en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李玉阁,男,1983年出生,博士,副教授。主要研究方向为材料表面工程。E-mail:ygli@dlut.edu.cn;

雷明凯(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为材料表面工程。E-mail:surfeng@dlut.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210424001

参考文献 1
CHAPIN J S.Sputtering process and apparatus:US,4166018[P].1979-08-28.
参考文献 2
WINDOWS B,SAVVIDES N.Charged particle fluxes from planar magnetron sputtering sources[J].Journal of Vacuum Science and Technology A,1986,4(2):196-202.
参考文献 3
ENGWALL A M,SHIN S J,BAE J,et al.Enhanced properties of tungsten films by high-power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,363:191-197.
参考文献 4
LIN J L,ZHANG X H,LEE P,et al.Thick diamond like carbon coatings deposited by deep oscillation magnetron sputtering[J].Surface and Coatings Technology,2017,315:294-302.
参考文献 5
LI Y G,YUAN H,JIANG Z T,et al.Phase composition and mechanical properties of homostructure NbNnanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Surface and Coatings Technology,2020,385(12):125387-8.
参考文献 6
GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge [J].Journal of Vacuum Science and Technology A,2012,30(3):030801-35.
参考文献 7
吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)
参考文献 8
王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13.WANG Qimin,ZHANG Xiaobo,ZHANG Shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13.(in Chinese)
参考文献 9
HECIMOVIC A,KEUDELL A V.Spokes in high power impulse magnetron sputtering plasmas[J].Journal of Physics D:Applied Physics,2018,51(45):453001-15.
参考文献 10
艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)
参考文献 11
EHIASARIAN A P,NEW R,MÜNZ W D,et al.Influence of high power densities on the composition of pulsed magnetron plasmas[J].Vacuum,2002,65(2):147-154.
参考文献 12
LIEBERMAN M A,LICHTENBERG A J.Principles of plasma discharges and materials processing[M].Hoboken:John Wiley & Sons,Inc.,2005.
参考文献 13
SPITZER L.Physics of fully ionized gases[M].New York:Interscience Publishers,1956.
参考文献 14
ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltagetime characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303-11.
参考文献 15
DEPLA D,MAHIEU S,GRYSE DE R.Magnetron sputter deposition:Linking discharge voltage with target properties [J].Thin Solid Films,2009,517:2825-2839.
参考文献 16
ANDERS A,ČAPEK J,HÁLA M,et al.The “recycling trap”:A generalized explanation of discharge runaway in high-power impulse magnetron sputtering[J].Journal of Physics D:Applied Physics,2012,45(1):012003-5.
参考文献 17
VITELARU C,AIJAZ A,PARAU A C,et al.Discharge runaway in high power impulse magnetron sputtering of carbon:The effect of gas pressure,composition and target peak voltage[J].Journal of Physics D,2018,51(16):165201-10.
参考文献 18
JANES G S,LOWDER R S.Anomalous electron diffusion and ion acceleration in a low-density plasma[J].Physics of Fluids,1966,9(6):1115-1123.
参考文献 19
KOZYREV A V,SOCHUGOV N S,OSKOMOV K V,et al.Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge[J].Plasma Physics Reports,2011,37(7):621-627.
参考文献 20
PANJAN M,LOQUAI S,KLEMBERG-SAPIEHA J E,et al.Non-uniform plasma distribution in dc magnetron sputtering:Origin,shape and structuring of spokes[J].Plasma Sources Science and Technology,2015,24(6):065010-16.
参考文献 21
ANDERS A,NI P,RAUCH A.Drifting localization of ionization runaway:Unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J].Journal of Applied Physics,2012,111(5):053304-13.
参考文献 22
ANDERS A,YANG Y C.Direct observation of spoke evolution in magnetron sputtering[J].Applied Physics Letters,2017,111(6):064103-5.
参考文献 23
ANDERS A,YANG Y C.Plasma studies of a linear magnetron operating in the range from DC to HiPIMS[J].Journal of Applied Physics,2018,123(4):043302-29.
参考文献 24
BOBZIN K,BROGELMANN T,KRUPPE N C,et al.Fundamental study of an industrial reactive HPPMS(Cr,Al)N process[J].Journal of Applied Physics,2017,122(1):015302-13.
参考文献 25
MARTINES E,ZUIN M,CAVAZZANA R,et al.Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma[J].Physics of Plasmas,2014,21(10):102309-9.
参考文献 26
HNILICA J,KLEIN P,ŠLSPANSKÁ M,et al.Effect of magnetic field on spoke behavior in HiPIMS plasma[J].Journal of Physics D:Applied Physics,2018,51(9):095204-8.
参考文献 27
HECIMOVIC A,BÖKE M,WINTER J.The characteristic shape of emission profiles of plasma spokes in HiPIMS:The role of secondary electrons[J].Journal of Physics D:Applied Physics,2014,47(10):102003-5.
参考文献 28
YANG Y C,TANAKA K,LIU J,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):124102-5.
参考文献 29
HECIMOVIC A,MASZL C,GATHEN V S,et al.Spoke rotation reversal in magnetron discharges of aluminum,chromium and titanium[J].Plasma Sources Science and Technology,2016,25(3):035001-12.
参考文献 30
KLEIN P,HNILICA J,HUBIČKA Z,et al.Cathode voltage and discharge current oscillations in HiPIMS[J].Plasma Sources Science and Technology,2017,26(5):055015-12.
参考文献 31
BREILMANN W,EITRICH A,MASZL C,et al.High power impulse sputtering of chromium:correlation between the energy distribution of chromium ions and spoke formation[J].Journal of Physics D:Applied Physics,2015,48(29):295202-10.
参考文献 32
BISKUP B,MASZL C,BREILMANN W,et al.Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering[J].Journal of Physics D:Applied Physics,2018,51(11):115201-11.
参考文献 33
ANDERS A.Self-organization and self-limitation in high power impulse magnetron sputtering[J].Applied Physics Letters,2012,100(22):224104-5.
参考文献 34
KLEIN P,HNILICA J,ZEMÁNEK M,et al.The statistics of spoke configurations in high-power impulse magnetron sputtering discharges[J].Journal of Physics D:Applied Physics,2019,52(12):125201-10.
参考文献 35
LOCKWOOD E F,KARKARI S K,BRADLEY J W.Triple probe interrogation of spokes in a HiPIMS discharge[J].Journal of Physics D:Applied Physics,2017,50(29):295201-13.
参考文献 36
HELD J,KEUDELL A V.Pattern formation in high power impulse magnetron sputtering(HiPIMS)plasmas[J].Plasma Chemistry and Plasma Processing,2020,40:643-660.
参考文献 37
BRENNING N,LUNDIN D,MINEA T,et al.Spokes and charged particle transport in HiPIMS magnetrons[J].Journal of Physics D:Applied Physics,2013,46(8):084005-10.
参考文献 38
GALLIAN S,HITCHON W N G,EREMIN D,et al.A phenomenological model for the description of rotating spokes in HiPIMS discharges[J].Plasma Science and Technology,2013,22(5):055021-8.
参考文献 39
BOEUF J P.Rotating structures in low temperature magnetized plasmas—insight from particle simulations[J].Frontiers in Physics,2014,2:1-17.
参考文献 40
REVEL A,MINEA T,TSIKATA S.Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas[J].Physics of Plasmas,2016,23(10):100701-5.
参考文献 41
LUO H,MINEA T,GAO F,et al.The spoke origin based on the coupling-induced wave model in high-power impulse magnetron sputtering plasma[J].Plasma Sources Science and Technology,2018,27(11):115003-9.
参考文献 42
ŠLAPANSKÁ M,HECIMOVIC A,GUDMUNDSSON J T,et al.Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge[J].Journal of Physics D:Applied Physics,2020,53(15):155201-10.
参考文献 43
LOS ARCOS T,SCHRÖDER R,GONZALVO Y A,et al.Description of HiPIMS plasma regimes in terms of composition,spoke formation and deposition rate[J].Plasma Sources Science and Technology,2014,23(5):054008-10.
参考文献 44
FRANZ R,CLAVERO C,KOLBECK J,et al.Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth[J].Plasma Sources Science and Technology,2016,25(1):015022-11.
参考文献 45
LAYES V,MONJE S,COEBELLA C,et al.Species transport on the target during high power impulse magnetron sputtering[J].Applied Physics Letters,2017,110(8):081603-4.
参考文献 46
HOPWOOD J A.Ionized physical vapor deposition[M].Boston Massachusetts:Academic Press,2000.
参考文献 47
LUNDIN D,GUDMUNDSSON J T,MINEA T.High power impulse magnetron sputtering:fundamentals,technologies,challenges and applications[M].Amsterdam:Elsevier,2020.
参考文献 48
SARAKINOS K,MAGNFÄLT D,ELOFSSON V,et al.Atomistic view on thin film nucleation and growth by using highly ionized and pulsed vapor fluxes[J].Surface and Coatings Technology,2014,257:326-332.
参考文献 49
左潇,孙丽丽,汪爱英,等.高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J].表面技术,2019,48:53-63.ZUO Xiao,SUN Lili,WANG Aiying,et al.Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J].Surface Technology,2019,48:53-63.(in Chinese)
参考文献 50
WU Z Z,TIAN X Bo,GUI G,et al.Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering[J].Applied Surface Science,2013,276:31-36.
参考文献 51
JENSEN P,NIEMEYER B.The effect of a modulated flux on the growth of thin films[J].Surface Science Letters,1997,384(1-3):L823-L827.
参考文献 52
MAGNFÄLT D,ELOFSSON V,ABADIAS G,et al.Time domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates[J].Journal of Physics D:Applied Physics,2013,46(21):215303-9.
参考文献 53
LÜ B,MÜNGER E P,SARAKINOS K.Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulation surfaces[J].Journal of Applied Physics,2015,117(13):134304-9.
参考文献 54
LÜ B,SOUQUI L,ELOFSSON V,et al.Scaling of elongation transition during thin-film growth on weakly interacting substrates[J].Applied Physics Letters,2017,111(8):084101-5.
参考文献 55
LIN J L,MOORE J J,SPROUL W D,et al.Modulated pulse power sputtered chromium coatings[J].Thin Solid Films,2009,518(5):1566-1570.
参考文献 56
OLIVEIRA J C,FERREIRA F,ANDERS A,et al.Reduced atomic shadowing in HiPIMS:Role of the thermalized metal ions[J].Applied Surface Science,2018,433:934-944.
参考文献 57
FERREIRA F,SOUSA C,CAVALEIRO A,et al.Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode[J].Surface and Coatings Technology,2017,314:97-104.
参考文献 58
ZHENG B C,WU Z L,WU B,et al.A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges[J].Journal of Applied Physics,2017,121(17):171901-16.
参考文献 59
MENG D,LI Y G,JIANG Z T,et al.Scratch behavior and FEM modelling of Cu/Si(100)thin films deposited by modulated pulsed power magnetron sputtering[J].Surface and Coatings Technology,2019,363:25-33.
参考文献 60
LI Y G,LU Y L,JIANG Z T,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:A comparative study[J].Surface and Coatings Technology,2021,421:127464.
目录contents

