en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李微,女,1982年出生,博士,教授。主要研究方向为太阳能热发电用关键材料疲劳寿命预测。E-mail:lwzzgjajie@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210803002

参考文献 1
ZAAOUMI A,BAH A,CIOCAN M,et al.Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models[J].Renewable Energy,2021,170:620-638.
参考文献 2
PADULA S,TREGAMBI C,SOLIMENE R,et al.A novel fluidized bed “thermochemical battery” for energy storage in concentrated solar thermal technologies[J].Energy Conversion and Management,2021,236:113994.
参考文献 3
ZHOU Z,LIN A,WANG L,et al.Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China[J].Science of the Total Environment,2021,784:147214.
参考文献 4
TAHIR S,AHMAD M,ABD-UR-REHMAN H M,et al.Techno-economic assessment of concentrated solar thermal power generation and potential barriers in its deployment in Pakistan[J].Journal of Cleaner Production,2021,293:126125.
参考文献 5
LI W,CHEN H,LI C,et al.Microstructure and tensile properties of AISI 321 stainless steel with aluminizing and annealing treatment[J].Materials & Design,2021,205:109729.
参考文献 6
张子龙,夏爽,曹伟,等.晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J].金属学报,2016,52(3):313-319.ZHANG Zilong,XIA Shuang,CAO Wei,et al.Effect of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J].Acta Metallurgica Sinia,2016,52(3):313-319.(in Chinese)
参考文献 7
XIANG S,JONSSON S,ZHU B,et al.Corrosion fatigue of austenitic cast iron Ni-Resist D5S and austenitic cast steel HK30 in argon and synthetic diesel exhaust at 800 ℃[J].International Journal of Fatigue,2020,132:105396.
参考文献 8
IGWEMEZIE V,MEHMANPARAST A,BRENNAN F.The role of microstructure in the corrosion-fatigue crack growth behaviour in structural steels[J].Materials Science and Engineering:A,2021,803:140470.
参考文献 9
CUI C,CHEN A,MA R.An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J].International Journal of Fatigue,2020,135:105540.
参考文献 10
MA H,CHEN L,ZHAO J,et al.Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere[J].Materials Science and Engineering:A,2020,773:138884.
参考文献 11
XU X,LIU Z,ZHAO T,et al.Corrosion fatigue behavior of Fe-16Mn-0.6 C-1.68 Al twinning-induced plasticity steel in simulated seawater[J].Corrosion Science,2021,182:109282.
参考文献 12
ZHOU Y,LU J,SHEN M,et al.Low-temperature formation and steam oxidation of β-FeAl coating on P92 steel[J].Corrosion Science,2020,163:108227.
参考文献 13
周永莉,鲁金涛,黄锦阳,等.粉末包埋渗铝与气氛渗铝对P92钢 650 ℃饱和蒸汽氧化行为的影响[J].中国表面工程,2020,33(4):111-120.ZHOU Yougli,LU Jintao,HUANG Jinyang,et al.Effect of powder embedding aluminizing and atmospherealuminizing on saturated steam oxidation behavior of P92 steel at 650 ℃[J].China Surface Engineering,2020,33(4):111-120.(in Chinese)
参考文献 14
KIM C,CHO S,YANG W,et al.Corrosion behavior of Al-Si-Mg coated hot-press-forming steel[J].Corrosion Science,2021,183:109339.13
参考文献 15
梁义,周云龙,盛忠起,等.机械能助渗锌铝渗层的防腐耐磨性能分析[J].中国表面工程,2020,33(2):65-74.LIANG Yi,ZHOU Yunlong,SHENG Zhongqi,et al.Analysis of anticorrosion and wear resistance of mechanical energy assisted zinc-aluminizing coating[J].China surface engineering,2020,33(2):65-74.(in Chinese)
参考文献 16
DONG J,SUN YH,HE FY.Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation[J].Surface and Coatings Technology,2019,375:833-838.
参考文献 17
李微,黄煌,黄伟颖,等.钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J].中国表面工程,2021,34(3):25-39.LI Wei,HUANG Huang,HUANG Weiying,et al.Research progress on surface state and element diffusion mechanism of powder embedded aluminizing on steel surface[J].China Surface Engineering,201,34(3):25-39.(in Chinese)
参考文献 18
LI W,YANG L,LI C,et al.Low-cycle fatigue and fracture behavior of aluminized stainless steel AISI 321 for solar thermal power generation systems[J].Metals,2020,10(8):1089.
参考文献 19
ÖCAL M,SADELER R.Corrosion fatigue behavior of Al-5Mg coated AISI 316L stainless steel in sodium chloride environments under bending load[J].Anti-Corrosion Methods and Materials,2019:34-39.
参考文献 20
HAN Z,HUANG X,YANG Z.Effect of Al-Zn alloy coating on corrosion fatigue behavior of X80 riser steel[J].Materials,2019,12(9):1520.
参考文献 21
DIAB M,PANG X,JAHED H.The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium(3% Al-1% Zn)extrusion[J].Surface and Coatings Technology,2017,309:423-435.
参考文献 22
REN Y,WAN H,CHEN Y,et al.Effect of laser shock peening and carbonitriding on tribological properties of 20Cr2Mn2Mo steel alloy under dry sliding conditions[J].Surface and Coatings Technology,2021,417:127215.
参考文献 23
LU J Z,XUE K N,LU H F,et al.Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J].Journal of Materials Processing Technology,2021,296:117202.
参考文献 24
HE Z,SHEN Y,TAO J,et al.Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties:Roles of shock number and energy[J].Surface and Coatings Technology,2021:127481.
参考文献 25
李翔,何卫锋,聂祥樊,等.新型光斑搭接对平顶激光冲击钛合金力学性能的影响[J].中国表面工程,2019,32(1):38-47.LI Xiang,HE Weifeng,NIE Xiangfan,et al.Effect of new spot overlap on mechanical properties of flat-top laser shock titanium alloy[J].China Surface Engineering,2019,32(1):38-47.(in Chinese)
参考文献 26
鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Research progress of material surface protection technology in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)
参考文献 27
李微,许栋梁,左炉,等.激光冲击强化对太阳能热发电用渗铝钢显微组织和高温拉伸性能的影响[J].表面技术,2019,48(1):14-22.LI Wei,XU Dongliang,ZUO Lu,et al.Effect of laser shock strengthening on microstructure and high temperature tensile properties of aluminized steel for solar thermal power generation[J].Surface Technology,2019,48(1):14-22.(in Chinese)
参考文献 28
PRABHAKARAN S,KALAINATHAN S.Compound technology of manufacturing and multiple laser peening on microstructure and fatigue life of dual-phase spring steel[J].Materials Science & Engineering A,2016,674:634-645.
参考文献 29
BERGANT Z,TRDAN U,GRUM J.Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J].International Journal of Fatigue,2016,87:444-455.
参考文献 30
ADU-GYAMFI S,REN X D,LARSON E A,et al.The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy[J].Optics & Laser Technology,2018,108:177-185.
参考文献 31
PRAVEEN T R,NAYAKA H S,SWAROOP S.Influence of equal channel angular pressing and laser shock peeningon fatigue behaviour of AM80 alloy[J].Surface and Coatings Technology,2019,369:221-227.
参考文献 32
ZHANG H,CAI Z,WAN Z,et al.Microstructure and mechanical properties of laser shock peened 38CrSi steel[J].Materials Science & Engineering A,2020,788:139486.
参考文献 33
YANG Y,ZHOU W F,CHEN B Q,et al.Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening[J].International Journal of Fatigue,2020,136:105596.
参考文献 34
LU J Z,LUO K Y,ZHANG Y K,et al.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.
参考文献 35
LU H F,XUE K N,XU X,et al.Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel[J].Journal of Materials Processing Technology,2021,291:117016.
参考文献 36
LI W,CHEN H T,HUANG W Y,et al.Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,147:106180.
参考文献 37
潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2011.PAI Jinsheng,TONG Jianmin,TAN Minbo.Material science foundation[M].Beijing:Tsinghua University Press,2011.(in Chinese)
参考文献 38
SHARAFI S,FARHANG M R.Effect of aluminizing on surface microstructure of an HH309 stainless steel[J].Surface and Coatings Technology,2005,200(16-17):5048-5051.
参考文献 39
BUCKLEY R A,KAVIANI S.Some aspects of rapid solidification processing of Fe-Al-X alloys[J].Materials Science & Engineering A,1998,258(1-2):173-180.
参考文献 40
NICHOLLS J E.Hot-dipped aluminium coatings[J].Anti-Corrosion Methods and Materials,1964,11(10):16-21.
参考文献 41
汪军,李民,汪静雪,等.激光冲击强化对304不锈钢疲劳寿命的影响[J].中国激光,2019,46(1):100-107.WANG Jun,LI Min,WANG Jinxue,et al.Effect of laser shock strengthening on fatigue life of 304 stainless steel[J].Chinese Journal of Lasers,2019,46(1):100-107.(in Chinese)
参考文献 42
曹宇鹏,蒋苏州,施卫东,等.E690 高强钢表面激光冲击微造型的模拟与试验[J].中国表面工程,2019,32(5):69-77.CAO Yupeng,JIANG Suzhou,SHI Weidong,et al.Simulation and experiment of laser shock micro-modeling on the surface of high strength steel E690[J].China Surface Engineering,2019,32(5):69-77.(in Chinese)
参考文献 43
汪诚,赖志林,何卫锋,等.激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J].中国激光,2014,41(1):46-51.WANG Cheng,LAI Zhilin,HE Weifeng,et al.Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subjected to laser shock processing[J].Chinese Journal of Laser,2014,41(1):46-51.(in Chinese)
参考文献 44
王博涵,程礼,丁均梁,等.TC4 钛合金激光冲击强化数值模拟[J].航空动力学报,2021,36(5):959-968.WANG Bohan,CHENG Li,DING Junliang,et al.Numerical simulation on laser shock peening of TC4 Titanium alloy[J].Journal of Aerospace Power,2021,36(5):959-968(in Chinese).
目录contents

