en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵香港,男,1997年出生,硕士研究生。主要研究方向为黑色金属精密加工技术。E-mail:zxg@nuaa.edu.cn;

郝秀清(通信作者),女,1983年,博士,教授,博士研究生导师。主要研究方向为表面微织构及摩擦学、先进加工技术、功能表面设计制造及应用。E-mail:xqhao@nuaa.edu.cn

中图分类号:TG506

DOI:10.11933/j.issn.1007−9289.20210517001

参考文献 1
骆红云,焦红,范猛,等.金刚石刀具与精密超精密加工技术[J].长春光学精密机械学院学报,2000(1):49-53.LUO Hongyun,JIAO Hong,FAN Meng,et al.Diamond tool and precision ultra-precision machining technology[J].Journal of Changchun Optical Precision Machinery Institute,2000(1):49-53.(in Chinese)
参考文献 2
马玉平,魏超,张遥,等.飞秒激光刻蚀对纳米金刚石薄膜表面微观特性的影响[J].中国表面工程,2019,32(3):1-10.MA Yuping,WEI Chao,ZHANG Yao,et al.Effects of femtosecond laser ablation on surface micro-properties of nano-crystalline diamond coating[J].China Surface Engineering,2019,32(3):1-10.(in Chinese)
参考文献 3
张志强,向道辉,胡永伟,等.织构对硼掺杂金刚石涂层刀具摩擦学性能的影响[J].中国表面工程,2021,34(1):50-59.ZHANG Zhiqiang,XIANG Daohui,HU Yongwei,et al.Effects of texture on tribological properties of boron-doped diamond coated tools[J].China Surface Engineering,2021,34(1):50-59.(in Chinese)
参考文献 4
赵亮,程凯,丁辉,等.超精密慢刀伺服金刚石车削加工的关键工艺问题研究[J].制造技术与机床,2020(5):85-88.ZHAO Liang,CHENG Kai,DING Hui,et al.Research on key process problems of servo diamond machining with ultra-precision slow knife[J].Manufacturing Technology and Machine Tools,2020(5):85-88.(in Chinese)
参考文献 5
唐双林,楚翀,贾鲁.锗单晶球面镜超精密车削加工研究[J].机械制造,2019,57(6):29-30,34.TANG Shuangling,CHU Chong,JIA Lu.Study on ultra-precision turning of germanium single crystal spherical mirror[J].Machinery,2019,57(06):29-30,34.(in Chinese)
参考文献 6
曹义.超精密铣削加工自由曲面光学元件误差补偿方法[J].组合机床与自动化加工技术,2018(11):96-98.CAO Yi.Error compensation for optical components of free surface machining by ultra-precision milling[J].Modular Machine Tool and Automatic Manufacturing Technique,2018(11):96-98.(in Chinese)
参考文献 7
袁菘,郭晓光,金洙吉,等.金刚石化学机械抛光研究现状[J].表面技术,2020,49(4):11-22.YUAN Song,GUO Xiaoguang,JING Zhuji,et al.Research status of diamond chemical and mechanical polishing[J].Surface Technology,2020,49(4):96-98.(in Chinese)
参考文献 8
罗松保.金刚石超精密切削刀具技术概述[J].航空精密制造技术,2007(1):1-4.LUO Songbao.An overview of diamond ultra precision cutting tool technology[J].Aviation Precision Manufacturing Technology,2007(1):1-4.(in Chinese)
参考文献 9
陈晓红.机械行业常用黑色金属材料及部分加工装置 [J].装备机械,2006(4):22-29.CHEN Xiaohong.Ferrous metal materials and parts processing devices commonly used in machinery industry[J].Magazine on Equipment Machinery,2006(4):22-29.(in Chinese)
参考文献 10
白海强,钟黎声,康玲,等.钢铁表面高强韧涂层的研究进展[J].表面技术,2021,50(7):97-105.BAI Haiqiang,ZHONG Lisheng,KANG Ling,et al.Progress of high toughness coating on steel surface[J].Surface Technology,2021,50(7):97-105.(in Chinese)
参考文献 11
陆世英,张廷凯,杨长强.不锈钢[M].北京:原子能出版社,1995:10-50.LU Shiying,ZHANG Yankai,YANG Changqiang.Stainless steel[M].Beijing:Atomic Energy Press,1995:10-50.(in Chinese)
参考文献 12
MCKEOWN P A.The role of precision engineering in manufacturing of the future[J].CIRP Annals— Manufacturing Technology,1987,36(2):495-501.
参考文献 13
ZONG W J,CHENG K,LI D,et al.The ultimate sharpness of single-crystal diamond cutting tools—Part Ⅰ:Theoretical analyses and predictions[J].International Journal of Machine Tools & Manufacture,2007,47(5):852-863.
参考文献 14
ZONG W J,LI D,SUN T,et al.The ultimate sharpness of single-crystal diamond cutting tools—Part Ⅱ:A novel efficient lapping process[J].International Journal of Machine Tools & Manufacture,2007,47(5):864-871.
参考文献 15
LANE B M,DOW T A,SCATTERGOOD R.Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel[J].Wear,2013,300(1-2):216-224.
参考文献 16
ZOU L,DONG G J,ZHOU M.Investigation on frictional wear of single crystal diamond against ferrous metals[J].International Journal of Refractory Metals and Hard Materials,2013,14:174-179.
参考文献 17
邹莱.黑色金属金刚石切削刀具磨损研究[D].哈尔滨:哈尔滨工业大学,2011.ZOU Lai.Study on wear of ferrous metal diamond cutting tool[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)
参考文献 18
周明,邹莱.金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验 [J].光学精密工程,2013,21(07):1786-1794.ZHOU Ming,ZOU Lai.Test of friction and wear mechanism of tool in diamond cutting ferrous metal[J].Optical Precision Engineering,2013,21(07):1786-1794.(in Chinese)
参考文献 19
李占杰.超精密切削黑色金属的工艺及机理研究[D].天津:天津大学,2013.LI Zhanjie.Study on the process and mechanism of superfine close cutting of ferrous metal[D].Tianjin:Tianjin University,2013.(in Chinese)
参考文献 20
NARULKAR R,BUKKAPATNAM S,RAFF L M,et al.Graphitization as a precursor to wear of diamond in machining pure iron:A molecular dynamics investigation[J].Computational Materials Science,2009,45(2):358-366.
参考文献 21
ZOU L,YIN J C,HUANG Y,et al.Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J].Diamond and Related Materials,2018,86:29-40.
参考文献 22
SHIMADA S,TANAKA H,HIGUCHI M,et al.Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals[J].CIRP Annals Manufacturing Technology,2004,53(1):57-60.
参考文献 23
CHAGAS V M D,PEÇANHA M P,GUIMARÃES R D S,et al.The influence of titanium carbide(TiC)coating over the thermal damage processes in diamonds[J].Journal of Alloys and Compounds,2019,791:438-444.
参考文献 24
BRINKSMEIER E,GLÄBE R.Advances in precision machining of steel[J].CIRP Annals — Manufacturing Technology,2001,50(1):385-388.
参考文献 25
SUN Y,ZHANG C,WU J,et al.Enhancement of oxidation resistance via titanium boron carbide coatings on diamond particles[J].Diamond and Related Materials,2018,92:74-80.
参考文献 26
KIM H J,CHOI H L,AHN Y S.Chromium carbide coating of diamond particles using low temperature molten salt mixture[J].Journal of Alloys and Compounds,2019,805:648-653.
参考文献 27
LEE Y J,HAO L,LÜDER J,et al.Micromachining of ferrous metal with an ion implanted diamond cutting tool[J].Carbon,2019,152:598-608.
参考文献 28
STOCK H R,SCHLETT V,KOHLSCHEEN J,et al.Characterization and mechanical properties of ion-implanted diamond surfaces[J].Surface Coat Technology,2001,146-147(1):425-429.
参考文献 29
王云,谢小豪,汪艳亮,等.硬质合金刀具涂层的研究进展[J].有色金属科学与工程,2019,10(1):60-66.WANG Yun,XIE Xiaohao,WANG Yanliang,et al.Research progress of carbide tool coating[J].Nonferrous Metals Science and Engineering,2019,10(1):60-66.(in Chinese)
参考文献 30
WANG Y L,SUZUKI N.Investigation of tool wear suppression in ultraprecision diamond machining of die steel[J].Precision Engineering,2011,35(4):677-685.
参考文献 31
WANG Y L,ZHAO Q L,SHANG Y J,et al.Ultraprecision machining of Fresnel microstructure on die steel using single crystal diamond tool[J].Journal of Materials Processing Technology,2011,211(12):2152-2159.
参考文献 32
BRINKSMEIER E,GLÄBE R,OSMER J.Ultra-precision diamond cutting of steel molds[J].CIRP Annals,2006,55(1):551-554.
参考文献 33
OSMER J,GLÄBE R,RIEMER O,et al.Diamond milling of nitrided steels for optical mold making[J].Journal of Vacuum Science & Technology,2009,27:1238-1240.
参考文献 34
BRINKSMEIER E,GLÄBE R,OSMER J.Diamond cutting of FeN-layers on steel substrates for optical mold making[J].Key Engineering Materials,2010,438:31-34.
参考文献 35
CHAO C L,CHEN C C,CHANG C J,et al.Single-point diamond turning of plasma-nitrided stainless steel[J].Key Engineering Materials,2008,364-366:601-606.
参考文献 36
SAITO H,JUNG H,SHAMOTO E,et al.Suppression of tool damage in ultraprecision diamond machining of stainless steel by applying electron-beam-excited plasma nitriding[J].Precision Engineering,2020,63:126-136.
参考文献 37
FURUSHIRO N,TANAKA H,HIGUCHI M,et al.Suppression mechanism of tool wear by phosphorous addition in diamond turning of electroless nickel deposits[J].CIRP Annals,2010,59(1):105-108.
参考文献 38
甄建政,时启伟,施锦,等.钢铁材料低温表面渗氮技术的研究进展[J].热加工工艺,2019,48(6):35-40.ZHEN Jianzheng,SHI Qiwei,SHI Mian,et al.Research progress of low-temperature surface nitriding technology of iron and steel materials[J].Thermal processing process,2019,48(6):35-40.(in Chinese)
参考文献 39
隈部淳一郎.精密加工-振动切削基础与应用[M].北京:机械工业出版社,1985.KUMABE J.Basic and application of precision machining-vibration cutting[M].Beijing:China Machine Press,1985.(in Chinese)
参考文献 40
BREHL D E,DOW T A.Review of vibration-assisted machining[J].Precision Engineering,2008,32(3):153-172.
参考文献 41
ZHOU M,EOW Y T,NGOI B K A,et al.Vibration-assisted precision machining of steel with pcd tools[J].Materials and Manufacturing Processes,2003,18(5):825-834.
参考文献 42
MORIWAKI T,SHAMOTO E.Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration[J].CIRP Annals,1991,40(1):559-562.
参考文献 43
BULLA B,KLOCKE F,DAMBON O,et al.Influence of different steel alloys on the machining results in ultrasonic assisted diamond turning[J].Key Engineering Materials,2012,523-524:203-208.
参考文献 44
FUKUMORI S,ITOIGAWA F,MAEGAWA S,et al.Suppression mechanism of diamond tool wear in ultrasonic vibration cutting[C]//Proceedings of the 22nd International Esaform Conference on Material Forming,ESAFORM 2019,2019.
参考文献 45
SHAMOTO E,MORIWAKI T.Study on elliptical vibration cutting[J].CIRP Annals,1994,43(1):35-38.
参考文献 46
SHAMOTO E,MORIWAKI T.Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting[J].CIRP Annals,1999,48:441-444.
参考文献 47
SHAMOTO E.Ultraprecision micromachining of hardened die steel by applying elliptical vibration cutting[J].JSME News,2005,4:2-4.
参考文献 48
JUNG H,HAYASAKA T,SHAMOTO E.Study on process monitoring of elliptical vibration cutting by utilizing internal data in ultrasonic elliptical vibration device[J].International Journal Precision Engineering Manufacturing-Green Technology,2018,5(5):571-581.
参考文献 49
SHAMOTO E,SUZUKI N,HINO R.Analysis of 3D elliptical vibration cutting with thin shear plane model[J].CIRP Annals-Manufacturing Technology,2008,57(1):57-60.
参考文献 50
ZHANG X Q,LIU K,KUMAR A S,et al.A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel[J].Journal of Materials Processing Tech,2014,214(2):496-506.
参考文献 51
BULLA B,KLOCKE F,DAMBON O,et al.Ultrasonic assisted diamond turning of hardened steel for mould manufacturing[J].Key Engineering Materials,2012,516:437-442.
参考文献 52
ZHANG J G,ZHANG J J,ROSENKRANZ A,et al.Frictional properties of surface textures fabricated on hardened steel by elliptical vibration diamond cutting[J].Precision Engineering,2019,59:66-72.
参考文献 53
YUAN Y J,ZHANG D W,JING X B,et al.Freeform surface fabrication on hardened steel by double frequency vibration cutting[J].Journal of Materials Processing Technology,2020,275:116369.
参考文献 54
王红飞.超声振动车削加工的研究现状及进展[J].机械设计与制造,2007(10):212-214.WANG Hongfei.Research status and progress of ultrasonic vibration turning processing[J].Mechanical Design and Manufacturing.2007(10):212-214.(in Chinese)
参考文献 55
李晋年,袁哲俊,周明,等.黑色金属的超低温金刚石超精密切削[J].机械工程学报,1989,25(1):69-72.LI Jinnian,YUAN Zhejun,ZHOU M,et al.Ultra-low temperature diamond ultra-precision cutting for ferrous metals[J].Journal of Mechanical Engineering,1989,25(1):69-72.(in Chinese)
参考文献 56
EVANS C,BRYAN J B.Cryogenic diamond turning of stainless steel[J].CIRP Annals-Manufacturing Technology,1991,40(1):571-575.
参考文献 57
ABELE E,SCHRAMM B.Using PCD for machining CGI with a CO2 coolant system[J].Production Engineering,2008,2(2):165-169.
参考文献 58
HOTZ H,KIRSCH B,BECKER S,et al.Improving the surface morphology of metastable austenitic steel AISI 347 in a two-step turning process[J].Procedia CIRP,2018,71:160-165.
参考文献 59
高东强,曾行军,何乃如,等.低温切削技术在难加工材料加工中的应用[J].制造技术与机床,2020(6):39-43.GAO Dongqiang,ZENG Xingjun,HE Nairu,et al.Application of cryogenic cutting in unmaterial processing[J].Manufacturing technology and machine tools,2020(6):39-43.(in Chinese)
参考文献 60
周志民.天然金刚石切削黑色金属技术研究[D].大连:大连理工大学,2014.ZHOU Zhiming.Study on the technology of natural diamond diamond cutting[D].Dalian:Dalian University of Technology,2014.(in Chinese)
参考文献 61
张元良,周志民,黄春英,等.天然金刚石振动与气体保护切削黑色金属技术研究[J].机械科学与技术,2004(3):339-340.ZHANG Yuanliang,ZHOU Zhiming,HUANG Chunying,et al.Study on natural diamond vibration and gas protection cutting of ferrous metal[J].Mechanical Science and Technology for Aerospace Engineering,2004(3):339-340.(in Chinese)
参考文献 62
ZHANG X Q,DENG H,LIU K.Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools[J].CIRP Annals-Manufacturing Technology,2019,68(1):69-72.
参考文献 63
黄帅.冷等离子体辅助金刚石切削黑色金属基础研究 [D].大连:大连理工大学,2017.HUANG Shuai.Basic research on ferrous metal in diamond cutting by cold plasma[D].Dalian:Dalian University of Technology,2017.(in Chinese)
参考文献 64
TANG Q C,YIN S H,CHEN F J,et al.New technology for cutting ferrous metal with diamond tools[J].Diamond & Related Materials,2018,88:32-42.
参考文献 65
ZOU L,HUANG Y,ZHOU M,et al.Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning of 3Cr2NiMo steel[J].Materials and Manufacturing Processes,2018,33(9):943-949.
参考文献 66
CASSTEVENS J M.Diamond turning of steel in carbon-saturated atmospheres[J].Precision Engineering,1983,5(1):9-15.
参考文献 67
HITCHINER M P,WILKS J.Factors affecting chemical wear during machining[J].Wear,1984,93(1):63-80.
参考文献 68
HITCHINER M P,WILKS J.Some remarks on the chemical wear of diamond and cubic BN during turning and grinding[J].Wear,1987,114(3):327-338.
参考文献 69
PAUL E,EVANS C J,MANGAMELLI A,et al.Chemical aspects of tool wear in single point diamond turning[J].Precision Engineering,1996,18(1):4-19.
参考文献 70
BRINKSMEIER E,PREUß W,GLÄBE R.Single point diamond turning of steel[C]//Proceedings of the 1st International Euspen Conference,Bremen,1999:446-449.
参考文献 71
SONG Y C,NEZU K,PARK C H,et al.Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method[J].International Journal of Machine Tools and Manufacture,2009,49(3-4):339-343.
参考文献 72
YUSUPOV G K,KOLEGOV S A.Grinding of steel by diamond wheels[J].Russian Engineering Research,2014,34(4):216-217.
参考文献 73
SMITH P J,CHU B,SINGH E,et al.Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel[J].Journal of Manufacturing Processes,2015,17:41-47.
目录contents