    摘要

    高功率脉冲磁控溅射技术(HiPIMS)是最新一代磁控溅射技术,高度离化的脉冲等离子体是 HiPIMS 技术的核心特征。 针对 HiPIMS 放电轮辐特征,评述特征放电下 HiPIMS 等离子体测量、模拟及对薄膜生长作用的最新研究进展。较之常规磁控溅射技术,HiPIMS 溅射靶材粒子高度离化,等离子体阻抗显著降低。等离子体在靶材表面形成以千米每秒速度旋转漂移的致密等离子体结构,存在局域化和自组织特征,可显著影响沉积粒子输运行为,为沉积薄膜生长提供一个新的控制维度。 HiPIMS 放电轮辐一般呈现扩散形和三角形两种形态,通过介绍轮辐变化规律、形成机制的进展,明确靶材溅射产额也对其形态有影响。另一方面,HiPIMS 轮辐结构结合其脉冲放电特点,可控制薄膜沉积通量输运特征,进而影响沉积薄膜的微结构、表面粗糙度等表面完整性参数。具有微秒到毫秒跨尺度多级脉冲调节能力的高功率调制脉冲磁控溅射(MPPMS)和高功率深振荡脉冲磁控溅射(DOMS),脉冲控制跨时间尺度特性带来的轮辐特征可剪裁性,为在更大时间和空间维度上薄膜生长控制提供了可能性。

    Abstract

    High Power Impulse magnetron sputtering (HiPIMS) is the latest generation of magnetron sputtering technology, and highly ionized pulsed plasma is the core feature of HiPIMS technology. This paper reviews the latest advances in plasma simulation, measurement of HiPIMS and its effect on film growth based on its spoke discharge characteristic. Compared with the conventional magnetron sputtering technology, the target particles are highly ionized and the plasma resistance is significantly reduced in HiPIMS. The plasma can form dense plasma structures that rotate at a speed of kilometer pen second on the surface of the target. With the characteristics of localization and self-organization, they can significantly affect the transport behavior of deposited particles and provide a new control dimension for film deposition. Spokes generally present diffuse shape and triangle shape in HiPIMS. Through the detailed introduction of the change law of spokes and the progress of the formation mechanism, it is clear that the sputtering yield of the target materials also affects spokes' morphology. On the other hand, combined with the pulse modulation, spokes can control the transport characteristics of the film deposition flux, thereby affecting the microstructure of the deposited film, surface roughness and other surface integrity parameters. Modulated Pulsed Power magnetron sputtering (MPPMS) and Deep Oscillation magnetron sputtering (DOMS) with the microsecond to millisecond cross-scale multi-level pulse adjustment capability, could be used to control the film growth in a larger spatial dimension due to the tailored spoke characteristics brought about by the cross-time scale characteristic of pulse control.