    摘要

    针对聚焦型太阳能热发电换热管材料在熔融铝硅环境中易发生腐蚀疲劳失效的问题,采用粉末包埋渗铝和激光冲击对 AISI 321 不锈钢进行表面改性,研究其熔融铝硅环境下腐蚀疲劳性能。结果表明,渗铝钢表面形成以 FeAl 金属间化合物为主的渗层,尽管能够有效地隔离基体和腐蚀介质,但是作为疲劳裂纹的形核源,会导致腐蚀疲劳寿命降低 40%;经不同功率密度的激光冲击强化处理后,渗铝钢表面硬度显著提高,延缓了疲劳裂纹萌生,提升了耐蚀性,降低了腐蚀损伤的影响,疲劳损伤占据主导地位,使得渗铝钢腐蚀疲劳寿命提高 100%~200%。

    Abstract

    Aiming at the problem on corrosion fatigue failure of heat exchange tube material for Concentrating solar thermal power generation in molten aluminum silicon environment, surface modification with powder embedded aluminum and laser shock technology is applied in AISI 321 stainless steel, and the corrosion fatigue performance under molten aluminum-silicon environment is investigated. The results show that the aluminized layer mainly composed of FeAl intermediate compound, although can effectively protect substrate from corrosive medium, but as a fatigue crack nucleation source, can lead to corrosion fatigue life reduced by 40%. The surface hardness of aluminized steel is significantly improved after laser shock strengthening treatment with different power densities, which delays fatigue crack initiation, improves corrosion resistance and reduces the influence of corrosion damage, thus resulting in fatigue damage playing a dominant role, which increases the corrosion fatigue life of aluminized steel by 100%-200% .

  • 0 前言

  • 随着工业化和城市化进程的发展,全球能源消费迅猛增长。由于自然界传统化石燃料将消耗殆尽,世界可持续的清洁能源供应正面临严峻挑战[1-2]。相比于其他可再生能源,聚焦型太阳能热发电系统 (Concentrating solar power, CSP)以其较高的批量发电能力,克服了太阳能资源的间歇性,受到了研究人员、发电公司和国家决策者的高度关注[3-4]。熔融铝硅合金具有来源丰富、储热效率高和储能密度好等优势,是CSP理想的储热材料[5]。而作为CSP的主要部件-换热管在实际服役过程中,经常承受高温疲劳荷载,同时还会受到熔融铝硅环境的腐蚀作用,易导致换热管材料(AISI 321不锈钢) 发生断裂失效[6]

  • 迄今为止,有关不锈钢腐蚀疲劳行为的研究主要集中在裂纹的萌生和扩展方面。XIANG等[7]表明在O2/SO2 气氛和疲劳应力的协同作用下,碳化物和晶界的脆化会使得裂纹提前起始,导致HK30钢疲劳寿命下降了约50%。IGWEMEZIE等[8]指出裂纹尖端的钝化以及海水腐蚀产物在钝化裂纹尖端及其周围的积累是影响裂纹生长的主要因素。CUI等[9] 采用连续损伤理论模拟了点蚀坑对疲劳裂纹扩展的影响,发现随着腐蚀液浓度的增大(从C4到C6) 和疲劳荷载的提高(从350MPa到650MPa),高强钢的腐蚀疲劳寿命分别降低了67%和35%。MA等 [10]指出E690钢在海洋环境下晶间微裂纹容易沿奥氏体晶界萌生,分析原因认为是马氏体-奥氏体结构和邻近的铁素体板条之间微电流效应导致的。XU等[11]论证了晶界和孪晶界的阳极溶解可以增强高孪晶钢疲劳腐蚀开裂敏感性。由此可知在疲劳过程中,腐蚀介质的参与会增加不锈钢循环变形的复杂度,且对该材料的正常服役造成了不利影响。因此,采用表面改性优化AISI 321不锈钢,提高高温环境下换热管材料与熔融铝硅环境的相容性,对于保障CSP系统安全稳定运行和寿命延长具有重要意义。

