en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

聂傲男,男,1995年出生,硕士研究生。主要研究方向为轴承摩擦学及表面工程。E-mail:834197193@qq.com;

李迎春(通信作者),女,1969年出生,副教授,硕士研究生导师。主要研究方向为轴承摩擦学及表面工程。E-mail:lyc2004henan.china@126.com;

邱明,女,1969年出生,教授,博士研究生导师。主要研究方向为轴承设计及摩擦学。E-mail:qiuming@haust.edu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20211005002

参考文献 1
HE Guangyu,ZHU Xiaodong,HE Weifeng,et al.GLC coating improving the wear resistance of aeroengine bearings in insufficient lubrication[J].Applied Mechanics and Materials,2013,331:48-51.
参考文献 2
赵文杰,王永欣,曾志翔,等.铝掺杂类石墨薄膜的构筑及其摩擦学性能研究[J].润滑与密封,2011,36(10):20-24.ZHAO Wenjie,WANG Yongxin,ZENG Zhixiang,et al.Study on the construction and tribological properties of aluminum-doped graphite-like films[J].Lubrication Engineering,2011,36(10):20-24.(in Chinese)
参考文献 3
STALLARD J,MERCS D,JARRATT M,et al.A study of the tribological behaviour of three carbon-based coatings,tested in air,water and oil environments at high loads[J].Surface and Coatings Technology,2004,177(3):545-551.
参考文献 4
WANG Yongxin,WANG Liping,XUE Qunji.Improvement in the tribological performances of Si3N4,SiC and WC by graphite-like carbon films under dry and water-lubricated sliding conditions[J].Surface andCoatings Technology,2011,205(8-9):2770-2777.
参考文献 5
王佳凡.非晶碳基薄膜材料多环境下的摩擦学性能研究[D].兰州:兰州理工大学,2015.WANG Jiafan.Research on the tribological properties of amorphous carbon-based thin film materials under multiple environments[D].Lanzhou:Lanzhou University of Technology,2015.(in Chinese)
参考文献 6
王佳凡,王永欣,陈克选,等.Cr 掺杂对GLC薄膜结构及其摩擦学性能的影响[J].摩擦学学报,2015,32(2):206-213.WANG Jiafan,WANG Yongxin,CHEN Kexuan,et al.Effect of Cr doping on the structure and tribological properties of GLC film[J].Tribology,2015,32(2):206-213.(in Chinese)
参考文献 7
张学谦,黄美东,柯培玲,等.偏压对类石墨非晶碳膜结构和力学性能的影响[J].天津师范大学学报(自然科学版),2013,33(2):29-33.ZHANG Xueqian,HUANG Meidong,KE Peiling,et al.Effects of bias voltage on the structure and mechanical properties of graphite-like amorphous carbon films[J].Journal of Tianjin Normal University(Natural Science Edition),2013,33(2):29-33.(in Chinese)
参考文献 8
张学谦,黄美东,柯培玲,等.基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究[J].真空科学与技术学报,2013,33(10):969-974.ZHANG Xueqian,HUANG Meidong,KE Peiling,et al.The effect of substrate bias on the preparation of graphitic carbon films by high-power pulsed magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2013,33(10):969-974.(in Chinese)
参考文献 9
丁兰.不同基体上类石墨膜干摩擦磨损性能研究[D].太原:太原理工大学,2017.DING Lan.Research on dry friction and wear properties of graphite-like films on different substrates[D].Taiyuan:Taiyuan University of Technology,2017.(in Chinese)
参考文献 10
丁兰,贺志勇,鲍明东,等.不同Ti含量类石墨碳膜干摩擦磨损性能研究[J].表面技术,2017,46(6):131-137.DING Lan,HE Zhiyong,BAO Mingdong,et al.Dry friction and wear properties of graphite-like carbon films with different Ti content[J].Surface Technology,2017,46(6):131-137.(in Chinese)
参考文献 11
王春婷.海水环境高性能类石墨碳薄膜摩擦学研究[D].哈尔滨:哈尔滨师范大学,2015.WANG Chunting.Tribological research on high-performance graphitic-like carbon film in seawater environment[D].Harbin:Harbin Normal University,2015.(in Chinese)
参考文献 12
WANG Qianzhi,ZHOU Fei,DING Xiangdong,et al.Structure and water-lubricated tribological properties of Cr/a-C coatings with different Cr contents[J].Tribology International,2013,67:104-115.
参考文献 13
SIEGAL M P,TALLANT D R,MARTINEZ-MIRANDA L J,et al.Nanostructural characterization of amorphous diamondlike carbon films[J].Physical Review B,2000,61(15):10451-10462.
参考文献 14
ZOU Y S,ZHOU K,WU Y F,et al.Structure,mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J].Vacuum,2012,86:1141-1146.
参考文献 15
包永千.金属学基础[M].北京:冶金工业出版社,1986.BAO Yongqian.Fundamentals of metals[M].Beijing:Metallurgical Industry Press,1986.(in Chinese)
参考文献 16
KULIKOVSKY V,BOHÁČ P,VORLÍČEK V,et al.Oxidation of graphite-like carbon films with different microhardness and density[J].Surface and Coatings Technology,2003,174-175:290-295.
目录contents

