en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赖振国,男,1996年出生,硕士研究生。主要研究方向为表面防护材料、固液复合润滑。E-mail:zglai@licp.cas.cn;

张斌(通信作者),男,1982年出生,博士,研究员,博士研究生导师。主要研究方向为表面涂层技术与加工、工程超滑和固液复合润滑。E-mail:bzhang@licp.cas.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211101002

参考文献 1
王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65.WANG Baoyou,CUI Lihua.Coating material,coating method and development direction of coated tool[J].Machinery,2002,29(4):63-65.(in Chinese)
参考文献 2
赵时璐,李友,张钧.刀具氮化物涂层的研究进展[J].金属热处理,2008(9):99-104.ZHAO Shilu,LI You,ZHANG Jun.Research progress on nitride coatings for cutting tools [J].Metal Heat Treatment,2008(9):99-104.(in Chinese)
参考文献 3
SPROUL W D,ROTHSTEIN R.High rate reactively sputtered Ti N coatings on high speed steel drills[J].Thin Solid Films,1985,126(3-4):257-263.
参考文献 4
汝强.Ti-N 系涂层多元多层强化研究进展[J].工具技术,2004(4):3-8.RU Qiang.Research progress of multi-layer multi-layer strengthening of Ti-N coatings[J].Tool Technology,2004(4):3-8.(in Chinese)
参考文献 5
CHEN T K,SHUN T T,YEH J W,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface and Coatings Technology,2004,188-189:193-200.
参考文献 6
GASSNER G,MAYRHOFER P H,KUTSCHEJ K,et al.A new low friction concept for high temperatures:Lubricious oxide formation on sputtered VN coatings[J].Tribology Letters,2004,17(4):751-756.
参考文献 7
FATEH N,FONTALVO G A,GASSNER G,et al.The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings[J].Tribology Letters,2007,28(1):1-7.
参考文献 8
LÓPEZ G,STAIA M H.High-temperature tribological characterization of zirconium nitride coatings[J].Surface & Coatings Technology,2005,200(7):2092-2099.
参考文献 9
SINGH S K,CHATTOPADHYAYA S,PRAMANIK A,et al.Tribological properties of chromium nitride on thecylinder liner under the influence of high temperature[J].Materials,2020,13:4497.
参考文献 10
MITCHELL D R G,STOTT F H.The friction and wear of thin titanium nitride and silicon nitride coatings on stainless steel at temperatures to 500 ℃[J].Surface & Coatings Technology,1992,50(2):151-160.
参考文献 11
BADISCH E,FONTALVO G A,STOIBER M,et al.Tribological behavior of PACVD TiN coatings in the temperature range up to 500 ℃[J].Surface and Coatings Technology,2003,163(2):585-590.
参考文献 12
SUE J A,CHANG T P.Friction and wear behavior of titanium nitride,zirconium nitride and chromium nitride coatings at elevated temperatures[J].Surface & Coatings Technology,1995,76-77(part-P1):61-69.
参考文献 13
HU S B,TU J P,MEI Z,et al.Adhesion strength and high temperature wear behaviour of ion plating TiN composite coating with electric brush plating Ni-W interlayer[J].Surface & Coatings Technology,2001,141(2-3):174-181.
参考文献 14
OKTAY S,KAHRAMAN Z,URGEN M,et al.XPS investigations of tribolayers formed on TiN and(Ti,Re)N coatings[J].Applied Surface Science,2015,328:255-261.
参考文献 15
RANJAN S,MUKHERJEE B,ISLAM A,et al.Microstructure,mechanical and high temperature tribological behaviour of graphene nanoplatelets reinforced plasma sprayed titanium nitride coating[J].Journal of the European Ceramic Society,2020,40(3):660-671.
参考文献 16
KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering[J].Coatings,2019,9(9):555.
参考文献 17
POLCAR T,PARREIRA N,NOVAK R.Friction and wear behaviour of CrN coating at temperatures up to 500 ℃[J].Surface & Coatings Technology,2007,201(9):5228-5235.
参考文献 18
ZHU S Y,KONG D J.Microstructures and friction-wear behaviors of cathodic arc ion plated chromium nitride coatings at high temperatures[J].Journal of Tribology,2018,140(3):031602.
参考文献 19
SHEN H,ZHAO W,ZHU S,et al.Friction-wear performances of cathodic arc ion plated CrN coating at elevated temperatures[J].Powder Metallurgy and Metal Ceramics,2019,58(1-2):73-80.
参考文献 20
CHEN Y,WANG S,HAO Y,et al.Friction and ear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature[J].Tribology International,2019,143:106079.
参考文献 21
SUSZKO T,GULBIŃSKI W,JAGIELSKI J.The role of surface oxidation in friction processes on molybdenum nitride thin films[J].Surface and Coatings Technology,2005,194(2-3):319-324.
参考文献 22
FATEH N,FONTALVO G A,GASSNER G,et al.Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J].Wear,2007,262(9-10):1152-1158.
参考文献 23
MULLIGAN C P,BLANCHET T A,GALL D.CrN-Ag nanocomposite coatings:Tribology at room temperature and during a temperature ramp[J].Surface & Coatings Technology,2010,204(9-10):1388-1394.
参考文献 24
JU H,DING N,XU J,et al.The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures[J].Materials Chemistry and Physics,2019,237:121840.
参考文献 25
JU H B,DING N,XU J H,et al.Improvement of tribological properties of niobium nitride films via copper addition[J].Vacuum,2018,158:1-5.
参考文献 26
CAI Z,WU Y,PU J.High-temperature friction and wear behavior of varying-C VN films[J].Journal of Materials Engineering and Performance,2021,30(3):2057-2065.
参考文献 27
MU Y T,LIU M,ZHAO Y Q.Carbon doping to improve the high temperature tribological properties of VN coating[J].Tribology International,2016,327-336
参考文献 28
BONDAREV A V,KVASHNIN D G,SHCHETININ I V,et al.Temperature-dependent structural transformation and friction behavior of nanocomposite VCN-(Ag)coatings[J].Materials & Design,2018,160:964-973.
参考文献 29
POLCAR T,VITU T,CVRCEK L,et al.Effects of carbon content on the high temperature friction and wear of chromium carbonitride coatings[J].Tribology International,2010,43(7):1228-1233.
参考文献 30
BONDAREV A V,KIRYUKHANTSEV-KORNEEV P V,SIDORENKO D A,et al.A new insight into hard low friction MoCN-Ag coatings intended for applications in wide temperature range[J].Materials & Design,2016,93(Mar.):63-72.
参考文献 31
KUTSCHEJ K,MAYRHOFER P H,KATHREIN M,et al.Structure,mechanical and tribological properties of sputtered Ti1-xAlxN coatings with 0.5 ≤ x ≤ 0.75[J].Surface and Coatings Technology,2005,200(7):2358-2365.
参考文献 32
KONG D J,GUO H Y.Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at hightemperatures[J].Tribology International,2015,88:31-39
参考文献 33
WU Z T,SUN P,QI Z B,et al.High temperature oxidation behavior and wear resistance of Ti0.53Al0.47N coating by cathodic arc evaporation[J].Vacuum,2017,135:34-43.
参考文献 34
YU C Y,WANG S B,LI T B,et al.Tribological behaviour of CrAlN coatings at 600 ℃[J].Surface Engineering,2013,29(4):318-321.
参考文献 35
ANTONOV M,AFSHARI H,BARONINS J,et al.The effect of temperature and sliding speed on friction and wear of Si3N4,Al2O3,and ZrO2 balls tested against AlCrN PVD coating[J].Tribology International,2017,118:500-514.
参考文献 36
PERFILYEV V,MOSHKOVICHA,LAPSKER I,et al.The effect of vanadium content and temperature on stick-slip phenomena under friction of CrV(x)N coatings[J].Wear,2013,307(1-2):44-51.
参考文献 37
RAPOPORT L,MOSHKOVICHA,PERFILYEV V,et al.High temperature friction behavior of CrVxN coatings[J].Surface & Coatings Technology,2014,238:207-215.
参考文献 38
DAI X,WEN M,WANG J,et al.The tribological performance at elevated temperatures of MoNbN-Ag coatings[J].Applied Surface Science,2020,509:145372.
参考文献 39
WANG W,PU J,CAI Z,et al.Insights into friction properties and mechanism of self-lubricating MoVN-Ag films at high temperature[J].Vacuum,2020,176:109332.
参考文献 40
FRANZ R,NEIDHARDT J,SARTORY B,et al.High-temperature low-friction properties of vanadiumalloyed AlCrN coatings[J].Tribology Letters,2006,23(2):101-107.
参考文献 41
BOBZIN K,BAGCIVAN N,EWERING M,et al.DC-MSIP/HPPMS(Cr,Al,V)N and(Cr,Al,W)N thin films for high-temperature friction reduction[J].Surface and Coatings Technology,2011,205(8):2887-2892.
参考文献 42
BOBZIN K,BAGCIVAN N,EWERING M,et al.Vanadium alloyed PVD CrAlN coatings for friction reduction in metal forming applications[J].Tribology in Industry,2012,34(2):101-107.
参考文献 43
TILLMANN W,KOKALJ D,STANGIER D,et al.Investigation of the influence of the vanadium content on the high temperature tribo-mechanical properties of DC magnetron sputtered AlCrVN thin films[J].Surface and Coatings Technology,2017,328:172-181.
参考文献 44
TILLMANN W,KOKALJ D,STANGIER D,et al.Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction[J].Applied Surface Science,2018,427:511.
参考文献 45
TILLMANN W,MOMENI S,HOFFMANN F.A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures[J].Tribology International,2013,66:324-329.
参考文献 46
KUTSCHEJ K,MAYRHOFER P H,KATHREIN M,et al.Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings[J].Surface & Coatings Technology,2005,200(5-6):1731-1737.
参考文献 47
PFEILER M,KUTSCHEJ K,PENOY M,et al.The effect of increasing V content on structure,mechanical and tribological properties of arc evaporated Ti–Al–V–N coatings[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):502-506.
参考文献 48
KONG D,FU G.Friction and wear behaviors of AlTiCrN coatings by cathodic arc ion plating at high temperatures[J].Journal of Materials Research,2015,30(4):503-511.
参考文献 49
CAVALEIRO A,POLCAR T.High temperature behavior of nanolayered CrAlTiN coating:Thermal stability,oxidation,and tribological properties[J].Surface & Coatings Technology,2014,257:70-77.
参考文献 50
POLCAR T,VITU T,SONDOR J,et al.Tribological performance of CrAlSiN coatings at high temperatures[J].Plasma Processes & Polymers,2010,6(S1):S935-S940.
参考文献 51
CHEN T,XIE Z,FENG G,et al.Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content[J].Applied Surface Science,2014,314:735-745.
参考文献 52
曾琨,邹长伟,郑军,等.电弧离子镀TiAlN和 TiAlSiN 涂层的高温摩擦磨损行为[J].中国表面工程,2015,28(6):28-38.ZENG Kun,ZOU Changwei,ZHENG Jun,et al.High temperature friction and wear behavior of TiAlN and TiAlSiN coatings by arc ion plating [J].China Surface Engineering,2015,28(6):28-38.(in Chinese)
参考文献 53
HE N,LI H,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.
参考文献 54
KONG D J,CHENGJIAN T.Effects of loads on high-temperature friction-wear properties of cathodic arc ion plated TiAlSiN coatings[J].Surface Review and Letters,2017,24(Suppl.2):1-8.
参考文献 55
DRNOVŠ EKA A,REBELO DE FIGUEIREDOA M,VOB H,et al.Correlating high temperature mechanicaland tribological properties of CrAlN and CrAlSiN hard coatings [J].Surface and Coatings Technology,2019,372:361-368.
参考文献 56
PFEILER M,FONTALVO G A,WAGNER J,et al.Arc evaporation of Ti-Al-Ta-N coatings:The effect of bias voltage and Ta on high-temperature tribological properties[J].Tribology Letters,2008,30(2):91-97.
参考文献 57
SERGEVNIN V S,BLINKOV I V,SKRYLEVA E A,et al.Wear behaviour of wear-resistant adaptive nanomultilayered Ti-Al-Mo-N coatings[J].Applied Surface Science,2016,388(Dec.1 Pt.A):13-23.
参考文献 58
莫锦君,吴正涛,高则翠,等.多弧离子镀AlTiYN涂层的高温氧化性能及高温摩擦学行为[J].中国表面工程,2018,31(4):104-112.MO Jinjun,WU Zhengtao,GAO Zecui,et al.High-temperature oxidation and tribological behavior of AlTiYN coatings by arc Ion plating[J].China Surface Engineering,2018,31(4):104-112.(in Chinese)
参考文献 59
WANG Y,LOU B.Microstructure and high-temperature friction and wear properties of cramon film[J].Oxidation of Metals,2021,95:239-250.
参考文献 60
LU Y C,CHEN H W,CHANG C C,et al.Tribological properties of nanocomposite Cr-Mo-Si-N coatings at elevated temperature through silicon content modification[J].Surface and Coatings Technology,2018,338:69-74.
参考文献 61
BONDAREV A V,VOROTILO S,SHCHETININ I V,et al.Fabrication of Ta-Si-C targets and their utilization for deposition of low friction wear resistant nanocomposite Si-Ta-C-(N)coatings intended for wide temperature range tribological applications[J].Surface and Coatings Technology,2019,359:342-353.
参考文献 62
CHEN D S,CHEN M K,CHANG S Y.Multiprincipal-element alcrtatizr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization[J].Ecs Transactions,2009:G37-G42
参考文献 63
SHEN W J,TSAI M H,TSAI K Y,et al.Superior oxidation resistance of(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride[J].Journal of the Electrochemical Society,2013,160(11):C531-C535.
参考文献 64
PHANI A R,HAEFKE H.Effect of annealing temperature on antireflection property and water contact angle of fluorine-based hydrophobic films by a sol-gel technique[J].Materials Letters,2004,58:3555-3558.
参考文献 65
LAN L W,YANG H J,GUO R P,et al.High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15 high-entropy alloys[J].Materials Chemistry and Physics,2021,270:0254-0584
参考文献 66
张旭.(TiAlCrMoW)Nx多主元氮化物涂层的制备及摩擦学性能研究[D].西安:西安理工大学,2021.ZHANG Xu.Preparation and tribological properties of(TiAlCrMoW)Nx multi-principal nitride coatings[D].Xi’ an:Xi’ an University of Technology,2021.(in Chinese)
参考文献 67
ZHAO Y Q,MU Y T,LIU M.Mechanical properties and friction wear characteristics of VN/Ag multilayer coatings with heterogeneous and transition interfaces[J].Transactions of Nonferrous Metals Society of China,2020,30(2):472-483.
参考文献 68
FERNANDES F,AL-RJOUB A,CAVALEIRO D,et al.Room and high temperature tribological performance of multilayered TiSiN/TiN and TiSiN/TiN(Ag)coatings deposited by sputtering[J].Coatings,2020,10(12):319.
参考文献 69
POLCAR T,MARTINEZ R,VÍTŮ T,et al.High temperature tribology of CrN and multilayered Cr/CrN coatings[J].Surface & Coatings Technology,2009,203(20):3254-3259.
参考文献 70
MA S,PROCHÁZKA J,KARVÁNKOVÁ P,et al.Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN[J].Surface & Coatings Technology,2005,194(1):143-148.
参考文献 71
FAN J,WANG W,WANG,H,et al.Tribological performance and mechanism of MoN/VN multilayer films with different modulation periods at different temperature[J].Tribology Letter,2021,69:154.
参考文献 72
HOVSEPIAN P E,LEWIS D B,LUO Q,et al.TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures[J].Thin Solid Films,2005,485(1/2):160-168.
参考文献 73
FOX-RABINOVICH G S,YAMAMOTO K,VELDHUIS S C,et al.Self-adaptive wear behavior of nanomultilayered TiAlCrN/WN coatings under severe machining conditions[J].Surface and Coatings Technology,2006,201(3-4):1852-1860.
参考文献 74
WALKER J C,ROSS I M,REINHARD C,et al.High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on γ-TiAl[J].Wear,2009,267(5-8):965-975.
参考文献 75
ZHOU Z,RAINFORTH W M,LUO Q,et al.Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures[J].Acta Materialia,2018,58(8):2912-2925.
参考文献 76
RAJENDRAN P,DEVARAJU A,SARAVANAN I.A study on wear behavior of TiN/AlCrN multilayer coatings at high temperature testing conditions[J].Surface Topography:Metrology and Properties 2021,9:045013.
参考文献 77
ALAMGIR A,YASHIN M,BOGATOV A,et al.High-temperature tribological performance of hard multilayer TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN coating deposited on wc-co substrate[J].Coatings,2020,10(9):909.
参考文献 78
LIU Z R,XU Y,PENG B,et al.Structure and property optimization of Ni-containing AlCrSiN coatings by nano-multilayer construction[J].Journal of Alloys and Compounds,2019,808:151630.
目录contents