    摘要

    金刚石刀具是超精密加工最理想的刀具之一,但在黑色金属超精密加工领域“石墨化”导致刀具快速磨损,其应用极大地受到了限制。首先,针对金刚石刀具的磨损机理进行介绍。然后,综述金刚石刀具切削黑色金属的几种常见方法,如刀具表面改性、工件表面改性、低温辅助切削、超声振动辅助切削等,通过研究实例来分析各方法的应用效果和存在问题,并从技术层面分析影响金刚石刀具在黑色金属加工领域发展的关键因素。最后,对金刚石刀具切削黑色金属未来的发展趋势进行探讨。总结金刚石刀具在黑色金属领域的加工方法,分析加工黑色金属时抑制金刚石刀具磨损的核心技术,对黑色金属的精密超精密加工具有重要的引领和推动作用。

    Abstract

    As one of the most ideal tools for ultra-precision machining, diamond tools have been greatly limited in the field of ultra-precision machining of black metals due to the rapid wear of tools due to the “iron-carbon mutual solubility”. Firstly, the wear mechanism of diamond tools is introduced. Then several common methods of diamond tool cutting ferrous metal are summarized, such as tool surface modification, workpiece surface modification, cryogenic cooling assisted cutting, ultrasonic vibration assisted cutting and so on. The application effect and existing problems of these methods are analyzed from the research examples, and the key problems affecting the development of diamond tools in the field of ferrous metal processing are analyzed from the technical level. This paper mainly summarizes the application methods of diamond tools in the field of ferrous metal processing, analyzes the core technology of inhibiting diamond tool wear in the processing of ferrous metals, which plays an important leading and promoting role in the precision and ultra-precision machining of ferrous metals.

  • 0 前言

  • 金刚石刀具根据制造方法的不同可分为天然金刚石(ND)、人造聚晶金刚石(PCD)、人造聚晶金刚石复合片(PDC)、化学气相沉积涂层金刚石刀具 (CVD)[1]。它们的物理性能优异,硬度高[2],导热性能好,热膨胀系数低,摩擦因数低[3],弹性模量高,其中天然单晶金刚石的切削刃甚至可以刃磨到纳米级别。因此,金刚石刀具在超精密加工中扮演着极其重要的角色[4-6]。金刚石刀具多用于有色金属的超精密加工[7],加工的表面粗糙度可以小于2nm[8]

  • 与有色金属相对的是黑色金属,黑色金属材料是工业上对铁、锰和铬的统一称呼,也包括它们的合金,特别是合金钢,是在世界范围内使用十分广泛的一类合金[9-10]。黑色金属的性能优势很难被其他材料所替代,其超精密加工的需求也越来越多,例如信息通信所用的电子和光学器件所用的材料一般为光学玻璃或光学塑料,这些材料的模具大多采用黑色金属制成,并且对模具的表面质量要求很高,需要具有亚微米级的形状精度和纳米级的表面粗糙度[11]。由于金刚石刀具优异的物理性能和黑色金属在加工领域的重要性,近些年来,金刚石刀具在黑色金属加工方面的研究越来越多。但金刚石刀具在加工黑色金属时,会发生肉眼可见的磨损,其中在发生的机械磨损和化学磨损中,化学磨损尤为剧烈[12],是金刚石刀具剧烈磨损的主要原因。由于金刚石刀具加工黑色金属时发生剧烈磨损,金刚石刀具在黑色金属加工领域的应用具有很大的挑战性。如果能找到合适的加工方法来避免金刚石刀具在加工黑色金属时的剧烈磨损,对扩展精密加工领域具有极其重要的意义,并将产生巨大的经济效益。

  • 1 黑色金属切削用金刚石刀具磨损机理

  • 根据报道,金刚石刀具的刃口半径可以刃磨到2nm[13-14],在加工时能将刃形完美地复制在工件表面,从而实现镜面加工。但金刚石刀具切削黑色金属时会发生剧烈的化学反应[15-16],使得切削刃强度快速降低(化学磨损),随后金刚石刀具的表面不断变质从而引起机械磨损[17-19],刀具寿命极低,从而极大限制了金刚石刀具在黑色金属超精密加工领域的大规模应用。从微观角度来看,当金刚石刀具切削黑色金属时,由于切削热作用和过渡金属铁原子d轨道空位电子的催化下,刀具中的C-C化学键断裂,与工件中的Fe原子结合形成铁碳化合物,但是Fe-C键并不能稳定的存在,在切削刃处较大的压力和较高的温度作用下断裂的碳原子重新排列,形成稳定的C-C六面体结构。整个微观过程为金刚石刀具中亚稳定状态的C-C四面体结构转变为稳定的C-C六面体片层化石墨结构的过程,即为石墨化,宏观上会引起刀具的软化,严重降低切削刃强度,是金刚石刀具切削黑色金属时的主要磨损原因。

  • NARULKAR等[20]采用对金刚石刀具切削纯铁进行分子动力学仿真,如图1a~1d所示,在切削刃区域的金刚石结构碳原子开始向石墨结构转化,而且也发现了加工过程中石墨溶解到铁中的现象 (图1e),证明了上述金刚石刀具加工黑色金属的磨损原因主要有石墨化和扩散磨损的推论,仿真中观察到了碳原子SP3 键到SP2 键的直接转变,而不是碳原子先升华再凝结成石墨化结构。由于铁基材料具有良好的溶碳性,在刀具与工件和切屑强烈接触的过程中,金刚石刀具中的碳原子扩散到工件与切屑当中。如图2所示,在切削区域的机械耦合作用下,金刚石刀具表面的碳原子和铁原子被激化,铁原子以一定的频率上下振动,原子间隙扩大,碳原子又比铁原子要小,从而很容易扩散到铁原子的间隙中去,引起扩散磨损[21]。而且温度对金刚石刀具的磨损有很大的影响,SHIMADA等[22]采用分子动力学和腐蚀试验来模拟金刚石刀具的磨损过程,结果发现温度大于1 000K时,金刚石表面的碳原子解离是通过和钢中的铁原子相互作用形成的,当温度低于900K时,金刚石表面碳原子的丢失主要由钢工件中的氧化物脱氧反应引起的。而对于金刚石刀具的机械磨损主要表现在两个方面:一是在实际切削过程中,工件材料中的硬质点反复地对刀具产生冲击,易使金刚石颗粒产生微裂解;另一方面是工件材料中的硬质点或切削过程中产生的积屑瘤碎片在刀具表面划出沟纹,从而造成机械磨损。

