en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

魏凯,男,1997年出生,硕士研究生。主要研究方向为材料腐蚀与防护。E-mail:381969946@qq.com

张优(通信作者),女,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为材料的腐蚀与防护。E-mail:youzhang@bipt.edu.cn

中图分类号:TG178

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210824002

参考文献 1
WANG B,LIANG W X,GUO Z G,et al.Biomimetic superlyophobic and super-lyophilic materials applied for oil/water separation:A new strategy beyond nature.[J].Chemical Society Reviews,2015,44(1):336-61.
参考文献 2
CHU Z,FENG Y,SEEGER S.Oil/Water separation with selective superantiwetting/superwetting surface materials [J].Angewandte Chemie International Edition,2015,54(8):2328-2338.
参考文献 3
WANG F,CHANG R,MA R,et al.Eco-friendly and superhydrophobic nano-starch based coatings for self-cleaning application and oil-water separation.[J].Carbohydrate Polymers,2021,271:118410-118410.
参考文献 4
WEI G,HE Q,ZHANG T,et al.Tunable infrared radiation properties of hybrid films co-assembled with semiconductor quantum chips and exfoliated ultra-thin LDH nanosheets [J].Journal of Alloys and Compounds,2018,751:215-223.
参考文献 5
LIANG C,HE X,LIU Q,et al.Adsorption-based synthesis of magnetically responsive and interfacially active composite nanoparticles for dewatering of water-in-diluted bitumen emulsions[J].Energy & Fuels,2018,32(8):8078-8089.
参考文献 6
JIAN L,BAI X,TANG X,et al.Underwater superoleophobic/underoil superhydrophobic corn cob coated meshes for on-demand oil/water separation[J].Separation and Purification Technology,2017,195:232-237.
参考文献 7
XIE Y,GY Y,MENG J,et al.Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes(LDH-SSMs)[J].Journal of Hazardous Materials,2020,398:122862.
参考文献 8
HE J,LI J,MA L,et al.High-flux oil-water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@ Cu(OH)2 nanowire membrane[J].Journal of Materials Science,2021,56(4):1-15.
参考文献 9
ZHANG J,JI K,CHEN J,et al.A three-dimensional porous metal foam with selective-wettability for oil-water separation[J].Journal of Materials Science,2015,50(16):5371-5377.
参考文献 10
YIN G,ZHAO D,ZHANG L,et al.Highly porous 3D PLLA materials composed of nanosheets,fibrous nanosheets,or nanofibrous networks:Preparation and the potential application in oil-water separation [J].Chemical Engineering Journal,2016,302:1-11.
参考文献 11
GE B,ZHANG Z,ZHU X,et al.A superhydrophobic/superoleophilic sponge for the selective absorption oil pollutants from water [J].Colloids & Surfaces A:Physicochemical & Engineering Aspects,2014,457:397-401.
参考文献 12
CHEN H,ZHANG F,FU S,et al.In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J].Advanced Materials,2006,18(23):3089-3093.
参考文献 13
SHARMA V K,YANG X,CIZMAS L,et al.Impact of metal ions,metal oxides,and nanoparticles on the formation of disinfection byproducts during chlorination [J].Chemical Engineering Journal,2017,317:777-792.
参考文献 14
CHEN S,HE G,HU H,et al.Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption [J].Energy & Environmental Science,2013,6(8):2435-2439.
参考文献 15
WANG S,SONG Y,JIANG L.Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J].Nanotechnology,2007,18(1):15103-15105.
参考文献 16
LI J,KANG R,TANG X,et al.Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation [J].Nanoscale,2016,8(14):7638-7645.
参考文献 17
杨宇.疏水性三维多孔材料的制备及其在油水分离中的应用 [D].广州:华南理工大学,2015.YANG Y.Preparation of hydrophobic 3d porous material and its application in oil-water separation[D].Guangzhou:South China University of Technology,2015.(in Chinese)
参考文献 18
WANG E,WANG H,LIU Z,et al.One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil-water separation[J].Journal of Materials Science,2015,50(13):4707-4716.
参考文献 19
RUI G,QI L,WANG J,et al.Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture [J].Applied Surface Science,2014,289(15):417-424.
参考文献 20
LIU C,FENG X,LI N,et al.Super-hydrophobic Co3O4 - loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification [J].Surface & Coatings Technology,2016,309:1111-1118.
参考文献 21
宋玉丰,李西营,王玉超.泡沫镍基底的超疏水表面制备及其油水分离特性的探究 [J].化学研究,2017,28(4):513-517.SONG Y,LI X,WANG Y.Preparation of superhydrophobic surface of nickel foam substrate and its oil-water separation characteristics [J].Chemical Research,2017,28(4):513-517.(in Chinese)
参考文献 22
刘超林,苏峰华,李助军.二维层状 Ni/β-Ni(OH)2 纳米复合材料的制备及其摩擦学性能研究[J].润滑与密封,2020,343(3):38-42.LIU C,SU F,LI Z.Preparation and tribological properties of two-dimensional layered Ni/β-Ni(OH)2 nanocomposites [J].Lubrication Engineering,2020,343(3):38-42.(in Chinese)
参考文献 23
ZHU Z,NA W,HUI L,et al.Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO[J].Advanced Powder Technology,2011,22(3):422-426.
参考文献 24
王文帝,刘金华,王大志,等.氢氧化镍纳米晶的水热合成和结构表征[J].过程工程学报,2006(1):128-131.WANG W,LIU J,WANG D,et al.Hydrothermal synthesis and structural characterization of nickel hydroxide nanocrystals [J].Chinese Journal of Process Engineering,2006(1):128-131.(in Chinese)
参考文献 25
YEN M,CHUANG W,SHEEN Y,et al.Structural control of silane-grafted polymethylsilsesquioxane [J].European Polymer Journal,2013,49(3):646-651.
参考文献 26
ZHANG Y,LIU J,LI Y,et al.A facile approach to superhydrophobic LiAl layered double hydroxide film on Al-Li alloy substrate [J].Journal of Coatings Technology and Research,2015,12(3):595-601.
参考文献 27
喻溪亭,缑晓丹,张延宗.超亲水-水下超疏油镍镀层材料制备及其油水分离性能研究[J].表面技术,2021,50(6):177-183.YU X,GOU X,ZHANG Y.Preparation and oil-water separation performance of superhydrophilic and underwater superhydrophobic Nickel coatings [J].Surface Technology,2021,50(6):177-183.(in Chinese)
参考文献 28
XIE Y,GU Y,MENG J,et al.Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes(LDH-SSMs)[J].Journal of Hazardous Materials,2020,398:122862.
参考文献 29
张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG D,LI L,WU Y,et al.One-step preparation of superhydrophobic/superoleophilic copper mesh surface and its oil-water separation application[J].China Surface Engineering,2019,32(1):31-37.(in Chinese)
参考文献 30
GAO Q,ZHAO J,HU J,et al.Applying a switchable superhydrophobic and hydrophilic ZnO nanorod array-coated stainless-steel mesh to electrically-induced oil/water separation [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:12-15.
目录contents