    摘要

    针对航空发动机主轴轴承服役工况恶劣和类石墨碳基薄膜在高温环境下的性能研究不足等问题,采用磁控溅射技术在不同轴承钢基体(M50 钢、M50NiL 钢和 W9Cr4V2Mo 钢)上沉积 Ti-GLC 薄膜,探究在不同温度下的摩擦学性能。采用 SEM、 Raman 分析薄膜的微观结构,采用纳米压痕仪、划痕仪等测试其力学性能,利用 MFT-5000 型多功能摩擦磨损试验机测试所镀薄膜在不同温度下(室温、200 ℃、250 ℃和 300 ℃)的摩擦学性能。结果表明:在三种不同轴承钢基体沉积的 Ti-GLC 薄膜,其硬度和弹性模量变化不大,结合力从大到小依次为 M50>M50NiL>W9Cr4V2Mo。随着温度的升高,三种钢基体沉积 Ti-GLC 薄膜的摩擦因数均逐渐增大,而磨损率则先减小后增大,且表现出不同的磨损形式。三种轴承钢基体沉积 Ti-GLC 薄膜的最佳工作温度区间为室温~200 ℃,M50 钢基体所镀薄膜具有更好的力学性能和摩擦学性能,其结合力达到 80 N 以上, 300 ℃时的平均摩擦因数为 0.125,磨损率仅为 3.05×1017 m3 /(N·m)。研究成果为类石墨碳基薄膜在高温环境下的实际应用奠定了理论基础。

    Abstract

    Aiming at the severe service conditions of aeroengine main shaft bearings and insufficient research on the performance of graphite-like carbon films in high temperature environments, Ti-GLC films are deposited on different bearing steel substrates (M50 steel, M50NiL steel and W9Cr4V2Mo steel) by magnetron sputtering to investigate the tribological properties at different temperatures. The microstructure of the film is analyzed by SEM and Raman. The mechanical properties of the films are evaluated by nanoindenter and scratch instrument. The tribological performance of the films is performed using MFT-5000 multi-functional tribometer. at room temperature, 200 ℃, 250 ℃ and 300 ℃. The results show that the hardness and elastic modulus of Ti-GLC films deposited on three different bearing steel substrates have a little change, the order of adhesion strength from large to small is M50 > M50NiL > W9Cr4V2Mo. With the increase of temperature, the friction factor of Ti-GLC films deposited on three kinds of steel substrates increases gradually, while the wear rate decreases first and then increases, and different wear mechanisms are shown. The optimum operating temperature range of Ti-GLC films deposited on three bearing steel substrates is in the range between room temperature to 200 ℃, the films deposited on M50 steel substrate have better mechanical and tribological properties, and its adhesion strength is above 80 N, the average friction factor at 300 ℃ is 0.125, and the wear rate is only 3.05×10-17m3 / (N·m). This paper provides a theoretical basis for the practical application of graphite-like carbon films in high-temperature environments.

  • 0 前言

  • 类石墨碳基薄膜(Graphite-like carbon film, GLC)因其具有硬度高、弹性模量高、内应力低、热稳定性好、低摩擦因数和低磨损率等优异性能已广泛应用于轴承、刀具、电子等领域[1]