  • 图1 金刚石石墨化过程以及加工过程中石墨在铁中的溶解[20]

  • Fig.1 Graphitization of diamond and dissolution of graphite in iron during processing[20]

  • 图2 刀具扩散磨损微观示意图[21]

  • Fig.2 Microstructure of tool diffusion wear[21]

  • 在整个切削过程中石墨化、扩散磨损、氧化磨损和机械磨损同时发生且相互作用,其中由石墨化引起的切削刃软化所造成的刀具磨损比扩散磨损和氧化磨损引起的切削刃强度下降所造成的刀具磨损更严重。相比于普通刀具的磨损过程,金刚石刀具切削黑色金属过程中伴随着复杂的化学反应,刀具的磨损机理作用因素更加复杂。从金刚石刀具切削黑色金属过程中的刀具磨损机理来看,抑制刀具磨损的主要切入点是从反应物、反应产物、反应温度和催化剂等方面入手,来抑制碳原子、铁原子和与氧原子之间的化学反应,以减轻金刚石刀具的石墨化、扩散磨损和氧化磨损。

  • 2 黑色金属的金刚石刀具加工方法

  • 由于金刚石刀具在精密加工领域的优越性,国内外越来越多的研究者对抑制金刚石刀具加工黑色金属的刀具磨损展开研究。图3是加工黑色金属时常采用抑制刀具磨损的方法,其中针对金刚石刀具切削黑色金属一般采用低温辅助切削、刀具或者工件表面改性、超声振动辅助切削以及复合加工辅助切削等方法来抑制刀具磨损,这些加工方法在不同程度上减缓了金刚石刀具的磨损,但在向实际生产加工进行应用时,仍存在着各自的一些问题。以下是对各种方法的详细介绍与分析。

  • 图3 黑色金属的刀具磨损抑制方法[3]

  • Fig.3 Tool wear suppression method of ferrous metal[3]

  • 2.1 刀具表面改性方法

  • 刀具表面改性是指通过在刀具表面涂覆涂层,或者离子注入等方法来对刀具性能进行改变,以此来延长刀具的使用寿命和发展新型刀具加工技术。刀具涂层是指在强度和韧性较好的基体表面上(硬质合金和高速钢或者陶瓷、金刚石和立方氮化硼等超硬材料刀片),利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物。CHAGAS等[23] 采用化学气相沉积的方法在立方八面体金刚石上制备TiC涂层,研究了在高温条件下TiC涂层对金刚石石墨化和氧化过程的抑制作用,如图4所示,在1 200℃加热360min的热处理条件下,没有涂层的金刚石全部转化成石墨,而TiC涂层的金刚石则表现出锋利性和晶体完整性,表明了TiC涂层对金刚石石墨化和氧化的具有一定的抑制作用,但并没有进行切削试验验证TiC涂层在切削过程中对刀具磨损的抑制效果。BRINKSMEIER等[24]使用物理气相沉积的方法在制备了TiC涂层金刚石刀具和TiN涂层金刚石刀具,并进行碳素钢的精密切削对比试验,发现在切削过程中涂层对刀具的化学磨损起到了一定的抑制作用,而且TiN涂层的作用效果相比TiC涂层要好,但都存在一定程度的磨粒磨损。对于TiC涂层中掺杂其他元素的研究,SUN等[25]在金刚石颗粒表面制备了硼含量不同的Ti-B-C涂层,研究了Ti-B-C涂层对金刚石氧化的抑制作用,对比了B4C、TiC、不同硼含量(11%、60%)的Ti-B-C涂层在高温下对金刚石的保护作用,发现60%的硼含量的Ti-B-C涂层对金刚石的保护效果最好,这是因为形成的B2O3 在高温下具有流动性,降低了由TiO2 引起的内应力,较大的硼含量生成的B2O3不会很快完全蒸发,抑制了TiO2涂层裂纹的扩展。其他在金刚石表面的涂层,像KIM等[26]使用熔盐法在金刚石颗粒表面制备Cr的碳化物涂层来抑制金刚石的石墨化,如图5所示,发现在LiCl、KCl和NaCl熔盐中,700~900℃时,金刚石颗粒表面可以形成Cr7C3 涂层,比在LiCl、KCl和CaCl熔盐中形成的起始温度要低很多,涂层形成的速率也要更快,这是因为LiCl,KCl和NaCl熔盐在高温下比LiCl、 KCl和CaCl熔盐黏度要低得多,更低的黏度意味着更高的扩散率,涂层形成的速率更高,均匀性更好。

  • 图4 1 200℃加热360min中的未涂层金刚石颗粒(左)和涂层金刚石颗粒(右) [23]

  • Fig.4 Uncoated diamond particles (left) and coated diamond particles (right) heated at 1 200℃ for 360min[23]

  • 图5 熔盐法金刚石颗粒在分别在不同温度下的LiCl-KCl-NaCl和LiCl-KCl-CaCl2溶液中加热30min和60min的电子显微镜扫描图[26]

  • Fig.5 Scanning electron microscopy of molten salt diamond particles heated in LiCl-KCl-NaCl and LiCl-KCl-CaCl2solutions at different temperatures for 30min and 60min[26]

  • 离子注入方法则是指在离子注入机中将离子加速成具有几万至几十万电子伏能量的束流,注入到固体材料的表层内获得高硬度的硬化表层,能在保持刀具精度的条件下,有效地降低了刀具粘着磨损和磨粒磨损。离子注入不同的离子效果也会有所差异,LEE等[27]用FEI-Versa三维聚焦离子束(FIB) 系统在室温下对单晶金刚石样品进行镓(Ga)离子掺杂,并进行了低碳磁性铁的端面车削试验(主轴转速为300r/min,进给量1.5mm/min,切削深度2 µm),试验结果如图6a所示,未经过离子注入处理的刀具在切削行程达到350m后表面粗糙度 Ra 为355.4nm,而镓离子注入刀具在切削距离为350m时仍可以正常切削且加工表面粗糙度 Ra 达到137.4nm。另外采用量热法测得金刚石刀具表面的自由能降低了使得石墨化的活化能提高44%,刀具磨损结果如图6b所示,未经镓离子注入的刀具,最大磨损宽度达到12.75 μm,而经过镓离子注入的刀具最大磨损宽度为7.5 μm,镓离子的注入抑制了金刚石刀具的磨损。STOCK等[28]采用高能氮离子、铬离子、钛离子分别对单晶金刚石表面进行注入改性,采用了不同的浓度剂量和金刚石表面牺牲层技术(避免金刚石表面离子浓度过高)对金刚石进行离子注入,发现铬离子注入对磨损有所改善,认为氮离子剂量的过高和钛的化学亲碳性对金刚石晶格的破坏较大,效果更差,并且认为存在临界离子剂量和离子能量,如果超过这个临界值,会对金刚石晶格造成严重的破坏,离子注入的效果可能会更差。如BRINKSMEIER等[24]用铬离子注入的金刚石刀具车削了Ck01N钢,但抑制磨损的效果相比未经离子注入的刀具没有改善,甚至更差,推测可能是离子剂量没有控制好,对金刚石晶格有所破坏。

  • 图6 加工后工件表面质量和刀具磨损图:(a) 加工后工件表面的扫描电镜和相应的表面粗糙度测量图; (b) 未离子注入和离子注入刀具切削350m后的刀具磨损图[27]

  • Fig.6 Surface quality and tool wear after machining: (a) Scanning electron microscope and corresponding surface roughness measurement of machined workpiece surface; (b) Tool wear after cutting350m with or without ion implantation[27]

  • 对于刀具涂层处理方法来说,涂层构成刀具碳原子扩散的屏障,虽然对刀具起到一定程度的保护,但会使金刚石刀具刃口半径加大、变钝,最重要的是涂层的附着强度和抗磨粒磨损性能较低,在加工过程中容易脱落、破损[29],距离大面积实用化还有一段距离。离子注入金刚石刀具的方法虽然改善了金刚石晶格,但对于注入不同离子的剂量的把握有点困难,甚至很有可能会在其表面引入了缺陷,使得离子注入改性层的抗磨粒磨损性能降低,距离实用阶段还需要持续不断的研究。

  • 2.2 工件表面改性方法

  • 工件表面改性方法主要是在工件表面进行渗入氮离子处理(或者其他元素),通过注入的氮元素与黑色金属的Fe原子结合形成Fe-N化合物,以抑制金刚石刀具切削黑色金属过程中Fe-C键的形成,以减小刀具磨损。WANG[30-31]等采用在AISI4140模具钢进行等离子渗氮处理的方法,并使用单晶金刚石刀具进行切削试验,试验结果表明工件表面等离子渗氮处理后,可显著降低刀具的化学磨损,加工后的工件表面粗糙度 Rz 最大值小于80nm。 BRINKSMEIER课题组[32-34]通过渗氮处理在钢铁材料表面获得了氮化铁层,然后对氮化铁层进行超精密切削,发现金刚石刀具磨损得到很好的抑制,在切削500m后刀具无明显磨损并获得 Ra 为8~12nm的表面质量。CHAO等[35]采用等离子渗氮的方法,将硬化不锈钢进行渗氮处理,其中铁原子和氮原子结合形成Fe(x)N,得到渗氮硬化层。然后采用相同的切削条件,用单晶金刚石切削不同处理的不锈钢工件,结果发现加工未经渗氮处理的工件,刀具磨损迅速,加工表面质量也很差,而加工等离子渗氮处理的工件,刀具磨损小于0.5 μm,加工表面粗糙度 Ra 小于3nm,表明渗氮处理可以抑制金刚石刀具的磨损并提高工件加工表面质量。SAITO等[36]采用电子束激发等离子体(EBEP)对AISI 420不锈钢进行渗氮处理,并和传统的离子渗氮和气体氮方法进行比较。如图7所示,结果显示EBEP方法渗氮的工件表面外观上几乎无变化,另外两种方法渗氮的工件表面发白无光泽。对工件渗氮层进行分析,发现EBEP方法渗氮后的工件表面没有形成铁氮化合物。而后采用单晶金刚石对上述三种不同处理的工件进行切削试验,试验结果如图8所示,相同切削参数下,采用EBEP方法的刀具磨损量是离子渗氮方法的5倍,气体氮碳化的2倍,而且EBEP方法氮扩散层形成的速率较慢,生成10~20 μm的氮扩散层需要6h,虽然相比另外两种渗氮方法,工件表面没有形成铁氮化合物,硬度随着表面深度增加也在快速下降,但可能对刀具化学磨损的抑制作用也在减弱,导致了刀具的快速磨损。值得注意的是,加工EBEP方法渗氮工件的刀具没有发生微小崩刃,这对超精密加工是十分重要的,也为工件改性提供了一种新的思路。FURUSHIRO等[37]用金刚石刀具切削纯Ni和化学镀镍(Ni-P)材料,发现在切削距离 L 为20m时,切削纯镍的金刚石刀具后刀面磨损(图9a)达到了7.5 μm,而切削化学镀镍(Ni-P)的金刚石刀具磨损在切削距离 L 为1 421m时磨损(图9b)还要小于7.5 μm,然后进行了热腐蚀试验,发现磷的加入有效抑制了碳原子的扩散,进而抑制了刀具的磨损。

  • 图7 不同渗氮工艺工件的照片,表面形貌和剖面:(a) 电子束激发等离子体渗氮工件; (b)离子注入渗氮工件;(c)气体氮碳化工件[36]

  • Fig.7 Photos, surface morphology and profile of workpieces with different nitriding processes: (a) Electron beam excited plasma nitriding workpieces; (b) Ion implantation nitriding workpieces; (c) Gas nitrocarburizing workpieces[36]

