en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杜柯,男,1996年出生,硕士。主要研究方向为等离子喷涂固体氧化物燃料电池。E-mail:duke6121@163.com;

宋琛,男,1990年出生,博士,工程师。主要研究方向为热喷涂制备固体氧化物燃料电池。E-mail:phd.songchen@gmail.com;

余敏(通信作者),女,1964年出生,博士,副教授,硕士研究生导师。主要研究方向为热喷涂、激光熔覆等表面工程。E-mail:yumin@home.swjtu.edu.cn

中图分类号:TG174;TM911

DOI:10.11933/j.issn.1007−9289.20210828001

参考文献 1
曹静,王小博,孙翔,等.基于固体氧化物燃料电池的高效清洁发电系统[J].南方能源建设,2020,7(2):28-34.CAO Jing,WANG Xiaobo,SUN Xiang,et al.High-efficiency and clean power generation system based on solid oxide fuel cell[J].Southern Energy Construction,2020,7(2):28-34.(in Chinese)
参考文献 2
WILLIAMS M C,VORA S D,JESIONOWSKI G.Worldwide status of solid oxide fuel cell technology[J].ECS Transactions,2020,96(1):1-10.
参考文献 3
WACHSMAN E D,LEE K T.Lowering the temperature of solid oxide fuel cells[J].Science,2011,334(6058):935-939.
参考文献 4
ZUO N,ZHANG M,MAO Z,et al.Fabrication and characterization of composite electrolyte for intermediate-temperature SOFC[J].Journal of the European Ceramic Society,2011,31(16):3103-3107.
参考文献 5
李静.固体氧化物燃料电池电解质制备方法的研究[J].广州化工,2017(14):23-24,27.LI Jing.Study on the preparation method of solid oxide fuel cell electrolyte[J].Guangzhou Chemical Industry,2017(14):23-24,27.(in Chinese)
参考文献 6
LAKSHMI V V,BAURI R,GANDHI A S,et al.Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs[J].International Journal of Hydrogen Energy,2011,36(22):14936-14942.
参考文献 7
HUANG H,NAKAMURA M,SU P,et al.High-performance ultrathin solid oxide fuel cells for low-temperature operation[J].Journal of the Electrochemical Society,2007,154(1):B20-B4.
参考文献 8
JAISWAL N,TANWAR K,SUMAN R,et al.A brief review on ceria based solid electrolytes for solid oxide fuel cells[J].Journal of Alloys and Compounds,2019,781:984-1005.
参考文献 9
JOH D W,PARK J H,KIM D Y,et al.High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells[J].Journal of Power Sources,2016,320:267-73.
参考文献 10
BADWAL S P S.Stability of solid oxide fuel cell components[J].Solid State Ionics,2001,143(1):39-46.
参考文献 11
BADWAL S P S.Effect of alumina and monoclinic zirconia on the electrical conductivity of Sc2O3-ZrO2 compositions[J].Journal of Materials Science,1983,18(11):3230-3242.
参考文献 12
韩达,吴天植,辛显双,等.低温固体氧化物燃料电池电解质材料[J].中国工程科学,2013,15(2):66-71.HAN Da,WU Tianzhi,XIN Xianshuang,et al.Low-temperature solid oxide fuel cell electrolyte materials[J].Chinese Engineering Science,2013,15(2):66-71.(in Chinese)
参考文献 13
DOSHI R,RICHARDS V L,CARTER J,et al.Development of solid-oxide fuel cells that operate at 500 ℃[J].Journal of the Electrochemical Society,1999,146(4):1273.
参考文献 14
PARK S Y,NA C W,AHN J H,et al.Intermediate-temperature nickel-yttria stabilized zirconia supported tubular solid oxide fuel cells using gadolinia-doped ceria electrolyte[J].Journal of Power Sources,2012,218:119-127.
参考文献 15
VAN HERLE J,SENEVIRATNE D,MCEVOY A.Lanthanide co-doping of solid electrolytes:AC conductivity behaviour[J].Journal of the European Ceramic Society,1999,19(6-7):837-841.
参考文献 16
KHAN M,ISLAM M,BATES D.Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor[J].Journal of Physical Chemistry B,1998,102(17):3099-3104.
参考文献 17
WANG L S,LI C X,LI C J,et al.Performance of La0.8Sr0.2Ga0.8Mg0.2O3-based SOFCs with atmospheric plasma sprayed La-doped CeO2 buffer layer[J].Electrochimica Acta,2018,275:208-217.
参考文献 18
KIM K J,CHOI S W,KIM M Y,et al.Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering[J].Journal of Industrial and Engineering Chemistry,2016,42:69-74.
参考文献 19
ISHIHARA T,ETO H,YAN J.Intermediate temperature solid oxide fuel cells using LaGaO3 based oxide film deposited by PLD method[J].International Journal of Hydrogen Energy,2011,36(2):1862-1867.
参考文献 20
SASAKI K,MURANAKA M,SUZUKI A,et al.Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS[J].Solid State Ionics,2008,179(21):1268-1272.
参考文献 21
SAMMES N,TOMPSETT G,NäFE H,et al.Bismuth based oxide electrolytes—structure and ionic conductivity[J].Journal of the European Ceramic Society,1999,19(10):1801-1826.
参考文献 22
LAARIF A,THEOBALD F.The lone pair concept and the conductivity of bismuth oxides Bi2O3[J].Solid State Ionics,1986,21(3):183-193.
参考文献 23
KHARTON V,MARQUES F,ATKINSON A.Transport properties of solid oxide electrolyte ceramics:A brief review[J].Solid State Ionics,2004,174(1-4):135-149.
参考文献 24
SARAT S,SAMMES N,SMIRNOVA A.Bismuth oxidedoped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells[J].Journal of Power Sources,2006,160(2):892-896.
参考文献 25
NAKAYAMA S,KAGEYAMA T,AONO H,et al.Ionic conductivity of lanthanoid silicates,Ln10(SiO4)6O3(Ln= La,Nd,Sm,Gd,Dy,Y,Ho,Er and Yb)[J].Journal of Materials Chemistry,1995,5(11):1801-1805.
参考文献 26
MARRERO-LóPEZ D,MARTíN-SEDEñO M,PEñA-MARTíNEZ J,et al.Evaluation of apatite silicates as solid oxide fuel cell electrolytes[J].Journal of Power Sources,2010,195(9):2496-2506.
参考文献 27
YANG T,ZHAO H,FANG M,et al.A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs:Synthesis,structural and electrical properties[J].Journal of the European Ceramic Society,2019,39(2-3):424-431.
参考文献 28
田长安,赵娣芳,尹奇异,等.固体氧化物燃料电池电解质薄膜制备技术[J].电源技术,2009,33(8):721-724.TIAN Changan,ZHAO Difang,YIN Qiyi,et al.Preparation technology of electrolyte membrane for solid oxide fuel cell[J].Power Technology,2009,33(8):721-724.(in Chinese)
参考文献 29
NING X,LI Chenxin,LI Changjiu,et al.Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process[J].Materials Science and Engineering:A,2006,428(1-2):98-105.
参考文献 30
KOCH C C.Nanostructured materials:processing,properties and applications[M].Britain,Noruich:William Andrew,2006.
参考文献 31
ZHANG C,LIAO H,LI W,et al.Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J].Journal of Thermal Spray Technology,2006,15(4):598-603.
参考文献 32
VON NIESSEN K,GINDRAT M.Plasma spray-PVD:A new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.
参考文献 33
VON NISSEN K,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.
参考文献 34
李成新,王岳鹏,张山林,等.先进陶瓷涂层结构调控及其在固体氧化物燃料电池中的应用[J].中国表面工程,2017,30(2):1-19.LI Chengxin,WANG Yuepeng,ZHANG Shanlin,et al.Modulation of advanced ceramic coating structure and its application in solid oxide fuel cells[J].China Surface Engineering,2017,30(2):1-19.(in Chinese)
参考文献 35
ZHANG Shanlin,LI Chenxin,LI Changjiu.Plasmasprayed Y2O3-stabilized ZrO2 electrolyte with improved interlamellar bonding for direct application to solid oxide fuel cells[J].Journal of Fuel Cell Science and Technology,2014,11(3):031005.
参考文献 36
ZHANG C,LIAO H L,LI W Y,et al.Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J].Journal of Thermal Spray Technology,2006,15(4):598-603.
参考文献 37
SHAO F,ZHAO H Y,LIU C G,et al.Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition[J].Ceramics International,2017,43(2):2305-2313.
参考文献 38
VARDELLE A,MOREAU C,AKEDO J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.
参考文献 39
IDE T,NAMIKAWA T,YAMAZAKI Y.Preparation of 8YSZ thin films on porous LSM substrates by electron beam evaporation[J].電気化学および工業物理化学,1996,64(6):681-682.
参考文献 40
OKUMURA K,AIHARA Y,ITO S,et al.Development of thermal spraying-sintering technology for solid oxide fuel cells[J].Journal of Thermal Spray Technology,2000,9(3):354-359.
参考文献 41
LI Chenxin,LI Chanjiu,YANG Guanjun.Development of a Ni/Al2O3 cermet-supported tubular solid oxide fuel cell assembled with different functional layers by atmospheric plasma-spraying[J].Journal of Thermal Spray Technology,2009,18(1):83-89.
参考文献 42
WANG Y,LEGOUX J G,NEAGU R,et al.Suspension plasma spray and performance characterization of half cells with NiO/YSZ anode and YSZ electrolyte[J].Journal of Thermal Spray Technology,2012,21(1):7-15.
参考文献 43
STOERMER A O,RUPP J L,GAUCKLER L J.Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC[J].Solid State Ionics,2006,177(19-25):2075-2079.
参考文献 44
KOSACKI I,ROULEAU C M,BECHER P F,et al.Surface/interface-related conductivity in nanometer thick YSZ films[J].Electrochemical and Solid State Letters,2004,7(12):A459.
参考文献 45
MARCANO D,MAUER G,VASEN R,et al.Manufacturing of high performance solid oxide fuel cells(SOFCs)with atmospheric plasma spraying(APS)and plasma spray-physical vapor deposition(PS-PVD)[J].Surface & Coatings Technology,2017,318:170-177.
参考文献 46
LI Changjiu,LI Chenxin,LONG H,et al.Performance of tubular solid oxide fuel cell assembled with plasma-sprayed Sc2O3-ZrO2 electrolyte[J].Solid State Ionics,2008,179(27):1575-1578.
参考文献 47
ZHANG Shanlin,LI Chenxin,LI Changjiu,et al.Scandia-stabilized zirconia electrolyte with improved interlamellar bonding by high-velocity plasma spraying for high performance solid oxide fuel cells[J].Journal of Power Sources,2013,232:123-131.
参考文献 48
WANG Y,GAO J,CHEN W,et al.Development of ScSZ electrolyte by very low pressure plasma spraying for high-performance metal-supported SOFCs[J].Journal of Thermal Spray Technology,2020,29:223-31.
参考文献 49
GAO Jiutao,LI Jiahong,WANG Yuepeng,et al.Performance and stability of plasma-sprayed 10×10 cm2 self-sealing metal-supported solid oxide fuel cells[J].Journal of Thermal Spray Technology,2021,30(4):1059-1068.
参考文献 50
SON C,BHARDWAJ A,HONG J,et al.Plasma-sprayed gadolinium-doped ceria(GDC)for intermediate temperature solid electrolyte[J].Journal of Ceramic Processing Research,2017,18(12):858-864.
参考文献 51
PARTHASARATHI B,ARUNA S T.Microstructure and electrical properties of plasma sprayed Gd0.15Ce0.85O2-δ coatings from solution combustion synthesized flowable powders[J].Journal of the European Ceramic Society,2017,37(1):271-279.
参考文献 52
JIA L,GITZHOFER F.Induction plasma synthesis of nano-structured SOFCs electrolyte using solution and suspension plasma spraying:A comparative study[J].Journal of thermal spray technology,2010,19(3):566-574.
参考文献 53
WEN J,SONG C,LIU Taikai,et al.Fabrication of dense gadolinia-doped ceria coatings via very-low-pressure plasma spray and plasma spray-physical vapor deposition process[J].Coatings,2019,9(11):717.
参考文献 54
ZHANG S,LIU T,LI C,et al.Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells[J].Journal of Materials Chemistry A,2015,3(14):7535-7553.
参考文献 55
LI C,XIE Y,LI C,et al.Characterization of atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte[J].Journal of Power Sources,2008,184(2):370-374.
参考文献 56
WANG Yuepeng,GAO Jiutao,LI Jiahong,et al.Preparation of bulk-like La0.8Sr0.2Ga0.8Mg0.2O3-δ coatings for porous metal-supported solid oxide fuel cells via plasma spraying at increased particle temperatures[J].International Journal of Hydrogen Energy,2021,46(64):32655-32664.
参考文献 57
YANG Shengfu,HWANG C S,TSAI C H,et al.Fabrication of 100 centimeter square metal-supported solid oxide fuel cell using thermal plasma technique[J].ECS Transactions,2017,78(1):2021.
参考文献 58
CHEN R,ZHANG S L,LI C J,et al.Plasma-sprayed high-performance(Bi2O3)0.75(Y2O3)0.25 electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFCs)[J].Journal of Thermal Spray Technology,2021,30(1):196-204.
参考文献 59
CHEN R,LI Chenxin,LI Changjiu.Plasma-sprayed(Bi2O3)0.705(Er2O3)0.245(WO3)0.05 electrolyte for intermediatetemperature solid oxide fuel cells(IT-SOFCs)[C]//Proceedings of the ITSC2021,ITSC2021,ASM International,2021:440-446.
参考文献 60
YOSHIOKA H,MITSUI T,MINESHIGE A,et al.Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte[J].Solid State Ionics,2010,181(37-38):1707-1712.
参考文献 61
WANG W,SUN F,GUO X,et al.Effect of substrate surface temperature on the microstructure and ionic conductivity of lanthanum silicate coatings deposited by plasma spraying[J].Surface and Coatings Technology,2011,205(12):3665-3670.
参考文献 62
SUN F,ZHANG N,LI J,et al.Preparation of dense silicate electrolyte coating with low pressure plasma spraying and very low pressure plasma spraying for intermediate-temperature solid oxide fuel cells[J].Journal of Power Sources,2013,223:36-41.
目录contents