  • 近年来,对于GLC薄膜在不同基体以及不同对偶副的研究,已取得了较大的进展。赵文杰等[2] 利用磁控溅射技术在硅片表面制备Al掺杂类石墨薄膜,发现所制备的GLC膜表面均匀致密,且硬度和弹性模量随铝含量的增加而增大。 STALLARD等[3]在M42钢表面制备类石墨碳基薄膜,考察了此薄膜在大气、去离子水及发动机油三环境下的摩擦学性能,结果表明,在这三种环境下类石墨碳基薄膜具有较好的减摩耐磨性能。 WANG等[4]考察在Si3N4、SiC和WC不同陶瓷表面沉积薄膜的摩擦学性能,发现GLC与WC陶瓷组成的膜基体系具有超低的磨损率。王佳凡等[5-6] 分别在304不锈钢和1Cr18Ni9Ti不锈钢片上制备金属元素Cr掺杂的类石墨碳基薄膜(GLC/Cr),考察GLC/Cr薄膜在不同环境下的摩擦学性能,研究结果表明,在不同环境下,GLC/Cr膜具有较好的减摩耐磨性能。张雪谦等[7-8]采用磁控溅射技术在高速工具钢表面制备类石墨碳基薄膜,考察不同偏压对其结构和性能的影响,发现随着基体偏压的增高,sp 2 含量和薄膜的表面粗糙度均先减小后增大,而硬度和内应力则逐渐增大。丁兰等[9-10]利用磁控溅射技术分别在高速钢、铜合金上制备GLC/Ti薄膜,研究结果表明,随着Ti靶电流的增大,薄膜的致密性均降低,sp 2 含量也都先增大后减小,硬度和弹性模量先减小后增大,较低Ti靶电流(0.2A)下具有较好的减摩耐磨性能; 当载荷为20N时,与铜基体相比,在高速钢表面制备的碳基薄膜具有较好的耐磨性能。王春婷[11] 在304不锈钢上制备GLC/Cr薄膜,探究与金属配副(316L、440C、Al、Ti、H62、GCr15)和陶瓷配副(Si3N4、SiC、WC、Al2O3、ZrO2)在模拟海水环境下的摩擦学行为,发现与金属配副相比,GLC薄膜与陶瓷配副对磨时,GLC薄膜表现出更优异的摩擦学性能。

  • 以上研究表明,在工具钢、不锈钢、陶瓷等基体上沉积GLC薄膜,不仅在大气环境和干摩擦条件下可以表现出较好的摩擦学特性,在海水环境中也表现出较好的减摩抗磨作用,具有良好的环境适应性。而对某些机械零部件,如航空发动机主轴轴承常常服役于高速、重载、乏油以及断油等极端恶劣工况,轴承各摩擦副间产生巨大高温,致使润滑剂失效,最终导致轴承提前失效,在轴承滚道表面或滚动体上制备固体润滑薄膜,有益于提高滚动轴承的整体性能。要使GLC薄膜较好地应用于自润滑滚动轴承中,有必要对其在高温环境下的摩擦学性能进行研究。 M50、 M50NiL和W9Cr4V2Mo是目前加工航空发动机主轴轴承的主要材料,本文采用磁控溅射技术在这三种轴承钢基体上沉积Ti掺杂的类石墨碳基薄膜 (Ti-GLC),采用MFT-5000型多功能摩擦磨损试验机考察不同基体上沉积Ti-GLC薄膜的高温摩擦学性能,为类石墨碳基薄膜在高温环境下的实际应用奠定理论基础。

  • 1 试验准备

  • 1.1 样品制备

  • 试验材料分别为P(100)型单晶硅片、M50、 M50NiL和W9Cr4V2Mo轴承钢试样(φ30mm× 8mm),单晶硅片用于观察薄膜的微观结构,轴承钢试样用于测试力学性能和摩擦学性能。三种轴承钢的成分以及热处理后的硬度分别见表1、2,三种轴承钢试样经抛光后表面粗糙度均满足 Ra ≤0.1 μm。

  • 表1 三种轴承钢的化学成分(质量分数/wt.%)

  • Table1 Chemical compositions of the steel investigated(wt.%)

  • 表2 三种轴承钢热处理后的硬度

  • Table2 Hardness of three kinds of bearing steel after heat treatment

  • 镀膜设备采用英国Teer公司的UDP-700型闭合场非平衡磁控溅射设备,腔体对称安装4个靶材,如图1所示,1、3靶为Ti靶(质量分数≥99%), 2、4靶为石墨靶(质量分数99.99%),4个靶材具有相同的尺寸。在制备薄膜之前,将试样依次放入丙酮、乙醇中超声波清洗15min,烘干后将需要镀膜的表面面向靶材安装,当真空腔内真空度达到1.5mPa时,选择相应的程序开始镀膜,镀膜时工作气压为0.1Pa,镀膜程序主要包括基体清洗、靶清洗、制备打底层、过渡层和工作层,具体工艺参数如表3所示。