  • 图8 不同切削参数和不同渗氮工艺的切削试验金刚石刀具的磨损结果[36]

  • Fig.8 Results of diamond tool wear under different cutting parameters and nitriding processes[36]

  • 图9 刀具磨损电子显微镜扫描图[37]

  • Fig.9 Scanning electron microscope of tool wear[37]

  • 总之,表面改性方法使钢铁材料中铁等过渡金属元素原子与渗入元素形成了化合物,从而抑制了其对金刚石石墨化的催化作用,在超精密加工中取得了较好的效果,同时渗氮层提高了工件表面耐腐蚀性。但也存在一些问题,如渗层厚度小、渗层不均匀、化合物层中会产生硬质点导致刀具微小崩刃、渗氮温度较高会引起工件不均匀热变形等[38]

  • 2.3 超声振动辅助加工

  • 超声振动切削是指通过超声发生和变换装置在刀具上附加微米级的周期性高频振动,使工件与刀具产生断续性的接触,其原理主要是基于减少刀具和工件的接触时间,从而减少切削力和降低切削区温度。目前对超声振动切削抑制刀具磨损的机理研究主要集中在切削参数、切削力、前后刀面摩擦力、切削区温度、振动参数(频率、振幅)以及接触时间等方面。

  • 一维超声振动切削在1950年由隈部淳一郎[39]提出,它的切削振动过程示意图如图10所示。当刀具振动速度大于切削速度时,就会出现刀具和工件的分离。图10中四个时刻分别是一个振动周期内刀具和工件刚刚接触的时刻,刀具和工件刚要分离的时刻,分离最大的时刻,下一次切削刚刚接触的时刻[40]

  • 图10 一维超声振动示意图[40]

  • Fig.10 Schematic diagram of one dimensional ultrasonic vibration[40]

  • 一维超声振动开展研究的时间较早,其设备和原理相比二维超声振动切削更简单,应用在辅助金刚石刀具加工黑色金属取得了较好的效果。ZHOU等[41]采用常规切削和一维超声振动两种方法进行PCD刀具车削不锈钢304试验,如图11所示,在相同切削距离条件下,一维超声振动辅助切削相比常规切削的平均切削力要小很多。刀具磨损主要发生在后刀面,一维超声振动切削的刀具磨损更小。而表面粗糙度,常规切削在切削距离达到220m时,粗糙度 Ra 已经大于了0.2 μm,一维超声振动切削在切削距离为700m时,表面粗糙度 Ra 还要小于0.2 μm。MORIWAKI等[42]采用一维超声振动辅助单晶金刚石车削不锈钢(SUS303Se),结果发现在超声振动辅助下,加工后的表面质量相比以前的常规金刚石切削更好,刀具磨损在切削距离达到1.6km时,后刀面磨损仍然小于4 μm。BULLA等[43]用一维超声振动辅助切削对1.2767ESR (54HRC)、Mirrax ESR (52HRC)、 Polmax (55HRC)、M390Microclean (61HRC)和Vidar Superior (52HRC)五种材料(图12) 进行切削加工,探究不同合金对超声振动辅助加工结果的影响。结果如图13所示,发现合金中碳、锰和铬的含量对加工表面质量影响不大,其中钼、钨和钒更容易形成硬质碳化物,对刀具磨损影响较大。 FUKUMORI等[44]在空气和真空的条件下,采用一维超声振动辅助单晶金刚石切削了不锈钢AISI 1420、纯铁和纯钼,来研究金刚石加工黑色金属磨损的机理。结果如图14所示,真空中振动切削不锈钢的刀具磨损相比在空气中振动切削不锈钢要大一些,这是由于空气中存在氧气,形成了氧化物,抑制了碳化物的形成。而在真空中进行的纯铁振动切削刀具几乎没有磨损,他们认为纯铁碳化物的形成能低,相对不容易形成碳化物,刀具磨损也因此降低,对纯钼的振动切削刀具磨损最严重,这是因为钼很容易形成碳化物进而加剧了刀具的磨损。

  • 图11 一维超声振动切削和常规切削的平均切削力、表面粗糙度和刀具磨损(左图为常规切削,右图为一维超声振动切削) [41]

  • Fig.11 Average cutting force, surface roughness and tool wear of one-dimensional ultrasonic vibration cutting and conventional cutting (the left figure shows conventional cutting, the right figure shows one-dimensional ultrasonic vibration cutting)[41]

  • 图12 几种不同合金的参数[43]

  • Fig.12 Parameters of several different alloys[43]

  • 图13 一维超声振动辅助切削不同合金的刀具磨损、表面加工质量和切屑形貌[43]

  • Fig.13 Tool wear, surface quality and chip morphology of different alloys by one dimensional ultrasonic vibration[43]

  • 图14 空气和真空条件下一维超声振动切削不同材料的刀具磨损图:(a) 空气条件下超声振动辅助切削不锈钢; (b) 真空条件下超声振动辅助切削不锈钢;(c)空气下的常规切削不锈钢;(d) 真空条件下超声振动辅助切削纯铁; (e)真空条件下超声振动辅助切削碳钢;(f) 真空条件下超声振动辅助切削纯钼[44]

  • Fig.14 Tool wear diagram of one-dimensional ultrasonic vibration cutting different materials in air and vacuum: (a) Ultrasonic vibration assisted cutting stainless steel in air; (b) Ultrasonic vibration assisted cutting stainless steel in vacuum; (c) Conventional cutting stainless steel in air; (d) Ultrasonic vibration assisted cutting pure iron in vacuum; (e) Ultrasonic vibration assisted cutting carbon steel in vacuum; (f) Ultrasonic vibration assisted cutting of pure molybdenum in vacuum[44]

  • 二维超声振动切削是在一维超声振动的基础上提出的,虽然相比一维振动切削更复杂,但在加工领域,二维超声振动切削在抑制刀具磨损或提高工件表面加工质量上效果相比一维振动切削大多都更胜一筹,这是因为一维超声振动刀尖容易划伤已加工表面,而且由于刀具和工件的高频往复摩擦,使刀具受交变拉压应力,容易造成刀具崩刃,而椭圆超声振动一般是在切削方向和切深方向振动的耦合,刀具退出切削时不再划擦已加工表面。 MORIWAKI和SHAMOTO等[45-47]提出二维(椭圆) 超声振动的切削方法,原理图[48]如图15所示,并采用二维(椭圆)和三维超声振动[49]的切削方法,分别加工了淬硬钢和模具钢,相比常规切削来说,刀具磨损的抑制效果和工件表面加工质量均有所提升。张鑫泉等[50]进行了常规切削、一维超声振动辅助切削和椭圆振动辅助PCD刀具三种加工方式切削碳钢ASSAB 760的结果对比,如图16a~16c所示,椭圆振动辅助切削刀具磨损最小。同时,他们对加工后的刀具后刀面进行X射线能谱分析(EDS),结果如图16d所示,结果显示椭圆振动辅助切削后的PCD刀具含氧量最高,在切削过程中形成了复杂的氧化物抑制了刀具的磨损。他们推测超声振动辅助切削降低刀具磨损的原因不是温度降低。为了证明这一推论,做了不同喷射的大气条件下(不含冷却剂的干空气,降低喷射空气对切削区温度的影响)的切削试验,结果如图16e,压力为3bar(1bar=100kPa)的刀具磨损明显小于压力为0.5bar的刀具磨损,认为可能是空气压力的增高会导致分子密度的增加,从而更有效地减缓新加工表面铁对金刚石石墨化的催化速率,另一方面可能是空气压力的增高意味着氧气分压的增高,导致新加工表面形成氧化亚铁层,进而阻碍铁对金刚石石墨化起到催化作用。关于对超声振动切削接触时间的研究,BRINKSMEIER等[24]采用椭圆振动辅助金刚石刀具加工AISI 1045,研究发现金刚石刀具寿命虽然不是只由刀具和工件的接触时间这个因素决定,但在很大程度上依赖于刀具和工件有效接触时间,并且当刀具和工件有效接触时间小于54%时刀具磨损能够得到有效抑制。

  • 图15 椭圆超声振动切削示意图[48]

  • Fig.15 Schematic diagram of elliptical ultrasonic vibration cutting[48]

  • 图16 PCD刀具切削碳钢的试验结果:(a)常规切削刀具磨损;(b) 一维超声振动切削刀具磨损;(c) 椭圆超声振动切削刀具磨损; (d) 三种加工后刀具后刀面上的氧和铁元素的含量;(e) 不同喷射空气压力下椭圆振动刀具磨损(上)和已加工工件表面形貌(下) [50]

  • Fig.16 Experimental results of cutting carbon steel PCD cutting tools: (a) Conventional cutting tool wear; (b) One dimensional ultrasonic vibration cutting tool wear; (c) Elliptical ultrasonic vibration cutting tool wear; (d) Oxygen and iron content on the flank of the three processed tools; (e) Elliptical vibration tool wear under different jet air pressure (top) and machined workpiece surface morphology (bottom)[50]

  • 大量的试验研究表明,椭圆超声振动辅助切削对金刚石刀具加工黑色金属刀具磨损的抑制效果很好,并且可提高工件材料的可加工性,提高已加工表面质量,椭圆超声振动辅助金刚石刀具切削已经有了一些实际的运用。BULLA等[51]采用德国公司SON-X的超声振动系统(工作频率80kHz)辅助单晶金刚石刀具切削硬化钢(53HRC)非球面工件时,形状精度小于300nm,表面粗糙度 Ra 小于5nm;切削硬化钢 (53HRC)球面工件时 Ra 为5nm,形状误差小于1.25 μm。张建国等[52]采用椭圆振动辅助单晶金刚石在淬硬钢表面刻划制备了不同形状(正弦、锯齿形和梯形) 和形貌(酒窝和凹槽)的表面微织构,用椭圆超声振动切削加工出来 Ra 为16nm的无织构平面来做对比试验,并用椭圆超声振动切削在销子(SUS420J2, 53HRC)一端制备直径为5mm的平坦镜面来对不同的样品进行滑动试验来分析哪种织构对减少摩擦因数有积极作用,说明椭圆超声振动辅助金刚石刀具切削已经可在黑色金属超精密加工领域得到运用。袁言杰等[53]设计了一套双频振动切削系统,如图17所示,该系统由一维非谐振柔顺振子、二维谐振超声振子、三轴平移平台和控制系统组成,使用该系统的金刚石刀具在淬硬钢表面加工出自由曲面,结果如图18所示,加工出来的马鞍面和仿真的表面形貌高度一致,研究显示椭圆超声振动显著提高了工件表面的可加工性。

  • 图17 双频振动切削系统(DFVC)[53]

  • Fig.17 Double frequency vibration cutting system(DFVC)[53]

  • 图18 用DFVC加工的马鞍面:(a) 测量的表面形貌;(b) 仿真的表面形貌;(c) 测量的三维形貌;(d) 2D横截面的剖面[53]

  • Fig.18 Saddle surfaces machined with DFVC: (a) Measured surface morphology; (b) Simulated surface morphology; (c) Measured 3D morphology; (d) 2D cross section profile[53]

  • 对比目前其他针对金刚石刀具加工黑色金属的工艺方法,超声振动辅助切削在抑制刀具磨损、提高刀具耐用度和改善加工质量等方面,取得了较好的效果,特别是椭圆超声振动辅助切削,已经在实际运用中得到了验证,已经成为最有效的方法之一。但超声振动辅助切削需要专属的超声振动设备,容易在已加工表面产生振纹,并且由于沿切削速度方向振动时,切削速度受到超声振动参数的限制,加工效率相对较低[54]。对于超声振动辅助切削在金刚石刀具加工黑色金属方面,还需要持续不断的研究,以期实现更好的效果。