    摘要

    高温润滑是核工业、航空、船舶和钢铁领域的难题之一。涂层材料可以在不改变原有基材的基础上,极大地提升材料的高温服役性能。氮化物涂层因其耐温性能好、摩擦因数低、耐磨性好等特性,成为该领域的研究热点。从材料的构成和设计出发,对单元氮化物涂层、二元氮化物涂层、三元氮化物涂层、多层氮化物涂层和高熵合金涂层等方面进行综述。对氮化物涂层在高温润滑领域的发展进行展望,认为发展非氮化物金属和氮化物金属多元组涂层和高熵合金氮化物涂层建立氮化物涂层数据库将成为新的研究热点,对氮化物涂层在高温润滑与耐磨条件的应用与服役有一定指导意义。

    Abstract

    High temperature lubrication is one of the difficult problems in nuclear industry, aviation, vessel and steel field. Coating materials can greatly improve the high-temperature service performance of materials without changing the original substrate. Since nitride coating has the characteristics of good temperature tolorence, low friction factor, good wear resistance and so on, it has become a research hotspot in this field. Mono-elemental nitride coatings, binary-elemental nitride coatings, ternary-elemental nitride coatings, multilayer nitride coatings and high entropy alloy nitride coatings are reviewed from the composition and design of materials. Finally, the development of nitride coatings in the field of high temperature lubrication is prospected. It is considered that the developement non-nitride metal and nitride metal multigroup coatings and high entropy alloy nitride coatings and establishment of nitride coating database will become a new research focus, which is of great significance to guide the application and service of nitride coatings in high temperature lubrication and wear resistance conditions.

  • 0 前言

  • 氮化物涂层由于具有高硬度、高热稳定性、优异的抗氧化性常用来作为刀具保护材料和高温服役的润滑材料。自21世纪80年代以来,TiN涂层首次被报道具有2 000HV的硬度,初始氧化温度达600℃,且摩擦因数低、磨损较小,引起了广泛的关注[1]。随后,越来越多的金属氮化物涂层被制备和研究,尤其是CrN、ZrN等涂层被视为TiN涂层的替代材料[2]。而随着切削过程产生的温度越来越高,对涂层的抗氧化性能和耐磨性提出了更高的要求,因此人们进一步通过向TiN中加入加入合金化元素,如Al、Cr、Zr、Nb、V等元素,形成相关二元氮化物涂层、三元氮化物涂层,使其在硬度、抗氧化性、耐磨性等方面表现出了更好的优势,尤其是进一步通过加入Y、Si、Hf、Mo、W等微量元素以满足某些特定的要求[3-4]。值得关注的是,自1995年高熵合金被发现以来,其因高熵效应、缓慢扩散效应、晶格畸变效应、鸡尾酒效应等特点,而拥有比传统合金更加优异的性能。因此,氮化物高熵合金逐渐被研究,以提高刀具的综合性能[5]

  • 本文主要聚焦于氮化物在高温下的摩擦学性能,分别综述单元氮化物涂层,双元氮化物涂层,三元氮化物涂层、高熵氮化物涂层及多层氮化物涂层。从其制备方法出发,介绍近年来不同氮化物的高温摩擦学性能的研究进展和发展现状。最后,指出氮化物作为保护涂层应用时仍需解决的问题及其发展前景。

  • 1 单元氮化物涂层

  • 相对于纯金属涂层,氮化物涂层具有更高的力学性能和热稳定性,是取代金属涂层应用于高温场景的主要涂层之一。单元氮化物主要有以下几种:氮化钒(VN)、氮化锆(ZrN)、氮化铬(Cr)、氮化钛(TiN)、氮化硅(SiN)和氮化钼(Mo2N)。其作为涂层,在摩擦时会产生相应的氧化物,从而对整体起到一定的保护作用。由于各种涂层的氧化温度和氧化产物不同,因此其性能存在一定的差异。

  • GASSNERA等[6]利用热重法、差示扫描量热法研究了溅射VN涂层的氧化行为,证实其在500~650℃发生氧化放热反应,在650~850℃范围内发生吸热融化行为。进一步以铝球和奥氏体不锈钢球作为配副,研究了从室温到700℃的摩擦行为,发现在500℃以上,摩擦因数显著降低,这主要得益于形成的氧化物的润滑作用。FATEH等[7]将非平衡直流磁控溅射V和VN涂层的在25℃和700℃ 的摩擦学行为进行了对比研究。如图1所示,V涂层的摩擦因数从室温的1.05降低到700℃的0.27; 相对来说VN涂层具有更低的摩擦因数,约0.45左右,且随着温度升高进一步降低至0.27左右。研究揭示了在600℃以下形成V金属氧化物是导致摩擦因数降低的关键,但是600℃以上,氧化物融化起到液体润滑的作用。

  • 图1 常温~700℃下V和VN涂层与Al2O3球对摩的摩擦因数[7]

  • Fig.1 Friction factor of the V and VN coatings from room temperature to 700℃ against Al2O3

  • LÓPEZ等[8]利用闭合场非平衡磁控溅射在AISI1045工具钢表面制备了ZrN涂层,在球盘摩擦试验机上,选用Al2O3 球做为摩擦副(载荷1N,速度10cm/s),研究了在室温、400℃和700℃范围内的摩擦学行为,认为ZrN涂层提高了其高温摩擦学性能。但是在700℃,AISI1045钢力学性能退化和ZrN涂层弱的高温稳定性影响了其摩擦学性能。SINGH等[9]在往复摩擦试验机上测试了CrN涂层的摩擦学行为,发现摩擦因数在28℃、100℃、 200℃、300℃分别为0.93、0.41、0.39和0.34,磨痕表面硬化和氧化铬的形成是降低摩擦的主要因素。

  • MITCHELL等[10]利用电弧离子镀和蒸发镀在321不锈钢表面制备了TiN涂层和SiN涂层,考察了20~500℃条件下,栓盘往复模式下(载荷16.3N,频率1Hz,振幅4.8mm,直径为10mm的栓,材质为321不锈钢)的摩擦行为。结果显示,在20℃ 和300℃条件下,由于TiN避免了金属间的直接接触,摩擦和磨损均降低,但是在500℃,TiN涂层被快速磨损,表面氧化和合金化是降低摩擦的主要因素。不同于TiN,SiN涂层均很快磨损,这是因为SiN涂层结合力较低。BADISCH等[11]报道了一种等离子辅助化学气相沉积(PACVD)的TiN涂层,以Al2O3 做配副,在球盘摩擦试验机上考察了室温到500℃的摩擦学性能,结果认为,在室温下摩擦因数在0.14~0.17,但是温度超过70℃,摩擦因数升高至0.60~0.80;TiN涂层在室温表现出较低的磨损率,但是当温度超过200℃,黏着磨损占主导地位,磨损率增大。SUE等[12]利用环盘摩擦试验机,以Inconel718作为摩擦副,系统对比研究了TiN, ZrN和CrN涂层在500℃和600℃,载荷267N和速度1.24m/s条件下的摩擦学性能。研究发现,在500℃条件下,摩擦因数CrN-Inconel718 < ZrN-Inconel718<TiN-Inconel718,磨损率分别比未涂层的低3、2和1个数量级。但是在600℃条件下, TiN失效。他们认为磨粒磨损和氧化磨损是引起磨损失效的主要原因。HU等[13]利用环盘摩擦试验机研究了电弧离子镀沉积的TiN/Ni-W复合涂层摩擦学行为,测试条件2.0m/s,环直径66mm,载荷29~69N,温度500℃、600℃和700℃。结果证实,复合涂层具有更低的摩擦因数和磨损率。OKTAY等[14]利用电弧离子镀和磁控溅射复合的方法,在高速钢表面沉积了TiN和含Re8+1.9at%(Ti, Re)N涂层,发现硬度从31GPa降低至29GPa (±2GPa),但是其在室温 (21℃)和150℃下(以Al2O3球为配副,往复摩擦条件下、载荷5N、速度1cm/s,振幅8mm),摩擦因数分别从0.56和0.35降低至0.22和0.17,他们认为摩擦过程中形成Re2O7 是降低摩擦因数的主要原因。RANJAN等[15]利用等离子喷涂在钛合金表面制备了不同石墨烯含量的TiN@GNP,当加入2wt.%的石墨烯时,硬度、弹性模量和断裂韧性分别增加了19%、18%和300%。如图2所示,石墨烯的加入导致涂层硬度增加,摩擦因数降低。在温度293K和873K温度范围内磨损率和摩擦因数随着温度升高而降低, 2wt.%石墨烯的TiN耐磨寿命提高2.5倍。KUO等[16] 对比研究了高功率脉冲磁控溅射(HiPIMS)和直流磁控溅射(DCMS)制备的TiN涂层。TiN-HiPIMS制备的涂层结合力高达53N,而TiN-SCMS涂层仅有17N。研究表明TiN-HiPIMS具有更优异的耐磨性能,主要归因于其更加致密的结构。