  • 图1 磁控溅射靶材安装位置示意图

  • Fig.1 Schematic diagram of magnetron sputtering target location

  • 表3 Ti-GLC薄膜的沉积参数

  • Table3 Deposition parameters of Ti-GLC films

  • 1.2 结构表征及性能测试

  • 利用JSM-5610LV型扫描电子显微镜(SEM) 观察薄膜的表面和截面形貌;采用法国Jobin Yvon公司生产的HR800型Raman光谱仪对薄膜进行结构分析,激光波长为514nm。利用Nanomechanics公司的iNano型纳米压痕仪(Berkovich压头,120° 锥角)测试薄膜的硬度及弹性模量,加载力为10mN,加载速度为20mN/min,压入深度为薄膜厚度的1/10~1/5,每个试样测量5次,取平均值。利用UST-2划痕仪测试膜基结合力,设置最大加载力80N,加载速度100N/min,划痕长度6mm。利用MFT-5000型多功能摩擦磨损试验机对薄膜进行不同温度下的摩擦磨损性能测试,采用球-盘接触模式,加载力为20N,线速度为100mm/s,旋转半径3mm,试验时间60min。配对的摩擦副为 φ6mm的Al2O3 陶瓷球,摩擦方式为干摩擦,温度分别为室温(25℃)、200℃、250℃、300℃。

  • 利用白光干涉仪观察磨痕形貌,并按下式计算其磨损率:

  • W=πDSFnvt

  • 式中,W 为磨损率,m 3/(N·m);S 为磨痕截面积, m 2D 为旋转直径,m;F n 为法向载荷,N;v 为线速度,m/s;t 为磨损时间,s。

  • 2 结果与讨论

  • 2.1 薄膜的微观形貌

  • 图2 为Ti-GLC薄膜的表面和截面形貌的SEM照片。从图2a可以看出,所制备的Ti-GLC薄膜呈现“菜花”状形貌,其表面的颗粒状形貌明显,颗粒间的间隙清晰可见。观察其截面形貌,薄膜的柱状结构不明显,无明显孔洞等缺陷,膜层致密。通过截面SEM照片可知,Ti-GLC薄膜的膜层总厚度为2.41 μm,且具有明显的两层结构,其底层为厚度0.26 μm的致密Ti打底层,顶层为Ti-GLC工作层,厚度为2.15 μm。

  • 图2 Ti-GLC薄膜的表面及截面SEM照片

  • Fig.2 SEM images of surface and cross section morphology of Ti-GLC film

  • 2.2 薄膜的Raman分析

  • 研究表明,GLC薄膜一般是由位于1 350cm−1 处的D峰(源于六元碳环团簇的呼吸振动)和1 560cm−1 处的G峰(源于碳环或碳链中sp 2 原子对的伸缩振动)构成[12]。图3为Ti-GLC薄膜的拉曼光谱及其高斯拟合曲线,从图中可以看出,所镀Ti-GLC薄膜具有典型的碳基薄膜特征,即在1 500cm−1 附近具有一个不对称的宽峰,它是由位于1 380cm−1 处的D峰和1 570cm−1 处的G峰叠合而成的,并且D峰的贡献远远高于G峰的贡献。研究表明,在GLC薄膜中,I D/I G的值与sp 2 键和sp 3 键的含量密切相关,其值越大,sp 2 含量就越高[13-14]。拉曼光谱经高斯拟合后计算出 I D/I G 的值为2.53,可见此薄膜中有较多的sp 2 含量,有益于提高薄膜的减摩性能。

  • 图3 Ti-GLC薄膜的拉曼光谱

  • Fig.3 Raman diagram of Ti-GLC film

  • 2.3 薄膜的力学性能

  • 图4 列出在不同基体上沉积Ti-GLC薄膜的硬度和弹性模量。M50、M50NiL和W9Cr4V2Mo钢基体上沉积Ti-GLC薄膜的硬度分别为16.37GPa、 16.87GPa、16.16GPa,弹性模量依次为185GPa、 181GPa、176GPa,硬度和弹性模量变化不明显,说明在硬度相差不大的基体上所沉积的Ti-GLC薄膜的硬度和弹性模量无明显差别。

  • 图4 不同基体上沉积Ti-GLC膜的硬度和弹性模量

  • Fig.4 Hardness and elasticity modulus of Ti-GLC films deposited on different substrates

