的稳定化制备[J].材料研究学报,2014,28(2):139-143.GUAN Hao,GONG Xiangjun,LIU Rong,et al.Stabilization of Nano-ZrO2 with different crystal structures[J].Journal of Materials Research,2014,28(2):139-143.(in Chinese)

    • [9] REDDY C V,REDDY I N,SHIM J,et al.Synthesis and structural,optical,photocatalytic,and electrochemical properties of undoped and yttrium-doped tetragonal ZrO2 nanoparticles[J].Ceramics International,2018,44(11):12329-12339.

    • [10] LI X M,DENG J X,GE D L,et al.Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing[J].Applied Surface Science,2020,510(C):145510-145510.

    • [11] 张新宇.直流、射频磁控溅射制备 Al2O3 薄膜工艺探索及其性能的研究[D].太原:中北大学,2017.ZHANG Xinyu.Study on the process and properties of Al2O3 thin films prepared by DC and RF magnetron sputtering[D].Taiyuan:North University of China,2017.(in Chinese)

    • [12] VERMA M,KUMAR V,KATOCH A.Synthesis of ZrO2 nanoparticles using reactive magnetron sputtering and their structural,morphological and thermal studies[J].Materials Chemistry and Physics,2018,212:268-273.

    • [13] 韩克昌.电弧离子镀过渡金属氮化物硬质薄膜的成分设计基础研究[D].大连:大连理工大学,2017.HAN Kechang.Basic research on composition design of transition metal nitride hard films by arc ion plating [D].Dalian:Dalian University of Technology,2017.(in Chinese)

    • [14] 彭塞奥,王天齐,金克武,等.溅射功率对二氧化锆薄膜结构及力学性能的影响研究[J].硅酸盐通报,2019,38(10):3133-3138,3144.PENG Saiao,WANG Tianqi,JIN Kewu,et al.Effect of sputtering power on microstructure and mechanical properties of zirconia thin films[J].Bulletin of the Chinese Ceramic Society,2019,38(10):3133-3138,3144.(in Chinese)

    • [15] 王金清,刘晓红,单小东,等.ZrO2 薄膜的力学性能和摩擦学性能研究[J].材料科学与工程学报,2004,22(5):669-673.WANG Jinqing,LIU Xiaohong,SHAN Xiaodong,et al.Study on mechanical and tribological properties of ZrO2 thin films[J].Journal of Materials Science and Engineering,2004,22(5):669-673.(in Chinese)

    • [16] BERNARD O,HUNTZ A M,ANDRIEUX M,et al.Synthesis,structure,microstructure and mechanical characteristics of MOCVD deposited zirconia films[J].Applied Surface Science,2007,253(10):4626-4640.

    • [17] 薛旭斌.正偏压作用下离子复合沉积 ZrO2 薄膜的结构与力学性能[D].哈尔滨:哈尔滨工业大学,2007.XUE Xubin.Structure and mechanical properties of ZrO2 films deposited by ion composite under positive bias Pressure[D].Harbin:Harbin Institute of Technology,2007.(in Chinese)

    • [18] 许文举,鞠鹏飞,李红轩,等.O2/Ar 流量比及退火对氧化锆薄膜结构及摩擦学性能的影响[J].中国表面工程,2020,33(5):65-74.XU Wenju,JU Pengfei,LI Hongxuan,et al.Effect of O2/Ar Flow ratio and annealing on structure and tribological properties of zirconia thin films[J].China Surface Engineering,2020,33(5):65-74.(in Chinese)

    • [19] MATTHEWS A,FRANKLIN S,HOLMBERG K.Tribological coatings:Contact mechanisms and selection[J].Journal of Physics D Applied Physics,2007,40(18):5463-5475.

    • [20] MUSIL J,JIROUT M.Toughness of hard nanostructured ceramic thin films[J].Surface and Coatings Technology,2007,201(9-11):5148-5152.

    • [21] LI J L,ZHANG S,LI M.Influence of the C2H2 flow rate on gradient TiCN films deposited by multi-arc ion plating[J].Applied Surface Science,2013,283:134-144.

    • [22] 魏克俭,薛文斌,曲尧,等.锆微弧氧化表面处理技术研究进展[J].表面技术,2019,48(7):11-23.WEI Keijian,XUE Wenbin,QU Yao,et al.Research progress in surface treatment technology of zirconium micro-arc oxidation[J].Surface Technology,2019,48(7):11-23.(in Chinese)

    • [23] SHIN D Y,KIM K N,NAM I T,et al.Improvement of corrosion resistance of stainless steel by ZrO2-SiO2 sol-gel coatings[C]//7th International Symposium on EcoMaterials Processing and Design.Materials Science Forum,2006,545(510-511):442-445.

    • [24] MALINOVSCHI V,MARIN A,NEGREA D,et al.Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation[J].Applied Surface Science,2018,451(Sep.1):169-179.

    • [25] GARG N,BERA S,VELMURUGAN S.Effect of coating thickness and grain size on the electrochemical properties of hydrothermally deposited nano-ZrO2 coatings on stainless steel surface[J].Thin Solid Films,2018,670:60-67.

    • [26] ZHANG X G.Corrosion and electrochemistry of zinc[J].Corrosion in Soil,1996,10:305-314.

    • [27] CHEN Y,NIE X,NORTHWOOD D O.Investigation of Plasma Electrolytic Oxidation(PEO)coatings on a Zr-2.5Nb alloy using high temperature/pressure autoclave and tribological tests[J].Surface and Coating Technology,2010,205(6):1774-1482.

    • [28] VAKILIFARD M,MAHMOODI M J.Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation[J].Composites Part B:Engineering,2019,167:277-301.

    • [29] DAN L,YING L,LIU X,et al.Corrosion behavior of Ti3AlC2 in NaOH and H2SO4[J].Journal of the European Ceramic Society,2010,30(15):3227-3234.

    • [30] YEH T H,LIN R D,CHERNG B R,et al.Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films[J].Journal of Crystal Growth,2018,489:57-62.

    • [31] TIAN W L,MENG F D,LIU L,et al.The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure[J].Progress in Organic Coatings,2015,82:101-112.

    • [32] JIANG M Y,WU L K,HU J M,et al.Silane-incorporated epoxy coatings on aluminum alloy(AA2024).Part 1:Improved corrosion performance[J].Corrosion Science,2015,92:118-126.

    • [33] CAO Y W,GUO C S,WU D T,et al.Synthesis and corrosion resistance of solid solution Ti3(Al1-xSix)C2[J].Journal of Alloys and Compounds,2021,867:159126.

  • 手机扫一扫看