  • 0 前言

  • 高功率脉冲磁控溅射(High power impulse magnetron sputtering, HiPIMS)峰值功率可达107 W/m2,发明至今已20余年,是继直流磁控溅射技术、非平衡磁控溅射技术之后的最新一代磁控溅射技术[1-2]。高度离化的脉冲等离子体是HiPIMS技术的核心特征。电磁场约束的电子反常输运和离子正交场输运,有效增强了多尺度表面形核与生长过程。输运过程可以调控纳米表面的吸附与扩散,促进多尺度表面结构的稳定化,显著提高涂层致密度、结合强度和硬度等性能[3-5]。近些年来,国内外先后对HiPIMS技术进行综述性的报道,分别从等离子体放电特性、相应的薄膜工艺特点等方面对HiPIMS技术特征进行总结分析[6-10]。本文首先通过电流-电压曲线及放电波形曲线分析,明确HiPIMS等离子体放电的基本特征;接着进一步评述高离化等离子体形成的自组织轮辐结构特征,分析轮辐结构对离子输运行为的影响;最后结合HiPIMS的脉冲传质特点,分析薄膜生长控制的可能新维度。

  • 1 传统伏安放电特性诊断

  • 常规磁控溅射常使用电流-电压曲线描述整个放电过程,主要经历暗电流、Thompson放电等阶段达到工艺所需的辉光或异常辉光放电阶段,实现稳定溅射和高质量薄膜生长。EHIASARIAN等[11]使用传统电流-电压曲线研究了HiPIMS放电特征,发现HiPIMS与常规磁控溅射一致,均符合幂率关系,满足公式I=KUn,其中 I 为放电电流,U 为放电电压。常规磁控溅射时,幂指数 n 为7~8。高功率脉冲磁控溅射时,电流密度较高,幂指数可升至1。一种可能的原因在于经过鞘层加速的二次电子无法被磁场束缚,电子碰撞离化概率降低,最终引起放电电流的显著变化。电流的显著变化说明常规磁控溅射至HiPIMS,必然伴随着等离子体阻抗的显著变化[12]。一般地,低温等离子体阻抗应服从式(1):

  • σp=ε0ωpe2jω+vm
    (1)
  • 式中,ε0为真空介电常数,ωpe为电子等离子体频率, ω 为电源驱动频率,j为虚数,νm为电子-中性粒子碰撞频率。

  • 对于等离子体离化率较低的常规磁控溅射技术,其等离子体阻抗应服从式(2):

  • σdc=ε0ωpe2vm=e2n0mvm
    (2)
  • 式中,n0为等离子体电子密度,m 为电子质量。

  • HiPIMS由于等离子体离化率高,阻抗应服从Spitzer定律[13],如式(3)所示:

  • σei=1.9×104Te3/2ZlnΛΩ-1m-1
    (3)
  • 式中,Te 为电子温度,Z 为离子电荷,Λ=2λDe/b 0λDe 为电子德拜长度,b 0为电子-离子碰撞的最小碰撞参数。

  • 由式(1)~(3)可知,HiPIMS等离子体阻抗必然伴随着电子温度发生显著变化,同时也受到电子密度的影响,但传统理论仍难以解析HiPIMS高离化等离子体中的离子特征。

  • 2 HiPIMS时域伏安特性放电特性及局限性

  • 2007年,ANDERS等[14]将时间轴引入电流-电压曲线,并以此研究HiPIMS放电行为,发现HiPIMS峰值电流高低与溅射气压、靶材料相关。电压-电流-时间曲线通常呈现连续两个电流峰形,第一个峰与初始气压相关,其随后的电流峰形受功率和材料影响,并且这个电流峰与自持自溅射相关,受靶材自溅射产额、二次电子发射系数及第二电离电位的控制,因此在近靶处放电电流中高价离子同样对产生二次电子有贡献。

  • 放电电流由离子电流和电子电流组成,可由式(4)中的I d表示:

  • Id=Ie+Ii=Ii(1+γ)
    (4)
  • 式中,I e为电子电流,I i 为离子电流,γ 为二次电子发射系数,大多数金属的二次电子发射系数为0.05~0.2[15]

  • 离子电流可由气体或靶材离子组成,对于C等低溅射产额的靶材,电流-电压-时间曲线也无法解析其金属靶材自溅射特征,且难以对高离化等离子输运行为进行分辨,实现HiPIMS沉积薄膜生长的有效调控。

  • GUDMUNDSSON等[6]根据放电电流与时间曲线特点识别了离子主导自溅射的曲线特征,成功依据放电电流在特定电压的异常升高,对离子主导的溅射行为进行了判断。然而ANDERS等[16]进一步研究发现,这种电流迅速增加的现象可在所有靶材电流-电压-时间曲线中观察到,已不能作为准确判断离子主导自溅射现象发生的依据。对于特定的靶材,如C等低溅射产额靶材,电流的升高也可以在由气体主导的溅射过程产生。VITELARU等[17]进一步研究了低溅射产额C靶放电电流异常升高现象,发现工作气压和靶电压均可驱动这一现象产生,且必然伴随着等离子体电子温度的显著变化。图1给出C靶放电峰值放电电流、临界放电电流I crit、循环比率与工作气压的关系。其中黑色曲线为临界放电电流,红色曲线为峰值放电电流,蓝色则为循环比率,用于表征气体循环过程。当工作气压比较低,循环比率小于1时,放电体系内没有气体循环,反之,则存在气体循环。电子温度的变化与Spitzer定律预测的结果一致,但仍缺少对离子输运过程的描述。

  • 图1 C靶放电峰值放电电流、临界放电电流I crit、循环比率与工作气压的关系(1Torr=133.322 4Pa)[17]

  • Fig.1 Relationship between the peak discharge current, I crit, recycling ratio and the working pressure for C target discharge (1Torr=133.322 4Pa) [17]

  • 3 HiPIMS等离子体自组织和反常输运特性

  • HIPIMS高离化等离子体可在靶材表面形成若干等离子体离化增强区域,因其形状和成因与离子推进器的等离子体行为相似,也被称为轮辐 (spokes)结构[18-19]。轮辐存在局域化和自组织特征,是HiPIMS离子正交场输运的基础。与常规磁控溅射等离子体轮辐的运行轨迹和空间组态不同,HiPIMS轮辐结构是在E ×B 方向以千米每秒速度旋转漂移的致密等离子体结构。在空间分布上,轮辐在圆形磁控靶表面约1mm上方形成两种典型的空间形态,一种是沿着溅射跑道扩展的扩散形轮辐结构[20],另一种是本地局域化的三角形轮辐结构[21],如图2所示。