    摘要

    等离子喷涂作为一种高性价比的涂层沉积工艺,在固体氧化物燃料电池(SOFC)电解质制备方面比传统方式更灵活、 高效,尤其在大面积电解质快速成形上,表现出良好的发展潜力。介绍 SOFC 的工作原理和研究趋势,综述电解质材料及等离子喷涂制备工艺的研究进展,指明等离子喷涂制备 SOFC 电解质涂层的发展方向。研究表明:氧化钇、氧化钪稳定的氧化锆是目前商业化应用最广泛的电解质材料,其他如氧化铈基及氧化铋基电解质还须解决还原气氛下价态变化问题,而镧锶镓镁氧化物和硅酸盐电解质则需解决成分和结构稳定性问题。在制备方面,传统湿化学法的高温烧结过程难以制备金属支撑型 SOFC,磁控溅射和气相沉积等镀膜技术成本高、效率低,不适合电解质大规模生产。而等离子喷涂技术具有沉积效率高, 对基体热输入小,可灵活调控涂层微观结构等优势。等离子喷涂 SOFC 电解质还存在较大探索空间,基于前期相关工作为后续中低温电解质制备及优化提供思路,随着电解质粉末成本下降及喷涂设备迭代升级,等离子喷涂技术有望在未来成为大规模高效制备 SOFC 电解质涂层的重要手段。

    Abstract

    Plasma spraying has high potential for growth in solid oxide fuel cell (SOFC) electrolyte preparation as a cost-effective coating deposition procedure which is more versatile and efficient than conventional methods, notably for quick fabrication of large-scale electrolyte. This paper discusses the working principle and research trends of SOFCs, emphasizes investigate accomplishments in electrolyte materials and the plasma spraying preparation method, and points to the future development direction of SOFC electrolyte coating deposited by plasma spraying. The most widely used electrolyte materials for commercial applications are yttrium oxide and scandium oxide stabilized zirconium oxide, while other electrolytes such as cerium oxide and bismuth oxide still need to solve the problem of valence change under reducing atmosphere and lanthanum strontium gallium oxide and silicate electrolytes lack of composition and structural stability. In terms of preparation, the traditional wet chemical method of high-temperature sintering is difficult to use to make metal-supported SOFCs, and coating technologies like magnetron sputtering and vapor deposition are expensive and inefficient, making them unsuitable for mass production of electrolytes. Plasma spraying technique provides the benefits of high deposition efficiency, minimal substrate heat input, and flexible coating microstructure adjustment. With the decline in the cost of electrolyte powder and iterative upgrading of spraying equipment, plasma spraying technology is expected to become an important means of large-scale and efficient preparation of SOFC electrolyte coating in the future, based on preliminary work to provide ideas for the subsequent preparation and optimization of low and medium temperature electrolyte. With the decline in the cost of electrolyte powder and iterative upgrading of spraying equipment, plasma spraying technology is expected to become an important means of large-scale.