  • 图5 为不同基体上沉积Ti-GLC薄膜的划痕曲线。对于M50钢基体,随着加载力的增大,摩擦力曲线波动较小,结合图6a所示的划痕形貌,仅在划痕边缘观察到因挤压而形成的轻微鳞状裂纹,并未出现薄膜彻底破裂使基体裸露的现象,因此判断其膜基结合力大于80N。对于M50NiL钢基体,当载荷升高至69N时,摩擦力曲线发生突变,此时观察划痕形貌发现薄膜已被划破(图6b),因此判断薄膜失效的临界载荷为69N。对于W9Cr4V2Mo钢,摩擦力曲线在加载力为50N时开始出现明显波动,结合图6c所示划痕形貌,判断其结合力为50N。综上,M50钢基体沉积的薄膜具有最高的膜基结合力。根据相界匹配原则[15],薄膜的内应力主要集中于膜基交界处。膜基结合力受到内应力的影响,而内应力的大小取决于薄膜和基体的热膨胀系数,两者越接近则结合力越好。在20~300℃温度范围内Ti打底层、M50、 M50NiL和W9Cr4V2Mo钢基体材料的平均热膨胀系数分别为8.6×10−6/℃、12.0×10−6/℃、12.6×10−6/℃ 和13.8×10−6/℃,Ti打底层和M50基体材料的热膨胀系数最接近,使得沉积过程中产生的内应力最小,从而具有最高的膜基结合力。

  • 图5 不同基体上沉积Ti-GLC薄膜的划痕曲线

  • Fig.5 Scratch curves of Ti-GLC films deposited on different substrates

  • 图6 不同基体上沉积Ti-GLC薄膜的划痕形貌

  • Fig.6 Scratch morphology of Ti-GLC films deposited on different substrates

  • 2.4 薄膜的高温摩擦学性能

  • 图7a~7c为三种轴承钢基体沉积Ti-GLC薄膜在不同温度下的摩擦因数曲线。从图中可以看出,不同基体上沉积Ti-GLC薄膜的摩擦因数曲线在摩擦初期有较大的波动,但是随着摩擦过程的进行,摩擦因数曲线趋于平稳,进入稳定的摩擦阶段。从图7d中可以看出,在室温~200℃这一温度区间,随着温度的升高,薄膜的摩擦因数与室温磨损时变化不大,保持在0.07以下,结合Raman分析结果(图8),在室温~200℃,GLC薄膜仅发生了轻微的石墨化,薄膜成分结构变化不大,所镀薄膜在此温度范围内依然保持优异的减摩性能。在200~300℃,薄膜的摩擦因数随温度升高而明显增大,这一方面是由于Ti-GLC薄膜在摩擦过程中发生局部脆裂形成微小磨粒参与摩擦,破坏了转移膜,导致其摩擦因数增大,另一方面在有氧的高温环境中,C元素与O氧元素可形成CO0.15-0.18 相,该相挥发温度极低,其挥发不仅导致碳基薄膜结构疏松容易脱落,也会导致碳膜的相对失碳量增大,阻碍摩擦副表面滑移膜的正常形成,从而导致摩擦因数升高[16]。在相同温度下,M50钢表面沉积的Ti-GLC薄膜具有最低的平均摩擦因数,说明在M50钢表面所镀的Ti-GLC薄膜具有最好的减摩性能。

  • 图7 不同基体上沉积Ti-GLC薄膜的摩擦因数曲线和平均摩擦因数

  • Fig.7 Friction factor curves and average friction factor of Ti-GLC films deposited on different substrates

  • 图8 为M50钢基体沉积Ti-GLC薄膜在不同温度下的Raman光谱以及拟合处理后的结果。可以看出,随着温度的升高,I D/I G 比值逐渐增大,说明sp 2 杂化含量越来越高。半峰宽能够反映薄膜中化学键的有序性,而G峰半峰宽随着温度的升高逐渐减小,说明薄膜中的石墨成分有序化程度提高。

  • 图8 M50钢沉积Ti-GLC薄膜在不同温度下的拉曼光谱分析

  • Fig.8 Raman spectra and Gaussian fitting results of Ti-GLC films on M50substrate at different temperatures

  • 图9 为不同基体上沉积Ti-GLC薄膜在不同温度下与Al2O3 陶瓷球对磨1h后的磨损率。可以看出,随着温度的升高,三种基体上沉积Ti-GLC薄膜的磨损率均先减小后增大,当试验温度为200℃ 时,三种轴承钢基体上沉积的薄膜的磨损率均较低; 当温度进一步上升至300℃时,相比于M50基体, M50NiL和W9Cr4V2Mo这两种钢基体表面沉积的薄膜磨损率大幅增加。相同温度下,M50钢表面沉积的碳基薄膜具有较低的磨损率。结合摩擦因数和磨损率结果可知,三种钢基体表面沉积的Ti-GLC薄膜的最佳工作温度区间为室温~200℃,且M50钢的摩擦学性能最好。