  • 有研究表明,在钢表面进行铝涂覆能够有效提高材料的抗高温氧化[12-13]和耐腐蚀性[14-15]。而在众多的镀铝技术中,固体粉末包埋渗铝法由于操作工艺简单、技术难度小、设备投资少和渗件质量高等优点,在渗铝工艺中得到了广泛应用[16-17]。但是,渗铝层在一定程度上会影响材料的疲劳性能[18]。 ÖCAL等[19]发现在AISI 316L不锈钢表面引入Al-5Mg涂层后,空气环境的疲劳极限降低了10%,而在NaCl环境下的腐蚀疲劳极限却提高了52%。然而,HAN等[20]发现在X80钢表面采用电弧喷涂的工艺制备的Al-Zn涂层,与X80钢相比,其疲劳寿命和腐蚀疲劳寿命提高了50%和6倍。DIAB等[21] 将铝粉冷喷涂到AZ31B合金表面,指出添加涂层后,材料的疲劳极限提高了9.1%,而在NaCl环境下的腐蚀疲劳寿命有所下降。由此可见,对渗铝对不锈钢的腐蚀疲劳行为的影响还没有统一的认识。

  • 渗层与基体的结合强度对涂层材料的腐蚀疲劳行为影响至关重要。因此,提高涂层与基体的结合强度为增强材料腐蚀疲劳性能提供了新思路。激光冲击强化(Laser shock peening, LSP)作为一种非接触的表面改性技术,采用高能激光脉冲束冲击金属表面,在样品亚表面引入残余压应力和严重塑形应变层,以提升材料的疲劳性能[22-26]。LSP对材料力学性能的影响由许多因素如功率密度[27]、冲击次数[28]、光斑直径[29]、冲击路径[30]、光斑搭接率[31]、冲击面积[32]和冲击位置[33]共同决定,其中,功率密度的选取至关重要;当功率密度提高时(从4.95升高到6.59GW/cm2),渗铝钢的高温(620℃)抗拉强度从489增强到了524MPa[27]。此外,LSP还可以通过细化晶粒[34]和诱导形变孪晶[35]的方式提高材料强度。文献[36]指出LSP提高渗铝钢疲劳寿命的主要原因是塑性变形层中的高幅值残余压应力和较高体积分数的形变孪晶。目前,对换热管材料的研究主要围绕耐腐蚀或疲劳方面,关于渗铝复合LSP处理不锈钢在铝硅合金环境中腐蚀疲劳的研究还未见报道。本文以AISI 321奥氏体不锈钢为研究对象,对其进行粉末包埋渗铝及LSP处理,模拟换热管的高温腐蚀环境,进行高周疲劳试验;研究表面改性处理等对不锈钢腐蚀疲劳性能的影响,揭示腐蚀疲劳失效方式和断裂机理,可有效地预防实际应用中的事故发生,确保太阳能热发电用换热管的安全运行。

  • 1 试验准备

  • 1.1 样品制备

  • 采用AISI 321奥氏体不锈钢为试验基体材料,化学成分(质量分数)如表1所示。按照《GB3075 —82金属轴向疲劳实验方法》,疲劳试样截面尺寸为4mm × 8mm,标距为25mm,加载方向与钢板轧制方向一致,将试样经砂纸打磨后,用粉末包埋法对其进行渗铝处理,渗铝剂成分包括铝源Fe-Al粉(68%)、填充剂Al2O3(30%)、助渗剂NH4Cl粉末(2%);具体步骤详见文献[5]

  • 表1 AISI 321奥氏体不锈钢的化学成分(质量分数/%)

  • Table1 Chemical compositions of AISI 321austenite stainless steel (wt.%)

  • 对渗铝钢标距段采用LAMBER-08脉冲大能量激光器进行激光强化处理,激光波长为1 064nm,单脉冲能量为7J,脉宽为20ns,搭接率50%,双面冲击三次。采用黑胶布为保护层保护试样不被灼伤;采用水为约束层来保证试样受力均匀。为保证试样表面产生有效的塑性变形,采用4.95GW/cm2 和6.59GW/cm2 的激光功率密度进行激光处理,简称LSP-4.95和LSP-6.59钢。

  • 1.2 试验方法

  • 对不同表面处理后试样的截面进行打磨抛光处理后,使用20%HF+10%HNO3+70%H2O配置的腐蚀液进行金相腐蚀。对于试样表面进行轻轻打磨,去掉表面氧化物,采用TD3300型X射线衍射仪 (XRD)对试样表面进行物相分析。

  • 图1 为不同表面处理后AISI 321奥氏体不锈钢的显微组织及其物相分析。由图1a可知,AISI 321不锈钢晶粒呈等轴状,晶粒尺寸大小在40~50 μm,为典型的奥氏体结构;此外,还观察到明显的微米级间距的孪晶,其中第二相粒子稀疏杂乱分布。渗层从外到内主要由约18 μm的Fe-Al金属间化合物层和80 μm的Fe(Al, Cr)固溶体层组成,且各层间、渗层与不锈钢基体间分界面较为平直整齐(如图1b所示)。对不同激光功率密度处理的渗铝钢的渗层从外到内(如AB和CD方向)进行EDS能谱分析,可知渗铝过程中Al、Fe等元素发生相互扩散,在Fe-Al金属间化合物层中形成连续致密的FeAl、 FeAl2 和Fe3Al等物相。Al含量沿不锈钢渗层深度逐渐提高,而内部留下许多Fe原子空位[37],但随着渗层厚度的增加,Al元素的扩散速率逐渐减弱,Al元素浓度降低;当Al元素浓度低于临界值时(本文为8%),Fe-Al金属间化合物的形成遭到抑制[38]。此时,Cr原子和一部分Al原子会抢占Fe原子空位形成Fe(Al, Cr)固溶体,而另一部分Al原子则与Ni结合生成NiAl沉淀相[5]。与渗铝钢相比,LSP钢渗铝层的元素变化更为明显,在表层附近的Al元素高于Fe元素,且随渗层厚度增加浓度急剧提升,在10 μm左右急剧下降。LSP处理使得渗层表面附近Al元素相对含量提升,Fe、Ni、Cr元素相对含量下降,这可能与LSP后试样渗层变薄有关(见图1c和图1d)。渗层变薄后,渗层内Al元素相对集中,单位体积的Al元素增多,使渗层内Al元素含量相对提升,而Fe(Al, Cr)固溶体层中细小析出物的出现,会进一步阻碍Al向基体扩散,使Al的整体含量达到饱和值[39]。观察XRD图谱(见图1e)可知, LSP处理前后Fe-Al层的物相没有变化。表2是不同功率密度LSP处理后渗铝钢渗层厚度。由表2可知,随着LSP功率密度的增加,Fe-Al层和Fe(Al, Cr) 层厚度均依次变薄,这与高功率LSP产生的强烈塑性变形有关;LSP产生的冲击波不仅引起材料表面严重塑性变形,让渗层与基体结合更加紧密,使渗层厚度降低。另一方面,相比LSP-6.59钢,LSP-4.95钢的渗层厚度下降幅度小的多。这说明在提高渗层与基体结合强度方面,6.59GW/cm2 的LSP所产生的作用比4.95GW/cm2 的LSP略优。