    摘要

    针对目前油水分离方法分离效率低、重复利用率低、二次污染环境等问题,开展了疏水三维多孔油水分离材料的研究。 以泡沫镍为基底材料,通过水热法构造多级微纳复合结构表面和氟硅烷疏水化处理得到超疏水泡沫镍。 利用扫描电子显微镜、能谱仪、X-射线衍射仪和全反射傅里叶变换红外光谱仪、接触角测量仪表征其表面形貌、成分和疏水性能,测试改性泡沫镍的油水分离性能和重复利用率。 结果表明:在泡沫镍表面成功制备出“鸟巢状”垂直排列的 Ni(OH)2纳米片阵列,并形成局部“团簇状”凸起,协同泡沫镍本身微米级孔骨架构成多级微纳米粗糙结构,具有低表面能的氟硅烷成功组装在多级微纳结构表面,实现了优异的超疏水性能。 改性泡沫镍可实现对甲苯、氯仿、正己烷与水的混合物吸附分离,且具有良好的循环使用性。 制备的超疏水泡沫镍可在磁场控制下实现对油水混合物的分离,是一种高效、智能的油水分离三维多孔材料。

    Abstract

    In order to solve the problems of low separation efficiency, low reuse rate and secondary pollution of current oil-water separation methods, a hydrophobic three-dimensional porous material for oil-water separation purpose is developed. The Ni foam surface is treated by the hydrothermal method to construct the hierarchical micro-nano structures. The treated Ni foam is subsequently modified by the fluoro-silane to obtain superhydrophobicity. The surface morphology and composition of the modified nickel foams are characterized by scanning electron microscope, energy dispersive spectrometer, X-ray diffractometer, and Fourier transform infrared spectrometer. The wettability properties of the surface are tested by the contact angle measurement. The oil-water separation performance and the repeatability of the modified Ni foams are measured. Results show that a “ nest” vertical array of Ni ( OH)2 nanosheets and partial “cluster” bulges are formed on the surface of Ni foams. The hierarchical nano-micro structure is obtained by the nanostructure of Ni(OH)2 nanosheets and the micro-pore skeleton of Ni foams. The fluoro-silane with low surface energy is successfully assembled on the surface to achieve excellent superhydrophobicity. The modified nickel foam can realize the adsorption separation of toluene, chloroform, n-hexane, and water mixtures with good recyclability. Moreover, the superhydrophobic Ni foam can realize the oil / water separation under the magnetic field’s control due to the magnetic properties of Ni foams. The superhydrophobic nickel foam can separate oil and water from their mixtures under control of the magnetic field. The superhydrophobic Ni foam is an efficient and intelligent three-dimensional porous material for oil-water separation.