  • 图2 典型的轮辐形态

  • Fig.2 Typical shape of spokes

  • 轮辐空间形态一般认为是由靶材料的第二电离电位与工作气体Ar的第一电离电位差异决定的。具有扩散形轮辐形态的等离子体,其靶材料的第二电离电位一般低于工作气体Ar,而三角形轮辐磁控靶材料则具有较高的第二电离电位[20]。对于具有低二次电子发射系数的工业矩形靶材,其轮辐则呈现明显的三角形而非扩散形[22-24]。靶表面上形成轮辐结构的数量被称为模数,一般为1~5不等[25]。增加气压会缩小轮辐结构之间的距离,但并不会改变轮辐结构形状[26]。表1给出Ar(15.8eV)溅射不同靶材的轮辐特征部分文献统计结果[19, 21, 26-32],发现对于第二电离电位较高的Cu靶材在特定条件下也可形成扩散形轮辐。因此,使用第二电离电位作为轮辐形态判断依据存在一定局限性,高溅射产额Cu靶在特定情况下也可以提供足够的二次电子导致轮辐形态变化。ANDERS等[21,33]观测轮辐结构空间组态和空间电场分布,通过离子饱和电流发现放电电流和溅射过程存在局域化,明确二次电子产生的局域化和溅射风现象影响轮辐结构的形态。KLEIN等[34]研究溅射气压对轮辐结构稳定性的影响,发现在0.2Pa时,轮辐结构模数会在动态分裂和合并过程中基本保持稳定。在工作气压4Pa时,轮辐结构模数则倾向形成更高的模数。LOCKWOOD等[35]利用朗缪尔探针结合嵌入靶材的Pearson电流探针研究Nb靶HiPIMS等离子体中轮辐随脉冲变化过程中电子密度、电子温度分布等信息。由于轮辐周围存在电场,轮辐结构内部电子密度、电子温度分布不均匀,轮辐前端电子密度高而电子温度低,后端电子密度低而电子温度高。HELD等[36]发现轮辐的运动方向与溅射过程中金属离子的参与程度相关,当溅射束流由气体主导转至金属主导时,轮辐旋转方向反转至E ×B 方向。HNILICA等[26]通过改变Ti靶厚度来改变靶材表面磁场强度,研究不同磁场强度下轮辐结构特征的变化。当磁场强度从91mT降至72mT时,三角形轮辐的轮辐速度大约提高10%,并且在磁场强度进一步降低到37mT时,轮辐形状出现扩散形轮辐。已有研究表明,轮辐结构特征也可受到溅射气压、靶材放电特性及磁场强度等因素的共同影响,且轮辐结构虽然主要呈现扩散形和三角形,但低功率密度可能会呈现无序的轮辐结构或高功率密度呈现轮辐模数为1的等离子体结构。

  • 表1 Ar(15.8eV)溅射不同靶材的轮辐特征

  • Table1 Different spoke characteristics of argon sputtered target

  • HiPIMS轮辐结构的局域化特征,导致常规等离子体测量技术难以获得轮辐电势和周围电场等信息,轮辐形成机制模型的建立加深了HiPIMS高度非线性等离子体认识。ANDERS等[23,33]在试验观察的基础上从电离区形成角度出发,尝试对轮辐结构的形成进行定性的描述,认为电子截止能量相关的正反馈与离子自组织过程间的平衡,是轮辐结构的形成和演化的决定因素,离子和原子离开轮辐的时间共同决定两个轮辐之间的间距,间接影响轮辐模数。BRENNING等[37]提出一个“统一模型”描述HiPIMS中放电过程,将离子和电子运动与轮辐内部势能结构结合起来,预测存在一个与Alfven临界离化速度相近的阀值,确定了轮辐的运动速度。 GALLIAN等[38]成功发展了一种轮辐结构的唯象模型,考虑了与漂移和扩散相关的一系列化学粒子的演化,将系统对流、扩散及反应方程简化,可再现单一轮辐结构特征。但模型过于简化,对轮辐结构的动态过程无法解析。BOEUF等[39]采用2D PIC-MCC模拟低温磁化等离子体中的轮辐现象,发现轮辐主要呈现轮辐模数为2的特征。但由于计算量限制,模拟体系的等离子密度仅为1010 m−3,远低于HiPIMS测量等离子密度1018 m−3,研究的相关结论是否也适用于高密度等离子体情况仍需要进一步探讨。最近,REVEL等[40]利用赝3D PIC模拟平面磁控管放电等离子体轮辐现象,通过三个二维平面信息推测三维空间等离子行为。唯象模型的模拟结果表明,电子密度波动可能与微米尺度的电子回旋不稳定性和厘米尺度的轮辐等离子体结构相关。而LUO等[41]基于耦合波模型分析HiPIMS等离子体轮辐的起源,对轮辐的起源和运动行为进行了更为深入的数值研究,认为轮辐现象是由方位角方向波频差异引导的离子重新分布的集体行为。

  • 4 高功率脉冲磁控溅射输运特征和薄膜生长调控

  • 由于轮辐结构的特殊性,其运行轨迹、模数及动态旋转的合并过程等可显著影响沉积通量粒子组成和输运特征,并且探讨轮辐成因可一定程度解决HiPIMS沉积速率损失难题。YANG等[28]研究等离子体轮辐区域对输运至基体表面离子能量的影响,明确轮辐结构的存在会提高输运至基体表面离子能量。常规磁控溅射由Ar离子主导轮辐结构形态和运动轨迹,且输运至基体的靶金属离子和Ar离子能量仅存在一个低能峰。HiPIMS形成的轮辐结构由靶金属离子和Ar离子共同控制,输运至基体的离子能量存在低能和高能两个峰值,且低能峰峰位可以通过轮辐结构的形态和轨迹调控向高能态迁移。 BREILMANN等[31]通过调整靶材功率密度来调控轮辐空间形态,并研究Cr靶HiPIMS溅射中离子能量分布函数(Ion energy distribution function, IEDF) 的变化。试验发现在轮辐向均匀等离子体转变过程中,IEDF的高能区域不受轮辐结构转变的影响,但是低能部分随轮辐结构变化粒子数目增多。 ŠLAPANSKÁ 等[42]在Cr靶HiPIMS放电试验中,发现等离子体轮辐空间形态向均匀等离子体转变过程中,Ar2+、Cr2+、Cr3+、Cr4+等多电荷离子通量显著增加,电子温度升高。BISKUP等[32]研究轮辐特征模数与离子输运特性的规律,轮辐周边电场增强了离子对基片的输运行为,一定程度控制HiPIMS沉积率损失。同样地,LOS ARCOS等[43]通过光发射光谱(Optical emission spectroscopy,OES)和四极质谱仪(Quadrupole mass spectrometry,QMS)研究轮辐存在对沉积速率的影响,研究结果表明轮辐现象只有在特定功率范围内才会出现。在该区域下, Ar的光发射强度降低,Cu和Cr的光发射强度升高,基片沉积速率略有升高,说明轮辐对金属粒子向基片运输具有一定的促进作用。FRANZ等[44]使用HIDEN EQP 300测量研究HiPIMS反应溅射沉积NbOx 薄膜IEDF,评估了电离区运动对离子通量的影响。研究发现Nb离子通量沿靶材法线呈不对称分布,在0~90°的通量高于0~−90°,表明轮辐的存在会影响离子的运动方向,导致离子的通量和能量分布具有角不对称性,进而影响薄膜沉积通量。 LAYES等[45]通过靶材标记技术研究靶材材料在靶上的横向输运过程,发现只有当轮辐出现时,才可观察到靶材粒子逆向E×B运动行为。原因在于轮辐后端存在与靶面平行的电场,该电场能够增强逆向E ×B 运动,强烈影响等离子体中的粒子输运行为。