  • 图1 不同表面处理AISI 321横截面显微组织及物相分析

  • Fig.1 Cross-sectional microstructure and phase analysis of AISI 321with different surface treatment

  • 表2 不同功率密度LSP处理后渗铝钢渗层厚度

  • Table2 Thickness of aluminized coating subjected to LSP with a series of power densities

  • 图2 为不同表面处理试样显微硬度沿渗层厚度的分布。渗铝后试样表面的硬度约为450HV,随渗层厚度的增加缓慢减小。与渗铝钢相比,LSP-4.95钢试样表面硬度有较大提升,约为650HV,随渗层厚度增加缓慢下降。而功率密度为6.59GW/cm2 的LSP试样表面硬度提升显著,约为1 400HV,在0~75 μm范围内迅速下降,在75 μm之后的阶段与低功率密度试样几乎一致。这些结果表明LSP处理能较大幅度地提升渗铝层的硬度,且随LSP功率密度增大,硬度的提升幅度也越大。此外,LSP后渗铝层的内应力也大幅提升,增幅趋势与硬度相一致,相关的残余应力数据详情见文献[36]

  • 图2 不同表面处理材料显微硬度沿渗层厚度的分布

  • Fig.2 Distribution of microhardness along the thickness of aluminized layer of material with different surface treatment

  • 高温高周疲劳试验在PLG-50高频疲劳试验机上进行,设备最大试验力为±50kN,频率约为65Hz,加载方式为拉-拉载荷控制,试验温度设置为620℃,应力比和应力水平分别为 R=0.1和 σ=104MPa。采用GW-1200B型温控系统进行加热,温差不超过0.1℃,试样被Al-Si合金包埋,所有数据选用3个平行试样进行试验取平均值。采用Quanta2000型环境扫描电镜(SEM)和附带的能谱仪(EDS)对腐蚀疲劳断口进行表征分析。

  • 熔融铝硅合金腐蚀试验在真空管式炉 (GSL-1400X)内进行,管式炉内气氛环境为氩气,温度设置为620℃。将四种试样浸没在熔融Al-12Si合金中进行腐蚀失重试验,48h后取出样品。剥离表面残留铝硅合金后干燥称重,每组采用三个平行试样取平均值。

  • 2 结果与讨论

  • 2.1 腐蚀疲劳性能

  • 图3 为渗铝复合LSP处理AISI 321不锈钢在620℃熔融铝硅环境中的高周疲劳寿命柱状图,其中应力幅值为104MPa。不锈钢的腐蚀疲劳为102 631次,而渗铝钢的寿命为63 241次;与不锈钢相比,渗铝钢的腐蚀疲劳下降38.4%。经4.95和6.59GW/cm2 的LSP处理后,渗铝钢疲劳寿命分别提升到121 041和187 113次,且显著高于不锈钢。表明随着LSP功率密度的增大,渗铝钢腐蚀疲劳性能越优异。

  • 图3 熔融铝硅环境下渗铝复合LSP处理AISI 321不锈钢的腐蚀疲劳寿命(σ=104MPa, T=620℃)

  • Fig.3 Corrosion-fatigue lives of AISI 321stainless steel encountered by combination of aluminizing and LSP in molten Al-12Si environment under applied stress level of 104MPa at 620℃

  • 2.2 腐蚀性能

  • 图4 为不同表面处理材料在熔融铝硅合金环境中腐蚀48h后的失重量柱状图。由图4可知,不锈钢的失重量远大于其他三种试样,可见不锈钢受腐蚀环境影响最大;渗铝及LSP处理后试样的在熔融铝硅中的耐蚀性都得到进一步的提升,LSP-6.59渗铝钢失重最小,受熔融铝硅合金腐蚀影响最小,耐蚀性最好。

  • 图4 不同表面处理材料在熔融铝硅环境下腐蚀失重(T=620℃)

  • Fig.4 Corrosion weight loss of different surface treatment materials in molten Al-12Si environment under temperature of 620℃

  • 2.3 断口形貌

  • 图5 为620℃熔融Al-12Si环境下AISI 321的腐蚀疲劳断口形貌。在图5a中可看到,在腐蚀疲劳交互作用下不锈钢表层生成两层腐蚀产物。外层I约为100 μm,其放大图5b表明该层由针状的腐蚀产物组成,针状体之间有较多空隙及少量微裂纹;经EDS分析(见图5f和图5g)其成分主要为(FeAl6)Si,且越靠近不锈钢Fe含量越高,Al和Si含量越低。内层II腐蚀产物厚度较薄,约为40 μm,该层表面较为平整(图5c),经EDS分析其成分主要为FeAl3(图5h)。在疲劳裂纹扩展区,可观察到排列较为均匀的疲劳辉纹和杂乱分布微裂纹(图5d),而瞬断区中存在较多浅显的小韧窝及孔洞(图5e)。

  • 图6为渗铝钢的腐蚀疲劳断口形貌。由图6a可知,渗层的存在有效隔离了Al-12Si合金的渗入,在Fe-Al金属间化合物层(I)观察到少量不连续的腐蚀产物, Al、Si元素扩散而并未深入到Fe(Al,Cr)固溶体层(II)。在腐蚀产物与Fe-Al金属间化合物I层交界面(见图6b)发现I层主要由粗晶粒组成,其裂纹扩展方式以沿晶开裂为主;而腐蚀产物则是紧密粘附在粗晶粒表面。EDS分析表明腐蚀产物分别为(FeAl6)Si和FeAl (图6f-g)。此外,Fe(Al,Cr)固溶体层II层可观察到较为明显的解理台阶,断裂方式为脆性解理断裂(图6c)。由此可见,渗铝层能较大程度的抵抗熔融Al-12Si合金对不锈钢的腐蚀,且其中发挥阻隔作用的是Fe-Al金属间化合物层。图6d为渗铝钢裂纹扩展区形貌,相比于不锈钢其疲劳辉纹间距更大,裂纹扩展速率增大,疲劳寿命减小。在图6e中可看到瞬断区内有大量密集且较深的小韧窝,其中夹杂有第二相粒子,促进韧窝形核,与不锈钢相比韧窝更小。