  • 2.4 低温加工

  • 低温加工是指采用低温介质对工件、刀具或者切削区域进行冷却然后进行切削加工,低温介质使用最多的是液氮和液态二氧化碳。袁哲俊等[55]尝试了采用低温切削的方法和常温切削进行对比,采用金刚石刀具加工45#钢,分别将液态氮(−182℃)、液态二氧化碳(−76℃)和被干冰冷却的酒精直接喷射到切削区来降低化学反应的速率,发现常温切削金刚石刀具切削时间1min就已经磨损很剧烈了,表面质量恶化,不可以再进行切削加工,而低温切削抑制了刀具磨损,切削时间达到15~20min时,刀具磨损依然很小,零件表面粗糙度也没有变化。EVANS等[56]采用液态氮作为冷却介质对金刚石刀具进行冷却,在低温下切削不锈钢并和室温下切削不锈钢进行对比,室温下的刀具磨损十分剧烈,而低温下的切削,刀具磨损几乎观察不到,加工表面粗糙度Ra也小于25nm。ABELE等[57]采用液态二氧化碳外冷却喷射方式辅助PCD刀具切削蠕墨铸铁,在切削前,采用液态二氧化碳直接对切削刃喷射预冷,稳定状态后可使刀尖温度降为−62℃,低温切削结果如图19所示,结果表明PCD刀具晶粒度0.5 μm、5 μm、50 μm三种大小,晶粒度50 μm刀具磨损最小,切削温度最低,背向力最小,这可能是晶粒度越大,PCD刀具热导率越大的原因。然后选择晶粒度50 μm的PCD刀具,研究不同切削速度对刀具磨损和背向力影响,结果显示切削速度对切削力的影响并不如上述因素明显,切削速度为250m/min的刀具寿命相比切削速度为210m/min的刀具寿命减少了大约16%。认为切削温度是切削过程中热量产生和消散相互作用的结果,通过调整相应参数,如刀具属性(晶粒度大小、刀具角度),冷却液属性(流量、喷嘴位置、方向和尺寸大小)和切削参数等,可达到一个动态热平衡,从而减少切削温度和刀具磨损。HOTZ等[58]采用在二氧化碳固气两相混合物冷却条件下进行两次车削的方法加工亚稳奥氏体钢AISI 347,第一次走刀采用硬质合金刀具来诱导工件表面下形成马氏体,第二次走刀使用PCD刀具采用较小的切削深度加工出工件的表面形貌,图20a是在低温冷却下,第一次硬质合金走刀(f=0.15mm/r)加工出来的表面形貌,平均最大轮廓高度 Rz 为3.33 μm,图20b是第二次PCD刀具走刀加工出来的表面形貌,平均最大轮廓高度 Rz 为3.16 μm,而且加工的表面没有颤振痕迹或者颗粒粘附。

  • 图19 切削试验结果:(a) 不同晶粒度刀具的刀具磨损;(b) 不同晶粒度刀具的切削温度;(c) 不同晶粒度刀具的背向力; (d) 不同切削速度和粗晶粒刀具的背向力;(e) 不同切削速度和粗晶粒刀具的刀具磨损[57]

  • Fig.19 Cutting test results: (a) Tool wear with different grain size; (b) Cutting temperature with different grain size; (c) Mean passive force with different grain size; (d) Mean passive forces for different cutting speeds and a coarse grain PCD; (e) Tool wear with different cutting speed and coarse grain tool[57]

  • 总的来说,使用液氮和液态二氧化碳作为冷却剂辅助金刚石刀具切削黑色金属能很大程度的带走切削区域的切削热量,进而有效的降低金刚石刀具的磨损,使得加工质量得到显著提高,而且与传统切削液相比低温冷却切削方法对环境和操作人员没有伤害,是一种绿色无污染的加工方法。但是低温加工很容易引起工艺系统冷缩变形,对工件尺寸精度的保证存在很大的影响[59],从而限制了低温冷却加工方法在超精密加工中的应用。

  • 图20 加工后的表面形貌:(a) 参考工件车削后的表面形貌;(b) 二次走刀完成后形成的表面形貌[58]

  • Fig.20 Surface morphology after processing: (a) Surface topography of the reference workpiece turned; (b) Surface topography after the second process step of the two-step turning process[58]

  • 2.5 复合加工方法和其他加工工艺

  • 由于超声振动辅助切削在金刚石刀具切削黑色金属时较好的加工表现,目前复合工艺大多是针对其他工艺方法与超声振动相结合的方法。张元良等[60-61]在CO2 气体氛围下的超声振动辅助天然金刚石切削不锈钢的方法,切削进给量为10 µm/r,切削深度为4 µm,主轴转速为180r/min,加工120个直径为15mm的不锈钢零件端面,加工后的表面粗糙度Ra小于0.15 μm,后刀面磨损带宽小于5 μm。结果表明,采用CO2气体保护和超声振动辅助切削相结合,可以减缓金刚石刀具的刀具磨损。张鑫泉等[62]在不同屏蔽气体条件下采用超声振动辅助PCD和单晶金刚石刀具切削不锈钢、纯铁、纯铬和纯钨试验,结果如图21所示,在氧气屏蔽环境下刀具磨损最小,并且不同的金属氧化物形成的难易程度不同,随着氧气压力的增大,金属氧化物形成的速率和浓度都会增大,在超声振动辅助的作用下,氧化物的形成对刀具磨损的抑制效果显著。黄帅和唐庆春等[63-64]研究了干切(DC)、冷等离子辅助切削(DCP)、椭圆超声振动辅助切削(DUV)和冷等离子和椭圆超声振动辅助切削(DCU)对镜面钢NAK80表面完整性及刀具磨损状态的影响规律,试验中所用的冷等离子发生装置和椭圆振动系统的示意图如图22所示,试验结果如图23所示,试验结果表明冷等离子体和超声椭圆振动共同作用时抑制金刚石刀具磨损的效果最佳,但会引起切削刃出现轻微的粘附磨损。相比普通金刚石切削黑色金属加工,冷等离子体辅助超声椭圆振动切削有利于抑制碳元素向工件和切屑中发生扩散且有效切削距离有了很大的提高。ZOU等[65]采用不同切削润滑液和低温微量润滑(CMQL)和超声振动切削结合起来辅助金刚石刀具加工模具钢,结果发现,碳纳米流体和低温微量润滑以及超声振动切削辅助切削的效果最好,对金刚石刀具磨损的抑制效果最强。

  • 除了上述的工艺外,还有一些其他抑制金刚石刀具快速磨损的工艺。CASSTEVENS[66]尝试了分别以CH4、CO2作为保护气体,在碳饱和条件下进行加工试验来抑制化学反应,结果发现CO2气氛下刀具磨损没有明显改善,而CH4气氛相比CO2和空气气氛中的加工刀具磨损有所降低,但是去掉切削液之后,CH4 气氛保护切削的刀具磨损和在空气中一样磨损十分迅速,说明切削区域的散热对CH4气氛保护效果影响很大。而HITCHINER和WILKS[67-68]发现氢气和甲烷的存在增加了而非减少了刀具磨损,他们把这种现象归因于原子氢和金刚石反应生成了烃,造成了刀具更加剧烈的磨损。PAUL等[69]分别在空气中和氦气中加工了纯铁,发现金刚石刀具在氦气中的刀具磨损和在空气中一样十分迅速,以至于还没加工到工件中心就已经停止了切削。BRINKSMEIER等[70]尝试了在氩气和氮气中切削钢铁材料,发现刀具磨损和表面质量都没得到改善,而且工件的碳含量对刀具磨损率也没什么影响。SONG等[71]通过金刚石刀具间歇式车削不锈钢来研究接触时间对刀具磨损的影响,结果表明当接触时间小于0.3ms时金刚石刀具磨损能够得到显著抑制,而与切削速度无关。YUSUPOV等[72]采用可向切削区域提供冷却剂和润滑剂的金刚石砂轮以0.02mm的切深加工了几种不同的钢,发现加工的工件表面没有热缺陷,钢的结构也没有发生变化,金刚石砂轮表面磨损很少,依旧保持着切削性能。CHU等[73]借助分子动力学仿真,使用氧化石墨烯胶态悬浮液做切削液辅助金刚石刀具切削AISI12L14低碳钢,试验结果表明石墨氧化物能够抑制碳原子的扩散,并代替刀具中的碳原子扩散到工件当中,有效的抑制了金刚石刀具的磨损。

  • 图21 气体屏蔽和超声振动辅助复合加工试验结果:(a) PCD刀具在不同屏蔽气体下加工不锈钢后的刀具磨损 (f r=3 μm/r, L c=250m,v c=2.5m/min,a=1 μm);(b) 单晶金刚石刀具 (SCD) 在氧气和空气中加工不锈钢后的刀具磨损 (f r=3 μm/r, L c=500m,v c=2.5m/min);(c) SCD刀具在不同屏蔽气体中加工纯铁和纯铬后的刀具磨损 (f r=3 μm/r,v c=2.5m/min); (d) SCD刀具在不同屏蔽气体中加工纯钨后的刀具磨损[62]

  • Fig.21 Gas shielding and ultrasonic vibration assisted composite machining test results: (a) Tool wear of PCD tool after machining stainless steel under different shielding gases (f r=3 μm/r,L c=250m,v c=2.5m/min,a=1 μm); (b) Tool wear of single crystal diamond tools (SCD) after processing stainless steel in oxygen and air (f r=3 μm/r,L c=500m,v c=2.5m/min); (c) Tool wear after machining pure iron and chromium in different shielding gases by SCD tools (f r=3 μm/r,v c=2.5m/min); (d) Tool wear after machining pure tungsten in different shielding gases by SCD tools[62]

  • 图22 冷等离子发生装置和椭圆振动系统[64]

  • Fig.22 Cold plasma generator and elliptical vibration system[64]

  • 图23 加工表面质量和刀具磨损:(a) 四种不同的方法加工镜面钢NAK80后工件的表面粗糙度; (b) 四种不同的方法切削镜面钢NAK80后工件的表面残余应力;(c) 四种不同方法加工后的刀具磨损[64]

  • Fig.23 Machining surface quality and tool wear: (a) Surface roughness of workpiece after NAK80of mirror steel by four different methods; (b) Four different methods of cutting surface residual stress of mirror steel NAK80; (c) Tool wear after processing by four different methods[64]

  • 综上,超声振动辅助切削和其他方法的结合大部分对金刚石刀具加工黑色金属刀具磨损的都有着更好的抑制作用。但纯气体保护氛围切削,由于切削过程中,刀具和工件的接触是十分紧密的,气体不确定是否可以进入到切削区域,或者进入量的大小不确定,但总的来说,纯气体保护的效果相比其他工艺效果并没有那么显著,距离实用阶段还需要继续深入探究。

  • 3 结论和展望

  • 为了实现金刚石刀具超精密加工黑色金属,各国研究人员从微观到宏观,通过理论分析、仿真模拟和试验验证对刀具磨损机理进行了深入的探索与分析,并提出一系列针对抑制刀具磨损的工艺方法。但还不能大规模应用到工业生产当中,主要存在以下三个关键问题:

  • (1) 金刚石的刀具在加工黑色金属时会发生剧烈的磨损。化学磨损是金刚石刀具加工黑色金属时主要的磨损原因,金刚石刀具在切削时,切削区域的高温高压加上一些金属的催化下会使金刚石发生剧烈的石墨化,一般的切削过程中刀具和工件紧密接触,这严重影响了切削区域保护气体的渗入和冷却介质的冷却效果,使刀具发生不可避免的剧烈磨损。