  • 观察不同基体上沉积Ti-GLC薄膜磨损后的磨痕形貌(图10)和磨痕轮廓曲线(图11),发现随着温度升高,总体上三种钢基体表面沉积Ti-GLC薄膜的磨痕宽度和深度均呈现先减小后增大的趋势,当温度为200℃时,磨痕宽度和深度最小。随着温度的升高,M50钢表面沉积的Ti-GLC薄膜的磨痕宽度、深度逐渐增大,有少量犁沟,但表面仍比较光滑,没有磨屑堆积和磨损破裂,磨损程度较轻;而M50NiL钢和W9Cr4V2Mo钢表面沉积的薄膜在温度<200℃时,其磨痕表面比较光滑,犁沟效应不明显,为轻微的磨粒磨损;温度继续升高,磨痕表面犁沟效应愈发明显,当温度升高到300℃时,磨痕边缘和底部有磨屑堆积,磨痕底部粗糙不平,分布有平行的犁沟和磨屑(图10d),有明显的挤压研磨痕迹,磨损加剧,并伴有局部脆性剥落。

  • 图9 不同基体上沉积Ti-GLC膜在不同温度下的磨损率

  • Fig.9 Wear rates of Ti-GLC films deposited on different substrates at different temperatures

  • 图10 不同基体上沉积Ti-GLC薄膜在不同温度下的磨痕形貌

  • Fig.10 Wear trace morphology of Ti-GLC films deposited on different substrates at different temperatures

  • 对磨痕区域进行EDS能谱分析(表4),当温度小于300℃时,三种基体的磨痕处均富有C元素,在摩擦过程中能正常形成转移膜,保持较低的摩擦因数,磨痕中含有的微量O元素,可能是由于空气中的O元素附着到样品表面造成污染所致,磨痕区域未出现Fe元素,说明所镀薄膜均未破裂,薄膜对基体起到了良好的保护作用。当温度上升至300℃时,M50NiL和W9Cr4V2Mo两种基体磨痕区域的C含量明显降低,O元素明显增大,说明薄膜在高温有氧环境下发生了氧化反应,薄膜表层的氧化亦导致膜层结构疏松,薄膜力学性能变差,从而加剧了薄膜的磨损,使薄膜在300℃快速失效,加之Fe元素含量明显增大,表明此时两种基体上的薄膜已被磨透,露出了基体;而此时M50基体上的Ti-GLC薄膜磨痕处仍含有大量的C元素,且O含量最低,无Fe元素,说明此时的Ti-GLC薄膜对基体仍具有保护作用。再结合磨损率可知,相同工况下,M50钢表面沉积的Ti-GLC薄膜具有较高的抗磨损性能,表现出更优异的摩擦学特性。

  • 图11 不同基体上沉积Ti-GLC薄膜在不同温度下的磨痕轮廓曲线

  • Fig.11 Wear profile curves of Ti-GLC films deposited on different substrates at different temperatures

  • 表4 三种基体在不同温度下磨痕区域的EDS分析

  • Table4 EDS analysis of wear marks for three substrates at different temperatures

  • 3 结论

  • 在航空发动机主轴轴承常用轴承钢M50、 M50NiL和W9Cr4V2Mo基体上沉积Ti-GLC薄膜,研究了不同轴承钢基体沉积Ti-GLC薄膜的高温摩擦学性能,得到以下结论:

  • (1)三种轴承钢基体沉积Ti-GLC薄膜的最佳工作温度区间为室温~200℃,相同工况下,M50钢基体所镀薄膜具有更好的力学性能和摩擦学性能。

  • (2)随着温度的升高,M50钢基体上沉积Ti-GLC薄膜的磨损形式均为磨粒磨损,而M50NiL和W9Cr4V2Mo钢基体上磨损形式由轻微的磨粒磨损转变为严重的磨粒磨损和氧化磨损。

  • (3)研究成果为类石墨碳基薄膜在航空发动机主轴轴承上的实际应用奠定了理论基础。

  • 参考文献

    • [1] HE Guangyu,ZHU Xiaodong,HE Weifeng,et al.GLC coating improving the wear resistance of aeroengine bearings in insufficient lubrication[J].Applied Mechanics and Materials,2013,331:48-51.