  • 图7是激光功率密度为4.95GW/cm2 处理后渗铝钢腐蚀疲劳断口形貌。与不锈钢相比, 4.95GW/cm2 LSP处理后渗铝钢的I层表面出现若干坑洞,其中被黏稠的物质充满(图7a),经EDS分析,其主要成分为Al-12Si(图7f)。这说明经4.95GW/cm2 LSP处理后,Al-12Si基本不与渗铝钢I层发生化学反应,但随着疲劳加载,渗层表面出现裂纹后,熔融Al-12Si合金通过空隙进入并向内侵蚀。由此可见,LSP处理后渗层的抗腐蚀性能得到提升,几乎不受熔融Al-12Si环境影响。与渗铝钢相比,激光冲击渗铝钢I层和II层表现类似断裂模式(图7b-7c);在疲劳裂纹扩展区,疲劳辉纹更加密集,间距较小,说明此阶段所消耗的时间更长(图7d); 图7e中可看到撕裂棱产生,相比于渗铝钢,韧窝更大且深度更深,说明经LSP处理后试样的韧性提升。

  • 图5 AISI 321不锈钢腐蚀疲劳断口形貌(σ=104MPa, T=620℃)

  • Fig.5 Corrosion-fatigue fracture morphologies of AISI 321stainless steel under applied stress level of 104MPa and temperature of 620℃

  • 图6 渗铝钢腐蚀疲劳断口形貌(σ=104MPa, T=620℃)

  • Fig.6 Corrosion-fatigue fracture morphologies of Aluminized steel under applied stress level of 104MPa and temperature of 620℃

  • 图7 激光功率密度为4.95GW/cm2处理后渗铝钢腐蚀疲劳断口形貌(σ=104MPa, T=620℃)

  • Fig.7 Corrosion-fatigue fracture morphologies of aluminized steel subjected to 4.95GW/cm2 LSP under applied stress level of 104MPa and temperature of 620℃

  • 图8 是6.59GW/cm2 LSP处理后渗铝钢腐蚀疲劳断口形貌。结合图8a和图8f可知,Al-12Si合金黏附在材料外表面,这表明腐蚀介质对材料疲劳寿命的影响几乎可以忽略不计。在图8b中可看到最外层较粗的晶粒及次外层破碎的晶粒。除此之外,还观察到了穿晶裂纹;一般来说,由于裂纹穿过晶界时需要克服晶界的阻碍,在这种情况下裂纹扩展方向通常都会改变以迎合两个晶粒的取向差;因此裂纹穿晶扩展比沿晶扩展所消耗的能量更多,这有利于疲劳寿命的提高。裂纹扩展区形貌如图8d所示,与4.95GW/cm2 LSP处理后渗铝钢钢相比,疲劳辉纹分布均匀,间距更小,疲劳寿命提升。图8e中可看到韧窝于第二相粒子形核,相比于低功率密度LSP渗铝钢其韧窝更大,说明韧性进一步提升。

  • 图8 激光功率密度为6.59GW/cm2处理后渗铝钢腐蚀疲劳断口形貌(σ=104MPa, T=620℃)

  • Fig.8 Corrosion-fatigue fracture morphologies of aluminized steel subjected to 6.59GW/cm2 LSP under applied stress level of 104MPa and temperature of 620℃

  • 2.4 腐蚀疲劳断裂机理分析

  • 为揭示渗铝复合LSP在腐蚀疲劳过程中对AISI 321寿命的影响,绘制不同表面处理后试样在熔融Al-12Si环境中的腐蚀疲劳演变过程,如图9所示。在腐蚀介质环境中,321不锈钢的高周疲劳寿命受到腐蚀与疲劳两种作用的协同影响,其中腐蚀作用对不锈钢的影响较大,占据主导地位,且该过程可分为两个步骤(如图9a所示):首先,在腐蚀疲劳过程初期,随着温度的上升,基体内部Fe原子不断向表面外扩散与被高温激活的Al原子结合,形成具有脆性的FeAl3 层(如式(1)所示);其次,当温度上升至620℃时,Fe原子与FeAl3反应并继续向外扩散,形成中间产物Fe2Al5相,此时Si原子开始占据Fe2Al5 相中的空位,在高温中发生相变,形成新的腐蚀产物(FeAl6)Si[40](如式(2)和(3)所示)。由于相变过程中,不同相之间热膨胀系数的差异会产生热应力,导致新生成的腐蚀产物(FeAl6)Si之间出现大量的空隙与微裂纹,降低材料的疲劳寿命。同时,中间层腐蚀产物FeAl3 为脆性相,承载能力较差,使材料整体的受力面积减小,进一步加剧疲劳损伤。因此,在不锈钢的腐蚀-疲劳中,腐蚀损伤占据主导地位。

  • Fe+AlFeAl3
    (1)
  • FeAl3+FeFe2Al5
    (2)
  • Fe2Al5+SiFeAl6Si
    (3)
  • 相比于不锈钢,渗铝钢的腐蚀疲劳形变过程由腐蚀损伤和疲劳损伤共同作用。渗铝后,基体表面形成Fe-Al金属间化合物层和Fe(Al,Cr)固溶体层。 Fe-Al金属间化合物层能在一定程度上抵抗熔融Al-12Si的腐蚀作用。同时,腐蚀疲劳初期生成的腐蚀产物FeAl3能够抑制腐蚀液中的Al向基体扩散,而Fe(Al,Cr)固溶体层能有效阻碍Fe原子向外扩散,从而减低腐蚀速率(如图9b所示)。Fe-Al金属间化合物层的阻碍使得Si原子仅在表面处与渗层中的Fe原子结合形成(FeAl6)Si相,产生少量微裂纹,未能直接侵蚀至基体。总之,在熔融铝硅合金腐蚀环境下,渗层表面会产生(FeAl6)Si腐蚀产物,出现腐蚀坑,同时渗层内部因Fe原子缺失而形成空洞,是疲劳裂纹形核源,在疲劳加载下,发生扩展形成微裂纹,这些微裂纹又为熔融铝硅合金腐蚀提供了便利,进一步加剧腐蚀,腐蚀损伤和疲劳损伤共同作用使得材料的抗疲劳性能大幅下降,疲劳寿命大幅减少。

  • 图9 熔融Al-12Si环境下的腐蚀疲劳行为机理图

  • Fig.9 Schematic illustration of corrosion-fatigue performance under molten Al-12Si environment

  • 与渗铝钢相比,LSP处理渗铝钢的腐蚀疲劳寿命大幅度增加,且随着LSP功率密度的增加,腐蚀疲劳寿命的提升幅度也增大。这与材料在腐蚀疲劳过程中的组织变化和残余压应力有关[41-42]。文献[36]指出LSP处理后,渗铝钢表面产生300 μm的塑性变形层,且在该层中诱导了高幅残余压应力和较高分数的奥氏体孪晶,显著提高了其疲劳寿命。LSP处理后渗层厚度减小,密实度增加,使得渗层与基体间的黏结强度增强,从而有效地阻碍腐蚀液的侵蚀。此外,LSP功率密度的增加会提高渗层内应力,表面不容易形成微裂纹,这也是熔融Al-12Si合金能够进入LSP-4.95钢渗层的空穴,但不能进入到LSP-6.59钢渗层只能黏附在其表面的原因[43-44]。总之,LSP处理可以较大程度地提升渗铝钢的抗腐蚀性能,腐蚀作用对LSP钢损伤的影响较小,而疲劳损伤在LSP钢腐蚀疲劳失效中占据主导地位。