  • 图2 TiN、TiN1G、TiN2G涂层纳米压痕曲线图和2N载荷下的摩擦因数图[15]

  • Fig.2 Load vs.displacement curve and Friction factor at 2N load of TiN, TiN1G and TiN2G coating

  • POLCAR等[17]利用电弧离子镀沉积了CrN涂层,在球盘摩擦试验机上,以100Cr6、Si3N4和Al2O3 为配副,研究了室温到500℃的摩擦学行为。对于100Cr6钢球,涂层几乎没有磨损,但是球磨损严重。对于Si3N4 球,摩擦因数随着温度的升高降低,但是由于球和涂层之间强的摩擦化学作用,磨损加剧; 对于Al2O3 球,在室温摩擦因数最低,最高值出现在200℃,然后又降低至0.57左右,涂层的磨损主要是抛光磨损。ZHU和KONG [18]利用电弧离子镀在YT14渗碳工具钢表面沉积了CrN涂层,以Si3N4 球作为摩擦副,在球盘摩擦实验机(3N,速度500r/min,旋转半径4mm)上进行了测试。他们发现在300℃,400℃和500℃的摩擦因数分别为0.50、0.62和0.43。结果认为400℃以下磨粒磨损占主导,500℃除了磨粒磨损外,还有轻微的氧化磨损。他们进一步研究了不同载荷的影响[19],在3N、5N和7N下的摩擦因数分别为0.431 8,1.158 6和0.459 9,但是在9N载荷下磨穿,磨损机制主要为磨粒磨损,氧化磨损、黏着磨损和塑性变形等共同作用的结果。CHEN等[20]研究了多弧离子度CrN涂层在纳金属溶液下的高温(250℃和550℃)摩擦学行为,发现摩擦因数在250℃约为0.20,化学反应形成的氧化钠和摩擦化学形成的氧化铬是降低摩擦的主要原因。但是在500℃,液体钠可以浸润CrN涂层表面,减少了氧化钠和涂层的直接接触,摩擦因数升高至0.50左右。

  • SUSZKO等[21]磁控溅射制备的Mo2N涂层的氧化行为的摩擦学的影响。以Al2O3 作为配副,室温 (湿度40%)条件下,摩擦因数约0.42,这时候水在摩擦界面吸附并形成氧化物一起降低了摩擦因数。但是在100~250℃,形成的MoO3 容易挤出摩擦界面,摩擦因数升高。当温度超过250℃,氧化物开始软化,在400℃摩擦因数低至0.55,但是磨损加剧。SUSZKO等认为Mo2N服役的有效区间是室温到350℃。FATEH等[22]对比研究了TiN和VN涂层的高温(25~700℃)摩擦学,发现TiN在600~700℃会氧化形成金红石结构的氧化钛;和TiN相比,VN的氧化发生在500℃,形成了马格涅利结构的氧化钒,XRD进一步确认存在V2O5,VO2 和V6O13。TiN和VN均表现出先升高(300℃)后降低的趋势,VN涂层的摩擦因数降低的更为明显,这主要归因于高温下形成液体V2O5 的流体润滑作用。

  • 总的来说,最早用于高温的单金属氮化物涂层,其根据制备方法和应用环境的不同,表现出迥异的摩擦学性能,且摩擦机理单一,但是使用温度范围仅限于600℃以内,需要从材料的角度重新设计,提高其使用温度。

  • 2 二元金属氮化物涂层

  • 为了解决单元金属氮化物耐温性能差和润滑性能差的问题,二元金属氮化物被提出并对其进行了深入的研究,其中包括非氮化物金属和氮化物复合涂层,双氮化物金属涂层等。

  • MULLIGAN等[23]利用反应磁控溅射在440C不锈钢表面沉积了5 μm厚度的CrN-Ag涂层,以100Cr6钢球为配副,在球盘摩擦试验机上研究了500℃、600℃和700℃条件下的摩擦学行为。摩擦因数分别为0.58(纯CrN涂层摩擦因数为0.64)、 0.47和0.85,这是因为在600℃,磨痕界面形成了Ag富集(比磨痕外高15%)。JU等[24]制备了一系列含Ag的NbN涂层(Ag含量9.2%~19.9%),以铝球作为摩擦副,在UMT-2上测试了室温到700℃ 的摩擦学行为,结果显示Ag的加入有利于降低摩擦因数。在低于300℃,加入Ag降低了摩擦因数,但是增加了磨损率;高于300℃,氧化磨损占主导地位,摩擦界面材料的重构形成AgNbO3 涂层是降低摩擦的主要原因。进一步研究了Cu掺杂(0.6~24at.%)的NbN涂层[25],发现低于6.0at.%的Cu掺杂NbN涂层,同时降低摩擦因数和磨损率。进一步增加Cu虽然可以降低摩擦因数,但是会导致磨损率增加。6.0at.%的Cu掺杂的NbN涂层可以将NbN涂层的使用范围拓展到400℃。氧化铜和氧化铌在200℃ 以内保证了摩擦因数稳定在0.55。因此,当双金属氮化物中存在Ag时,会降低涂层氧化温度,形成Ag与其他金属的双金属氧化产物,从而降低磨损。而Cu则只能以氧化铜的形式存在,耐温性能较差。

  • 碳元素的引入不仅能使薄膜的力学性能提高,同时还能提高薄膜摩擦学性能,主要是因为摩擦过程形成的转移膜具有非晶碳的特性和金属氧化物的协同作用。CAI等[26]研究了电弧离子镀沉积VCN涂层在300℃和600℃的摩擦学行为,认为摩擦因数基本一致,但是磨损随着C的引入而减小。对VCN涂层来说,在固定温度下,摩擦因数随着C的增加几乎不变,只有磨损降低。可是随着温度的升高,摩擦因数降低但是磨损却加剧。MU等[27]进一步通过多弧离子镀研究了C掺杂改善VN涂层的性能,结果证实,C的引入提高了VN涂层的力学性能(硬度和弹性模量分别从30.1GPa和578.5GPa提高到34.4GPa和598.2GPa)。进一步地,以Al2O3 作为配副,研究了室温、300℃、500℃、700℃ 条件下的摩擦学行为(载荷10N,速度100r/min,半径10mm)。在同等测试条件下VCN涂层具有更低的摩擦因数和磨损率,这主要是非晶碳和V2O5 起到自润滑的作用。BONDAREV等[28]研究了将Ag加入VCN涂层后的性能,利用磁控溅射制备了含Ag10~11at.%的VCN涂层,研究了Ag掺杂VCN涂层的与不含Ag的VCN涂层在100~700℃的摩擦行为。原位TEM退火行为证实Ag的掺杂降低了涂层氧化的门槛。掺杂Ag的涂层表现出更低的摩擦因数,这是因为:①在250~350℃,Ag激发的自氧化行为和摩擦化学作用,形成了AgVO3;②在650℃以上形成Ag0.4V2O5 相起到润滑作用。 POLCAR等[29]用电弧离子镀沉积了CrCN涂层,碳含量在0~31at.%变化。摩擦学测试表明当碳含量在12%~31%时,在低于700℃范围内,涂层均表现出优异的摩擦学行为。在400℃时,涂层和对偶球均发生了最大的磨损。BONDAREV等[30]利用磁控溅射制备了MoCN-Ag涂层(Mo51C15N27Ag7, Mo40C31N23Ag6 和Mo43C14N40Ag3),并研究了其在250~550℃的摩擦学行为。Mo51C15N27Ag7 涂层的摩擦因数从25~250℃随温度升高而增加; Mo40C31N23Ag6 涂层在25~250℃范围内摩擦因数均最小,主要归因于摩擦过程中形成了沿着摩擦平面平行的碳纤维;Mo43C14N40Ag3 涂层在350℃温度下表现出更好的摩擦性能且几乎没有磨损。在400℃以上,所有涂层的摩擦性能均变差,且磨损加剧,这主要是因为融化和形成了Ag6Mo10O33 或者MoO3+Ag。整体来看,多元氮化物中适当的引入碳元素在低于700℃的环境中有着优异的表现,双金属氮化物也因表现出来的优势为人们广泛研究。TiAlN有着不错的高温摩擦学性能,在700~900℃ 会形成氧化铝和氧化钛层状结构,且研究发现不同结构的该涂层对摩擦学性能有着至关重要的影响。 KUTSCHEJ等[31]研究了Ti1-x AlxN涂层中Ti和Al比列对高温摩擦的影响,其中 x=0.5、0.6、0.67和0.75。当 x 为0.54时硬度最大,约为33GPa,在0.76时降低至19GPa。所有涂层摩擦因数在室温时最高,约为1.5;且随着温度升高降低,在700℃时约为0.88左右。高Al含量的双相和hcp结构的涂层比仅有fcc结构的涂层具有更好的耐磨性能,这说明摩擦学行为和涂层结构紧密相关。KONG等[32] 研究了电弧离子镀沉积的AlTiN涂层在700~900℃范围内的摩擦行为,确认了在高温下,N会从涂层中释放,摩擦界面形成Al2O3和TiO2 提高了涂层的润滑和耐磨性能。在700℃、800℃和900℃条件下的摩擦因数分别为0.77、0.65和0.57。磨损机制主要是氧化磨损和黏着磨损。WU等[33]利用电弧离子镀制备了Ti0.53Al0.47N涂层,在室温到850℃范围内测试了氧化和摩擦行为。Ti0.53Al0.47N涂层结构在高温下仅发生了微小变化,氧化行为研究揭示了其多类型的氧化过程,最终形成了表层的Al2O3 和内部的TiO2 涂层的双层结构。随着温度升高至700℃,涂层表现出优异的耐磨损特性,主要是因为形成了耐磨的Al2O3。但是在850℃,形成TiO2 的行为加剧,摩擦性能下降。

  • YU等[34]利用离子束增强磁控溅射制备了CrAlN涂层,以Si3N4 为配副,研究了600℃下的摩擦行为。他们认为偏压−120V获得的涂层具有高的Al含量,赋予涂层高的耐磨行为,但是0V条件下沉积的CrAlN涂层具有较低的摩擦因数。 ANTONOV等[35]研究了AlCrN涂层与Si3N4,Al2O3 和ZrO2 的高温摩擦行为。测试速度为0.002~1.458m/s,温度从20℃到800℃。AlCrN/ZrO2 表现出最高的磨损,归因于其低的硬度和低的热导率;其次是AlCrN/Si3N4 和AlCrN/Al2O3。 AlCrN/Si3N4 在300℃表现出最低的摩擦因数,在高速和300~500℃范围内磨损率最小。他们认为AlCrN涂层的磨损机制主要为氧化、黏着磨损和剥离,意味着AlCrN涂层在500℃之内有着不错的表现。然而PERFILYEV等[36]研究了V的引入对CrV(x )N的变温摩擦学影响,其中V含量分别为0%、 12%、27%和35%。他们发现V含为27%~35%,涂层硬度和强度均增加,晶粒尺寸变小。在室温下,黏着磨损占主导地位,这主要是因为机械互锁和Si向摩擦表面的转移,但是在500℃下,摩擦界面形成V2O5 前期到主要作用,提供了易滑移的转移膜 (图3)。他们进一步研究了CrVxN的高温摩擦行为 (25~700℃)[37],证实了上述推理,且在500~700℃条件下Cr0.65V0.35N表现出更低的磨损率。

  • 图3 CrV35N涂层在500℃摩擦后对偶球表面转移膜的SEM图[36]

  • Fig.3 SEM image of the transfer films on the surface of ball after friction with CrV35N coating at temperature of 500℃