  • 0 前言

  • 面对全球能源日益短缺及传统化石燃料引起的严重污染问题,人们亟需寻找更高效的能源转换方式和更环保的新能源。固体氧化物燃料电池(Solid oxide fuel cell,SOFC)是一种将燃料化学能直接转化成电能的全固态发电装置,具备换能效率高(热电联供发电能效≥80%)、燃料适用范围广、环境友好等优点,从大型集中发电,到中小型快速供电等方面都具有广阔应用前景。近年来,各类SOFC发电系统相继推出,如美国Bloom Energy公司200kW分布式发电系统、英国Ceres Power公司30kW电动车用增程器以及日本新能源产业技术综合开发机构的700W家庭热电联供系统等[1-2]

  • SOFC主要由多孔阳极(燃料极)、致密电解质、多孔阴极(空气极)三部分构成,结构如图1所示。电解质作为SOFC最核心部件,须具备高离子电导率和低电子电导率;致密度足够隔离燃气和氧化剂以防止接触燃烧;在氧化/还原气氛下保持化学稳定;良好力学稳定性以保证在低厚度下不破裂等特性。以氧离子传导型电解质为例,在电池运行时, O2 扩散至阴极内,得到电子被催化解离为O2−,O2− 在浓差作用下通过致密电解质层向阳极迁移,与阳极侧的H2发生氧化反应生成H2O,反应产生的电子通过外电路移动从而实现发电。但SOFC的高运行温度(>800℃)导致电池材料制造成本高且寿命短,阻碍了SOFC商业化进程[3]。目前大量研究集中在开发800℃以下运行的中低温SOFC,中低温化可降低电池启动时间,减缓部件老化速率,提高电池稳定性和寿命,还可以用廉价金属作为连接体,降低制造成本,提高SOFC的商业价值[4]。但降低运行温度会引起电解质内阻增加,影响电池输出性能。因此,发展中低温SOFC关键在于研制中低温下具有高离子电导率的电解质材料,或通过薄膜制备工艺减少电解质厚度,以降低电池内阻,使传统电解质在低温下也具有可观性能。

  • 图1 SOFC电池结构及工作原理示意图

  • Fig.1 Schematic diagram of SOFC cell structure and working principle

  • 1 SOFC电解质材料研究现状

  • 根据传导物质的不同,SOFC电解质可分为氧离子传导型、质子传导型和氧离子-质子共传导型三种。本文针对主流研究的氧离子传导型电解质,介绍掺杂ZrO2、CeO2、LaGaO3 等电解质材料。

  • 1.1 ZrO2 基电解质

  • ZrO2 基电解质的研究开始最早,常温下纯ZrO2 为单斜晶系,空间位阻大,因此需引入低价氧化物 (碱土或稀土金属氧化物)置换晶格中Zr4+的位置使ZrO2 转化为低电阻的立方晶型,并促进晶格中产生氧空位缺陷来增加电导率[5]。目前Y2O3 稳定的ZrO2 (YSZ)是应用最广泛的电解质材料,其稳定性高,原料易获得,在1 000~1 200℃和极宽氧分压内几乎可视为纯离子导体,在生产和试验中最常见[6]。但YSZ的电导率在温度降到800℃ ( 电导率为0.036S·cm−1)以下后会迅速衰减,为了提高YSZ的低温性能,可使电解质薄膜化以减少欧姆极化的影响。例如HUANG等[7]制备出仅50nm的YSZ电解质薄膜,纳米级厚度的电解质使O2− 的传输路径明显缩短,电池电阻显著降低,最终在350℃下薄膜YSZ电池也具有130mW·cm−2 的功率峰值。除降低YSZ的厚度外,也可以采用多元掺杂或形成复合电解质的方法进行性能优化,例如用Zn、Mg等氧化物共掺YSZ或以Er2O3 稳定的Bi2O3(ESB)结合YSZ形成复合电解质,都能使YSZ电解质在中温环境下的电导率成倍增长[8-9]。在锆基电解质中,Sc2O3 稳定的ZrO2 (ScSZ)具有最高的离子电导率,这是由于Sc3+的离子半径相较于Y3+更大,当置换掉晶格中Zr4+的位置后,Sc3+会同时影响邻近和次近邻氧原子的电子密度,促使更多氧空位随机生成。ScSZ电解质填补了YSZ电解质在中温下性能不佳的缺陷,BADWAL[10]测得ScSZ电解质在800℃电导率可达0.11~0.12S·cm−1,是同温度下YSZ的两倍以上。但ScSZ易产生亚稳相,Sc价格也偏高,一定程度上制约了ScSZ的应用[11]

  • 1.2 CeO2 基电解质

  • CeO2与ZrO2同为面心立方萤石结构,纯CeO2 是N型半导体,离子电导率极低,在600℃下仅0.01mS·cm−1,因此也需要低价金属氧化物掺杂CeO2 形成置换固溶体后,由晶格中引入氧空位来平衡电荷,提高电导率[12]。相比于ZrO2 基电解质, Ce4+半径更大,被置换后为O2-提供了更大的自由迁移空间,因而CeO2 基电解质在500~700℃的电导率比YSZ电解质高出几倍甚至一个数量级[8]。单元素掺杂中,Gd2O3 掺杂的CeO2 (GDC)与Sm2O3 掺杂的CeO2 (SDC)电导率最佳,Sm3+和Gd3+与Ce4+离子的半径差值最小,由它们形成的晶体中点阵弹性应变小,使得O2-传输所需活化能低,也就具有更好的离子传输能力,500℃下GDC与SDC的电导率分别为5.3×10−3、3.3×10−3 S·cm−1[12-13]。但CeO2 基电解质在还原性气氛下会有部分Ce4+转化为Ce3+产生电子电导,例如PARK等[14]的致密GDC电解质电池在600℃下开路电压(Open circuit voltage, OCV) 仅0.84V,在电解质层致密性保证的情况下,涂层中的电子泄露造成输出电压下降,进而影响电池性能,此外Ce4+的还原还会使晶格体积膨胀,影响电解质的结构稳定性。VAN HERLE等[15]认为共掺杂CeO2的导电性与稳定性更佳,目前已研究了Gd与Y、Sm、 Dy、Nd等共掺的CeO2电解质,与单掺杂CeO2相比,在引入相同浓度氧空位的条件下,共掺杂的CeO2电解质中自由氧空位更多,最高电导率可提高30%。

  • 1.3 LaGaO3 钙钛矿电解质

  • LaGaO3 是一种钙钛矿结构(ABO3)物质,因为自身晶体对称性差,因此离子电导能力弱,但其结构对A位和B位的离子半径变化有较高容忍度,可通过掺杂引入氧空位,改善晶体对称性,使O2-也能在晶格中迅速扩散。在对A位和B位的掺杂研究中, Sr2+和Mg2+共掺杂的LaGaO3 (LSGM)性能最佳,两种掺杂离子与置换离子的半径匹配度都很高,其中Sr2+还能降低离子传输过程中氧空位团簇的结合能,而Mg2+可提高LaGaO3 中Sr的溶解度,显著提高LaGaO3 的氧离子电导率[16]。LSGM也是一种极具潜力的中低温电解质,在600~800℃和极宽的氧分压内,LSGM几乎不存在电子电导,并具有良好化学稳定性[17]。KIM等[18]制备的LSGM在800℃ 下电导率高达0.16S·cm−1,接近1 000℃下的YSZ电解质。但是LSGM中Ga元素成本高,且熔点相对较低,易在制备过程中蒸发,导致烧结时LSGM在晶界处解析出LaSrGaO4 和LaSrGa3O7等二次相,在使用过程中LSGM与Ni基阳极也存在发生界面反应生成高电阻相等问题。为了克服这些困难,一些研究采用非烧结工艺制备LSGM,如脉冲激光沉积和磁控溅射法,虽然可获得理想的结构和性能,但也必须考虑成型效率低和高昂的制造成本[19-20]

  • 1.4 Bi2O3 基电解质

  • 纯 δ 相Bi2O3 是一种阴离子缺位型萤石结构,具有25%的本征无序氧空位,同时Bi3+可有效扩大离子传输通道,因而在氧化物中具有最高的电导性, δ 相Bi2O3 在650℃下电导率高达1S·cm−1 ,比YSZ高出近两个数量级[21]。但 δ-Bi2O3 是一种高温相,仅在730~825℃保持稳定,随着温度降低Bi2O3 会先后析出 β 和 γ 相,因此Bi2O3 常作为多晶型氧化物存在,相变产生的电阻和体积变化使得Bi2O3 难以作为电解质使用。为了在中低温下获得稳定 δ 相Bi2O3,常采用稀土元素Y、Dy、Er或者高价元素V、W、Nb等掺杂Bi2O3,其中Bi0.8Er0.2O1.5(ESB) 性能最佳[22-23]。但ESB稳定性差,不能在低温下长时间维持高电导率,一旦氧分压不满足条件,Bi3+ 就会转变价态形成电子传导影响电池性能。针对这类问题,已有研究在探索新的掺杂方式,也有将Bi2O3 与其他电解质组合使用,如SARAT等[24]利用ScSZ与Bi2O3复合的电解质在600℃下电导率可达0.18S·cm−1,也是一个良好的探索方向。