  • (2) 各种方法虽然对金刚石刀具磨损的抑制有着一定的效果,但每种方法还存在着各自一些问题。刀具涂层的方法建立起化学壁垒,虽然在一定程度上保护了刀具,却改变了金刚石刀具的本身刃口锋利的特性,而且涂层附着力差,易脱落;刀具离子注入,虽然提高了刀具的表面硬化程度,却改变了刀具的晶格结构,严重影响了金刚石刀具本身优异的切削性能;工件改性的方法虽然通过渗入新元素阻止刀具中的碳元素与工件中的铁元素相结合,从而抑制刀具的化学磨损,但是由于热处理改性过程会导致工件的物理化学性质发生变化,从本质上来说是对另一种新材料的加工,而且改性现在大多是定性,距离定量控制还有一定的距离;目前来看,超声振动方法在金刚石精密切削黑色金属方面取得了较好的效果,但是会在工件表面留下振纹,且切削速度受到振动幅度与振动频率的限制,加工效率偏低;低温加工方法虽然极大地降低了切削区域的温度,有利于刀具寿命的提高,但是对于超精密加工,特别是薄壁零件的精密加工,低温方法可能会影响最终的加工精度;气氛保护的方法目前取得的效果甚微,推测是有效渗入切削区域并持续参与切削的气体非常有限。

  • (3) 复合加工已经成为现在金刚石切削黑色金属的一种趋势。虽然复合加工不一定产生叠加的优化效果,甚至会比单一工艺产生更严重的刀具磨损,但超声振动辅助和其他工艺相结合大多得了较好的优化效果,将金刚石刀具磨损抑制效果进一步提升,是目前金刚石加工领域采用较多的复合加工方式。未来,为了提高金刚石刀具加工黑色金属的实用性,可能需要上述各种工艺的智能结合,比如低温液氮或者低温二氧化碳和超声振动结合,工件氮化和微量润滑结合,冷等离子和超声振动结合,工件氮化和超声振动结合等复合加工方法,在原有基础上对这些方法进行进一步的探索,来不断提高金刚石刀具的刀具寿命。

  • 由于金刚石刀具切削黑色金属时刀具磨损机理的复杂性,化学反应发生在一瞬之间,无法真正对切削区域发生的反应进行直接观察,就算是仿真,也无法完全模拟实际切削时的真实情况。因此,还须结合理论、仿真和试验进行磨损机理进一步探索,分析出不同加工条件下的主要和次要磨损因素,而且要在现有的加工工艺基础上,结合刀具磨损机理,发展新的方法和工艺,以期实现金刚石刀具对黑色金属的超精密加工。

  • 参考文献

    • [1] 骆红云,焦红,范猛,等.金刚石刀具与精密超精密加工技术[J].长春光学精密机械学院学报,2000(1):49-53.LUO Hongyun,JIAO Hong,FAN Meng,et al.Diamond tool and precision ultra-precision machining technology[J].Journal of Changchun Optical Precision Machinery Institute,2000(1):49-53.(in Chinese)

    • [2] 马玉平,魏超,张遥,等.飞秒激光刻蚀对纳米金刚石薄膜表面微观特性的影响[J].中国表面工程,2019,32(3):1-10.MA Yuping,WEI Chao,ZHANG Yao,et al.Effects of femtosecond laser ablation on surface micro-properties of nano-crystalline diamond coating[J].China Surface Engineering,2019,32(3):1-10.(in Chinese)

    • [3] 张志强,向道辉,胡永伟,等.织构对硼掺杂金刚石涂层刀具摩擦学性能的影响[J].中国表面工程,2021,34(1):50-59.ZHANG Zhiqiang,XIANG Daohui,HU Yongwei,et al.Effects of texture on tribological properties of boron-doped diamond coated tools[J].China Surface Engineering,2021,34(1):50-59.(in Chinese)

    • [4] 赵亮,程凯,丁辉,等.超精密慢刀伺服金刚石车削加工的关键工艺问题研究[J].制造技术与机床,2020(5):85-88.ZHAO Liang,CHENG Kai,DING Hui,et al.Research on key process problems of servo diamond machining with ultra-precision slow knife[J].Manufacturing Technology and Machine Tools,2020(5):85-88.(in Chinese)

    • [5] 唐双林,楚翀,贾鲁.锗单晶球面镜超精密车削加工研究[J].机械制造,2019,57(6):29-30,34.TANG Shuangling,CHU Chong,JIA Lu.Study on ultra-precision turning of germanium single crystal spherical mirror[J].Machinery,2019,57(06):29-30,34.(in Chinese)

    • [6] 曹义.超精密铣削加工自由曲面光学元件误差补偿方法[J].组合机床与自动化加工技术,2018(11):96-98.CAO Yi.Error compensation for optical components of free surface machining by ultra-precision milling[J].Modular Machine Tool and Automatic Manufacturing Technique,2018(11):96-98.(in Chinese)

    • [7] 袁菘,郭晓光,金洙吉,等.金刚石化学机械抛光研究现状[J].表面技术,2020,49(4):11-22.YUAN Song,GUO Xiaoguang,JING Zhuji,et al.Research status of diamond chemical and mechanical polishing[J].Surface Technology,2020,49(4):96-98.(in Chinese)

    • [8] 罗松保.金刚石超精密切削刀具技术概述[J].航空精密制造技术,2007(1):1-4.LUO Songbao.An overview of diamond ultra precision cutting tool technology[J].Aviation Precision Manufacturing Technology,2007(1):1-4.(in Chinese)

    • [9] 陈晓红.机械行业常用黑色金属材料及部分加工装置 [J].装备机械,2006(4):22-29.CHEN Xiaohong.Ferrous metal materials and parts processing devices commonly used in machinery industry[J].Magazine on Equipment Machinery,2006(4):22-29.(in Chinese)

    • [10] 白海强,钟黎声,康玲,等.钢铁表面高强韧涂层的研究进展[J].表面技术,2021,50(7):97-105.BAI Haiqiang,ZHONG Lisheng,KANG Ling,et al.Progress of high toughness coating on steel surface[J].Surface Technology,2021,50(7):97-105.(in Chinese)

    • [11] 陆世英,张廷凯,杨长强.不锈钢[M].北京:原子能出版社,1995:10-50.LU Shiying,ZHANG Yankai,YANG Changqiang.Stainless steel[M].Beijing:Atomic Energy Press,1995:10-50.(in Chinese)

    • [12] MCKEOWN P A.The role of precision engineering in manufacturing of the future[J].CIRP Annals— Manufacturing Technology,1987,36(2):495-501.

    • [13] ZONG W J,CHENG K,LI D,et al.The ultimate sharpness of single-crystal diamond cutting tools—Part Ⅰ:Theoretical analyses and predictions[J].International Journal of Machine Tools & Manufacture,2007,47(5):852-863.

    • [14] ZONG W J,LI D,SUN T,et al.The ultimate sharpness of single-crystal diamond cutting tools—Part Ⅱ:A novel efficient lapping process[J].International Journal of Machine Tools & Manufacture,2007,47(5):864-871.

    • [15] LANE B M,DOW T A,SCATTERGOOD R.Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel[J].Wear,2013,300(1-2):216-224.

    • [16] ZOU L,DONG G J,ZHOU M.Investigation on frictional wear of single crystal diamond against ferrous metals[J].International Journal of Refractory Metals and Hard Materials,2013,14:174-179.

    • [17] 邹莱.黑色金属金刚石切削刀具磨损研究[D].哈尔滨:哈尔滨工业大学,2011.ZOU Lai.Study on wear of ferrous metal diamond cutting tool[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [18] 周明,邹莱.金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验 [J].光学精密工程,2013,21(07):1786-1794.ZHOU Ming,ZOU Lai.Test of friction and wear mechanism of tool in diamond cutting ferrous metal[J].Optical Precision Engineering,2013,21(07):1786-1794.(in Chinese)

    • [19] 李占杰.超精密切削黑色金属的工艺及机理研究[D].天津:天津大学,2013.LI Zhanjie.Study on the process and mechanism of superfine close cutting of ferrous metal[D].Tianjin:Tianjin University,2013.(in Chinese)

    • [20] NARULKAR R,BUKKAPATNAM S,RAFF L M,et al.Graphitization as a precursor to wear of diamond in machining pure iron:A molecular dynamics investigation[J].Computational Materials Science,2009,45(2):358-366.

    • [21] ZOU L,YIN J C,HUANG Y,et al.Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J].Diamond and Related Materials,2018,86:29-40.

    • [22] SHIMADA S,TANAKA H,HIGUCHI M,et al.Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals[J].CIRP Annals Manufacturing Technology,2004,53(1):57-60.

    • [23] CHAGAS V M D,PEÇANHA M P,GUIMARÃES R D S,et al.The influence of titanium carbide(TiC)coating over the thermal damage processes in diamonds[J].Journal of Alloys and Compounds,2019,791:438-444.

    • [24] BRINKSMEIER E,GLÄBE R.Advances in precision machining of steel[J].CIRP Annals — Manufacturing Technology,2001,50(1):385-388.

    • [25] SUN Y,ZHANG C,WU J,et al.Enhancement of oxidation resistance via titanium boron carbide coatings on diamond particles[J].Diamond and Related Materials,2018,92:74-80.

    • [26] KIM H J,CHOI H L,AHN Y S.Chromium carbide coating of diamond particles using low temperature molten salt mixture[J].Journal of Alloys and Compounds,2019,805:648-653.

    • [27] LEE Y J,HAO L,LÜDER J,et al.Micromachining of ferrous metal with an ion implanted diamond cutting tool[J].Carbon,2019,152:598-608.

    • [28] STOCK H R,SCHLETT V,KOHLSCHEEN J,et al.Characterization and mechanical properties of ion-implanted diamond surfaces[J].Surface Coat Technology,2001,146-147(1):425-429.

    • [29] 王云,谢小豪,汪艳亮,等.硬质合金刀具涂层的研究进展[J].有色金属科学与工程,2019,10(1):60-66.WANG Yun,XIE Xiaohao,WANG Yanliang,et al.Research progress of carbide tool coating[J].Nonferrous Metals Science and Engineering,2019,10(1):60-66.(in Chinese)

    • [30] WANG Y L,SUZUKI N.Investigation of tool wear suppression in ultraprecision diamond machining of die steel[J].Precision Engineering,2011,35(4):677-685.

    • [31] WANG Y L,ZHAO Q L,SHANG Y J,et al.Ultraprecision machining of Fresnel microstructure on die steel using single crystal diamond tool[J].Journal of Materials Processing Technology,2011,211(12):2152-2159.

    • [32] BRINKSMEIER E,GLÄBE R,OSMER J.Ultra-precision diamond cutting of steel molds[J].CIRP Annals,2006,55(1):551-554.

    • [33] OSMER J,GLÄBE R,RIEMER O,et al.Diamond milling of nitrided steels for optical mold making[J].Journal of Vacuum Science & Technology,2009,27:1238-1240.

    • [34] BRINKSMEIER E,GLÄBE R,OSMER J.Diamond cutting of FeN-layers on steel substrates for optical mold making[J].Key Engineering Materials,2010,438:31-34.

    • [35] CHAO C L,CHEN C C,CHANG C J,et al.Single-point diamond turning of plasma-nitrided stainless steel[J].Key Engineering Materials,2008,364-366:601-606.

    • [36] SAITO H,JUNG H,SHAMOTO E,et al.Suppression of tool damage in ultraprecision diamond machining of stainless steel by applying electron-beam-excited plasma nitriding[J].Precision Engineering,2020,63:126-136.

    • [37] FURUSHIRO N,TANAKA H,HIGUCHI M,et al.Suppression mechanism of tool wear by phosphorous addition in diamond turning of electroless nickel deposits[J].CIRP Annals,2010,59(1):105-108.

    • [38] 甄建政,时启伟,施锦,等.钢铁材料低温表面渗氮技术的研究进展[J].热加工工艺,2019,48(6):35-40.ZHEN Jianzheng,SHI Qiwei,SHI Mian,et al.Research progress of low-temperature surface nitriding technology of iron and steel materials[J].Thermal processing process,2019,48(6):35-40.(in Chinese)

    • [39] 隈部淳一郎.精密加工-振动切削基础与应用[M].北京:机械工业出版社,1985.KUMABE J.Basic and application of precision machining-vibration cutting[M].Beijing:China Machine Press,1985.(in Chinese)

    • [40] BREHL D E,DOW T A.Review of vibration-assisted machining[J].Precision Engineering,2008,32(3):153-172.