  • 另一方面,HiPIMS是典型的脉冲工艺,存在非连续型生长行为,其脉冲沉积束流一般以102 ML·s −1 左右的沉积速率在基体表面沉积,是一个远离平衡的过饱和生长过程[46-47]。薄膜生长过程中的形核、动态合并和长大三个阶段是形成薄膜微结构的决定因素。对于以Volmer-Weber模式生长的多晶薄膜,脉冲工艺时均沉积通量与吸附原子扩散系数是决定薄膜生长的主要特征参数,可以控制生长薄膜的致密度、表面粗糙度等薄膜表面完整性参数[48-50]。HiPIMS技术可通过脉宽、频率及幅值等参数调制沉积束流组成等,实现薄膜生长过程中形核、生长及合并三个阶段的解耦控制。JENSEN等[51]计算分析沉积通量与薄膜生长特征的脉冲调制关系,通过对比沉积通量与薄膜生长前沿原子迁移频率,明确脉冲频率与薄膜生长初期岛状生长的岛密度直接相关,如图3所示。MAGNFÄLT等[52]采用HiPIMS产生脉冲高离化溅射束流,研究脉冲时域特性和离子轰击对Volmer-Weber生长模式下薄膜形核及动态合并作用。明确HiPIMS技术可分离溅射束流密度和能量对薄膜生长的影响,生长表面原子迁移能力和形核速率与沉积束流脉冲的时域耦合作用决定了薄膜生长表面完整性特征。LÜ 等[53,54]采用动力学蒙特卡洛研究脉冲束流中金属离子对沉积于弱相互作用基体上薄膜形貌演化的影响,发现脉冲时域调节作用不仅可以控制薄膜岛状生长初期的岛密度,也可抑制其合并过程。并进一步地,分析薄膜生长过程中主导形核和合并长大过程中表面自由能与体自由能的转换点,及Ag薄膜生长前沿吸附原子迁移速率与薄膜生长的竞争过程,实现薄膜形貌可控沉积。

  • 高功率调制脉冲磁控溅射(Modulated pulsed power magnetron sputtering, MPPMS)和高功率深振荡脉冲磁控溅射 (Deep oscillation magnetron sputtering, DOMS)是新型的HiPIMS技术,因宏微脉冲的多重调节作用,放电特征更具特色。与HiPIMS放电进行对比,具有调制脉冲能力的MPPMS和DOMS可同时提供毫秒级宏脉冲和微秒级微脉冲控制,进一步增强了HiPIMS跨尺度脉冲调控能力。 MPPMS的脉冲形式通常由弱离化和强离化两段组成,而DOMS则在MPPMS脉冲基础上对电压波形进行小于60 μs的振荡调制[55-56]。通过深振荡的波形调制,DOMS被认为较之HiPIMS可进一步对离子轰击作用进行控制[57]。已有的研究表明,MPPMS和DOMS在改善涂层沉积率、力学性能等方面均有优势[58-60]。通过宏微脉冲的多尺度时域调制和基于轮辐组态的空间控制,MPPMS及DOMS应可提供薄膜生长的控制新维度。

  • 图3 沉积通量、吸附原子移动能力与脉冲参数的时域耦合关系[51] (虚线表示沉积通量,实线表示脉冲参数,从左到右,吸附原子移动能力逐渐降低)

  • Fig.3 Time domain coupling among deposition flux, adatom diffusion and pulse frequency[51].The dotted line represents the deposition flux, and the solid line represents the pulse parameters.From left to right, the mobility of adatoms gradually decreases.

  • 5 结论与展望

  • 对HiPIMS技术现阶段的研究结果进行总结,从时域伏安特性角度介绍其溅射放电行为,尤其对高密度等离子体形成的轮辐结构进行重点分析。等离子体轮辐结构区域是离化增强区域,具有局域化和自组织特征。详细介绍了轮辐变化规律、形成机制,明确了轮辐的形态不仅受磁场强度、电离电位及气压等因素,靶材溅射产额也对其形态有影响。指出形成的轮辐结构对离子输运和薄膜生长的可能作用。

  • HiPIMS技术已出现20年有余,其等离子体放电具有时变、不稳定及高度非线性等特征,仍未能对HiPIMS等离子体轮辐形成机理及离子输运特征提出统一的模型,HiPIMS沉积薄膜生长新机制和新理论仍较为空白。相信在众多同行的参与下,最终实现HiPIMS理论突破,为下一代技术的开发提供理论支撑。

  • 参考文献

    • [1] CHAPIN J S.Sputtering process and apparatus:US,4166018[P].1979-08-28.

    • [2] WINDOWS B,SAVVIDES N.Charged particle fluxes from planar magnetron sputtering sources[J].Journal of Vacuum Science and Technology A,1986,4(2):196-202.

    • [3] ENGWALL A M,SHIN S J,BAE J,et al.Enhanced properties of tungsten films by high-power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,363:191-197.

    • [4] LIN J L,ZHANG X H,LEE P,et al.Thick diamond like carbon coatings deposited by deep oscillation magnetron sputtering[J].Surface and Coatings Technology,2017,315:294-302.

    • [5] LI Y G,YUAN H,JIANG Z T,et al.Phase composition and mechanical properties of homostructure NbNnanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Surface and Coatings Technology,2020,385(12):125387-8.

    • [6] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge [J].Journal of Vacuum Science and Technology A,2012,30(3):030801-35.