  • 1.5 磷灰石型硅酸镧电解质

  • NAKAYAMA等[25]率先发现硅酸镧(La10Si6O27) 在中低温下有一定离子电导能力,但500℃时电导率仅0.18mS·cm−1,需优化后才可作为电解质使用。在中低温环境下,硅酸镧稳定性好,热膨胀系数易匹配,是一种很有潜力的中低温电解质。根据萤石和钙钛矿类物质的掺杂经验,对硅酸镧电解质的掺杂研究也迅速得到了开展,研究表明掺杂后的硅酸镧电解质具有优异的中低温离子电导能力,以La10Si5.5Al0.5O26.75 为例,在750℃以下该电解质电导率始终优于YSZ,到400℃以下时电导率甚至高过LSGM[26]。不同于传统离子导体,掺杂的硅酸镧电解质中O2-是利用晶格中各向异性的间隙通道传导,因此通过大量引入低价元素增加氧空位浓度不能显著提高其离子电导率,但少量低价金属掺杂可改善晶体结构并扩大离子传导通道,从而提高离子电导率[27]。目前已研究了Al、Mg、Zn、Cu等掺杂的硅酸镧电解质,然而在如何高效制备出成分结构稳定的硅酸镧电解质方面仍有许多挑战。

  • 2 等离子喷涂制备SOFC电解质的优势

  • 目前已成功应用于SOFC电解质的制备方法包括流延成型、丝网印刷、轧膜成型、电泳沉积、气相沉积、磁控溅射等[28],其中以流延和丝网印刷为代表湿化学法受限于高温烧结成形过程,仅能用于传统陶瓷型SOFC,还必须考虑各功能层间是否存在界面反应和成分分解等问题;另一方面,磁控溅射和气相沉积等镀膜技术又存在制备效率低和设备成本高等问题。等离子喷涂技术是一种利用高温高速等离子体将材料加热至熔融或半熔融状态,以高速熔滴沉积到预处理基体表面堆叠形成涂层的方法,具有基体与喷涂材料不受限制、沉积效率高、操作简单、成本低等优点,可实现大面积SOFC电解质涂层的快速制备。尤其在制备金属支撑型SOFC时,相比于传统湿化学法,等离子喷涂技术无需高温烧结,可避免烧结引起的金属支撑体氧化、功能层自反应与界面反应等问题。因此,在未来金属支撑型SOFC的大规模商业制备上,等离子喷涂技术具有区别于其他制备方法的低成本高效率优势,具有巨大潜力。大气等离子喷涂(APS)、悬浮液等离子喷涂(SPS)、低压等离子喷涂(LPPS)和等离子喷涂-物理气相沉积(PS-PVD)等方法都已实现SOFC电解质的制备。图2显示了以典型YSZ电解质为例,通过不同等离子喷涂技术制备的沉积形式及截面形貌。其中,APS过程中部分微米级YSZ粉末存在微熔或未熔状态,加之撞击基体速度不高,导致YSZ以液固两相沉积的层状结构中存在气孔、未结合界面及垂直裂纹,这些缺陷难以完全阻隔反应气体接触,故APS制备的YSZ电解质需经过致密化后处理才能满足SOFC的使用要求[29]。与APS相比,SPS采用亚微米或纳米粉末制成的悬浮液进行喷涂,粉末粒径减小可使固液两相以更加精细化的结构沉积,减小电解质涂层中缺陷的尺寸。然而电解质层状结合中的固有孔隙虽然减小但并未消除,同样需要后致密化处理以确保其性能正常发挥[30]

  • 图2 不同类型等离子喷涂YSZ电解质的沉积形式及对应形貌[35-38]

  • Fig.2 Depositon forms and correponding morphologies of different types of plasma sprayed YSZ electrolytes[35-38]

  • 相较于APS和SPS,LPPS在低压环境下获得射流更长、速度更快的等离子体,可使高速粒子同时以气液固三相沉积。一方面更高的粒子飞行速度促进液滴充分铺展,另一方面高温射流也可预热基体表面,减小堆叠冷却过程中的淬火应力,抑制单片层内裂纹生成,因而LPPS制备的YSZ涂层气密性比APS/SPS涂层高出一个数量级以上,已基本满足SOFC电解质致密度要求[31]。基于LPPS的技术优点,Oerlikon Metco公司将结合物理气相沉积技术原理,研发了等离子喷涂行业最先进的PS-PVD技术[32-33]。该技术在LPPS基础上提高了喷涂功率(最高达180kW)并进一步降低环境压力(低至100Pa),使等离子射流急剧扩张,长度和直径最大可达2.5m和0.4m。因此,PS-PVD等离子射流温度和速度较LPPS更高,可使YSZ粉末部分或完全气化,并以2~3倍音速撞击基体沉积。这种气相或气液两相的高速沉积形式下,粒子能有效填充沉积单元间的间隙,因而涂层结构比APS/SPS/LPPS涂层更致密,不论是气密性还是综合力学性能都接近块体材料。且由气相沉积形成的外延柱状晶组织可提高电解质在厚度方向的离子电导率,利于电解质涂层性能的提升[34]

  • 3 等离子喷涂制备SOFC电解质涂层的研究现状

  • 3.1 ZrO2 基电解质的制备

  • 对于YSZ,其作为电解质使用的透气率应低于1.02 ×10−12 m 4 ·N−1 ·s −1,传统APS制备的YSZ涂层因高孔隙率达不到该要求,通常需要后续致密化处理[39]。高温烧结是最常用的方法,OKUMURA等[40]通过1 550℃烧结后YSZ涂层透气率仅为1×10−14 m 4 ·N−1 ·s −1 ,其单电池在1 000℃下峰功率为730mW·cm−2。但高温烧结存在相结构改变、界面反应等弊端,尤其难以用于金属支撑型SOFC。相比之下,化学浸渍可在较低温度下提高电解质气密性。LI等[41]通过浸渍可将YSZ透气率降至7.9×10−14 m 4 ·N−1 ·s −1,其单电池在1 000℃下峰功率为760mW·cm−2。可见,烧结/浸渍处理都能降低YSZ透气率,但对电解质性能的提升有限,同时增加了制备工艺的复杂度。相较于APS,SPS沉积单元更小,片层堆叠更紧密,涂层结构也更均匀,因此也有研究者尝试采用SPS制备电解质:WANG等[42]用SPS制备的YSZ电解质孔隙率仅0.1%, 750℃下电池峰功率为610mW·cm−2。但是电池OCV最高仅0.989V,说明SPS虽能减少YSZ涂层内缺陷尺寸并优化层间结合,但依然难以制备出高致密度的YSZ电解质。与APS和SPS相比,LPPS的粒子熔化程度好、飞行速度快,撞击基体后能迅速扁平化,具有良好的铺展性,可直接制备高致密度涂层。STOERMER等[43]通过LPPS制备的YSZ单电池OCV在650~850℃内可维持在1.05V左右,接近理论电动势,电解质展现出良好致密性, 850℃下单电池功率为234mW·cm−2@0.7V。在LPPS基础上开发的PS-PVD具有更高的喷涂功率,独特的气相沉积效应使电解质结构更精细,也利于薄涂层的制备[44]。MARCANO等[45]利用PS-PVD制得厚度仅26 μm但孔隙仅2%的YSZ电解质,817℃下单电池具有1.033V的OCV和890mW·cm−2@0.75V的功率值。PS-PVD技术能够制备出具有优异性能的超薄致密YSZ电解质。对于ScSZ电解质,常压下等离子喷涂出的结构同样存在层状结构带来的致密性问题,因此也需优化后才可才可使用如LI等[46]APS沉积的ScSZ电解质经浸渍后,单电池OCV最高可达1.1V,1 000℃ 下峰功率有890mW·cm−2,具有不错的性能。但致密化处理始终存在一些弊端,因此也有研究通过提高粒子飞行速度并促进层间结合来优化涂层致密性:ZHANG等[47]采用超音速等离子喷涂(SAPS) 制备ScSZ电解质,借由独特的喷枪设计SAPS可进一步加速飞行粒子,同时外热源持续预热基体以保证ScSZ沉积单元充分结合,最终电池在600~800℃范围内OCV始终保持在1V以上,并在1 000℃下具有995mW·cm−2 的峰功率值。相比于常压下的等离子喷涂,低压喷涂环境既能保持稳定的预热温度又能提供极高的射流速度,因此采用LPPS技术沉积致密的ScSZ涂层更高效,并且LPPS在ScSZ上的优化效果比YSZ更明显,WANG等[48] 采用超低压等离子喷涂(VLPPS)制备的致密ScSZ电解质在750℃下电导率接近块体材料的70%,单电池也展现出1.07V的OCV和1 112mW·cm−2 的峰功率,远高同工艺下YSZ电池性能的提升。近期西安交通大学成功利用VLPPS技术在10×10cm2 的大面积平板上沉积出ScSZ单电池,电池在700℃下具有716mW·cm−2 的峰功率[49]。经过500h的持续运行和6次热循环之后,电池的OCV依然维持在1.025V,证明采用VLPPS技术可制备出具有良好热循环性和稳定性的大面积SOFC电解质。