  • 3 结论

  • 研究熔融Al-12Si环境下不同表面处理对AISI 321奥氏体钢的腐蚀疲劳性能影响,得到结论如下:

  • (1)粉末包埋渗铝会使AISI 321表面形成由FeAl相为主的渗层。LSP会产生塑性变形层降低渗层厚度,且功率密度越大,渗层厚度降的越多。

  • (2)渗层能有效提高材料腐蚀性能,但在在疲劳加载下容易出现裂纹,是疲劳裂纹形核源。LSP处理后,渗层厚度减小,密实度和表面硬度提高,增强了渗层和基体之间的黏结强度,使渗铝钢的腐蚀疲劳寿命提高100%~200%。

  • (3)在腐蚀疲劳过程中AISI 321不锈钢受腐蚀影响较大,腐蚀损伤占据主导地位;渗铝钢中由腐蚀损伤与疲劳两种损伤共同主导;LSP渗铝钢中腐蚀作用影响微弱,以疲劳损伤为主。

  • 参考文献

    • [1] ZAAOUMI A,BAH A,CIOCAN M,et al.Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models[J].Renewable Energy,2021,170:620-638.

    • [2] PADULA S,TREGAMBI C,SOLIMENE R,et al.A novel fluidized bed “thermochemical battery” for energy storage in concentrated solar thermal technologies[J].Energy Conversion and Management,2021,236:113994.

    • [3] ZHOU Z,LIN A,WANG L,et al.Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China[J].Science of the Total Environment,2021,784:147214.

    • [4] TAHIR S,AHMAD M,ABD-UR-REHMAN H M,et al.Techno-economic assessment of concentrated solar thermal power generation and potential barriers in its deployment in Pakistan[J].Journal of Cleaner Production,2021,293:126125.

    • [5] LI W,CHEN H,LI C,et al.Microstructure and tensile properties of AISI 321 stainless steel with aluminizing and annealing treatment[J].Materials & Design,2021,205:109729.

    • [6] 张子龙,夏爽,曹伟,等.晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J].金属学报,2016,52(3):313-319.ZHANG Zilong,XIA Shuang,CAO Wei,et al.Effect of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J].Acta Metallurgica Sinia,2016,52(3):313-319.(in Chinese)

    • [7] XIANG S,JONSSON S,ZHU B,et al.Corrosion fatigue of austenitic cast iron Ni-Resist D5S and austenitic cast steel HK30 in argon and synthetic diesel exhaust at 800 ℃[J].International Journal of Fatigue,2020,132:105396.

    • [8] IGWEMEZIE V,MEHMANPARAST A,BRENNAN F.The role of microstructure in the corrosion-fatigue crack growth behaviour in structural steels[J].Materials Science and Engineering:A,2021,803:140470.

    • [9] CUI C,CHEN A,MA R.An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J].International Journal of Fatigue,2020,135:105540.

    • [10] MA H,CHEN L,ZHAO J,et al.Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere[J].Materials Science and Engineering:A,2020,773:138884.

    • [11] XU X,LIU Z,ZHAO T,et al.Corrosion fatigue behavior of Fe-16Mn-0.6 C-1.68 Al twinning-induced plasticity steel in simulated seawater[J].Corrosion Science,2021,182:109282.

    • [12] ZHOU Y,LU J,SHEN M,et al.Low-temperature formation and steam oxidation of β-FeAl coating on P92 steel[J].Corrosion Science,2020,163:108227.

    • [13] 周永莉,鲁金涛,黄锦阳,等.粉末包埋渗铝与气氛渗铝对P92钢 650 ℃饱和蒸汽氧化行为的影响[J].中国表面工程,2020,33(4):111-120.ZHOU Yougli,LU Jintao,HUANG Jinyang,et al.Effect of powder embedding aluminizing and atmospherealuminizing on saturated steam oxidation behavior of P92 steel at 650 ℃[J].China Surface Engineering,2020,33(4):111-120.(in Chinese)

    • [14] KIM C,CHO S,YANG W,et al.Corrosion behavior of Al-Si-Mg coated hot-press-forming steel[J].Corrosion Science,2021,183:109339.13

    • [15] 梁义,周云龙,盛忠起,等.机械能助渗锌铝渗层的防腐耐磨性能分析[J].中国表面工程,2020,33(2):65-74.LIANG Yi,ZHOU Yunlong,SHENG Zhongqi,et al.Analysis of anticorrosion and wear resistance of mechanical energy assisted zinc-aluminizing coating[J].China surface engineering,2020,33(2):65-74.(in Chinese)

    • [16] DONG J,SUN YH,HE FY.Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation[J].Surface and Coatings Technology,2019,375:833-838.

    • [17] 李微,黄煌,黄伟颖,等.钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J].中国表面工程,2021,34(3):25-39.LI Wei,HUANG Huang,HUANG Weiying,et al.Research progress on surface state and element diffusion mechanism of powder embedded aluminizing on steel surface[J].China Surface Engineering,201,34(3):25-39.(in Chinese)

    • [18] LI W,YANG L,LI C,et al.Low-cycle fatigue and fracture behavior of aluminized stainless steel AISI 321 for solar thermal power generation systems[J].Metals,2020,10(8):1089.

    • [19] ÖCAL M,SADELER R.Corrosion fatigue behavior of Al-5Mg coated AISI 316L stainless steel in sodium chloride environments under bending load[J].Anti-Corrosion Methods and Materials,2019:34-39.

    • [20] HAN Z,HUANG X,YANG Z.Effect of Al-Zn alloy coating on corrosion fatigue behavior of X80 riser steel[J].Materials,2019,12(9):1520.

    • [21] DIAB M,PANG X,JAHED H.The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium(3% Al-1% Zn)extrusion[J].Surface and Coatings Technology,2017,309:423-435.

    • [22] REN Y,WAN H,CHEN Y,et al.Effect of laser shock peening and carbonitriding on tribological properties of 20Cr2Mn2Mo steel alloy under dry sliding conditions[J].Surface and Coatings Technology,2021,417:127215.

    • [23] LU J Z,XUE K N,LU H F,et al.Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J].Journal of Materials Processing Technology,2021,296:117202.

    • [24] HE Z,SHEN Y,TAO J,et al.Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties:Roles of shock number and energy[J].Surface and Coatings Technology,2021:127481.