    • [7] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [8] 王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13.WANG Qimin,ZHANG Xiaobo,ZHANG Shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13.(in Chinese)

    • [9] HECIMOVIC A,KEUDELL A V.Spokes in high power impulse magnetron sputtering plasmas[J].Journal of Physics D:Applied Physics,2018,51(45):453001-15.

    • [10] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [11] EHIASARIAN A P,NEW R,MÜNZ W D,et al.Influence of high power densities on the composition of pulsed magnetron plasmas[J].Vacuum,2002,65(2):147-154.

    • [12] LIEBERMAN M A,LICHTENBERG A J.Principles of plasma discharges and materials processing[M].Hoboken:John Wiley & Sons,Inc.,2005.

    • [13] SPITZER L.Physics of fully ionized gases[M].New York:Interscience Publishers,1956.

    • [14] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltagetime characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303-11.

    • [15] DEPLA D,MAHIEU S,GRYSE DE R.Magnetron sputter deposition:Linking discharge voltage with target properties [J].Thin Solid Films,2009,517:2825-2839.

    • [16] ANDERS A,ČAPEK J,HÁLA M,et al.The “recycling trap”:A generalized explanation of discharge runaway in high-power impulse magnetron sputtering[J].Journal of Physics D:Applied Physics,2012,45(1):012003-5.

    • [17] VITELARU C,AIJAZ A,PARAU A C,et al.Discharge runaway in high power impulse magnetron sputtering of carbon:The effect of gas pressure,composition and target peak voltage[J].Journal of Physics D,2018,51(16):165201-10.

    • [18] JANES G S,LOWDER R S.Anomalous electron diffusion and ion acceleration in a low-density plasma[J].Physics of Fluids,1966,9(6):1115-1123.

    • [19] KOZYREV A V,SOCHUGOV N S,OSKOMOV K V,et al.Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge[J].Plasma Physics Reports,2011,37(7):621-627.

    • [20] PANJAN M,LOQUAI S,KLEMBERG-SAPIEHA J E,et al.Non-uniform plasma distribution in dc magnetron sputtering:Origin,shape and structuring of spokes[J].Plasma Sources Science and Technology,2015,24(6):065010-16.

    • [21] ANDERS A,NI P,RAUCH A.Drifting localization of ionization runaway:Unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J].Journal of Applied Physics,2012,111(5):053304-13.

    • [22] ANDERS A,YANG Y C.Direct observation of spoke evolution in magnetron sputtering[J].Applied Physics Letters,2017,111(6):064103-5.

    • [23] ANDERS A,YANG Y C.Plasma studies of a linear magnetron operating in the range from DC to HiPIMS[J].Journal of Applied Physics,2018,123(4):043302-29.

    • [24] BOBZIN K,BROGELMANN T,KRUPPE N C,et al.Fundamental study of an industrial reactive HPPMS(Cr,Al)N process[J].Journal of Applied Physics,2017,122(1):015302-13.

    • [25] MARTINES E,ZUIN M,CAVAZZANA R,et al.Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma[J].Physics of Plasmas,2014,21(10):102309-9.

    • [26] HNILICA J,KLEIN P,ŠLSPANSKÁ M,et al.Effect of magnetic field on spoke behavior in HiPIMS plasma[J].Journal of Physics D:Applied Physics,2018,51(9):095204-8.

    • [27] HECIMOVIC A,BÖKE M,WINTER J.The characteristic shape of emission profiles of plasma spokes in HiPIMS:The role of secondary electrons[J].Journal of Physics D:Applied Physics,2014,47(10):102003-5.

    • [28] YANG Y C,TANAKA K,LIU J,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):124102-5.

    • [29] HECIMOVIC A,MASZL C,GATHEN V S,et al.Spoke rotation reversal in magnetron discharges of aluminum,chromium and titanium[J].Plasma Sources Science and Technology,2016,25(3):035001-12.

    • [30] KLEIN P,HNILICA J,HUBIČKA Z,et al.Cathode voltage and discharge current oscillations in HiPIMS[J].Plasma Sources Science and Technology,2017,26(5):055015-12.

    • [31] BREILMANN W,EITRICH A,MASZL C,et al.High power impulse sputtering of chromium:correlation between the energy distribution of chromium ions and spoke formation[J].Journal of Physics D:Applied Physics,2015,48(29):295202-10.

    • [32] BISKUP B,MASZL C,BREILMANN W,et al.Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering[J].Journal of Physics D:Applied Physics,2018,51(11):115201-11.

    • [33] ANDERS A.Self-organization and self-limitation in high power impulse magnetron sputtering[J].Applied Physics Letters,2012,100(22):224104-5.

    • [34] KLEIN P,HNILICA J,ZEMÁNEK M,et al.The statistics of spoke configurations in high-power impulse magnetron sputtering discharges[J].Journal of Physics D:Applied Physics,2019,52(12):125201-10.

    • [35] LOCKWOOD E F,KARKARI S K,BRADLEY J W.Triple probe interrogation of spokes in a HiPIMS discharge[J].Journal of Physics D:Applied Physics,2017,50(29):295201-13.

    • [36] HELD J,KEUDELL A V.Pattern formation in high power impulse magnetron sputtering(HiPIMS)plasmas[J].Plasma Chemistry and Plasma Processing,2020,40:643-660.

    • [37] BRENNING N,LUNDIN D,MINEA T,et al.Spokes and charged particle transport in HiPIMS magnetrons[J].Journal of Physics D:Applied Physics,2013,46(8):084005-10.

    • [38] GALLIAN S,HITCHON W N G,EREMIN D,et al.A phenomenological model for the description of rotating spokes in HiPIMS discharges[J].Plasma Science and Technology,2013,22(5):055021-8.

    • [39] BOEUF J P.Rotating structures in low temperature magnetized plasmas—insight from particle simulations[J].Frontiers in Physics,2014,2:1-17.

    • [40] REVEL A,MINEA T,TSIKATA S.Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas[J].Physics of Plasmas,2016,23(10):100701-5.

    • [41] LUO H,MINEA T,GAO F,et al.The spoke origin based on the coupling-induced wave model in high-power impulse magnetron sputtering plasma[J].Plasma Sources Science and Technology,2018,27(11):115003-9.

    • [42] ŠLAPANSKÁ M,HECIMOVIC A,GUDMUNDSSON J T,et al.Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge[J].Journal of Physics D:Applied Physics,2020,53(15):155201-10.

    • [43] LOS ARCOS T,SCHRÖDER R,GONZALVO Y A,et al.Description of HiPIMS plasma regimes in terms of composition,spoke formation and deposition rate[J].Plasma Sources Science and Technology,2014,23(5):054008-10.

    • [44] FRANZ R,CLAVERO C,KOLBECK J,et al.Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth[J].Plasma Sources Science and Technology,2016,25(1):015022-11.

    • [45] LAYES V,MONJE S,COEBELLA C,et al.Species transport on the target during high power impulse magnetron sputtering[J].Applied Physics Letters,2017,110(8):081603-4.