  • 3.2 CeO2 基电解质的制备

  • 目前利用等离子喷涂制备CeO2 基电解的相关研究不多,其中SON等[50]用APS制备的GDC涂层呈微柱状堆叠结构,涂层中明显可见裂纹网,测得电解质孔隙率高达5%,无法作为电解质使用。这与PARTHASARATHI等[51]获得的GDC涂层性能类似,尽管控制了粉末的粒径和流动性获得了良好熔化效果使涂层中不存在典型的堆叠结构,但涂层截面中仍明显可见大量微米级孔隙,导致涂层的电导率仅达块体材料的30%~50%。相比之下,利用SPS沉积的GDC电解质气密性更佳,JIA等[52]制备的GDC涂层孔隙率仅1.4%,纳米级粒子形成的单片层中不存在由应力引起的裂纹,因而电解质非常致密。此外,本课题组WEN等[53]率先利用PS-PVD沉积GDC电解质,涂层展现出良好的致密性(孔隙率2.57%)和机械性能(硬度7.3GPa、弹性模量163.4GPa),同时PS-PVD的射流几乎使所有颗粒都熔化,形成高晶度柱状组织和表面微型团簇,利于促进SOFC氧离子传导和三相界面的电化学反应。因此,SPS和PS-PVD技术在GDC电解质制备方面具有潜在应用前景。

  • 3.3 LaGaO3 钙钛矿电解质的制备

  • 当前APS是等离子喷涂制备LSGM的主要方式,但有两个技术难点,分别是喷涂过程Ga元素的蒸发和所获涂层结晶度较低。ZHANG等[54]系统研究了喷涂过程Ga的流失机理,认为小粒径粉末 (<30 μm)在射流前端处(0~30mm)熔化速度快,Ga元素从表面蒸发后液滴内溶质迅速重新分配,因此导致更多Ga流失,而大粒径粉末(>30 μm)需要更长时间熔化,就能保证Ga的微量损失甚至不损失,使涂层成分稳定,在后续热处理中,按照LI等[55] 的建议于800℃后处理得到全晶态的LSGM, 800℃下涂层电导率为0.075S·cm−1,达块体材料的78%。在此基础上,WANG等[56]以更高喷涂功率加热粒子进一步优化APS沉积的LSGM,经800℃退火后最终获得了高晶度的致密LSGM涂层,喷涂态LSGM表现出类似块体的内部结构,电导率也接近烧结态LSGM,单电池在650℃下OCV约为1V峰功率可达634mW·cm−2,证明了提高飞行粒子温度是一种有效优化方式。近期,YANG等[57]利用APS结合退火工艺在100cm2 的金属基体上沉积出LSGM单电池,700℃下电池有1.09V的OCV和588mW·cm−2 的功率密度@0.76V。在LSGM的制备和大面积电池成形上,APS以其低成本高效的优点,有望取代传统制备技术。

  • 3.4 Bi2O3 基电解质的制备

  • 电解质的传统物理或化学制备方式常涉及烧结过程,对于Bi2O3 基电解质而言,高温处理极易导致成分的不均匀性。CHEN等[58]认为等离子弧短暂的加热效应可避免Bi2O3 基电解质中低熔点成分的流失转化,利用APS沉积的Y2O3稳定的Bi2O3(YSB) 电解质在700℃下具有0.19S·cm−1 的离子电导率,接近烧结态YSB的90%以上。除单掺杂系Bi2O3,CHEN等[59]还探究了Er2O3 与WO3 的共掺杂体系(EWSB),通过退火热处理后电解质展现出良好的稳定性,750℃下电导率0.26S·cm−1,可作为中温电解质使用。目前等离子喷涂制备Bi2O3 基电解质首要问题是控制涂层成分稳定性和致密性,也是今后制备Bi2O3基电解质的研究重点。

  • 3.5 磷灰石型硅酸镧电解质的制备

  • 等离子喷涂硅酸镧电解质也存在涂层结晶度低的问题,快速冷却过程产生的非晶相可通过热处理或预热基体来转化:YOSHIOKA等[60]经1 000℃热处理后,La9.71Si5.72Mg0.28O26.8 涂层结晶度和气密性显著提高,但由于APS制备的涂层中含有大量孔隙,使得单电池OCV始终处于1V以下;WANG等[61] 利用高预热温度来减缓粒子的凝固速度,在900℃ 预热的基体上通过APS沉积的La10Si5.8Mg0.2O26.8涂层孔隙率仅1.4±0.6%,但电解质非全晶态,所以800℃下电导率仅为1.01×10−3 S·cm−1。将预热与热处理结合有望得到致密的全晶态的硅酸镧电解质,但是工艺复杂程度也随即提高,SUN等[62]发现VLPPS可以直接制备全晶态La10Si5.8Mg0.2O26.8 涂层,巨大的射流在喷涂中能将基体加热至1 050℃,同时低压环境使涂层缓慢冷却,最终得到高结晶度的涂层,但极高的射流温度使飞行过程中粉末内部分非化学计量比的SiO2与La2O3 产生煅烧使电解质中含有La2SiO5 等微量相,这会影响电解质中O2- 传导,对于PS-PVD喷涂过程中粉末在等离子体中的沉积机理还需进一步探究。

  • 4 结论与展望

  • SOFC作为高效绿色能源装置,实现其商业化应用对我国“碳达峰、碳中和”战略目标有重要意义。未来SOFC的发展趋势和重点必然集中在降低工作温度,节约成本和提高寿命,其关键是开发中低温SOFC电解质材料和探索致密薄涂层制备工艺。现阶段SOFC电解质材料主要包括YSZ、ScSZ、GDC、 LSGM、Bi2O3 等。目前商业化应用最为成熟的电解质为YSZ、ScSZ和GDC,限制其大规模应用主要问题为:YSZ难以低温化,Sc和Ga的价格较高; Ce4+和Bi3+价态变化带来电子传导;LSGM和硅酸镧电解质结构不稳定等。

  • 在制备工艺方面,等离子喷涂技术对基体热输入小,可选择高性价比金属作为电池支撑体,不同于传统湿化学法因受限于高温烧结过程仅能制备陶瓷型SOFC。并且等离子喷涂制备灵活且效率高,比磁控溅射或气相沉积等薄膜沉积技术更适宜于大面积SOFC电解质的制备。常压下的APS、SPS等技术成本较低,但涂层具有层状结构特点,难以彻底消除孔隙带来的影响,需后续致密化才能满足使用要求;低压下的LPPS、PS-PVD等技术成本相对高,但沉积单元更精细,粒子熔化程度和速度更好,使得涂层堆叠更紧密,因而可制备能直接使用的高致密度SOFC电解质涂层。目前对等离子制备电解质的优化探索主要包含优化粉末原料或喷涂工艺过程,如减少粉末粒径/内部孔隙、增加飞行粒子温度/速度、提高基体沉积温度等方法,能有效提高等离子喷涂电解质涂层的结构与性能。

  • 等离子喷涂技术在多类电解质的应用上还不成熟,存在各种挑战。我国关于SOFC相关研究起步较晚,在等离子喷涂与电解质开发结合上还有大量探索空间。随着SOFC电解质粉末成本的逐步下降和等离子喷涂设备的迭代升级,等离子喷涂技术有望成为未来大规模高效制备SOFC电解质涂层的重要手段。

  • 参考文献

    • [1] 曹静,王小博,孙翔,等.基于固体氧化物燃料电池的高效清洁发电系统[J].南方能源建设,2020,7(2):28-34.CAO Jing,WANG Xiaobo,SUN Xiang,et al.High-efficiency and clean power generation system based on solid oxide fuel cell[J].Southern Energy Construction,2020,7(2):28-34.(in Chinese)

    • [2] WILLIAMS M C,VORA S D,JESIONOWSKI G.Worldwide status of solid oxide fuel cell technology[J].ECS Transactions,2020,96(1):1-10.

    • [3] WACHSMAN E D,LEE K T.Lowering the temperature of solid oxide fuel cells[J].Science,2011,334(6058):935-939.