    • [25] 李翔,何卫锋,聂祥樊,等.新型光斑搭接对平顶激光冲击钛合金力学性能的影响[J].中国表面工程,2019,32(1):38-47.LI Xiang,HE Weifeng,NIE Xiangfan,et al.Effect of new spot overlap on mechanical properties of flat-top laser shock titanium alloy[J].China Surface Engineering,2019,32(1):38-47.(in Chinese)

    • [26] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Research progress of material surface protection technology in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [27] 李微,许栋梁,左炉,等.激光冲击强化对太阳能热发电用渗铝钢显微组织和高温拉伸性能的影响[J].表面技术,2019,48(1):14-22.LI Wei,XU Dongliang,ZUO Lu,et al.Effect of laser shock strengthening on microstructure and high temperature tensile properties of aluminized steel for solar thermal power generation[J].Surface Technology,2019,48(1):14-22.(in Chinese)

    • [28] PRABHAKARAN S,KALAINATHAN S.Compound technology of manufacturing and multiple laser peening on microstructure and fatigue life of dual-phase spring steel[J].Materials Science & Engineering A,2016,674:634-645.

    • [29] BERGANT Z,TRDAN U,GRUM J.Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J].International Journal of Fatigue,2016,87:444-455.

    • [30] ADU-GYAMFI S,REN X D,LARSON E A,et al.The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy[J].Optics & Laser Technology,2018,108:177-185.

    • [31] PRAVEEN T R,NAYAKA H S,SWAROOP S.Influence of equal channel angular pressing and laser shock peeningon fatigue behaviour of AM80 alloy[J].Surface and Coatings Technology,2019,369:221-227.

    • [32] ZHANG H,CAI Z,WAN Z,et al.Microstructure and mechanical properties of laser shock peened 38CrSi steel[J].Materials Science & Engineering A,2020,788:139486.

    • [33] YANG Y,ZHOU W F,CHEN B Q,et al.Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening[J].International Journal of Fatigue,2020,136:105596.

    • [34] LU J Z,LUO K Y,ZHANG Y K,et al.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.

    • [35] LU H F,XUE K N,XU X,et al.Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel[J].Journal of Materials Processing Technology,2021,291:117016.

    • [36] LI W,CHEN H T,HUANG W Y,et al.Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,147:106180.

    • [37] 潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2011.PAI Jinsheng,TONG Jianmin,TAN Minbo.Material science foundation[M].Beijing:Tsinghua University Press,2011.(in Chinese)

    • [38] SHARAFI S,FARHANG M R.Effect of aluminizing on surface microstructure of an HH309 stainless steel[J].Surface and Coatings Technology,2005,200(16-17):5048-5051.

    • [39] BUCKLEY R A,KAVIANI S.Some aspects of rapid solidification processing of Fe-Al-X alloys[J].Materials Science & Engineering A,1998,258(1-2):173-180.

    • [40] NICHOLLS J E.Hot-dipped aluminium coatings[J].Anti-Corrosion Methods and Materials,1964,11(10):16-21.

    • [41] 汪军,李民,汪静雪,等.激光冲击强化对304不锈钢疲劳寿命的影响[J].中国激光,2019,46(1):100-107.WANG Jun,LI Min,WANG Jinxue,et al.Effect of laser shock strengthening on fatigue life of 304 stainless steel[J].Chinese Journal of Lasers,2019,46(1):100-107.(in Chinese)

    • [42] 曹宇鹏,蒋苏州,施卫东,等.E690 高强钢表面激光冲击微造型的模拟与试验[J].中国表面工程,2019,32(5):69-77.CAO Yupeng,JIANG Suzhou,SHI Weidong,et al.Simulation and experiment of laser shock micro-modeling on the surface of high strength steel E690[J].China Surface Engineering,2019,32(5):69-77.(in Chinese)

    • [43] 汪诚,赖志林,何卫锋,等.激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J].中国激光,2014,41(1):46-51.WANG Cheng,LAI Zhilin,HE Weifeng,et al.Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subjected to laser shock processing[J].Chinese Journal of Laser,2014,41(1):46-51.(in Chinese)

    • [44] 王博涵,程礼,丁均梁,等.TC4 钛合金激光冲击强化数值模拟[J].航空动力学报,2021,36(5):959-968.WANG Bohan,CHENG Li,DING Junliang,et al.Numerical simulation on laser shock peening of TC4 Titanium alloy[J].Journal of Aerospace Power,2021,36(5):959-968(in Chinese).

  • 参考文献

    • [1] ZAAOUMI A,BAH A,CIOCAN M,et al.Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models[J].Renewable Energy,2021,170:620-638.

    • [2] PADULA S,TREGAMBI C,SOLIMENE R,et al.A novel fluidized bed “thermochemical battery” for energy storage in concentrated solar thermal technologies[J].Energy Conversion and Management,2021,236:113994.

    • [3] ZHOU Z,LIN A,WANG L,et al.Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China[J].Science of the Total Environment,2021,784:147214.

    • [4] TAHIR S,AHMAD M,ABD-UR-REHMAN H M,et al.Techno-economic assessment of concentrated solar thermal power generation and potential barriers in its deployment in Pakistan[J].Journal of Cleaner Production,2021,293:126125.

    • [5] LI W,CHEN H,LI C,et al.Microstructure and tensile properties of AISI 321 stainless steel with aluminizing and annealing treatment[J].Materials & Design,2021,205:109729.

    • [6] 张子龙,夏爽,曹伟,等.晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J].金属学报,2016,52(3):313-319.ZHANG Zilong,XIA Shuang,CAO Wei,et al.Effect of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J].Acta Metallurgica Sinia,2016,52(3):313-319.(in Chinese)

    • [7] XIANG S,JONSSON S,ZHU B,et al.Corrosion fatigue of austenitic cast iron Ni-Resist D5S and austenitic cast steel HK30 in argon and synthetic diesel exhaust at 800 ℃[J].International Journal of Fatigue,2020,132:105396.

    • [8] IGWEMEZIE V,MEHMANPARAST A,BRENNAN F.The role of microstructure in the corrosion-fatigue crack growth behaviour in structural steels[J].Materials Science and Engineering:A,2021,803:140470.

    • [9] CUI C,CHEN A,MA R.An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J].International Journal of Fatigue,2020,135:105540.

    • [10] MA H,CHEN L,ZHAO J,et al.Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere[J].Materials Science and Engineering:A,2020,773:138884.

    • [11] XU X,LIU Z,ZHAO T,et al.Corrosion fatigue behavior of Fe-16Mn-0.6 C-1.68 Al twinning-induced plasticity steel in simulated seawater[J].Corrosion Science,2021,182:109282.

    • [12] ZHOU Y,LU J,SHEN M,et al.Low-temperature formation and steam oxidation of β-FeAl coating on P92 steel[J].Corrosion Science,2020,163:108227.