    • [2] 赵文杰,王永欣,曾志翔,等.铝掺杂类石墨薄膜的构筑及其摩擦学性能研究[J].润滑与密封,2011,36(10):20-24.ZHAO Wenjie,WANG Yongxin,ZENG Zhixiang,et al.Study on the construction and tribological properties of aluminum-doped graphite-like films[J].Lubrication Engineering,2011,36(10):20-24.(in Chinese)

    • [3] STALLARD J,MERCS D,JARRATT M,et al.A study of the tribological behaviour of three carbon-based coatings,tested in air,water and oil environments at high loads[J].Surface and Coatings Technology,2004,177(3):545-551.

    • [4] WANG Yongxin,WANG Liping,XUE Qunji.Improvement in the tribological performances of Si3N4,SiC and WC by graphite-like carbon films under dry and water-lubricated sliding conditions[J].Surface andCoatings Technology,2011,205(8-9):2770-2777.

    • [5] 王佳凡.非晶碳基薄膜材料多环境下的摩擦学性能研究[D].兰州:兰州理工大学,2015.WANG Jiafan.Research on the tribological properties of amorphous carbon-based thin film materials under multiple environments[D].Lanzhou:Lanzhou University of Technology,2015.(in Chinese)

    • [6] 王佳凡,王永欣,陈克选,等.Cr 掺杂对GLC薄膜结构及其摩擦学性能的影响[J].摩擦学学报,2015,32(2):206-213.WANG Jiafan,WANG Yongxin,CHEN Kexuan,et al.Effect of Cr doping on the structure and tribological properties of GLC film[J].Tribology,2015,32(2):206-213.(in Chinese)

    • [7] 张学谦,黄美东,柯培玲,等.偏压对类石墨非晶碳膜结构和力学性能的影响[J].天津师范大学学报(自然科学版),2013,33(2):29-33.ZHANG Xueqian,HUANG Meidong,KE Peiling,et al.Effects of bias voltage on the structure and mechanical properties of graphite-like amorphous carbon films[J].Journal of Tianjin Normal University(Natural Science Edition),2013,33(2):29-33.(in Chinese)

    • [8] 张学谦,黄美东,柯培玲,等.基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究[J].真空科学与技术学报,2013,33(10):969-974.ZHANG Xueqian,HUANG Meidong,KE Peiling,et al.The effect of substrate bias on the preparation of graphitic carbon films by high-power pulsed magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2013,33(10):969-974.(in Chinese)

    • [9] 丁兰.不同基体上类石墨膜干摩擦磨损性能研究[D].太原:太原理工大学,2017.DING Lan.Research on dry friction and wear properties of graphite-like films on different substrates[D].Taiyuan:Taiyuan University of Technology,2017.(in Chinese)

    • [10] 丁兰,贺志勇,鲍明东,等.不同Ti含量类石墨碳膜干摩擦磨损性能研究[J].表面技术,2017,46(6):131-137.DING Lan,HE Zhiyong,BAO Mingdong,et al.Dry friction and wear properties of graphite-like carbon films with different Ti content[J].Surface Technology,2017,46(6):131-137.(in Chinese)

    • [11] 王春婷.海水环境高性能类石墨碳薄膜摩擦学研究[D].哈尔滨:哈尔滨师范大学,2015.WANG Chunting.Tribological research on high-performance graphitic-like carbon film in seawater environment[D].Harbin:Harbin Normal University,2015.(in Chinese)

    • [12] WANG Qianzhi,ZHOU Fei,DING Xiangdong,et al.Structure and water-lubricated tribological properties of Cr/a-C coatings with different Cr contents[J].Tribology International,2013,67:104-115.

    • [13] SIEGAL M P,TALLANT D R,MARTINEZ-MIRANDA L J,et al.Nanostructural characterization of amorphous diamondlike carbon films[J].Physical Review B,2000,61(15):10451-10462.

    • [14] ZOU Y S,ZHOU K,WU Y F,et al.Structure,mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J].Vacuum,2012,86:1141-1146.

    • [15] 包永千.金属学基础[M].北京:冶金工业出版社,1986.BAO Yongqian.Fundamentals of metals[M].Beijing:Metallurgical Industry Press,1986.(in Chinese)

    • [16] KULIKOVSKY V,BOHÁČ P,VORLÍČEK V,et al.Oxidation of graphite-like carbon films with different microhardness and density[J].Surface and Coatings Technology,2003,174-175:290-295.

  • 参考文献

    • [1] HE Guangyu,ZHU Xiaodong,HE Weifeng,et al.GLC coating improving the wear resistance of aeroengine bearings in insufficient lubrication[J].Applied Mechanics and Materials,2013,331:48-51.