  • Ag具有良好的自润滑性和降低金属氧化温度的效果。DAI等[38]通过调控Ag靶溅射功率制备了Ag掺杂MoNbN涂层,由此获得了分别为共融结构MoNbAgN(Ag靶小于等于15W)和纳米复合的MoNbN/Ag涂层。硬度从未掺杂的20.0GPa增加到23.4GPa(Ag靶15W),然后降低至18.5GPa (Ag靶25W)。通过未掺杂涂层相比,摩擦因数均降低。在室温到450℃,纳米复合的MoNbN/Ag涂层摩擦因数则更低。在温度450℃到700℃, MoNbAgN表现出更好的摩擦学行为;更高的温度下,流体润滑起作用,两种涂层的摩擦行为相当。 WANG等[39]通过溅射制备了不同Ag含量的MoVN-Ag涂层,根据溅射Ag靶电流0A、1A、 1.5A、2A分别命名为S1、S2、S3、S4。如图4所示,随着Ag含量的增加,涂层厚度增加,柱状生长结构被抑制。Ag的引入提高了MoVN-Ag涂层的力学性能和摩擦学性能。当Ag含量为45.6%时,涂层在室温、300℃到700℃范围内均表现出优异的摩擦行为。在500℃和700℃摩擦因数分别为0.19和0.28,在500℃主要是Ag的自润滑行为起作用,但是700℃时,氧化层转移膜起到主导地位。

  • 一般来说,非氮化物金属的引入可以降低摩擦因数,提高耐磨性能。氮化物金属的引入可以提高涂层的硬度,起到协同润滑的作用。在众多的双金属氮化物中,AlCrN、TiAlN涂层具有更加优异的耐温特性,而引入Ag可以获得更好的摩擦学性能。

  • 图4 涂层表面形貌、粗糙度和横截面形貌图[39]

  • Fig.4 Surface morphologies, surface roughness and cross-sectional morphologies of coatings.

  • 3 三元素氮化物涂层

  • 三元素掺杂的氮化物涂层中,研究人员在原来单元和二元的基础上又引入了W、Y和Ta等元素,进行了进一步研究以满足更高温度和更好摩擦性能的需求。

  • 传统的V、Al、Cr、Ti等元素在单金属氮化物中有着优异的性能,而三元素掺杂的氮化物多以单金属性能优异的氮化物涂层相结合。FRANZ等[40] 通过电弧离子镀沉积V掺杂AlCrN硬涂层。他们研究了V含量对AlCrVN涂层的结构和性能的影响。结果发现涂层中六方晶格分数随着涂层中V浓度的增加而增加,从而导致硬度(从28到19GPa)和涂层应力(1 700~900MPa)降低。在高温下进行的摩擦学试验显示,Al0.67Cr0.05V0.28N在700℃下的摩擦因数显著降低至0.20。这由于形成马格涅利相和V2O5并在表面上形成低摩擦层。BOBZIN等[41] 通过磁控溅射和HiPIMS组合沉积了(Cr,Al,V)N和 (Cr, Al, W)N涂层。他们证明(Cr, Al, V)N涂层的摩擦因数从室温下的0.6降低到800℃下的0.05,这是由于V扩散到涂层表面产生的效果。但是,(Cr, Al, W)N并没有表现出低摩擦的效果。他们进一步研究了含5、11和20at.%V的(Cr, Al, V)N涂层在不同温度下摩擦学性能[42]。在800℃下的摩擦结果表明,纯(Cr, Al)N涂层和含5at.%V的涂层的摩擦因数没有提高,而含11at.%V (μ=0.4) 和20at.%V (μ=0.4)的涂层的摩擦因数随时间下降。TILLMANN等[43]通过反应性直流磁控溅射制备了AlCrVN涂层。他们发现没有形成降低力学性能和抗氧化性的六方AlN相。与无V涂层相比,含V涂层的硬度略有降低,V含量最低的涂层硬度最高。退火研究发现,400℃的热处理不会导致力学性能发生任何显着变化,但在700℃所有涂层的弹性模量和临界载荷均降低。尽管最低V含量的涂层显示出最高的H/E比值,室温、400℃和700℃下的摩擦试验证实其磨损最高,这是由于涂层的附着力差。他们进一步研究了不同V含量的AlCrVN涂层,并分析了其温度依赖性的氧化行为[44]。研究发现在400℃ 时涂层没有氧化,700℃会导致V含量高于10.7at.%的涂层氧化并形成马格涅利相。通过摩擦试验对比发现摩擦因数与氧化物的形成相关。在700℃ 时,可以观察到随着V含量的增加,摩擦因数降低,这是由于VO2、V2O3 和马格涅利相V4O7 的形成。由此可见,不同方法制备的AlCrVN涂层会有不同的结构,反应性直流磁控溅射制备的AlCrVN涂层中并没有形成有利的六方AlN相,同时在这类涂层中V起到了至关重要的因素,会在700℃高温下形成氧化钒类低摩擦层。

  • TILLMANN等[45]还制备了多种TiAlVN涂层并对其进行了研究。研究结果表明,TiAlVN涂层在室温下具有非常好的力学和摩擦学性能,如高硬度和低磨损率。此外,还揭示了在500℃的温度下涂层表面生成了V2O5,这使得涂层具有自润滑性能。他们还发现TiAlVN涂层的力学和摩擦学性能取决于氮气流量和沉积温度。KUTSCHEJ等[46]通过直流磁控溅射制备了高V含量的Ti-Al-V-N涂层(Ti-Al-V靶材中的V为25at.%)并评估形成的氧化物对摩擦行为的影响。与Ti1-x AlxN涂层相比,在高达500℃的温度下,只能观察到摩擦学性能的微小变化。当测试温度提高到600℃、650℃和700℃时,摩擦因数从大约1持续降低到0.27。然而,在700℃ 的试验过程中,摩擦因数增加到0.45的恒定值。因此,他们认为首先形成了V2O5相来降低摩擦因数,进而在表面上又形成了TiO2 和AlVO4 来抑制进一步的氧化。PFEILER等[47]使用阴极电弧离子镀制备了TiAlVN涂层并讨论了V含量在室温到500℃之间对力学和摩擦学性能的影响。他们发现涂层均具有六方晶格和面心立方晶格的双晶格结构,然而六方晶格会随着V含量的增高而减小。硬度和弹性模量随着V含量的增加分别从21GPa增加到27.5GPa和从250GPa增加到350GPa。相反,残余压应力随着V含量增加从690MPa降低到330MPa。对室温磨损行为的研究表明,随着V含量的增加,磨损降低。在500℃时,磨损通常较低,但由于抗氧化性降低,磨损会随着V含量的增加而增加。在含V的三元氮化物中,V元素有着至关重要的作用,其对涂层结构和性能均产生影响。

  • KONG等[48]通过阴极电弧离子镀制备了AlTiCrN涂层,并在900℃和1 000℃下进行摩擦试验。结果表明,AlTiCrN涂层的相主要由AlN、 CrN和TiN组成。镀层中的Al、Ti、Cr、N元素在结合界面处呈现梯度过渡分布;基底中的C原子扩散到TiN、AlN和CrN的晶格中,形成明显的相互扩散层;界面结合强度为57.65N。在900℃和1 000℃下涂层摩擦界面由不同的金属氧化物和复合氧化物组成。磨损表面在900℃时比较光滑,平均摩擦因数约为0.42,而磨损表面在1 000℃时产生剧烈的塑性变形,平均摩擦因数约为0.45。磨痕上有氧化物分布均匀的富集和贫化条纹,表现为高温下的稳定磨损。POLCAR等[49]通过阴极电弧蒸发在WC基材上沉积纳米层状CrAlTiN涂层并对其进行了结构表征,以及力学性能和高温摩擦学性能测试,结果表明CrAlTiN涂层表现出优异的热稳定性和耐磨性。摩擦因数在500℃时达到最大值,然后下降,而磨损率在600℃时可以忽略不计,然后随温度升高而增加,如图5所示。发现即使在已证实的发生氧化最高温度下,磨损表面的氧化也出奇地低。研究认为主要磨损机制是抛光作用和纳米级剥离,而纳米级多层膜被证明是阻止垂直裂纹扩展的重要因素。相比之下,这类没有V的三元氮化物,其高温摩擦性能相对较弱,但是耐高温性更好,这是因为摩擦生成的氧化产物不具有润滑性能。

  • 图5 CrAlTiN涂层在不同测试温度下的摩擦因数和磨损[49]

  • Fig.5 Friction factor and wear rate of CrAlTiN coating as a function of testing temperature.

  • POLCAR等[50]研究了具有不同Cr/Al比的CrAlN和CrAlSiN涂层,并在高温下原位分析了它们的结构和摩擦学性能。研究发现这类涂层具有良好的抗氧化性和高达800~900℃的热稳定性。在500℃时,含硅涂层的摩擦因数更高,他们将其归因于摩擦层中不存在作为固体润滑剂的氧化铬。而在600℃的中等温度下涂层失效,这是由于滑动测试开始时涂层的粘合力差。该研究证实,高温稳定性和抗氧化性以及在室温下测量的优异力学和摩擦学性能不能专门用于评估涂层在高温下的摩擦学行为。CHEN等[51]通过多源等离子体注入与沉积技术 (MPIIID)制备了具有不同Si和Al含量的TiAlSiN涂层,并对其进行表征分析和摩擦测试。研究表明, TiAlSiN涂层具有nc-TiAlN/a-Si3N4 结构。随着Si含量的增加,nc-TiAlN的晶粒尺寸逐渐减小,界面的a-Si3N4 体积分数增加。晶粒尺寸的明显减小以及界面a-Si3N4的增加最终导致TiAlSiN涂层具有优异的抗氧化性。此外,低Si和Al含量的TiAlSiN涂层氧化稳定性和热稳定性较差,导致其在800℃下的耐磨性较差。然而,Si和Al含量较高的TiAlSiN涂层具有更好的氧化稳定性和热稳定性,该涂层在室温和800℃下均表现出优异的耐磨性。曾琨等[52] 采用电弧离子镀技术沉积了TiAlN和TiAlSiN涂层,并考察了Si元素对TiAlN涂层高温摩擦磨损性能的影响。研究发现TiAlN涂层摩擦过程以黏着磨损和氧化磨损为主,而TiAlSiN涂层常温下主要磨损形式为磨粒磨损、黏着磨损以及塑性变形导致的鱼鳞状裂纹,400℃下为黏着磨损和氧化磨损,600℃ 下为磨粒磨损、黏着磨损和氧化磨损。HE等[53]通过混合PVD技术制备了不同Al和Si含量的TiAlSiN涂层并评估了TiAlSiN涂层从室温到800℃的摩擦学性能。TiAlSiN涂层的摩擦和磨损表现出强烈的成分和温度依赖性。室温下SiO2-nH2O摩擦层的形成使得涂层摩擦磨损降低, 600℃时形成的Al2O3和SiO2 可以减少涂层磨损。此外,在800℃下产生的TiO2 相在滑动过程中起到了润滑的作用,如图6所示。KONG等[54]使用阴极电弧离子镀在钢上沉积TiAlSiN涂层。所得涂层在不同载荷下于800℃进行了高温摩擦磨损性能测试。结果表明,TiAlSiN涂层在2、4和6N载荷下的平均摩擦因数分别为0.307 2、0.304 0和0.411 4,涂层的摩擦因数在2和4N载荷下稳定。而在6N时摩擦因数明显增加。在2N载荷作用下,磨痕上散布着少量大而散的白色碎屑,磨损机理为黏着磨损。在4N载荷作用下,磨痕上出现白色磨斑,但由于磨痕上氧化层的作用,摩擦因数相对稳定,磨损机理为磨粒磨损和氧化磨损。在6N载荷作用下,磨痕上出现多条浅槽和裂纹,表明涂层剧烈磨损,磨损机理为磨粒磨损和氧化磨损。DRNOVŠEKA等[55]通过磁控溅射沉积得到CrAlN和CrAlSiN硬涂层,并分析了二者的高温机械和摩擦学性能。与CrAlN涂层相比,CrAlSiN硬质涂层整体具有更好的力学性能和摩擦学性能。两种涂层的磨损都随着温度的升高而增加,但整体而言,CrAlSiN涂层在高温下的磨损较小。随着温度升高,磨损与H/E的变化密切相关。可以发现,大量Si元素的引入使得薄膜具有更高耐温性和抗氧化性,在600℃会形成氧化硅作为保护层来降低磨损,而这类涂层的磨损机理也相对简单,主要为黏着磨损、磨粒磨损和氧化磨损。