    • [41] ZHOU M,EOW Y T,NGOI B K A,et al.Vibration-assisted precision machining of steel with pcd tools[J].Materials and Manufacturing Processes,2003,18(5):825-834.

    • [42] MORIWAKI T,SHAMOTO E.Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration[J].CIRP Annals,1991,40(1):559-562.

    • [43] BULLA B,KLOCKE F,DAMBON O,et al.Influence of different steel alloys on the machining results in ultrasonic assisted diamond turning[J].Key Engineering Materials,2012,523-524:203-208.

    • [44] FUKUMORI S,ITOIGAWA F,MAEGAWA S,et al.Suppression mechanism of diamond tool wear in ultrasonic vibration cutting[C]//Proceedings of the 22nd International Esaform Conference on Material Forming,ESAFORM 2019,2019.

    • [45] SHAMOTO E,MORIWAKI T.Study on elliptical vibration cutting[J].CIRP Annals,1994,43(1):35-38.

    • [46] SHAMOTO E,MORIWAKI T.Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting[J].CIRP Annals,1999,48:441-444.

    • [47] SHAMOTO E.Ultraprecision micromachining of hardened die steel by applying elliptical vibration cutting[J].JSME News,2005,4:2-4.

    • [48] JUNG H,HAYASAKA T,SHAMOTO E.Study on process monitoring of elliptical vibration cutting by utilizing internal data in ultrasonic elliptical vibration device[J].International Journal Precision Engineering Manufacturing-Green Technology,2018,5(5):571-581.

    • [49] SHAMOTO E,SUZUKI N,HINO R.Analysis of 3D elliptical vibration cutting with thin shear plane model[J].CIRP Annals-Manufacturing Technology,2008,57(1):57-60.

    • [50] ZHANG X Q,LIU K,KUMAR A S,et al.A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel[J].Journal of Materials Processing Tech,2014,214(2):496-506.

    • [51] BULLA B,KLOCKE F,DAMBON O,et al.Ultrasonic assisted diamond turning of hardened steel for mould manufacturing[J].Key Engineering Materials,2012,516:437-442.

    • [52] ZHANG J G,ZHANG J J,ROSENKRANZ A,et al.Frictional properties of surface textures fabricated on hardened steel by elliptical vibration diamond cutting[J].Precision Engineering,2019,59:66-72.

    • [53] YUAN Y J,ZHANG D W,JING X B,et al.Freeform surface fabrication on hardened steel by double frequency vibration cutting[J].Journal of Materials Processing Technology,2020,275:116369.

    • [54] 王红飞.超声振动车削加工的研究现状及进展[J].机械设计与制造,2007(10):212-214.WANG Hongfei.Research status and progress of ultrasonic vibration turning processing[J].Mechanical Design and Manufacturing.2007(10):212-214.(in Chinese)

    • [55] 李晋年,袁哲俊,周明,等.黑色金属的超低温金刚石超精密切削[J].机械工程学报,1989,25(1):69-72.LI Jinnian,YUAN Zhejun,ZHOU M,et al.Ultra-low temperature diamond ultra-precision cutting for ferrous metals[J].Journal of Mechanical Engineering,1989,25(1):69-72.(in Chinese)

    • [56] EVANS C,BRYAN J B.Cryogenic diamond turning of stainless steel[J].CIRP Annals-Manufacturing Technology,1991,40(1):571-575.

    • [57] ABELE E,SCHRAMM B.Using PCD for machining CGI with a CO2 coolant system[J].Production Engineering,2008,2(2):165-169.

    • [58] HOTZ H,KIRSCH B,BECKER S,et al.Improving the surface morphology of metastable austenitic steel AISI 347 in a two-step turning process[J].Procedia CIRP,2018,71:160-165.

    • [59] 高东强,曾行军,何乃如,等.低温切削技术在难加工材料加工中的应用[J].制造技术与机床,2020(6):39-43.GAO Dongqiang,ZENG Xingjun,HE Nairu,et al.Application of cryogenic cutting in unmaterial processing[J].Manufacturing technology and machine tools,2020(6):39-43.(in Chinese)

    • [60] 周志民.天然金刚石切削黑色金属技术研究[D].大连:大连理工大学,2014.ZHOU Zhiming.Study on the technology of natural diamond diamond cutting[D].Dalian:Dalian University of Technology,2014.(in Chinese)

    • [61] 张元良,周志民,黄春英,等.天然金刚石振动与气体保护切削黑色金属技术研究[J].机械科学与技术,2004(3):339-340.ZHANG Yuanliang,ZHOU Zhiming,HUANG Chunying,et al.Study on natural diamond vibration and gas protection cutting of ferrous metal[J].Mechanical Science and Technology for Aerospace Engineering,2004(3):339-340.(in Chinese)

    • [62] ZHANG X Q,DENG H,LIU K.Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools[J].CIRP Annals-Manufacturing Technology,2019,68(1):69-72.

    • [63] 黄帅.冷等离子体辅助金刚石切削黑色金属基础研究 [D].大连:大连理工大学,2017.HUANG Shuai.Basic research on ferrous metal in diamond cutting by cold plasma[D].Dalian:Dalian University of Technology,2017.(in Chinese)

    • [64] TANG Q C,YIN S H,CHEN F J,et al.New technology for cutting ferrous metal with diamond tools[J].Diamond & Related Materials,2018,88:32-42.

    • [65] ZOU L,HUANG Y,ZHOU M,et al.Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning of 3Cr2NiMo steel[J].Materials and Manufacturing Processes,2018,33(9):943-949.

    • [66] CASSTEVENS J M.Diamond turning of steel in carbon-saturated atmospheres[J].Precision Engineering,1983,5(1):9-15.

    • [67] HITCHINER M P,WILKS J.Factors affecting chemical wear during machining[J].Wear,1984,93(1):63-80.

    • [68] HITCHINER M P,WILKS J.Some remarks on the chemical wear of diamond and cubic BN during turning and grinding[J].Wear,1987,114(3):327-338.

    • [69] PAUL E,EVANS C J,MANGAMELLI A,et al.Chemical aspects of tool wear in single point diamond turning[J].Precision Engineering,1996,18(1):4-19.

    • [70] BRINKSMEIER E,PREUß W,GLÄBE R.Single point diamond turning of steel[C]//Proceedings of the 1st International Euspen Conference,Bremen,1999:446-449.

    • [71] SONG Y C,NEZU K,PARK C H,et al.Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method[J].International Journal of Machine Tools and Manufacture,2009,49(3-4):339-343.

    • [72] YUSUPOV G K,KOLEGOV S A.Grinding of steel by diamond wheels[J].Russian Engineering Research,2014,34(4):216-217.

    • [73] SMITH P J,CHU B,SINGH E,et al.Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel[J].Journal of Manufacturing Processes,2015,17:41-47.

  • 参考文献

    • [1] 骆红云,焦红,范猛,等.金刚石刀具与精密超精密加工技术[J].长春光学精密机械学院学报,2000(1):49-53.LUO Hongyun,JIAO Hong,FAN Meng,et al.Diamond tool and precision ultra-precision machining technology[J].Journal of Changchun Optical Precision Machinery Institute,2000(1):49-53.(in Chinese)

    • [2] 马玉平,魏超,张遥,等.飞秒激光刻蚀对纳米金刚石薄膜表面微观特性的影响[J].中国表面工程,2019,32(3):1-10.MA Yuping,WEI Chao,ZHANG Yao,et al.Effects of femtosecond laser ablation on surface micro-properties of nano-crystalline diamond coating[J].China Surface Engineering,2019,32(3):1-10.(in Chinese)

    • [3] 张志强,向道辉,胡永伟,等.织构对硼掺杂金刚石涂层刀具摩擦学性能的影响[J].中国表面工程,2021,34(1):50-59.ZHANG Zhiqiang,XIANG Daohui,HU Yongwei,et al.Effects of texture on tribological properties of boron-doped diamond coated tools[J].China Surface Engineering,2021,34(1):50-59.(in Chinese)

    • [4] 赵亮,程凯,丁辉,等.超精密慢刀伺服金刚石车削加工的关键工艺问题研究[J].制造技术与机床,2020(5):85-88.ZHAO Liang,CHENG Kai,DING Hui,et al.Research on key process problems of servo diamond machining with ultra-precision slow knife[J].Manufacturing Technology and Machine Tools,2020(5):85-88.(in Chinese)

    • [5] 唐双林,楚翀,贾鲁.锗单晶球面镜超精密车削加工研究[J].机械制造,2019,57(6):29-30,34.TANG Shuangling,CHU Chong,JIA Lu.Study on ultra-precision turning of germanium single crystal spherical mirror[J].Machinery,2019,57(06):29-30,34.(in Chinese)

    • [6] 曹义.超精密铣削加工自由曲面光学元件误差补偿方法[J].组合机床与自动化加工技术,2018(11):96-98.CAO Yi.Error compensation for optical components of free surface machining by ultra-precision milling[J].Modular Machine Tool and Automatic Manufacturing Technique,2018(11):96-98.(in Chinese)

    • [7] 袁菘,郭晓光,金洙吉,等.金刚石化学机械抛光研究现状[J].表面技术,2020,49(4):11-22.YUAN Song,GUO Xiaoguang,JING Zhuji,et al.Research status of diamond chemical and mechanical polishing[J].Surface Technology,2020,49(4):96-98.(in Chinese)

    • [8] 罗松保.金刚石超精密切削刀具技术概述[J].航空精密制造技术,2007(1):1-4.LUO Songbao.An overview of diamond ultra precision cutting tool technology[J].Aviation Precision Manufacturing Technology,2007(1):1-4.(in Chinese)

    • [9] 陈晓红.机械行业常用黑色金属材料及部分加工装置 [J].装备机械,2006(4):22-29.CHEN Xiaohong.Ferrous metal materials and parts processing devices commonly used in machinery industry[J].Magazine on Equipment Machinery,2006(4):22-29.(in Chinese)

    • [10] 白海强,钟黎声,康玲,等.钢铁表面高强韧涂层的研究进展[J].表面技术,2021,50(7):97-105.BAI Haiqiang,ZHONG Lisheng,KANG Ling,et al.Progress of high toughness coating on steel surface[J].Surface Technology,2021,50(7):97-105.(in Chinese)

    • [11] 陆世英,张廷凯,杨长强.不锈钢[M].北京:原子能出版社,1995:10-50.LU Shiying,ZHANG Yankai,YANG Changqiang.Stainless steel[M].Beijing:Atomic Energy Press,1995:10-50.(in Chinese)

    • [12] MCKEOWN P A.The role of precision engineering in manufacturing of the future[J].CIRP Annals— Manufacturing Technology,1987,36(2):495-501.

    • [13] ZONG W J,CHENG K,LI D,et al.The ultimate sharpness of single-crystal diamond cutting tools—Part Ⅰ:Theoretical analyses and predictions[J].International Journal of Machine Tools & Manufacture,2007,47(5):852-863.

    • [14] ZONG W J,LI D,SUN T,et al.The ultimate sharpness of single-crystal diamond cutting tools—Part Ⅱ:A novel efficient lapping process[J].International Journal of Machine Tools & Manufacture,2007,47(5):864-871.

    • [15] LANE B M,DOW T A,SCATTERGOOD R.Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel[J].Wear,2013,300(1-2):216-224.

    • [16] ZOU L,DONG G J,ZHOU M.Investigation on frictional wear of single crystal diamond against ferrous metals[J].International Journal of Refractory Metals and Hard Materials,2013,14:174-179.