    • [4] ZUO N,ZHANG M,MAO Z,et al.Fabrication and characterization of composite electrolyte for intermediate-temperature SOFC[J].Journal of the European Ceramic Society,2011,31(16):3103-3107.

    • [5] 李静.固体氧化物燃料电池电解质制备方法的研究[J].广州化工,2017(14):23-24,27.LI Jing.Study on the preparation method of solid oxide fuel cell electrolyte[J].Guangzhou Chemical Industry,2017(14):23-24,27.(in Chinese)

    • [6] LAKSHMI V V,BAURI R,GANDHI A S,et al.Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs[J].International Journal of Hydrogen Energy,2011,36(22):14936-14942.

    • [7] HUANG H,NAKAMURA M,SU P,et al.High-performance ultrathin solid oxide fuel cells for low-temperature operation[J].Journal of the Electrochemical Society,2007,154(1):B20-B4.

    • [8] JAISWAL N,TANWAR K,SUMAN R,et al.A brief review on ceria based solid electrolytes for solid oxide fuel cells[J].Journal of Alloys and Compounds,2019,781:984-1005.

    • [9] JOH D W,PARK J H,KIM D Y,et al.High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells[J].Journal of Power Sources,2016,320:267-73.

    • [10] BADWAL S P S.Stability of solid oxide fuel cell components[J].Solid State Ionics,2001,143(1):39-46.

    • [11] BADWAL S P S.Effect of alumina and monoclinic zirconia on the electrical conductivity of Sc2O3-ZrO2 compositions[J].Journal of Materials Science,1983,18(11):3230-3242.

    • [12] 韩达,吴天植,辛显双,等.低温固体氧化物燃料电池电解质材料[J].中国工程科学,2013,15(2):66-71.HAN Da,WU Tianzhi,XIN Xianshuang,et al.Low-temperature solid oxide fuel cell electrolyte materials[J].Chinese Engineering Science,2013,15(2):66-71.(in Chinese)

    • [13] DOSHI R,RICHARDS V L,CARTER J,et al.Development of solid-oxide fuel cells that operate at 500 ℃[J].Journal of the Electrochemical Society,1999,146(4):1273.

    • [14] PARK S Y,NA C W,AHN J H,et al.Intermediate-temperature nickel-yttria stabilized zirconia supported tubular solid oxide fuel cells using gadolinia-doped ceria electrolyte[J].Journal of Power Sources,2012,218:119-127.

    • [15] VAN HERLE J,SENEVIRATNE D,MCEVOY A.Lanthanide co-doping of solid electrolytes:AC conductivity behaviour[J].Journal of the European Ceramic Society,1999,19(6-7):837-841.

    • [16] KHAN M,ISLAM M,BATES D.Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor[J].Journal of Physical Chemistry B,1998,102(17):3099-3104.

    • [17] WANG L S,LI C X,LI C J,et al.Performance of La0.8Sr0.2Ga0.8Mg0.2O3-based SOFCs with atmospheric plasma sprayed La-doped CeO2 buffer layer[J].Electrochimica Acta,2018,275:208-217.

    • [18] KIM K J,CHOI S W,KIM M Y,et al.Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering[J].Journal of Industrial and Engineering Chemistry,2016,42:69-74.

    • [19] ISHIHARA T,ETO H,YAN J.Intermediate temperature solid oxide fuel cells using LaGaO3 based oxide film deposited by PLD method[J].International Journal of Hydrogen Energy,2011,36(2):1862-1867.

    • [20] SASAKI K,MURANAKA M,SUZUKI A,et al.Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS[J].Solid State Ionics,2008,179(21):1268-1272.

    • [21] SAMMES N,TOMPSETT G,NäFE H,et al.Bismuth based oxide electrolytes—structure and ionic conductivity[J].Journal of the European Ceramic Society,1999,19(10):1801-1826.

    • [22] LAARIF A,THEOBALD F.The lone pair concept and the conductivity of bismuth oxides Bi2O3[J].Solid State Ionics,1986,21(3):183-193.

    • [23] KHARTON V,MARQUES F,ATKINSON A.Transport properties of solid oxide electrolyte ceramics:A brief review[J].Solid State Ionics,2004,174(1-4):135-149.

    • [24] SARAT S,SAMMES N,SMIRNOVA A.Bismuth oxidedoped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells[J].Journal of Power Sources,2006,160(2):892-896.

    • [25] NAKAYAMA S,KAGEYAMA T,AONO H,et al.Ionic conductivity of lanthanoid silicates,Ln10(SiO4)6O3(Ln= La,Nd,Sm,Gd,Dy,Y,Ho,Er and Yb)[J].Journal of Materials Chemistry,1995,5(11):1801-1805.

    • [26] MARRERO-LóPEZ D,MARTíN-SEDEñO M,PEñA-MARTíNEZ J,et al.Evaluation of apatite silicates as solid oxide fuel cell electrolytes[J].Journal of Power Sources,2010,195(9):2496-2506.

    • [27] YANG T,ZHAO H,FANG M,et al.A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs:Synthesis,structural and electrical properties[J].Journal of the European Ceramic Society,2019,39(2-3):424-431.

    • [28] 田长安,赵娣芳,尹奇异,等.固体氧化物燃料电池电解质薄膜制备技术[J].电源技术,2009,33(8):721-724.TIAN Changan,ZHAO Difang,YIN Qiyi,et al.Preparation technology of electrolyte membrane for solid oxide fuel cell[J].Power Technology,2009,33(8):721-724.(in Chinese)

    • [29] NING X,LI Chenxin,LI Changjiu,et al.Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process[J].Materials Science and Engineering:A,2006,428(1-2):98-105.

    • [30] KOCH C C.Nanostructured materials:processing,properties and applications[M].Britain,Noruich:William Andrew,2006.

    • [31] ZHANG C,LIAO H,LI W,et al.Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J].Journal of Thermal Spray Technology,2006,15(4):598-603.

    • [32] VON NIESSEN K,GINDRAT M.Plasma spray-PVD:A new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.

    • [33] VON NISSEN K,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.

    • [34] 李成新,王岳鹏,张山林,等.先进陶瓷涂层结构调控及其在固体氧化物燃料电池中的应用[J].中国表面工程,2017,30(2):1-19.LI Chengxin,WANG Yuepeng,ZHANG Shanlin,et al.Modulation of advanced ceramic coating structure and its application in solid oxide fuel cells[J].China Surface Engineering,2017,30(2):1-19.(in Chinese)

    • [35] ZHANG Shanlin,LI Chenxin,LI Changjiu.Plasmasprayed Y2O3-stabilized ZrO2 electrolyte with improved interlamellar bonding for direct application to solid oxide fuel cells[J].Journal of Fuel Cell Science and Technology,2014,11(3):031005.

    • [36] ZHANG C,LIAO H L,LI W Y,et al.Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J].Journal of Thermal Spray Technology,2006,15(4):598-603.

    • [37] SHAO F,ZHAO H Y,LIU C G,et al.Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition[J].Ceramics International,2017,43(2):2305-2313.

    • [38] VARDELLE A,MOREAU C,AKEDO J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.

    • [39] IDE T,NAMIKAWA T,YAMAZAKI Y.Preparation of 8YSZ thin films on porous LSM substrates by electron beam evaporation[J].電気化学および工業物理化学,1996,64(6):681-682.

    • [40] OKUMURA K,AIHARA Y,ITO S,et al.Development of thermal spraying-sintering technology for solid oxide fuel cells[J].Journal of Thermal Spray Technology,2000,9(3):354-359.

    • [41] LI Chenxin,LI Chanjiu,YANG Guanjun.Development of a Ni/Al2O3 cermet-supported tubular solid oxide fuel cell assembled with different functional layers by atmospheric plasma-spraying[J].Journal of Thermal Spray Technology,2009,18(1):83-89.

    • [42] WANG Y,LEGOUX J G,NEAGU R,et al.Suspension plasma spray and performance characterization of half cells with NiO/YSZ anode and YSZ electrolyte[J].Journal of Thermal Spray Technology,2012,21(1):7-15.

    • [43] STOERMER A O,RUPP J L,GAUCKLER L J.Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC[J].Solid State Ionics,2006,177(19-25):2075-2079.

    • [44] KOSACKI I,ROULEAU C M,BECHER P F,et al.Surface/interface-related conductivity in nanometer thick YSZ films[J].Electrochemical and Solid State Letters,2004,7(12):A459.

    • [45] MARCANO D,MAUER G,VASEN R,et al.Manufacturing of high performance solid oxide fuel cells(SOFCs)with atmospheric plasma spraying(APS)and plasma spray-physical vapor deposition(PS-PVD)[J].Surface & Coatings Technology,2017,318:170-177.

    • [46] LI Changjiu,LI Chenxin,LONG H,et al.Performance of tubular solid oxide fuel cell assembled with plasma-sprayed Sc2O3-ZrO2 electrolyte[J].Solid State Ionics,2008,179(27):1575-1578.