  • 图6 不同温度下摩擦过程界面演变示意图[53]

  • Fig.6 Schematic diagram of interface evolution during friction at different temperatures

  • PFEILER等[56]通过阴极电弧蒸发制备并报告了Ti-Al-Ta-N涂层在25~900℃存在的摩擦学机制,特别是沉积过程中偏压对摩擦学性能的影响。室温下干滑动测试的结果与偏压和Ta合金无关,而大气是主要影响因素。在500℃下,表面粗糙度决定摩擦学性能。在700℃ 和900℃下,磨损取决于涂层的抗氧化性,这也受偏压的影响。总之,Ta合金涂层显示出比非Ta合金Ti-Al-N更高的抗氧化性,这是提高切削操作性能的一个重要原因。SERGEVNIN等[57]研究了Arc-PVD制备的Ti-Al-Mo-N涂层在不同条件下的耐磨性和失效情况。在干摩擦下,该涂层具有很好的摩擦学性能:摩擦因数0.4~0.5,而TiAlN涂层为0.6~0.7。这是由于在摩擦过程中作为固体润滑剂的MoO3 形成,且该涂层具有高断裂韧性(塑性变形的相对功~60%)、高硬度(高达40GPa)和较高的抗冲击载荷能力,这些也可以通过图7所示的划痕照片看出。莫锦君等[58]采用多弧离子镀技术制备了AlTiN和AlTiYN涂层,并研究了其组织结构、高温抗氧化性能、高温摩擦磨损行为。研究发现添加Y元素后,AlTiYN涂层发生晶粒细化、组织结构致密化、硬度及韧性增加、结合强度显著提升。 AlTiN涂层经900℃/2h氧化处理后已完全氧化;而AlTiYN涂层经900℃/2h氧化处理后未完全氧化,氧化层厚度为1.1 μm,证明添加Y元素可以增强AlTiN涂层的高温抗氧化能力。同时, AlTiYN涂层在900℃下其摩擦因数及磨损率均低于AlTiN涂层,证明Y元素的添加有效增强了涂层高温耐磨损性能。

  • 图7 涂层划痕的显微照片[57]

  • Fig.7 Microphotographs of the coating scratch

  • WANG等[59]采用闭场非平衡磁控溅射离子镀在单晶硅和钢表面制备CrAlMoN涂层,对其进行了结构分析和摩擦学性能测试。结果表明, CrAlMoN涂层具有纳米多层结构,与CrN具有相同的fcc结构。在室温下,CrAlMoN涂层的硬度和耐磨性均大于CrAlN涂层,其摩擦性能随着温度的升高而变化很大。在600℃时,CrAlMoN涂层的摩擦性能迅速下降,涂层磨损程度显着增加。相比之下,CrAlN涂层在600℃时仍保持高耐磨性。LU等[60]研究了射频磁控溅射制备的具有不同Si(0~11.1at.%)含量的CrMoSiN涂层的力学和摩擦学性能。结果表明,CrMoSiN涂层的力学性能受Si含量的影响很大。Si掺杂量为7.5at.%时,CrMoSiN涂层在硬度和 H3/E2 比率方面表现出最高值,其柱状晶粒转变为纳米复合结构。这一变化归因于晶粒细化和防止裂纹直接渗透。此外,通过摩擦学性能测试,发现由于在磨损轨迹上形成保护性氧化物以及MoO3 润滑相,可以显着改善CrMoSiN涂层在750℃时的摩擦学性能。与750℃相比,在800℃ 时液相MoO3 形成对摩擦因数降低起到重要作用。在高温下,MoO3 有助于降低摩擦因数,而低磨损率是由于抗磨氧化物和纳米复合结构的存在。 BONDAREV等[61]通过磁控溅射沉积SiTaCN涂层,其纳米复合Si-Ta-C-N涂层由嵌入非晶基质中的fcc Ta(Si,C,N)固溶体(TaSi2-30%SiC靶材)和Ta5Si3 化合物(TaSi2-10%SiC靶材)组成。根据元素组成,涂层的硬度和弹性模量分别为16~26GPa和155~268GPa。该涂层的特点是在高达800℃的温度下具有高热稳定性和抗氧化性。摩擦学测试表明涂层的摩擦因数随温度升高而降低:从0.38(25℃)到0.28(600℃)和0.23(800℃)。他们将SiTaCN涂层在高温下的低磨损率和摩擦因数归因于涂层表面形成薄(~100nm)氧化物层和TaSix Oy微纤维。总的来说,在二元氮化物中引入Ta、Mo、Y、Si的目的都是想在薄膜保持原有性能的情况下进行进一步的提高。整体来看,Ta、元素可以提高薄膜的抗氧化性能,而Mo元素的引入有利于高温摩擦性能,Y元素则对涂层结构、力学性能、高温抗氧化性和高温磨损性能结构提升有利。

  • 三元氮化物涂层的研究是二元氮化物涂层基础上的延伸,其主要是通过抗氧化、润滑和抗承载氮化物的组合,发展出更具综合性能的氮化物涂层。

  • 4 高熵合金氮化物涂层

  • 对于高熵合金氮化物,因其多组元和鸡尾酒效应的缘故,形成了一个庞大的研究体系,其种类繁多。迄今为止,科研人员研究了部分高熵合金氮化物的热稳定性、相变和室温下的摩擦磨损性能,几乎没有研究高温下的摩擦磨损行为,因此,这里对几种高熵合金的氮化物的热稳定性、力学性能、抗氧化性和室温摩擦学性能进行评述。

  • CHEN等[62]早在2009年研究了(AlCrTaTiZr)N高熵合金涂层的热稳定性,发现由于氮的引入,此类涂层在900℃的高温下保持了热稳定性。 SHEN等[63]同样对(AlCrNbSiTi)N高熵合金的热稳定性进行了研究,发现涂层即使是在1 000℃退火后仍保持fcc结构,没有观察到显著的晶粒生长。他们将高温下相和结构稳定归因于:① 高熵效应;② 严重的晶格畸变效应降低了晶界能[64],降低了晶粒粗化的驱动力。随着退火温度的升高,晶格常数降低了,而这种降低是由于消除了溅射沉积过程中引入的点缺陷。

  • LAN等[65]通过电弧熔融纯金属混合制备Ni45(CoCrFe)40(AlTi)15 高熵合金,再通过等离子体进行渗氮得到氮化高熵合金,并研究了其结构、硬度、摩擦学性能。结果表明,原始高熵合金由单一的fcc相组成,纳米压痕测得的硬度为8.8GPa。渗氮后出现AlN、CrN、Fe3N、TiN等硬质相,表面硬度提高到14.9GPa。由于在氮化合金表面产生独特的氮化物颗粒,与铸态合金相比,摩擦因数和磨损率显着降低,如图8所示。在低温下,铸态和渗氮合金的摩擦机制以粘着磨损和磨粒磨损为主。随后,随着温度的升高,摩擦机制转变为氧化磨损和分层磨损。

  • 图8 不同温度下不同种高熵合金涂层的磨损率[65]

  • Fig.8 Wear rates of different high-entropy alloy coatings at different temperatures

  • 张旭[66]通过闭合场非平衡磁控溅射技术制备出(TiAlCrMoW)Nx涂层,并研究了氮含量对其微观结构、力学性能、抗氧化性能及摩擦学性能。研究认为,随着N含量的增加(TiAlCrMoW)Nx涂层由bcc相转变为fcc氮化物和bcc氮化物两相,再转变为fcc氮化物相,硬度先增大后减小,最大值为43.6GPa。 (TiAlCrMoW)Nx涂层在700℃时发生氧化,氧化后表面析出富W、Mo氧化物颗粒。随着氮含量的增加,所析出的氧化物颗粒的尺寸逐渐减小、数量逐渐增多。(TiAlCrMoW)Nx 涂层在室温摩擦过程中均有较低的摩擦因数,其中最小摩擦因数为0.21。

  • 可以发现,高熵合金氮化物具有很强的热稳定性。但是对高熵合金氮化物的摩擦行为研究相对较少,由于高熵带来的物理和力学性能变化,高熵合金氮化物涂层的研究将会成为氮化物涂层研究的重点方向。

  • 5 多层结构氮化物涂层

  • 单层氮化物涂层虽然摩擦学性能优异,但是其承载、抗裂纹扩展的能力是有限的,因此多层复合氮化物薄膜变成了新的研究热点。

  • ZHAO等[67]采用电弧离子镀分别制备了均一性VN/Ag和梯度过度VN/Ag多层涂层,如图9所示。在25℃到700℃下考察了其力学和摩擦学性能。结果表明,梯度过渡VN/Ag多层涂层具有更高的结合力和硬度,但是两种涂层均显示出优异的摩擦学性能,且随着温度升高摩擦因数降低(均一性VN/Ag和梯度过渡VN/Ag多层涂层在700℃时的摩擦因数分别为0.2和0.38左右),优异的摩擦学性能归因于摩擦界面形成的V2O5、双金属氧化物 (Ag3VO4 和AgVO3)及Ag共同作用的结果。 FERNANDES等[68]对比研究了多层TiSiN/Ti(Ag)N涂层和多层TiSiN/TiN涂层在室温和550℃的摩擦学行为。在研究中保持涂层Si含量一致,以便说明Ag的作用。以Al2O3 作为配副,室温下多层TiSiN/TiN涂层表现出更优异的性能,但是在550℃,多层TiSiN/Ti(Ag)N涂层表现更为优异,这是因为Ag的低剪切力降低了摩擦因数。当使用TiAl6V4 球作为配副时,在550℃和700℃条件下,多层TiSiN/Ti(Ag)N涂层表现出更优异的摩擦学行为,这是因为Ag的存在降低了Ti合金氧化物磨屑之间的直接接触。

  • 图9 VN/Ag涂层的结构示意图

  • Fig.9 Structural schematics for VN/Ag coating

  • POLCAR等[69]制备并对比研究了电弧离子镀制备的CrN和Cr/CrN涂层(其中两种Cr/CrN涂层的周期分别为80nm和160nm)。CrN单层呈bcc相,但是多层结构中除了bcc的CrN,还出现了Cr2N和金属Cr。将涂层在800℃和900℃空气环境下退火,发现CrN分解放出N2 并形成金属Cr,涂层表面形成了Cr2O3 层,并且在800℃以上,多层结构消失。多层结构在600~700℃均表现出低的摩擦因数,但是当温度升高至800℃时,CrN涂层摩擦因数最低。在所有测试条件下,多层结构都表现出优于单层的耐磨损性能。MA等[70]用反应磁控溅射制备了nc-TiN/a-Si3N4涂层,结果表明和TiN涂层相比,室温下摩擦因数高于TiN涂层(TiN涂层约0.60,nc-TiN/a-Si3N4涂层约0.55~0.70),但是在550℃摩擦因数降低至0.40~0.50(TiN涂层约0.70左右)。FAN等[71]研究了不同温度下调质周期对多层MoN/VN涂层摩擦学的影响,研究显示调质周期为22.66nm时涂层表现出最大的H/E值。当测试温度低于500℃时,调质周期对摩擦行为影响很大,但是在700℃,调质周期对摩擦学行为几乎没有影响。调质周期为22.66nm的多层MoN/VN涂层综合性能最优。HOVSEPIAN等[72]利用非平衡磁控溅射制备了单层周期1.7nm的TiAlCrN/TiAlYN涂层,研究发现抗氧化性和摩擦性能均提高,在850~950℃范围内,摩擦因数从0.9降低至0.65,Y在晶界的富集是降低摩擦的主要原因。 FOX-RABINOVICH等[73]利用电弧和磁控复合沉积系统在WC-Co合金表面制备了TiAlCrN/WN多层涂层,和TiAlCrN单层涂层相比(和H13钢対磨),摩擦因数从0.09~0.10降低至0.06附近(图10)。摩擦过程中形成氧化物和Al混合的摩擦膜,阻止了黏着磨损,极大地提高了刀具的寿命。WALKER等[74]利用非平衡磁控溅射制备了周期约3.1nm的CrAlYN/CrN涂层,分别在20℃、120℃、300℃ 和650℃考察了其摩擦学性能,发现摩擦因数从室温的0.56升高到120℃的0.65;随着进一步增加温度,摩擦因数分别降低至0.59和0.40。摩擦因数的增加主要是因为摩擦过程中形成的微裂纹,低的摩擦因数主要归因于形成了氧化物层。ZHOU等[75]利用非平衡磁控溅射制备了TiAlN/VN多层涂层,并考察了室温、300℃和635℃条件下与Al2O3的摩擦学性能。随着温度升高,磨损加剧,但是摩擦因数表现出先升高(从0.53到1.03)再降低(0.46) 的趋势。高温下形成V2O5 是实现低摩擦的主要原因,但是在300℃下的高摩擦主要是由塑性形变导致的裂纹扩展。RAJENDRAN等[76]用电弧离子镀制备了多层TiN/AlCrN涂层,相对于SS316L不锈钢,硬度提高了5倍,约1 000VHN。在载荷2~6N、速度0.25~0.75m/s考察了室温和400℃的摩擦学。在室温下,摩擦因数随载荷从0.27增加值0.48左右;在400℃,摩擦因数随载荷从0.43增加值0.50。由于Al球较软,黏着磨损在所有测试中占主导地位。