    • [17] 邹莱.黑色金属金刚石切削刀具磨损研究[D].哈尔滨:哈尔滨工业大学,2011.ZOU Lai.Study on wear of ferrous metal diamond cutting tool[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [18] 周明,邹莱.金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验 [J].光学精密工程,2013,21(07):1786-1794.ZHOU Ming,ZOU Lai.Test of friction and wear mechanism of tool in diamond cutting ferrous metal[J].Optical Precision Engineering,2013,21(07):1786-1794.(in Chinese)

    • [19] 李占杰.超精密切削黑色金属的工艺及机理研究[D].天津:天津大学,2013.LI Zhanjie.Study on the process and mechanism of superfine close cutting of ferrous metal[D].Tianjin:Tianjin University,2013.(in Chinese)

    • [20] NARULKAR R,BUKKAPATNAM S,RAFF L M,et al.Graphitization as a precursor to wear of diamond in machining pure iron:A molecular dynamics investigation[J].Computational Materials Science,2009,45(2):358-366.

    • [21] ZOU L,YIN J C,HUANG Y,et al.Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J].Diamond and Related Materials,2018,86:29-40.

    • [22] SHIMADA S,TANAKA H,HIGUCHI M,et al.Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals[J].CIRP Annals Manufacturing Technology,2004,53(1):57-60.

    • [23] CHAGAS V M D,PEÇANHA M P,GUIMARÃES R D S,et al.The influence of titanium carbide(TiC)coating over the thermal damage processes in diamonds[J].Journal of Alloys and Compounds,2019,791:438-444.

    • [24] BRINKSMEIER E,GLÄBE R.Advances in precision machining of steel[J].CIRP Annals — Manufacturing Technology,2001,50(1):385-388.

    • [25] SUN Y,ZHANG C,WU J,et al.Enhancement of oxidation resistance via titanium boron carbide coatings on diamond particles[J].Diamond and Related Materials,2018,92:74-80.

    • [26] KIM H J,CHOI H L,AHN Y S.Chromium carbide coating of diamond particles using low temperature molten salt mixture[J].Journal of Alloys and Compounds,2019,805:648-653.

    • [27] LEE Y J,HAO L,LÜDER J,et al.Micromachining of ferrous metal with an ion implanted diamond cutting tool[J].Carbon,2019,152:598-608.

    • [28] STOCK H R,SCHLETT V,KOHLSCHEEN J,et al.Characterization and mechanical properties of ion-implanted diamond surfaces[J].Surface Coat Technology,2001,146-147(1):425-429.

    • [29] 王云,谢小豪,汪艳亮,等.硬质合金刀具涂层的研究进展[J].有色金属科学与工程,2019,10(1):60-66.WANG Yun,XIE Xiaohao,WANG Yanliang,et al.Research progress of carbide tool coating[J].Nonferrous Metals Science and Engineering,2019,10(1):60-66.(in Chinese)

    • [30] WANG Y L,SUZUKI N.Investigation of tool wear suppression in ultraprecision diamond machining of die steel[J].Precision Engineering,2011,35(4):677-685.

    • [31] WANG Y L,ZHAO Q L,SHANG Y J,et al.Ultraprecision machining of Fresnel microstructure on die steel using single crystal diamond tool[J].Journal of Materials Processing Technology,2011,211(12):2152-2159.

    • [32] BRINKSMEIER E,GLÄBE R,OSMER J.Ultra-precision diamond cutting of steel molds[J].CIRP Annals,2006,55(1):551-554.

    • [33] OSMER J,GLÄBE R,RIEMER O,et al.Diamond milling of nitrided steels for optical mold making[J].Journal of Vacuum Science & Technology,2009,27:1238-1240.

    • [34] BRINKSMEIER E,GLÄBE R,OSMER J.Diamond cutting of FeN-layers on steel substrates for optical mold making[J].Key Engineering Materials,2010,438:31-34.

    • [35] CHAO C L,CHEN C C,CHANG C J,et al.Single-point diamond turning of plasma-nitrided stainless steel[J].Key Engineering Materials,2008,364-366:601-606.

    • [36] SAITO H,JUNG H,SHAMOTO E,et al.Suppression of tool damage in ultraprecision diamond machining of stainless steel by applying electron-beam-excited plasma nitriding[J].Precision Engineering,2020,63:126-136.

    • [37] FURUSHIRO N,TANAKA H,HIGUCHI M,et al.Suppression mechanism of tool wear by phosphorous addition in diamond turning of electroless nickel deposits[J].CIRP Annals,2010,59(1):105-108.

    • [38] 甄建政,时启伟,施锦,等.钢铁材料低温表面渗氮技术的研究进展[J].热加工工艺,2019,48(6):35-40.ZHEN Jianzheng,SHI Qiwei,SHI Mian,et al.Research progress of low-temperature surface nitriding technology of iron and steel materials[J].Thermal processing process,2019,48(6):35-40.(in Chinese)

    • [39] 隈部淳一郎.精密加工-振动切削基础与应用[M].北京:机械工业出版社,1985.KUMABE J.Basic and application of precision machining-vibration cutting[M].Beijing:China Machine Press,1985.(in Chinese)

    • [40] BREHL D E,DOW T A.Review of vibration-assisted machining[J].Precision Engineering,2008,32(3):153-172.

    • [41] ZHOU M,EOW Y T,NGOI B K A,et al.Vibration-assisted precision machining of steel with pcd tools[J].Materials and Manufacturing Processes,2003,18(5):825-834.

    • [42] MORIWAKI T,SHAMOTO E.Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration[J].CIRP Annals,1991,40(1):559-562.

    • [43] BULLA B,KLOCKE F,DAMBON O,et al.Influence of different steel alloys on the machining results in ultrasonic assisted diamond turning[J].Key Engineering Materials,2012,523-524:203-208.

    • [44] FUKUMORI S,ITOIGAWA F,MAEGAWA S,et al.Suppression mechanism of diamond tool wear in ultrasonic vibration cutting[C]//Proceedings of the 22nd International Esaform Conference on Material Forming,ESAFORM 2019,2019.

    • [45] SHAMOTO E,MORIWAKI T.Study on elliptical vibration cutting[J].CIRP Annals,1994,43(1):35-38.

    • [46] SHAMOTO E,MORIWAKI T.Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting[J].CIRP Annals,1999,48:441-444.

    • [47] SHAMOTO E.Ultraprecision micromachining of hardened die steel by applying elliptical vibration cutting[J].JSME News,2005,4:2-4.

    • [48] JUNG H,HAYASAKA T,SHAMOTO E.Study on process monitoring of elliptical vibration cutting by utilizing internal data in ultrasonic elliptical vibration device[J].International Journal Precision Engineering Manufacturing-Green Technology,2018,5(5):571-581.

    • [49] SHAMOTO E,SUZUKI N,HINO R.Analysis of 3D elliptical vibration cutting with thin shear plane model[J].CIRP Annals-Manufacturing Technology,2008,57(1):57-60.

    • [50] ZHANG X Q,LIU K,KUMAR A S,et al.A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel[J].Journal of Materials Processing Tech,2014,214(2):496-506.

    • [51] BULLA B,KLOCKE F,DAMBON O,et al.Ultrasonic assisted diamond turning of hardened steel for mould manufacturing[J].Key Engineering Materials,2012,516:437-442.

    • [52] ZHANG J G,ZHANG J J,ROSENKRANZ A,et al.Frictional properties of surface textures fabricated on hardened steel by elliptical vibration diamond cutting[J].Precision Engineering,2019,59:66-72.

    • [53] YUAN Y J,ZHANG D W,JING X B,et al.Freeform surface fabrication on hardened steel by double frequency vibration cutting[J].Journal of Materials Processing Technology,2020,275:116369.

    • [54] 王红飞.超声振动车削加工的研究现状及进展[J].机械设计与制造,2007(10):212-214.WANG Hongfei.Research status and progress of ultrasonic vibration turning processing[J].Mechanical Design and Manufacturing.2007(10):212-214.(in Chinese)

    • [55] 李晋年,袁哲俊,周明,等.黑色金属的超低温金刚石超精密切削[J].机械工程学报,1989,25(1):69-72.LI Jinnian,YUAN Zhejun,ZHOU M,et al.Ultra-low temperature diamond ultra-precision cutting for ferrous metals[J].Journal of Mechanical Engineering,1989,25(1):69-72.(in Chinese)

    • [56] EVANS C,BRYAN J B.Cryogenic diamond turning of stainless steel[J].CIRP Annals-Manufacturing Technology,1991,40(1):571-575.

    • [57] ABELE E,SCHRAMM B.Using PCD for machining CGI with a CO2 coolant system[J].Production Engineering,2008,2(2):165-169.

    • [58] HOTZ H,KIRSCH B,BECKER S,et al.Improving the surface morphology of metastable austenitic steel AISI 347 in a two-step turning process[J].Procedia CIRP,2018,71:160-165.

    • [59] 高东强,曾行军,何乃如,等.低温切削技术在难加工材料加工中的应用[J].制造技术与机床,2020(6):39-43.GAO Dongqiang,ZENG Xingjun,HE Nairu,et al.Application of cryogenic cutting in unmaterial processing[J].Manufacturing technology and machine tools,2020(6):39-43.(in Chinese)

    • [60] 周志民.天然金刚石切削黑色金属技术研究[D].大连:大连理工大学,2014.ZHOU Zhiming.Study on the technology of natural diamond diamond cutting[D].Dalian:Dalian University of Technology,2014.(in Chinese)

    • [61] 张元良,周志民,黄春英,等.天然金刚石振动与气体保护切削黑色金属技术研究[J].机械科学与技术,2004(3):339-340.ZHANG Yuanliang,ZHOU Zhiming,HUANG Chunying,et al.Study on natural diamond vibration and gas protection cutting of ferrous metal[J].Mechanical Science and Technology for Aerospace Engineering,2004(3):339-340.(in Chinese)

    • [62] ZHANG X Q,DENG H,LIU K.Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools[J].CIRP Annals-Manufacturing Technology,2019,68(1):69-72.

    • [63] 黄帅.冷等离子体辅助金刚石切削黑色金属基础研究 [D].大连:大连理工大学,2017.HUANG Shuai.Basic research on ferrous metal in diamond cutting by cold plasma[D].Dalian:Dalian University of Technology,2017.(in Chinese)

    • [64] TANG Q C,YIN S H,CHEN F J,et al.New technology for cutting ferrous metal with diamond tools[J].Diamond & Related Materials,2018,88:32-42.

    • [65] ZOU L,HUANG Y,ZHOU M,et al.Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning of 3Cr2NiMo steel[J].Materials and Manufacturing Processes,2018,33(9):943-949.

    • [66] CASSTEVENS J M.Diamond turning of steel in carbon-saturated atmospheres[J].Precision Engineering,1983,5(1):9-15.

    • [67] HITCHINER M P,WILKS J.Factors affecting chemical wear during machining[J].Wear,1984,93(1):63-80.

    • [68] HITCHINER M P,WILKS J.Some remarks on the chemical wear of diamond and cubic BN during turning and grinding[J].Wear,1987,114(3):327-338.

    • [69] PAUL E,EVANS C J,MANGAMELLI A,et al.Chemical aspects of tool wear in single point diamond turning[J].Precision Engineering,1996,18(1):4-19.

    • [70] BRINKSMEIER E,PREUß W,GLÄBE R.Single point diamond turning of steel[C]//Proceedings of the 1st International Euspen Conference,Bremen,1999:446-449.

    • [71] SONG Y C,NEZU K,PARK C H,et al.Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method[J].International Journal of Machine Tools and Manufacture,2009,49(3-4):339-343.

    • [72] YUSUPOV G K,KOLEGOV S A.Grinding of steel by diamond wheels[J].Russian Engineering Research,2014,34(4):216-217.

    • [73] SMITH P J,CHU B,SINGH E,et al.Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel[J].Journal of Manufacturing Processes,2015,17:41-47.

  • 手机扫一扫看