    • [46] HOPWOOD J A.Ionized physical vapor deposition[M].Boston Massachusetts:Academic Press,2000.

    • [47] LUNDIN D,GUDMUNDSSON J T,MINEA T.High power impulse magnetron sputtering:fundamentals,technologies,challenges and applications[M].Amsterdam:Elsevier,2020.

    • [48] SARAKINOS K,MAGNFÄLT D,ELOFSSON V,et al.Atomistic view on thin film nucleation and growth by using highly ionized and pulsed vapor fluxes[J].Surface and Coatings Technology,2014,257:326-332.

    • [49] 左潇,孙丽丽,汪爱英,等.高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J].表面技术,2019,48:53-63.ZUO Xiao,SUN Lili,WANG Aiying,et al.Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J].Surface Technology,2019,48:53-63.(in Chinese)

    • [50] WU Z Z,TIAN X Bo,GUI G,et al.Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering[J].Applied Surface Science,2013,276:31-36.

    • [51] JENSEN P,NIEMEYER B.The effect of a modulated flux on the growth of thin films[J].Surface Science Letters,1997,384(1-3):L823-L827.

    • [52] MAGNFÄLT D,ELOFSSON V,ABADIAS G,et al.Time domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates[J].Journal of Physics D:Applied Physics,2013,46(21):215303-9.

    • [53] LÜ B,MÜNGER E P,SARAKINOS K.Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulation surfaces[J].Journal of Applied Physics,2015,117(13):134304-9.

    • [54] LÜ B,SOUQUI L,ELOFSSON V,et al.Scaling of elongation transition during thin-film growth on weakly interacting substrates[J].Applied Physics Letters,2017,111(8):084101-5.

    • [55] LIN J L,MOORE J J,SPROUL W D,et al.Modulated pulse power sputtered chromium coatings[J].Thin Solid Films,2009,518(5):1566-1570.

    • [56] OLIVEIRA J C,FERREIRA F,ANDERS A,et al.Reduced atomic shadowing in HiPIMS:Role of the thermalized metal ions[J].Applied Surface Science,2018,433:934-944.

    • [57] FERREIRA F,SOUSA C,CAVALEIRO A,et al.Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode[J].Surface and Coatings Technology,2017,314:97-104.

    • [58] ZHENG B C,WU Z L,WU B,et al.A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges[J].Journal of Applied Physics,2017,121(17):171901-16.

    • [59] MENG D,LI Y G,JIANG Z T,et al.Scratch behavior and FEM modelling of Cu/Si(100)thin films deposited by modulated pulsed power magnetron sputtering[J].Surface and Coatings Technology,2019,363:25-33.

    • [60] LI Y G,LU Y L,JIANG Z T,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:A comparative study[J].Surface and Coatings Technology,2021,421:127464.

  • 参考文献

    • [1] CHAPIN J S.Sputtering process and apparatus:US,4166018[P].1979-08-28.

    • [2] WINDOWS B,SAVVIDES N.Charged particle fluxes from planar magnetron sputtering sources[J].Journal of Vacuum Science and Technology A,1986,4(2):196-202.

    • [3] ENGWALL A M,SHIN S J,BAE J,et al.Enhanced properties of tungsten films by high-power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,363:191-197.

    • [4] LIN J L,ZHANG X H,LEE P,et al.Thick diamond like carbon coatings deposited by deep oscillation magnetron sputtering[J].Surface and Coatings Technology,2017,315:294-302.

    • [5] LI Y G,YUAN H,JIANG Z T,et al.Phase composition and mechanical properties of homostructure NbNnanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Surface and Coatings Technology,2020,385(12):125387-8.

    • [6] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge [J].Journal of Vacuum Science and Technology A,2012,30(3):030801-35.

    • [7] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [8] 王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13.WANG Qimin,ZHANG Xiaobo,ZHANG Shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13.(in Chinese)

    • [9] HECIMOVIC A,KEUDELL A V.Spokes in high power impulse magnetron sputtering plasmas[J].Journal of Physics D:Applied Physics,2018,51(45):453001-15.

    • [10] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [11] EHIASARIAN A P,NEW R,MÜNZ W D,et al.Influence of high power densities on the composition of pulsed magnetron plasmas[J].Vacuum,2002,65(2):147-154.

    • [12] LIEBERMAN M A,LICHTENBERG A J.Principles of plasma discharges and materials processing[M].Hoboken:John Wiley & Sons,Inc.,2005.

    • [13] SPITZER L.Physics of fully ionized gases[M].New York:Interscience Publishers,1956.

    • [14] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltagetime characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303-11.

    • [15] DEPLA D,MAHIEU S,GRYSE DE R.Magnetron sputter deposition:Linking discharge voltage with target properties [J].Thin Solid Films,2009,517:2825-2839.

    • [16] ANDERS A,ČAPEK J,HÁLA M,et al.The “recycling trap”:A generalized explanation of discharge runaway in high-power impulse magnetron sputtering[J].Journal of Physics D:Applied Physics,2012,45(1):012003-5.

    • [17] VITELARU C,AIJAZ A,PARAU A C,et al.Discharge runaway in high power impulse magnetron sputtering of carbon:The effect of gas pressure,composition and target peak voltage[J].Journal of Physics D,2018,51(16):165201-10.

    • [18] JANES G S,LOWDER R S.Anomalous electron diffusion and ion acceleration in a low-density plasma[J].Physics of Fluids,1966,9(6):1115-1123.

    • [19] KOZYREV A V,SOCHUGOV N S,OSKOMOV K V,et al.Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge[J].Plasma Physics Reports,2011,37(7):621-627.

    • [20] PANJAN M,LOQUAI S,KLEMBERG-SAPIEHA J E,et al.Non-uniform plasma distribution in dc magnetron sputtering:Origin,shape and structuring of spokes[J].Plasma Sources Science and Technology,2015,24(6):065010-16.

    • [21] ANDERS A,NI P,RAUCH A.Drifting localization of ionization runaway:Unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J].Journal of Applied Physics,2012,111(5):053304-13.

    • [22] ANDERS A,YANG Y C.Direct observation of spoke evolution in magnetron sputtering[J].Applied Physics Letters,2017,111(6):064103-5.

    • [23] ANDERS A,YANG Y C.Plasma studies of a linear magnetron operating in the range from DC to HiPIMS[J].Journal of Applied Physics,2018,123(4):043302-29.

    • [24] BOBZIN K,BROGELMANN T,KRUPPE N C,et al.Fundamental study of an industrial reactive HPPMS(Cr,Al)N process[J].Journal of Applied Physics,2017,122(1):015302-13.

    • [25] MARTINES E,ZUIN M,CAVAZZANA R,et al.Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma[J].Physics of Plasmas,2014,21(10):102309-9.