  • 图10 单层TiAlCrN和纳米多层TiAlCrN/WN涂层与H13钢对摩的摩擦因数与温度的关系[73]

  • Fig.10 Friction factor for mono-layered TiAlCrN and nano-multilayered TiAlCrN/WN coatings vs.temperature in contact with H13steel

  • ALAMGIR等[77]利用旋转柱弧制备了多层TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN涂层。分别在25℃、600℃和800℃,以Al2O3 为配副,考察了涂层的摩擦学性能。随着测试温度的增加,摩擦因数先增加后减小(0.10~0.15),这是因为高温导致涂层表面形成氧化物,但是涂层表现出优异的耐磨损性能,主要归因于表面的AlTiCrN转化为更高硬度的(Al, Cr)2O3。LIU等[78]利用电弧离子镀制备了多层AlCrSi-Ni/AlCrN涂层,相对于AlCrSiN-Ni (涂层硬度的约21.6GPa),多层AlCrSiNeNi/AlCrN涂层硬度提高到31.1GPa左右。在600℃下的摩擦测试表明,多层AlCrSiNeNi/AlCrN涂层摩擦因数为0.81,介于AlCrSiN涂层的0.95和AlCrSiN-Ni涂层的0.61之间,磨损率从单层的2.0×10−5 mm 3/(N·m)降低到3.9×10−6 mm 3/(N·m),这归结为多层结构赋予涂层良好的力学性能。

  • 多层氮化物具有可设计性,可以是单组元氮化物、多组元氮化物,也可以是金属氮化物、非金属氮化物。虽然其组合形式多变,但可以发现其高温耐磨性能主要也是依靠摩擦过程形成的氧化摩擦膜能。从发展趋势看,多层涂层的研究从最初的氮化物/金属逐渐向多元氮化物复合涂层发展,追求多环境温度下的摩擦因数稳定性和耐磨性,是多层氮化物涂层未来的重点。

  • 6 结论与展望

  • 采用真空技术获得的氮化物涂层,可以在不改变基体材料成分的基础上,极大地提高其抗高温氧化、高温润滑和耐磨性能,一直以来是表面工程领域的研究热点和重点方向。从单元氮化物涂层、二元氮化物涂层、三元氮化物涂层、多层氮化物涂层和高熵合金涂层等方面进行综述,可为该领域的科技工作者和工程人员提供高温氮化物涂层的发展脉络。

  • (1)根据制备方法和应用环境的不同,单金属氮化物涂层在高温环境中表现出迥异的摩擦学性能,且摩擦机理单一,但是使用温度范围多限于600℃以内。

  • (2)非金属的引入通常可以提高氮化物的摩擦学性能,而氮化物中的金属可以提高涂层硬度,与非金属产生协同润滑效应。

  • (3)三元氮化物涂层的研究是二元氮化物涂层基础上的延伸,主要是通过抗氧化、润滑和抗承载氮化物的组合发展出更具综合性能的氮化物涂层。

  • (4)高熵合金氮化物具有很强的热稳定性,但对高熵合金氮化物高温摩擦学性能的研究相对较少。

  • (5)多层氮化物具有可设计性,可以是单组元氮化物、多组元氮化物,也可以是金属氮化物、非金属氮化物。从发展趋势看,多层涂层的研究从最初的氮化物/金属逐渐向多元氮化物复合涂层发展。

  • 氮化物涂层在高温下润滑、耐磨的特殊优势,必将成为未来表面工程领域的发展方向。未来研究将主要集中在以下几个方面:

  • (1)非氮化物金属和氮化物金属多元组合提供机械和润滑协同效应是氮化物涂层性能优化的有效手段。

  • (2)发展高熵合金氮化物涂层并进行高熵氮化物多层复合涂层的研究。

  • (3)追求多环境温度下的摩擦因数稳定性和耐磨性是氮化物涂层未来的重点。

  • (4)建立氮化物涂层数据库,缩短高性能氮化物涂层的研发周期,可以指导氮化物涂层在高温润滑与耐磨条件的应用与服役。

  • 参考文献

    • [1] 王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65.WANG Baoyou,CUI Lihua.Coating material,coating method and development direction of coated tool[J].Machinery,2002,29(4):63-65.(in Chinese)

    • [2] 赵时璐,李友,张钧.刀具氮化物涂层的研究进展[J].金属热处理,2008(9):99-104.ZHAO Shilu,LI You,ZHANG Jun.Research progress on nitride coatings for cutting tools [J].Metal Heat Treatment,2008(9):99-104.(in Chinese)

    • [3] SPROUL W D,ROTHSTEIN R.High rate reactively sputtered Ti N coatings on high speed steel drills[J].Thin Solid Films,1985,126(3-4):257-263.

    • [4] 汝强.Ti-N 系涂层多元多层强化研究进展[J].工具技术,2004(4):3-8.RU Qiang.Research progress of multi-layer multi-layer strengthening of Ti-N coatings[J].Tool Technology,2004(4):3-8.(in Chinese)

    • [5] CHEN T K,SHUN T T,YEH J W,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface and Coatings Technology,2004,188-189:193-200.

    • [6] GASSNER G,MAYRHOFER P H,KUTSCHEJ K,et al.A new low friction concept for high temperatures:Lubricious oxide formation on sputtered VN coatings[J].Tribology Letters,2004,17(4):751-756.

    • [7] FATEH N,FONTALVO G A,GASSNER G,et al.The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings[J].Tribology Letters,2007,28(1):1-7.

    • [8] LÓPEZ G,STAIA M H.High-temperature tribological characterization of zirconium nitride coatings[J].Surface & Coatings Technology,2005,200(7):2092-2099.

    • [9] SINGH S K,CHATTOPADHYAYA S,PRAMANIK A,et al.Tribological properties of chromium nitride on thecylinder liner under the influence of high temperature[J].Materials,2020,13:4497.

    • [10] MITCHELL D R G,STOTT F H.The friction and wear of thin titanium nitride and silicon nitride coatings on stainless steel at temperatures to 500 ℃[J].Surface & Coatings Technology,1992,50(2):151-160.

    • [11] BADISCH E,FONTALVO G A,STOIBER M,et al.Tribological behavior of PACVD TiN coatings in the temperature range up to 500 ℃[J].Surface and Coatings Technology,2003,163(2):585-590.

    • [12] SUE J A,CHANG T P.Friction and wear behavior of titanium nitride,zirconium nitride and chromium nitride coatings at elevated temperatures[J].Surface & Coatings Technology,1995,76-77(part-P1):61-69.

    • [13] HU S B,TU J P,MEI Z,et al.Adhesion strength and high temperature wear behaviour of ion plating TiN composite coating with electric brush plating Ni-W interlayer[J].Surface & Coatings Technology,2001,141(2-3):174-181.

    • [14] OKTAY S,KAHRAMAN Z,URGEN M,et al.XPS investigations of tribolayers formed on TiN and(Ti,Re)N coatings[J].Applied Surface Science,2015,328:255-261.

    • [15] RANJAN S,MUKHERJEE B,ISLAM A,et al.Microstructure,mechanical and high temperature tribological behaviour of graphene nanoplatelets reinforced plasma sprayed titanium nitride coating[J].Journal of the European Ceramic Society,2020,40(3):660-671.

    • [16] KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering[J].Coatings,2019,9(9):555.

    • [17] POLCAR T,PARREIRA N,NOVAK R.Friction and wear behaviour of CrN coating at temperatures up to 500 ℃[J].Surface & Coatings Technology,2007,201(9):5228-5235.

    • [18] ZHU S Y,KONG D J.Microstructures and friction-wear behaviors of cathodic arc ion plated chromium nitride coatings at high temperatures[J].Journal of Tribology,2018,140(3):031602.

    • [19] SHEN H,ZHAO W,ZHU S,et al.Friction-wear performances of cathodic arc ion plated CrN coating at elevated temperatures[J].Powder Metallurgy and Metal Ceramics,2019,58(1-2):73-80.

    • [20] CHEN Y,WANG S,HAO Y,et al.Friction and ear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature[J].Tribology International,2019,143:106079.

    • [21] SUSZKO T,GULBIŃSKI W,JAGIELSKI J.The role of surface oxidation in friction processes on molybdenum nitride thin films[J].Surface and Coatings Technology,2005,194(2-3):319-324.

    • [22] FATEH N,FONTALVO G A,GASSNER G,et al.Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J].Wear,2007,262(9-10):1152-1158.

    • [23] MULLIGAN C P,BLANCHET T A,GALL D.CrN-Ag nanocomposite coatings:Tribology at room temperature and during a temperature ramp[J].Surface & Coatings Technology,2010,204(9-10):1388-1394.

    • [24] JU H,DING N,XU J,et al.The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures[J].Materials Chemistry and Physics,2019,237:121840.

    • [25] JU H B,DING N,XU J H,et al.Improvement of tribological properties of niobium nitride films via copper addition[J].Vacuum,2018,158:1-5.

    • [26] CAI Z,WU Y,PU J.High-temperature friction and wear behavior of varying-C VN films[J].Journal of Materials Engineering and Performance,2021,30(3):2057-2065.

    • [27] MU Y T,LIU M,ZHAO Y Q.Carbon doping to improve the high temperature tribological properties of VN coating[J].Tribology International,2016,327-336

    • [28] BONDAREV A V,KVASHNIN D G,SHCHETININ I V,et al.Temperature-dependent structural transformation and friction behavior of nanocomposite VCN-(Ag)coatings[J].Materials & Design,2018,160:964-973.

    • [29] POLCAR T,VITU T,CVRCEK L,et al.Effects of carbon content on the high temperature friction and wear of chromium carbonitride coatings[J].Tribology International,2010,43(7):1228-1233.

    • [30] BONDAREV A V,KIRYUKHANTSEV-KORNEEV P V,SIDORENKO D A,et al.A new insight into hard low friction MoCN-Ag coatings intended for applications in wide temperature range[J].Materials & Design,2016,93(Mar.):63-72.

    • [31] KUTSCHEJ K,MAYRHOFER P H,KATHREIN M,et al.Structure,mechanical and tribological properties of sputtered Ti1-xAlxN coatings with 0.5 ≤ x ≤ 0.75[J].Surface and Coatings Technology,2005,200(7):2358-2365.

    • [32] KONG D J,GUO H Y.Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at hightemperatures[J].Tribology International,2015,88:31-39

    • [33] WU Z T,SUN P,QI Z B,et al.High temperature oxidation behavior and wear resistance of Ti0.53Al0.47N coating by cathodic arc evaporation[J].Vacuum,2017,135:34-43.

    • [34] YU C Y,WANG S B,LI T B,et al.Tribological behaviour of CrAlN coatings at 600 ℃[J].Surface Engineering,2013,29(4):318-321.

    • [35] ANTONOV M,AFSHARI H,BARONINS J,et al.The effect of temperature and sliding speed on friction and wear of Si3N4,Al2O3,and ZrO2 balls tested against AlCrN PVD coating[J].Tribology International,2017,118:500-514.

    • [36] PERFILYEV V,MOSHKOVICHA,LAPSKER I,et al.The effect of vanadium content and temperature on stick-slip phenomena under friction of CrV(x)N coatings[J].Wear,2013,307(1-2):44-51.

    • [37] RAPOPORT L,MOSHKOVICHA,PERFILYEV V,et al.High temperature friction behavior of CrVxN coatings[J].Surface & Coatings Technology,2014,238:207-215.

    • [38] DAI X,WEN M,WANG J,et al.The tribological performance at elevated temperatures of MoNbN-Ag coatings[J].Applied Surface Science,2020,509:145372.