    • [47] ZHANG Shanlin,LI Chenxin,LI Changjiu,et al.Scandia-stabilized zirconia electrolyte with improved interlamellar bonding by high-velocity plasma spraying for high performance solid oxide fuel cells[J].Journal of Power Sources,2013,232:123-131.

    • [48] WANG Y,GAO J,CHEN W,et al.Development of ScSZ electrolyte by very low pressure plasma spraying for high-performance metal-supported SOFCs[J].Journal of Thermal Spray Technology,2020,29:223-31.

    • [49] GAO Jiutao,LI Jiahong,WANG Yuepeng,et al.Performance and stability of plasma-sprayed 10×10 cm2 self-sealing metal-supported solid oxide fuel cells[J].Journal of Thermal Spray Technology,2021,30(4):1059-1068.

    • [50] SON C,BHARDWAJ A,HONG J,et al.Plasma-sprayed gadolinium-doped ceria(GDC)for intermediate temperature solid electrolyte[J].Journal of Ceramic Processing Research,2017,18(12):858-864.

    • [51] PARTHASARATHI B,ARUNA S T.Microstructure and electrical properties of plasma sprayed Gd0.15Ce0.85O2-δ coatings from solution combustion synthesized flowable powders[J].Journal of the European Ceramic Society,2017,37(1):271-279.

    • [52] JIA L,GITZHOFER F.Induction plasma synthesis of nano-structured SOFCs electrolyte using solution and suspension plasma spraying:A comparative study[J].Journal of thermal spray technology,2010,19(3):566-574.

    • [53] WEN J,SONG C,LIU Taikai,et al.Fabrication of dense gadolinia-doped ceria coatings via very-low-pressure plasma spray and plasma spray-physical vapor deposition process[J].Coatings,2019,9(11):717.

    • [54] ZHANG S,LIU T,LI C,et al.Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells[J].Journal of Materials Chemistry A,2015,3(14):7535-7553.

    • [55] LI C,XIE Y,LI C,et al.Characterization of atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte[J].Journal of Power Sources,2008,184(2):370-374.

    • [56] WANG Yuepeng,GAO Jiutao,LI Jiahong,et al.Preparation of bulk-like La0.8Sr0.2Ga0.8Mg0.2O3-δ coatings for porous metal-supported solid oxide fuel cells via plasma spraying at increased particle temperatures[J].International Journal of Hydrogen Energy,2021,46(64):32655-32664.

    • [57] YANG Shengfu,HWANG C S,TSAI C H,et al.Fabrication of 100 centimeter square metal-supported solid oxide fuel cell using thermal plasma technique[J].ECS Transactions,2017,78(1):2021.

    • [58] CHEN R,ZHANG S L,LI C J,et al.Plasma-sprayed high-performance(Bi2O3)0.75(Y2O3)0.25 electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFCs)[J].Journal of Thermal Spray Technology,2021,30(1):196-204.

    • [59] CHEN R,LI Chenxin,LI Changjiu.Plasma-sprayed(Bi2O3)0.705(Er2O3)0.245(WO3)0.05 electrolyte for intermediatetemperature solid oxide fuel cells(IT-SOFCs)[C]//Proceedings of the ITSC2021,ITSC2021,ASM International,2021:440-446.

    • [60] YOSHIOKA H,MITSUI T,MINESHIGE A,et al.Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte[J].Solid State Ionics,2010,181(37-38):1707-1712.

    • [61] WANG W,SUN F,GUO X,et al.Effect of substrate surface temperature on the microstructure and ionic conductivity of lanthanum silicate coatings deposited by plasma spraying[J].Surface and Coatings Technology,2011,205(12):3665-3670.

    • [62] SUN F,ZHANG N,LI J,et al.Preparation of dense silicate electrolyte coating with low pressure plasma spraying and very low pressure plasma spraying for intermediate-temperature solid oxide fuel cells[J].Journal of Power Sources,2013,223:36-41.

  • 参考文献

    • [1] 曹静,王小博,孙翔,等.基于固体氧化物燃料电池的高效清洁发电系统[J].南方能源建设,2020,7(2):28-34.CAO Jing,WANG Xiaobo,SUN Xiang,et al.High-efficiency and clean power generation system based on solid oxide fuel cell[J].Southern Energy Construction,2020,7(2):28-34.(in Chinese)

    • [2] WILLIAMS M C,VORA S D,JESIONOWSKI G.Worldwide status of solid oxide fuel cell technology[J].ECS Transactions,2020,96(1):1-10.

    • [3] WACHSMAN E D,LEE K T.Lowering the temperature of solid oxide fuel cells[J].Science,2011,334(6058):935-939.

    • [4] ZUO N,ZHANG M,MAO Z,et al.Fabrication and characterization of composite electrolyte for intermediate-temperature SOFC[J].Journal of the European Ceramic Society,2011,31(16):3103-3107.

    • [5] 李静.固体氧化物燃料电池电解质制备方法的研究[J].广州化工,2017(14):23-24,27.LI Jing.Study on the preparation method of solid oxide fuel cell electrolyte[J].Guangzhou Chemical Industry,2017(14):23-24,27.(in Chinese)

    • [6] LAKSHMI V V,BAURI R,GANDHI A S,et al.Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs[J].International Journal of Hydrogen Energy,2011,36(22):14936-14942.

    • [7] HUANG H,NAKAMURA M,SU P,et al.High-performance ultrathin solid oxide fuel cells for low-temperature operation[J].Journal of the Electrochemical Society,2007,154(1):B20-B4.

    • [8] JAISWAL N,TANWAR K,SUMAN R,et al.A brief review on ceria based solid electrolytes for solid oxide fuel cells[J].Journal of Alloys and Compounds,2019,781:984-1005.

    • [9] JOH D W,PARK J H,KIM D Y,et al.High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells[J].Journal of Power Sources,2016,320:267-73.

    • [10] BADWAL S P S.Stability of solid oxide fuel cell components[J].Solid State Ionics,2001,143(1):39-46.

    • [11] BADWAL S P S.Effect of alumina and monoclinic zirconia on the electrical conductivity of Sc2O3-ZrO2 compositions[J].Journal of Materials Science,1983,18(11):3230-3242.

    • [12] 韩达,吴天植,辛显双,等.低温固体氧化物燃料电池电解质材料[J].中国工程科学,2013,15(2):66-71.HAN Da,WU Tianzhi,XIN Xianshuang,et al.Low-temperature solid oxide fuel cell electrolyte materials[J].Chinese Engineering Science,2013,15(2):66-71.(in Chinese)

    • [13] DOSHI R,RICHARDS V L,CARTER J,et al.Development of solid-oxide fuel cells that operate at 500 ℃[J].Journal of the Electrochemical Society,1999,146(4):1273.

    • [14] PARK S Y,NA C W,AHN J H,et al.Intermediate-temperature nickel-yttria stabilized zirconia supported tubular solid oxide fuel cells using gadolinia-doped ceria electrolyte[J].Journal of Power Sources,2012,218:119-127.

    • [15] VAN HERLE J,SENEVIRATNE D,MCEVOY A.Lanthanide co-doping of solid electrolytes:AC conductivity behaviour[J].Journal of the European Ceramic Society,1999,19(6-7):837-841.

    • [16] KHAN M,ISLAM M,BATES D.Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor[J].Journal of Physical Chemistry B,1998,102(17):3099-3104.

    • [17] WANG L S,LI C X,LI C J,et al.Performance of La0.8Sr0.2Ga0.8Mg0.2O3-based SOFCs with atmospheric plasma sprayed La-doped CeO2 buffer layer[J].Electrochimica Acta,2018,275:208-217.

    • [18] KIM K J,CHOI S W,KIM M Y,et al.Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering[J].Journal of Industrial and Engineering Chemistry,2016,42:69-74.

    • [19] ISHIHARA T,ETO H,YAN J.Intermediate temperature solid oxide fuel cells using LaGaO3 based oxide film deposited by PLD method[J].International Journal of Hydrogen Energy,2011,36(2):1862-1867.

    • [20] SASAKI K,MURANAKA M,SUZUKI A,et al.Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS[J].Solid State Ionics,2008,179(21):1268-1272.

    • [21] SAMMES N,TOMPSETT G,NäFE H,et al.Bismuth based oxide electrolytes—structure and ionic conductivity[J].Journal of the European Ceramic Society,1999,19(10):1801-1826.

    • [22] LAARIF A,THEOBALD F.The lone pair concept and the conductivity of bismuth oxides Bi2O3[J].Solid State Ionics,1986,21(3):183-193.

    • [23] KHARTON V,MARQUES F,ATKINSON A.Transport properties of solid oxide electrolyte ceramics:A brief review[J].Solid State Ionics,2004,174(1-4):135-149.