    • [26] HNILICA J,KLEIN P,ŠLSPANSKÁ M,et al.Effect of magnetic field on spoke behavior in HiPIMS plasma[J].Journal of Physics D:Applied Physics,2018,51(9):095204-8.

    • [27] HECIMOVIC A,BÖKE M,WINTER J.The characteristic shape of emission profiles of plasma spokes in HiPIMS:The role of secondary electrons[J].Journal of Physics D:Applied Physics,2014,47(10):102003-5.

    • [28] YANG Y C,TANAKA K,LIU J,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):124102-5.

    • [29] HECIMOVIC A,MASZL C,GATHEN V S,et al.Spoke rotation reversal in magnetron discharges of aluminum,chromium and titanium[J].Plasma Sources Science and Technology,2016,25(3):035001-12.

    • [30] KLEIN P,HNILICA J,HUBIČKA Z,et al.Cathode voltage and discharge current oscillations in HiPIMS[J].Plasma Sources Science and Technology,2017,26(5):055015-12.

    • [31] BREILMANN W,EITRICH A,MASZL C,et al.High power impulse sputtering of chromium:correlation between the energy distribution of chromium ions and spoke formation[J].Journal of Physics D:Applied Physics,2015,48(29):295202-10.

    • [32] BISKUP B,MASZL C,BREILMANN W,et al.Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering[J].Journal of Physics D:Applied Physics,2018,51(11):115201-11.

    • [33] ANDERS A.Self-organization and self-limitation in high power impulse magnetron sputtering[J].Applied Physics Letters,2012,100(22):224104-5.

    • [34] KLEIN P,HNILICA J,ZEMÁNEK M,et al.The statistics of spoke configurations in high-power impulse magnetron sputtering discharges[J].Journal of Physics D:Applied Physics,2019,52(12):125201-10.

    • [35] LOCKWOOD E F,KARKARI S K,BRADLEY J W.Triple probe interrogation of spokes in a HiPIMS discharge[J].Journal of Physics D:Applied Physics,2017,50(29):295201-13.

    • [36] HELD J,KEUDELL A V.Pattern formation in high power impulse magnetron sputtering(HiPIMS)plasmas[J].Plasma Chemistry and Plasma Processing,2020,40:643-660.

    • [37] BRENNING N,LUNDIN D,MINEA T,et al.Spokes and charged particle transport in HiPIMS magnetrons[J].Journal of Physics D:Applied Physics,2013,46(8):084005-10.

    • [38] GALLIAN S,HITCHON W N G,EREMIN D,et al.A phenomenological model for the description of rotating spokes in HiPIMS discharges[J].Plasma Science and Technology,2013,22(5):055021-8.

    • [39] BOEUF J P.Rotating structures in low temperature magnetized plasmas—insight from particle simulations[J].Frontiers in Physics,2014,2:1-17.

    • [40] REVEL A,MINEA T,TSIKATA S.Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas[J].Physics of Plasmas,2016,23(10):100701-5.

    • [41] LUO H,MINEA T,GAO F,et al.The spoke origin based on the coupling-induced wave model in high-power impulse magnetron sputtering plasma[J].Plasma Sources Science and Technology,2018,27(11):115003-9.

    • [42] ŠLAPANSKÁ M,HECIMOVIC A,GUDMUNDSSON J T,et al.Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge[J].Journal of Physics D:Applied Physics,2020,53(15):155201-10.

    • [43] LOS ARCOS T,SCHRÖDER R,GONZALVO Y A,et al.Description of HiPIMS plasma regimes in terms of composition,spoke formation and deposition rate[J].Plasma Sources Science and Technology,2014,23(5):054008-10.

    • [44] FRANZ R,CLAVERO C,KOLBECK J,et al.Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth[J].Plasma Sources Science and Technology,2016,25(1):015022-11.

    • [45] LAYES V,MONJE S,COEBELLA C,et al.Species transport on the target during high power impulse magnetron sputtering[J].Applied Physics Letters,2017,110(8):081603-4.

    • [46] HOPWOOD J A.Ionized physical vapor deposition[M].Boston Massachusetts:Academic Press,2000.

    • [47] LUNDIN D,GUDMUNDSSON J T,MINEA T.High power impulse magnetron sputtering:fundamentals,technologies,challenges and applications[M].Amsterdam:Elsevier,2020.

    • [48] SARAKINOS K,MAGNFÄLT D,ELOFSSON V,et al.Atomistic view on thin film nucleation and growth by using highly ionized and pulsed vapor fluxes[J].Surface and Coatings Technology,2014,257:326-332.

    • [49] 左潇,孙丽丽,汪爱英,等.高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J].表面技术,2019,48:53-63.ZUO Xiao,SUN Lili,WANG Aiying,et al.Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J].Surface Technology,2019,48:53-63.(in Chinese)

    • [50] WU Z Z,TIAN X Bo,GUI G,et al.Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering[J].Applied Surface Science,2013,276:31-36.

    • [51] JENSEN P,NIEMEYER B.The effect of a modulated flux on the growth of thin films[J].Surface Science Letters,1997,384(1-3):L823-L827.

    • [52] MAGNFÄLT D,ELOFSSON V,ABADIAS G,et al.Time domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates[J].Journal of Physics D:Applied Physics,2013,46(21):215303-9.

    • [53] LÜ B,MÜNGER E P,SARAKINOS K.Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulation surfaces[J].Journal of Applied Physics,2015,117(13):134304-9.

    • [54] LÜ B,SOUQUI L,ELOFSSON V,et al.Scaling of elongation transition during thin-film growth on weakly interacting substrates[J].Applied Physics Letters,2017,111(8):084101-5.

    • [55] LIN J L,MOORE J J,SPROUL W D,et al.Modulated pulse power sputtered chromium coatings[J].Thin Solid Films,2009,518(5):1566-1570.

    • [56] OLIVEIRA J C,FERREIRA F,ANDERS A,et al.Reduced atomic shadowing in HiPIMS:Role of the thermalized metal ions[J].Applied Surface Science,2018,433:934-944.

    • [57] FERREIRA F,SOUSA C,CAVALEIRO A,et al.Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode[J].Surface and Coatings Technology,2017,314:97-104.

    • [58] ZHENG B C,WU Z L,WU B,et al.A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges[J].Journal of Applied Physics,2017,121(17):171901-16.

    • [59] MENG D,LI Y G,JIANG Z T,et al.Scratch behavior and FEM modelling of Cu/Si(100)thin films deposited by modulated pulsed power magnetron sputtering[J].Surface and Coatings Technology,2019,363:25-33.

    • [60] LI Y G,LU Y L,JIANG Z T,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:A comparative study[J].Surface and Coatings Technology,2021,421:127464.

  • 手机扫一扫看