    • [13] 周永莉,鲁金涛,黄锦阳,等.粉末包埋渗铝与气氛渗铝对P92钢 650 ℃饱和蒸汽氧化行为的影响[J].中国表面工程,2020,33(4):111-120.ZHOU Yougli,LU Jintao,HUANG Jinyang,et al.Effect of powder embedding aluminizing and atmospherealuminizing on saturated steam oxidation behavior of P92 steel at 650 ℃[J].China Surface Engineering,2020,33(4):111-120.(in Chinese)

    • [14] KIM C,CHO S,YANG W,et al.Corrosion behavior of Al-Si-Mg coated hot-press-forming steel[J].Corrosion Science,2021,183:109339.13

    • [15] 梁义,周云龙,盛忠起,等.机械能助渗锌铝渗层的防腐耐磨性能分析[J].中国表面工程,2020,33(2):65-74.LIANG Yi,ZHOU Yunlong,SHENG Zhongqi,et al.Analysis of anticorrosion and wear resistance of mechanical energy assisted zinc-aluminizing coating[J].China surface engineering,2020,33(2):65-74.(in Chinese)

    • [16] DONG J,SUN YH,HE FY.Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation[J].Surface and Coatings Technology,2019,375:833-838.

    • [17] 李微,黄煌,黄伟颖,等.钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J].中国表面工程,2021,34(3):25-39.LI Wei,HUANG Huang,HUANG Weiying,et al.Research progress on surface state and element diffusion mechanism of powder embedded aluminizing on steel surface[J].China Surface Engineering,201,34(3):25-39.(in Chinese)

    • [18] LI W,YANG L,LI C,et al.Low-cycle fatigue and fracture behavior of aluminized stainless steel AISI 321 for solar thermal power generation systems[J].Metals,2020,10(8):1089.

    • [19] ÖCAL M,SADELER R.Corrosion fatigue behavior of Al-5Mg coated AISI 316L stainless steel in sodium chloride environments under bending load[J].Anti-Corrosion Methods and Materials,2019:34-39.

    • [20] HAN Z,HUANG X,YANG Z.Effect of Al-Zn alloy coating on corrosion fatigue behavior of X80 riser steel[J].Materials,2019,12(9):1520.

    • [21] DIAB M,PANG X,JAHED H.The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium(3% Al-1% Zn)extrusion[J].Surface and Coatings Technology,2017,309:423-435.

    • [22] REN Y,WAN H,CHEN Y,et al.Effect of laser shock peening and carbonitriding on tribological properties of 20Cr2Mn2Mo steel alloy under dry sliding conditions[J].Surface and Coatings Technology,2021,417:127215.

    • [23] LU J Z,XUE K N,LU H F,et al.Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J].Journal of Materials Processing Technology,2021,296:117202.

    • [24] HE Z,SHEN Y,TAO J,et al.Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties:Roles of shock number and energy[J].Surface and Coatings Technology,2021:127481.

    • [25] 李翔,何卫锋,聂祥樊,等.新型光斑搭接对平顶激光冲击钛合金力学性能的影响[J].中国表面工程,2019,32(1):38-47.LI Xiang,HE Weifeng,NIE Xiangfan,et al.Effect of new spot overlap on mechanical properties of flat-top laser shock titanium alloy[J].China Surface Engineering,2019,32(1):38-47.(in Chinese)

    • [26] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Research progress of material surface protection technology in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [27] 李微,许栋梁,左炉,等.激光冲击强化对太阳能热发电用渗铝钢显微组织和高温拉伸性能的影响[J].表面技术,2019,48(1):14-22.LI Wei,XU Dongliang,ZUO Lu,et al.Effect of laser shock strengthening on microstructure and high temperature tensile properties of aluminized steel for solar thermal power generation[J].Surface Technology,2019,48(1):14-22.(in Chinese)

    • [28] PRABHAKARAN S,KALAINATHAN S.Compound technology of manufacturing and multiple laser peening on microstructure and fatigue life of dual-phase spring steel[J].Materials Science & Engineering A,2016,674:634-645.

    • [29] BERGANT Z,TRDAN U,GRUM J.Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J].International Journal of Fatigue,2016,87:444-455.

    • [30] ADU-GYAMFI S,REN X D,LARSON E A,et al.The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy[J].Optics & Laser Technology,2018,108:177-185.

    • [31] PRAVEEN T R,NAYAKA H S,SWAROOP S.Influence of equal channel angular pressing and laser shock peeningon fatigue behaviour of AM80 alloy[J].Surface and Coatings Technology,2019,369:221-227.

    • [32] ZHANG H,CAI Z,WAN Z,et al.Microstructure and mechanical properties of laser shock peened 38CrSi steel[J].Materials Science & Engineering A,2020,788:139486.

    • [33] YANG Y,ZHOU W F,CHEN B Q,et al.Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening[J].International Journal of Fatigue,2020,136:105596.

    • [34] LU J Z,LUO K Y,ZHANG Y K,et al.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.

    • [35] LU H F,XUE K N,XU X,et al.Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel[J].Journal of Materials Processing Technology,2021,291:117016.

    • [36] LI W,CHEN H T,HUANG W Y,et al.Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,147:106180.

    • [37] 潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2011.PAI Jinsheng,TONG Jianmin,TAN Minbo.Material science foundation[M].Beijing:Tsinghua University Press,2011.(in Chinese)

    • [38] SHARAFI S,FARHANG M R.Effect of aluminizing on surface microstructure of an HH309 stainless steel[J].Surface and Coatings Technology,2005,200(16-17):5048-5051.

    • [39] BUCKLEY R A,KAVIANI S.Some aspects of rapid solidification processing of Fe-Al-X alloys[J].Materials Science & Engineering A,1998,258(1-2):173-180.

    • [40] NICHOLLS J E.Hot-dipped aluminium coatings[J].Anti-Corrosion Methods and Materials,1964,11(10):16-21.

    • [41] 汪军,李民,汪静雪,等.激光冲击强化对304不锈钢疲劳寿命的影响[J].中国激光,2019,46(1):100-107.WANG Jun,LI Min,WANG Jinxue,et al.Effect of laser shock strengthening on fatigue life of 304 stainless steel[J].Chinese Journal of Lasers,2019,46(1):100-107.(in Chinese)

    • [42] 曹宇鹏,蒋苏州,施卫东,等.E690 高强钢表面激光冲击微造型的模拟与试验[J].中国表面工程,2019,32(5):69-77.CAO Yupeng,JIANG Suzhou,SHI Weidong,et al.Simulation and experiment of laser shock micro-modeling on the surface of high strength steel E690[J].China Surface Engineering,2019,32(5):69-77.(in Chinese)

    • [43] 汪诚,赖志林,何卫锋,等.激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J].中国激光,2014,41(1):46-51.WANG Cheng,LAI Zhilin,HE Weifeng,et al.Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subjected to laser shock processing[J].Chinese Journal of Laser,2014,41(1):46-51.(in Chinese)

    • [44] 王博涵,程礼,丁均梁,等.TC4 钛合金激光冲击强化数值模拟[J].航空动力学报,2021,36(5):959-968.WANG Bohan,CHENG Li,DING Junliang,et al.Numerical simulation on laser shock peening of TC4 Titanium alloy[J].Journal of Aerospace Power,2021,36(5):959-968(in Chinese).

  • 手机扫一扫看