    • [2] 赵文杰,王永欣,曾志翔,等.铝掺杂类石墨薄膜的构筑及其摩擦学性能研究[J].润滑与密封,2011,36(10):20-24.ZHAO Wenjie,WANG Yongxin,ZENG Zhixiang,et al.Study on the construction and tribological properties of aluminum-doped graphite-like films[J].Lubrication Engineering,2011,36(10):20-24.(in Chinese)

    • [3] STALLARD J,MERCS D,JARRATT M,et al.A study of the tribological behaviour of three carbon-based coatings,tested in air,water and oil environments at high loads[J].Surface and Coatings Technology,2004,177(3):545-551.

    • [4] WANG Yongxin,WANG Liping,XUE Qunji.Improvement in the tribological performances of Si3N4,SiC and WC by graphite-like carbon films under dry and water-lubricated sliding conditions[J].Surface andCoatings Technology,2011,205(8-9):2770-2777.

    • [5] 王佳凡.非晶碳基薄膜材料多环境下的摩擦学性能研究[D].兰州:兰州理工大学,2015.WANG Jiafan.Research on the tribological properties of amorphous carbon-based thin film materials under multiple environments[D].Lanzhou:Lanzhou University of Technology,2015.(in Chinese)

    • [6] 王佳凡,王永欣,陈克选,等.Cr 掺杂对GLC薄膜结构及其摩擦学性能的影响[J].摩擦学学报,2015,32(2):206-213.WANG Jiafan,WANG Yongxin,CHEN Kexuan,et al.Effect of Cr doping on the structure and tribological properties of GLC film[J].Tribology,2015,32(2):206-213.(in Chinese)

    • [7] 张学谦,黄美东,柯培玲,等.偏压对类石墨非晶碳膜结构和力学性能的影响[J].天津师范大学学报(自然科学版),2013,33(2):29-33.ZHANG Xueqian,HUANG Meidong,KE Peiling,et al.Effects of bias voltage on the structure and mechanical properties of graphite-like amorphous carbon films[J].Journal of Tianjin Normal University(Natural Science Edition),2013,33(2):29-33.(in Chinese)

    • [8] 张学谦,黄美东,柯培玲,等.基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究[J].真空科学与技术学报,2013,33(10):969-974.ZHANG Xueqian,HUANG Meidong,KE Peiling,et al.The effect of substrate bias on the preparation of graphitic carbon films by high-power pulsed magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2013,33(10):969-974.(in Chinese)

    • [9] 丁兰.不同基体上类石墨膜干摩擦磨损性能研究[D].太原:太原理工大学,2017.DING Lan.Research on dry friction and wear properties of graphite-like films on different substrates[D].Taiyuan:Taiyuan University of Technology,2017.(in Chinese)

    • [10] 丁兰,贺志勇,鲍明东,等.不同Ti含量类石墨碳膜干摩擦磨损性能研究[J].表面技术,2017,46(6):131-137.DING Lan,HE Zhiyong,BAO Mingdong,et al.Dry friction and wear properties of graphite-like carbon films with different Ti content[J].Surface Technology,2017,46(6):131-137.(in Chinese)

    • [11] 王春婷.海水环境高性能类石墨碳薄膜摩擦学研究[D].哈尔滨:哈尔滨师范大学,2015.WANG Chunting.Tribological research on high-performance graphitic-like carbon film in seawater environment[D].Harbin:Harbin Normal University,2015.(in Chinese)

    • [12] WANG Qianzhi,ZHOU Fei,DING Xiangdong,et al.Structure and water-lubricated tribological properties of Cr/a-C coatings with different Cr contents[J].Tribology International,2013,67:104-115.

    • [13] SIEGAL M P,TALLANT D R,MARTINEZ-MIRANDA L J,et al.Nanostructural characterization of amorphous diamondlike carbon films[J].Physical Review B,2000,61(15):10451-10462.

    • [14] ZOU Y S,ZHOU K,WU Y F,et al.Structure,mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J].Vacuum,2012,86:1141-1146.

    • [15] 包永千.金属学基础[M].北京:冶金工业出版社,1986.BAO Yongqian.Fundamentals of metals[M].Beijing:Metallurgical Industry Press,1986.(in Chinese)

    • [16] KULIKOVSKY V,BOHÁČ P,VORLÍČEK V,et al.Oxidation of graphite-like carbon films with different microhardness and density[J].Surface and Coatings Technology,2003,174-175:290-295.

  • 手机扫一扫看