    • [24] SARAT S,SAMMES N,SMIRNOVA A.Bismuth oxidedoped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells[J].Journal of Power Sources,2006,160(2):892-896.

    • [25] NAKAYAMA S,KAGEYAMA T,AONO H,et al.Ionic conductivity of lanthanoid silicates,Ln10(SiO4)6O3(Ln= La,Nd,Sm,Gd,Dy,Y,Ho,Er and Yb)[J].Journal of Materials Chemistry,1995,5(11):1801-1805.

    • [26] MARRERO-LóPEZ D,MARTíN-SEDEñO M,PEñA-MARTíNEZ J,et al.Evaluation of apatite silicates as solid oxide fuel cell electrolytes[J].Journal of Power Sources,2010,195(9):2496-2506.

    • [27] YANG T,ZHAO H,FANG M,et al.A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs:Synthesis,structural and electrical properties[J].Journal of the European Ceramic Society,2019,39(2-3):424-431.

    • [28] 田长安,赵娣芳,尹奇异,等.固体氧化物燃料电池电解质薄膜制备技术[J].电源技术,2009,33(8):721-724.TIAN Changan,ZHAO Difang,YIN Qiyi,et al.Preparation technology of electrolyte membrane for solid oxide fuel cell[J].Power Technology,2009,33(8):721-724.(in Chinese)

    • [29] NING X,LI Chenxin,LI Changjiu,et al.Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process[J].Materials Science and Engineering:A,2006,428(1-2):98-105.

    • [30] KOCH C C.Nanostructured materials:processing,properties and applications[M].Britain,Noruich:William Andrew,2006.

    • [31] ZHANG C,LIAO H,LI W,et al.Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J].Journal of Thermal Spray Technology,2006,15(4):598-603.

    • [32] VON NIESSEN K,GINDRAT M.Plasma spray-PVD:A new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.

    • [33] VON NISSEN K,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.

    • [34] 李成新,王岳鹏,张山林,等.先进陶瓷涂层结构调控及其在固体氧化物燃料电池中的应用[J].中国表面工程,2017,30(2):1-19.LI Chengxin,WANG Yuepeng,ZHANG Shanlin,et al.Modulation of advanced ceramic coating structure and its application in solid oxide fuel cells[J].China Surface Engineering,2017,30(2):1-19.(in Chinese)

    • [35] ZHANG Shanlin,LI Chenxin,LI Changjiu.Plasmasprayed Y2O3-stabilized ZrO2 electrolyte with improved interlamellar bonding for direct application to solid oxide fuel cells[J].Journal of Fuel Cell Science and Technology,2014,11(3):031005.

    • [36] ZHANG C,LIAO H L,LI W Y,et al.Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J].Journal of Thermal Spray Technology,2006,15(4):598-603.

    • [37] SHAO F,ZHAO H Y,LIU C G,et al.Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition[J].Ceramics International,2017,43(2):2305-2313.

    • [38] VARDELLE A,MOREAU C,AKEDO J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.

    • [39] IDE T,NAMIKAWA T,YAMAZAKI Y.Preparation of 8YSZ thin films on porous LSM substrates by electron beam evaporation[J].電気化学および工業物理化学,1996,64(6):681-682.

    • [40] OKUMURA K,AIHARA Y,ITO S,et al.Development of thermal spraying-sintering technology for solid oxide fuel cells[J].Journal of Thermal Spray Technology,2000,9(3):354-359.

    • [41] LI Chenxin,LI Chanjiu,YANG Guanjun.Development of a Ni/Al2O3 cermet-supported tubular solid oxide fuel cell assembled with different functional layers by atmospheric plasma-spraying[J].Journal of Thermal Spray Technology,2009,18(1):83-89.

    • [42] WANG Y,LEGOUX J G,NEAGU R,et al.Suspension plasma spray and performance characterization of half cells with NiO/YSZ anode and YSZ electrolyte[J].Journal of Thermal Spray Technology,2012,21(1):7-15.

    • [43] STOERMER A O,RUPP J L,GAUCKLER L J.Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC[J].Solid State Ionics,2006,177(19-25):2075-2079.

    • [44] KOSACKI I,ROULEAU C M,BECHER P F,et al.Surface/interface-related conductivity in nanometer thick YSZ films[J].Electrochemical and Solid State Letters,2004,7(12):A459.

    • [45] MARCANO D,MAUER G,VASEN R,et al.Manufacturing of high performance solid oxide fuel cells(SOFCs)with atmospheric plasma spraying(APS)and plasma spray-physical vapor deposition(PS-PVD)[J].Surface & Coatings Technology,2017,318:170-177.

    • [46] LI Changjiu,LI Chenxin,LONG H,et al.Performance of tubular solid oxide fuel cell assembled with plasma-sprayed Sc2O3-ZrO2 electrolyte[J].Solid State Ionics,2008,179(27):1575-1578.

    • [47] ZHANG Shanlin,LI Chenxin,LI Changjiu,et al.Scandia-stabilized zirconia electrolyte with improved interlamellar bonding by high-velocity plasma spraying for high performance solid oxide fuel cells[J].Journal of Power Sources,2013,232:123-131.

    • [48] WANG Y,GAO J,CHEN W,et al.Development of ScSZ electrolyte by very low pressure plasma spraying for high-performance metal-supported SOFCs[J].Journal of Thermal Spray Technology,2020,29:223-31.

    • [49] GAO Jiutao,LI Jiahong,WANG Yuepeng,et al.Performance and stability of plasma-sprayed 10×10 cm2 self-sealing metal-supported solid oxide fuel cells[J].Journal of Thermal Spray Technology,2021,30(4):1059-1068.

    • [50] SON C,BHARDWAJ A,HONG J,et al.Plasma-sprayed gadolinium-doped ceria(GDC)for intermediate temperature solid electrolyte[J].Journal of Ceramic Processing Research,2017,18(12):858-864.

    • [51] PARTHASARATHI B,ARUNA S T.Microstructure and electrical properties of plasma sprayed Gd0.15Ce0.85O2-δ coatings from solution combustion synthesized flowable powders[J].Journal of the European Ceramic Society,2017,37(1):271-279.

    • [52] JIA L,GITZHOFER F.Induction plasma synthesis of nano-structured SOFCs electrolyte using solution and suspension plasma spraying:A comparative study[J].Journal of thermal spray technology,2010,19(3):566-574.

    • [53] WEN J,SONG C,LIU Taikai,et al.Fabrication of dense gadolinia-doped ceria coatings via very-low-pressure plasma spray and plasma spray-physical vapor deposition process[J].Coatings,2019,9(11):717.

    • [54] ZHANG S,LIU T,LI C,et al.Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells[J].Journal of Materials Chemistry A,2015,3(14):7535-7553.

    • [55] LI C,XIE Y,LI C,et al.Characterization of atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte[J].Journal of Power Sources,2008,184(2):370-374.

    • [56] WANG Yuepeng,GAO Jiutao,LI Jiahong,et al.Preparation of bulk-like La0.8Sr0.2Ga0.8Mg0.2O3-δ coatings for porous metal-supported solid oxide fuel cells via plasma spraying at increased particle temperatures[J].International Journal of Hydrogen Energy,2021,46(64):32655-32664.

    • [57] YANG Shengfu,HWANG C S,TSAI C H,et al.Fabrication of 100 centimeter square metal-supported solid oxide fuel cell using thermal plasma technique[J].ECS Transactions,2017,78(1):2021.

    • [58] CHEN R,ZHANG S L,LI C J,et al.Plasma-sprayed high-performance(Bi2O3)0.75(Y2O3)0.25 electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFCs)[J].Journal of Thermal Spray Technology,2021,30(1):196-204.

    • [59] CHEN R,LI Chenxin,LI Changjiu.Plasma-sprayed(Bi2O3)0.705(Er2O3)0.245(WO3)0.05 electrolyte for intermediatetemperature solid oxide fuel cells(IT-SOFCs)[C]//Proceedings of the ITSC2021,ITSC2021,ASM International,2021:440-446.

    • [60] YOSHIOKA H,MITSUI T,MINESHIGE A,et al.Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte[J].Solid State Ionics,2010,181(37-38):1707-1712.

    • [61] WANG W,SUN F,GUO X,et al.Effect of substrate surface temperature on the microstructure and ionic conductivity of lanthanum silicate coatings deposited by plasma spraying[J].Surface and Coatings Technology,2011,205(12):3665-3670.

    • [62] SUN F,ZHANG N,LI J,et al.Preparation of dense silicate electrolyte coating with low pressure plasma spraying and very low pressure plasma spraying for intermediate-temperature solid oxide fuel cells[J].Journal of Power Sources,2013,223:36-41.

  • 手机扫一扫看