    • [39] WANG W,PU J,CAI Z,et al.Insights into friction properties and mechanism of self-lubricating MoVN-Ag films at high temperature[J].Vacuum,2020,176:109332.

    • [40] FRANZ R,NEIDHARDT J,SARTORY B,et al.High-temperature low-friction properties of vanadiumalloyed AlCrN coatings[J].Tribology Letters,2006,23(2):101-107.

    • [41] BOBZIN K,BAGCIVAN N,EWERING M,et al.DC-MSIP/HPPMS(Cr,Al,V)N and(Cr,Al,W)N thin films for high-temperature friction reduction[J].Surface and Coatings Technology,2011,205(8):2887-2892.

    • [42] BOBZIN K,BAGCIVAN N,EWERING M,et al.Vanadium alloyed PVD CrAlN coatings for friction reduction in metal forming applications[J].Tribology in Industry,2012,34(2):101-107.

    • [43] TILLMANN W,KOKALJ D,STANGIER D,et al.Investigation of the influence of the vanadium content on the high temperature tribo-mechanical properties of DC magnetron sputtered AlCrVN thin films[J].Surface and Coatings Technology,2017,328:172-181.

    • [44] TILLMANN W,KOKALJ D,STANGIER D,et al.Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction[J].Applied Surface Science,2018,427:511.

    • [45] TILLMANN W,MOMENI S,HOFFMANN F.A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures[J].Tribology International,2013,66:324-329.

    • [46] KUTSCHEJ K,MAYRHOFER P H,KATHREIN M,et al.Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings[J].Surface & Coatings Technology,2005,200(5-6):1731-1737.

    • [47] PFEILER M,KUTSCHEJ K,PENOY M,et al.The effect of increasing V content on structure,mechanical and tribological properties of arc evaporated Ti–Al–V–N coatings[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):502-506.

    • [48] KONG D,FU G.Friction and wear behaviors of AlTiCrN coatings by cathodic arc ion plating at high temperatures[J].Journal of Materials Research,2015,30(4):503-511.

    • [49] CAVALEIRO A,POLCAR T.High temperature behavior of nanolayered CrAlTiN coating:Thermal stability,oxidation,and tribological properties[J].Surface & Coatings Technology,2014,257:70-77.

    • [50] POLCAR T,VITU T,SONDOR J,et al.Tribological performance of CrAlSiN coatings at high temperatures[J].Plasma Processes & Polymers,2010,6(S1):S935-S940.

    • [51] CHEN T,XIE Z,FENG G,et al.Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content[J].Applied Surface Science,2014,314:735-745.

    • [52] 曾琨,邹长伟,郑军,等.电弧离子镀TiAlN和 TiAlSiN 涂层的高温摩擦磨损行为[J].中国表面工程,2015,28(6):28-38.ZENG Kun,ZOU Changwei,ZHENG Jun,et al.High temperature friction and wear behavior of TiAlN and TiAlSiN coatings by arc ion plating [J].China Surface Engineering,2015,28(6):28-38.(in Chinese)

    • [53] HE N,LI H,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.

    • [54] KONG D J,CHENGJIAN T.Effects of loads on high-temperature friction-wear properties of cathodic arc ion plated TiAlSiN coatings[J].Surface Review and Letters,2017,24(Suppl.2):1-8.

    • [55] DRNOVŠ EKA A,REBELO DE FIGUEIREDOA M,VOB H,et al.Correlating high temperature mechanicaland tribological properties of CrAlN and CrAlSiN hard coatings [J].Surface and Coatings Technology,2019,372:361-368.

    • [56] PFEILER M,FONTALVO G A,WAGNER J,et al.Arc evaporation of Ti-Al-Ta-N coatings:The effect of bias voltage and Ta on high-temperature tribological properties[J].Tribology Letters,2008,30(2):91-97.

    • [57] SERGEVNIN V S,BLINKOV I V,SKRYLEVA E A,et al.Wear behaviour of wear-resistant adaptive nanomultilayered Ti-Al-Mo-N coatings[J].Applied Surface Science,2016,388(Dec.1 Pt.A):13-23.

    • [58] 莫锦君,吴正涛,高则翠,等.多弧离子镀AlTiYN涂层的高温氧化性能及高温摩擦学行为[J].中国表面工程,2018,31(4):104-112.MO Jinjun,WU Zhengtao,GAO Zecui,et al.High-temperature oxidation and tribological behavior of AlTiYN coatings by arc Ion plating[J].China Surface Engineering,2018,31(4):104-112.(in Chinese)

    • [59] WANG Y,LOU B.Microstructure and high-temperature friction and wear properties of cramon film[J].Oxidation of Metals,2021,95:239-250.

    • [60] LU Y C,CHEN H W,CHANG C C,et al.Tribological properties of nanocomposite Cr-Mo-Si-N coatings at elevated temperature through silicon content modification[J].Surface and Coatings Technology,2018,338:69-74.

    • [61] BONDAREV A V,VOROTILO S,SHCHETININ I V,et al.Fabrication of Ta-Si-C targets and their utilization for deposition of low friction wear resistant nanocomposite Si-Ta-C-(N)coatings intended for wide temperature range tribological applications[J].Surface and Coatings Technology,2019,359:342-353.

    • [62] CHEN D S,CHEN M K,CHANG S Y.Multiprincipal-element alcrtatizr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization[J].Ecs Transactions,2009:G37-G42

    • [63] SHEN W J,TSAI M H,TSAI K Y,et al.Superior oxidation resistance of(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride[J].Journal of the Electrochemical Society,2013,160(11):C531-C535.

    • [64] PHANI A R,HAEFKE H.Effect of annealing temperature on antireflection property and water contact angle of fluorine-based hydrophobic films by a sol-gel technique[J].Materials Letters,2004,58:3555-3558.

    • [65] LAN L W,YANG H J,GUO R P,et al.High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15 high-entropy alloys[J].Materials Chemistry and Physics,2021,270:0254-0584

    • [66] 张旭.(TiAlCrMoW)Nx多主元氮化物涂层的制备及摩擦学性能研究[D].西安:西安理工大学,2021.ZHANG Xu.Preparation and tribological properties of(TiAlCrMoW)Nx multi-principal nitride coatings[D].Xi’ an:Xi’ an University of Technology,2021.(in Chinese)

    • [67] ZHAO Y Q,MU Y T,LIU M.Mechanical properties and friction wear characteristics of VN/Ag multilayer coatings with heterogeneous and transition interfaces[J].Transactions of Nonferrous Metals Society of China,2020,30(2):472-483.

    • [68] FERNANDES F,AL-RJOUB A,CAVALEIRO D,et al.Room and high temperature tribological performance of multilayered TiSiN/TiN and TiSiN/TiN(Ag)coatings deposited by sputtering[J].Coatings,2020,10(12):319.

    • [69] POLCAR T,MARTINEZ R,VÍTŮ T,et al.High temperature tribology of CrN and multilayered Cr/CrN coatings[J].Surface & Coatings Technology,2009,203(20):3254-3259.

    • [70] MA S,PROCHÁZKA J,KARVÁNKOVÁ P,et al.Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN[J].Surface & Coatings Technology,2005,194(1):143-148.

    • [71] FAN J,WANG W,WANG,H,et al.Tribological performance and mechanism of MoN/VN multilayer films with different modulation periods at different temperature[J].Tribology Letter,2021,69:154.

    • [72] HOVSEPIAN P E,LEWIS D B,LUO Q,et al.TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures[J].Thin Solid Films,2005,485(1/2):160-168.

    • [73] FOX-RABINOVICH G S,YAMAMOTO K,VELDHUIS S C,et al.Self-adaptive wear behavior of nanomultilayered TiAlCrN/WN coatings under severe machining conditions[J].Surface and Coatings Technology,2006,201(3-4):1852-1860.

    • [74] WALKER J C,ROSS I M,REINHARD C,et al.High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on γ-TiAl[J].Wear,2009,267(5-8):965-975.

    • [75] ZHOU Z,RAINFORTH W M,LUO Q,et al.Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures[J].Acta Materialia,2018,58(8):2912-2925.

    • [76] RAJENDRAN P,DEVARAJU A,SARAVANAN I.A study on wear behavior of TiN/AlCrN multilayer coatings at high temperature testing conditions[J].Surface Topography:Metrology and Properties 2021,9:045013.

    • [77] ALAMGIR A,YASHIN M,BOGATOV A,et al.High-temperature tribological performance of hard multilayer TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN coating deposited on wc-co substrate[J].Coatings,2020,10(9):909.

    • [78] LIU Z R,XU Y,PENG B,et al.Structure and property optimization of Ni-containing AlCrSiN coatings by nano-multilayer construction[J].Journal of Alloys and Compounds,2019,808:151630.

  • 参考文献

    • [1] 王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65.WANG Baoyou,CUI Lihua.Coating material,coating method and development direction of coated tool[J].Machinery,2002,29(4):63-65.(in Chinese)

    • [2] 赵时璐,李友,张钧.刀具氮化物涂层的研究进展[J].金属热处理,2008(9):99-104.ZHAO Shilu,LI You,ZHANG Jun.Research progress on nitride coatings for cutting tools [J].Metal Heat Treatment,2008(9):99-104.(in Chinese)

    • [3] SPROUL W D,ROTHSTEIN R.High rate reactively sputtered Ti N coatings on high speed steel drills[J].Thin Solid Films,1985,126(3-4):257-263.

    • [4] 汝强.Ti-N 系涂层多元多层强化研究进展[J].工具技术,2004(4):3-8.RU Qiang.Research progress of multi-layer multi-layer strengthening of Ti-N coatings[J].Tool Technology,2004(4):3-8.(in Chinese)

    • [5] CHEN T K,SHUN T T,YEH J W,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface and Coatings Technology,2004,188-189:193-200.

    • [6] GASSNER G,MAYRHOFER P H,KUTSCHEJ K,et al.A new low friction concept for high temperatures:Lubricious oxide formation on sputtered VN coatings[J].Tribology Letters,2004,17(4):751-756.

    • [7] FATEH N,FONTALVO G A,GASSNER G,et al.The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings[J].Tribology Letters,2007,28(1):1-7.

    • [8] LÓPEZ G,STAIA M H.High-temperature tribological characterization of zirconium nitride coatings[J].Surface & Coatings Technology,2005,200(7):2092-2099.

    • [9] SINGH S K,CHATTOPADHYAYA S,PRAMANIK A,et al.Tribological properties of chromium nitride on thecylinder liner under the influence of high temperature[J].Materials,2020,13:4497.

    • [10] MITCHELL D R G,STOTT F H.The friction and wear of thin titanium nitride and silicon nitride coatings on stainless steel at temperatures to 500 ℃[J].Surface & Coatings Technology,1992,50(2):151-160.

    • [11] BADISCH E,FONTALVO G A,STOIBER M,et al.Tribological behavior of PACVD TiN coatings in the temperature range up to 500 ℃[J].Surface and Coatings Technology,2003,163(2):585-590.

    • [12] SUE J A,CHANG T P.Friction and wear behavior of titanium nitride,zirconium nitride and chromium nitride coatings at elevated temperatures[J].Surface & Coatings Technology,1995,76-77(part-P1):61-69.

    • [13] HU S B,TU J P,MEI Z,et al.Adhesion strength and high temperature wear behaviour of ion plating TiN composite coating with electric brush plating Ni-W interlayer[J].Surface & Coatings Technology,2001,141(2-3):174-181.

    • [14] OKTAY S,KAHRAMAN Z,URGEN M,et al.XPS investigations of tribolayers formed on TiN and(Ti,Re)N coatings[J].Applied Surface Science,2015,328:255-261.

    • [15] RANJAN S,MUKHERJEE B,ISLAM A,et al.Microstructure,mechanical and high temperature tribological behaviour of graphene nanoplatelets reinforced plasma sprayed titanium nitride coating[J].Journal of the European Ceramic Society,2020,40(3):660-671.

    • [16] KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering[J].Coatings,2019,9(9):555.

    • [17] POLCAR T,PARREIRA N,NOVAK R.Friction and wear behaviour of CrN coating at temperatures up to 500 ℃[J].Surface & Coatings Technology,2007,201(9):5228-5235.

    • [18] ZHU S Y,KONG D J.Microstructures and friction-wear behaviors of cathodic arc ion plated chromium nitride coatings at high temperatures[J].Journal of Tribology,2018,140(3):031602.

    • [19] SHEN H,ZHAO W,ZHU S,et al.Friction-wear performances of cathodic arc ion plated CrN coating at elevated temperatures[J].Powder Metallurgy and Metal Ceramics,2019,58(1-2):73-80.

    • [20] CHEN Y,WANG S,HAO Y,et al.Friction and ear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature[J].Tribology International,2019,143:106079.

    • [21] SUSZKO T,GULBIŃSKI W,JAGIELSKI J.The role of surface oxidation in friction processes on molybdenum nitride thin films[J].Surface and Coatings Technology,2005,194(2-3):319-324.

    • [22] FATEH N,FONTALVO G A,GASSNER G,et al.Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J].Wear,2007,262(9-10):1152-1158.

    • [23] MULLIGAN C P,BLANCHET T A,GALL D.CrN-Ag nanocomposite coatings:Tribology at room temperature and during a temperature ramp[J].Surface & Coatings Technology,2010,204(9-10):1388-1394.

    • [24] JU H,DING N,XU J,et al.The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures[J].Materials Chemistry and Physics,2019,237:121840.

    • [25] JU H B,DING N,XU J H,et al.Improvement of tribological properties of niobium nitride films via copper addition[J].Vacuum,2018,158:1-5.

    • [26] CAI Z,WU Y,PU J.High-temperature friction and wear behavior of varying-C VN films[J].Journal of Materials Engineering and Performance,2021,30(3):2057-2065.

    • [27] MU Y T,LIU M,ZHAO Y Q.Carbon doping to improve the high temperature tribological properties of VN coating[J].Tribology International,2016,327-336

    • [28] BONDAREV A V,KVASHNIN D G,SHCHETININ I V,et al.Temperature-dependent structural transformation and friction behavior of nanocomposite VCN-(Ag)coatings[J].Materials & Design,2018,160:964-973.

    • [29] POLCAR T,VITU T,CVRCEK L,et al.Effects of carbon content on the high temperature friction and wear of chromium carbonitride coatings[J].Tribology International,2010,43(7):1228-1233.

    • [30] BONDAREV A V,KIRYUKHANTSEV-KORNEEV P V,SIDORENKO D A,et al.A new insight into hard low friction MoCN-Ag coatings intended for applications in wide temperature range[J].Materials & Design,2016,93(Mar.):63-72.

    • [31] KUTSCHEJ K,MAYRHOFER P H,KATHREIN M,et al.Structure,mechanical and tribological properties of sputtered Ti1-xAlxN coatings with 0.5 ≤ x ≤ 0.75[J].Surface and Coatings Technology,2005,200(7):2358-2365.

    • [32] KONG D J,GUO H Y.Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at hightemperatures[J].Tribology International,2015,88:31-39

    • [33] WU Z T,SUN P,QI Z B,et al.High temperature oxidation behavior and wear resistance of Ti0.53Al0.47N coating by cathodic arc evaporation[J].Vacuum,2017,135:34-43.

    • [34] YU C Y,WANG S B,LI T B,et al.Tribological behaviour of CrAlN coatings at 600 ℃[J].Surface Engineering,2013,29(4):318-321.

    • [35] ANTONOV M,AFSHARI H,BARONINS J,et al.The effect of temperature and sliding speed on friction and wear of Si3N4,Al2O3,and ZrO2 balls tested against AlCrN PVD coating[J].Tribology International,2017,118:500-514.

    • [36] PERFILYEV V,MOSHKOVICHA,LAPSKER I,et al.The effect of vanadium content and temperature on stick-slip phenomena under friction of CrV(x)N coatings[J].Wear,2013,307(1-2):44-51.

    • [37] RAPOPORT L,MOSHKOVICHA,PERFILYEV V,et al.High temperature friction behavior of CrVxN coatings[J].Surface & Coatings Technology,2014,238:207-215.

    • [38] DAI X,WEN M,WANG J,et al.The tribological performance at elevated temperatures of MoNbN-Ag coatings[J].Applied Surface Science,2020,509:145372.

    • [39] WANG W,PU J,CAI Z,et al.Insights into friction properties and mechanism of self-lubricating MoVN-Ag films at high temperature[J].Vacuum,2020,176:109332.

    • [40] FRANZ R,NEIDHARDT J,SARTORY B,et al.High-temperature low-friction properties of vanadiumalloyed AlCrN coatings[J].Tribology Letters,2006,23(2):101-107.

    • [41] BOBZIN K,BAGCIVAN N,EWERING M,et al.DC-MSIP/HPPMS(Cr,Al,V)N and(Cr,Al,W)N thin films for high-temperature friction reduction[J].Surface and Coatings Technology,2011,205(8):2887-2892.

    • [42] BOBZIN K,BAGCIVAN N,EWERING M,et al.Vanadium alloyed PVD CrAlN coatings for friction reduction in metal forming applications[J].Tribology in Industry,2012,34(2):101-107.

    • [43] TILLMANN W,KOKALJ D,STANGIER D,et al.Investigation of the influence of the vanadium content on the high temperature tribo-mechanical properties of DC magnetron sputtered AlCrVN thin films[J].Surface and Coatings Technology,2017,328:172-181.

    • [44] TILLMANN W,KOKALJ D,STANGIER D,et al.Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction[J].Applied Surface Science,2018,427:511.

    • [45] TILLMANN W,MOMENI S,HOFFMANN F.A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures[J].Tribology International,2013,66:324-329.

    • [46] KUTSCHEJ K,MAYRHOFER P H,KATHREIN M,et al.Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings[J].Surface & Coatings Technology,2005,200(5-6):1731-1737.

    • [47] PFEILER M,KUTSCHEJ K,PENOY M,et al.The effect of increasing V content on structure,mechanical and tribological properties of arc evaporated Ti–Al–V–N coatings[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):502-506.

    • [48] KONG D,FU G.Friction and wear behaviors of AlTiCrN coatings by cathodic arc ion plating at high temperatures[J].Journal of Materials Research,2015,30(4):503-511.

    • [49] CAVALEIRO A,POLCAR T.High temperature behavior of nanolayered CrAlTiN coating:Thermal stability,oxidation,and tribological properties[J].Surface & Coatings Technology,2014,257:70-77.

    • [50] POLCAR T,VITU T,SONDOR J,et al.Tribological performance of CrAlSiN coatings at high temperatures[J].Plasma Processes & Polymers,2010,6(S1):S935-S940.

    • [51] CHEN T,XIE Z,FENG G,et al.Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content[J].Applied Surface Science,2014,314:735-745.

    • [52] 曾琨,邹长伟,郑军,等.电弧离子镀TiAlN和 TiAlSiN 涂层的高温摩擦磨损行为[J].中国表面工程,2015,28(6):28-38.ZENG Kun,ZOU Changwei,ZHENG Jun,et al.High temperature friction and wear behavior of TiAlN and TiAlSiN coatings by arc ion plating [J].China Surface Engineering,2015,28(6):28-38.(in Chinese)

    • [53] HE N,LI H,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.

    • [54] KONG D J,CHENGJIAN T.Effects of loads on high-temperature friction-wear properties of cathodic arc ion plated TiAlSiN coatings[J].Surface Review and Letters,2017,24(Suppl.2):1-8.

    • [55] DRNOVŠ EKA A,REBELO DE FIGUEIREDOA M,VOB H,et al.Correlating high temperature mechanicaland tribological properties of CrAlN and CrAlSiN hard coatings [J].Surface and Coatings Technology,2019,372:361-368.

    • [56] PFEILER M,FONTALVO G A,WAGNER J,et al.Arc evaporation of Ti-Al-Ta-N coatings:The effect of bias voltage and Ta on high-temperature tribological properties[J].Tribology Letters,2008,30(2):91-97.

    • [57] SERGEVNIN V S,BLINKOV I V,SKRYLEVA E A,et al.Wear behaviour of wear-resistant adaptive nanomultilayered Ti-Al-Mo-N coatings[J].Applied Surface Science,2016,388(Dec.1 Pt.A):13-23.

    • [58] 莫锦君,吴正涛,高则翠,等.多弧离子镀AlTiYN涂层的高温氧化性能及高温摩擦学行为[J].中国表面工程,2018,31(4):104-112.MO Jinjun,WU Zhengtao,GAO Zecui,et al.High-temperature oxidation and tribological behavior of AlTiYN coatings by arc Ion plating[J].China Surface Engineering,2018,31(4):104-112.(in Chinese)

    • [59] WANG Y,LOU B.Microstructure and high-temperature friction and wear properties of cramon film[J].Oxidation of Metals,2021,95:239-250.

    • [60] LU Y C,CHEN H W,CHANG C C,et al.Tribological properties of nanocomposite Cr-Mo-Si-N coatings at elevated temperature through silicon content modification[J].Surface and Coatings Technology,2018,338:69-74.

    • [61] BONDAREV A V,VOROTILO S,SHCHETININ I V,et al.Fabrication of Ta-Si-C targets and their utilization for deposition of low friction wear resistant nanocomposite Si-Ta-C-(N)coatings intended for wide temperature range tribological applications[J].Surface and Coatings Technology,2019,359:342-353.

    • [62] CHEN D S,CHEN M K,CHANG S Y.Multiprincipal-element alcrtatizr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization[J].Ecs Transactions,2009:G37-G42

    • [63] SHEN W J,TSAI M H,TSAI K Y,et al.Superior oxidation resistance of(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride[J].Journal of the Electrochemical Society,2013,160(11):C531-C535.

    • [64] PHANI A R,HAEFKE H.Effect of annealing temperature on antireflection property and water contact angle of fluorine-based hydrophobic films by a sol-gel technique[J].Materials Letters,2004,58:3555-3558.

    • [65] LAN L W,YANG H J,GUO R P,et al.High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15 high-entropy alloys[J].Materials Chemistry and Physics,2021,270:0254-0584

    • [66] 张旭.(TiAlCrMoW)Nx多主元氮化物涂层的制备及摩擦学性能研究[D].西安:西安理工大学,2021.ZHANG Xu.Preparation and tribological properties of(TiAlCrMoW)Nx multi-principal nitride coatings[D].Xi’ an:Xi’ an University of Technology,2021.(in Chinese)

    • [67] ZHAO Y Q,MU Y T,LIU M.Mechanical properties and friction wear characteristics of VN/Ag multilayer coatings with heterogeneous and transition interfaces[J].Transactions of Nonferrous Metals Society of China,2020,30(2):472-483.

    • [68] FERNANDES F,AL-RJOUB A,CAVALEIRO D,et al.Room and high temperature tribological performance of multilayered TiSiN/TiN and TiSiN/TiN(Ag)coatings deposited by sputtering[J].Coatings,2020,10(12):319.

    • [69] POLCAR T,MARTINEZ R,VÍTŮ T,et al.High temperature tribology of CrN and multilayered Cr/CrN coatings[J].Surface & Coatings Technology,2009,203(20):3254-3259.

    • [70] MA S,PROCHÁZKA J,KARVÁNKOVÁ P,et al.Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN[J].Surface & Coatings Technology,2005,194(1):143-148.

    • [71] FAN J,WANG W,WANG,H,et al.Tribological performance and mechanism of MoN/VN multilayer films with different modulation periods at different temperature[J].Tribology Letter,2021,69:154.

    • [72] HOVSEPIAN P E,LEWIS D B,LUO Q,et al.TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures[J].Thin Solid Films,2005,485(1/2):160-168.

    • [73] FOX-RABINOVICH G S,YAMAMOTO K,VELDHUIS S C,et al.Self-adaptive wear behavior of nanomultilayered TiAlCrN/WN coatings under severe machining conditions[J].Surface and Coatings Technology,2006,201(3-4):1852-1860.

    • [74] WALKER J C,ROSS I M,REINHARD C,et al.High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on γ-TiAl[J].Wear,2009,267(5-8):965-975.

    • [75] ZHOU Z,RAINFORTH W M,LUO Q,et al.Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures[J].Acta Materialia,2018,58(8):2912-2925.

    • [76] RAJENDRAN P,DEVARAJU A,SARAVANAN I.A study on wear behavior of TiN/AlCrN multilayer coatings at high temperature testing conditions[J].Surface Topography:Metrology and Properties 2021,9:045013.

    • [77] ALAMGIR A,YASHIN M,BOGATOV A,et al.High-temperature tribological performance of hard multilayer TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN coating deposited on wc-co substrate[J].Coatings,2020,10(9):909.

    • [78] LIU Z R,XU Y,PENG B,et al.Structure and property optimization of Ni-containing AlCrSiN coatings by nano-multilayer construction[J].Journal of Alloys and Compounds,2019,808:151630.

  • 手机扫一扫看