    关键词

    泡沫镍超疏水油水分离水热法

  • 0 前言

  • 随着当今社会国际贸易和海上石油开采的发展,油品泄漏事故日益频发,产生的溢油、漏油和含油废水排放不断增多,对当地的海洋生态环境造成了灾难性的危害[1-2],有效实现油水分离对海洋生态和环境保护具有非常重要的意义。工业上传统的方法如机械分离法[3]、原位燃烧法[4]、生物处理法[5]等是通过综合物理、化学和生物的方法来处理大部分含油废水的分离的,这些方法存在诸多问题, 如分离效率低、重复利用率低、二次污染环境、能耗高和耗时长等[6-8]

  • 近年来,具有特殊润湿性的油水分离材料引起广泛研究,比如利用疏水三维多孔材料进行物理吸收的方法是当前有效的油水分离技术[9-11]。这些三维多孔材料拥有高孔隙率、强化学惰性和可互通多孔的微观结构,是理想的选择性吸收材料。疏水表面使材料只能被表面张力更小的油类润湿,开孔结构为有机油类的扩散和富集提供了有效的通道和空间[12-14]。研究者们致力于研究材料的制备方法和提高吸油能力,WANG等[15]用电化学沉积法制备了微纳多层次结构的铜网薄膜,在通过长链脂肪酸改性后制备出了超疏水超亲油的过滤铜网;LI等[16]通过在不锈钢网基底上沉积多层蜡烛烟灰,以及喷涂二氧化硅涂层的方式,制备出可以抵御热水( 约92℃)和强腐蚀性液体的超疏水不锈钢滤网,该材料可以在重力驱动下分离热水和强酸性、碱性和盐类环境中的油水混合物;杨宇[17] 通过燃烧辅助原位碳沉积的方法在密胺泡沫、泡沫镍上制备出具有良好疏水/亲油特性的多孔材料。此外智能化油水分离材料的研究也受到关注,采用磁控制使材料在油水分离过程简便化,WANG等[18] 采用一步共聚方法,用多巴胺和十八胺以泡沫镍为基底制备有机涂层,可以在磁棒控制下实现油水分离。

  • 泡沫镍是一种高孔隙率、低密度、质软的三维多孔材料,广泛应用在催化剂载体、过滤材料上[19-20]。本研究利用泡沫镍的三维多孔结构及质轻、质软等优点,将其作为基底材料,通过水热法在泡沫镍表面制备出“鸟巢状”垂直排列的Ni(OH)2纳米片阵列, 其纳米结构协同泡沫镍本身微米级孔结构构成了具有多级结构的纳微复合材料,通过疏水改性后可得到实现油水分离的超疏水泡沫镍。同时基于基底材料泡沫镍本身的磁性能,使得制备的超疏水泡沫镍在实现油水分离的过程易于控制。

  • 1 试验准备

  • 1.1 超疏水泡沫镍的制备

  • 试验所需泡沫镍基体尺寸为20mm× 20mm× 1.7mm,纯度为99.9%。将泡沫镍放入5%稀盐酸中25℃超声洗涤5min,用去离子水清洗干净,放入烘箱进行烘干备用。将1.25mmol硝酸(Ni(NO3)2 ·6H2O) 和2.5mmol尿素(CO(NH2)2) 溶于35ml去离子水中,搅拌至澄清。将上述溶液转移至50ml的反应釜中, 把预处理的泡沫镍浸入釜内溶液, 100℃反应12h,随后自然冷却至室温,将反应后的泡沫镍用水和乙醇超声洗涤各三次。将0.6g全氟癸基三甲氧基硅烷加入60ml去离子水和40ml甲醇的混合溶液中,于30℃ 搅拌4h。随后将水热反应后的泡沫镍试样垂直浸入氟硅烷溶液中,40℃ 处理2h。冷却后,取出试样,依次用去离子水、乙醇将表面冲洗干净,吹干得到超疏水泡沫镍。图1为超疏水泡沫镍的制备过程示意图。

  • 图1 超疏水泡沫镍的制备过程示意图

  • Fig.1 Schematic diagram of preparation of superhydrophobic nickel foam

  • 1.2 表征与性能检测

  • 采用JEOL JSM-7500型扫描电子显微镜 (SEM)观察泡沫镍改性前后的微观结构,样品在观察前进行喷金处理,并用其附带的能谱仪(EDS)检测表面的元素组成。采用BRUKER D8ADVANCE型X-射线衍射仪(XRD) 检测泡沫镍表面物相组成,衍射仪参数为:电压40kV,电流40mA,Cu靶材 (λKα=0.154 06nm),测量范围为5 °~90 °,扫描速率为0.1 (°)/s。采用NicoletAVATAR6700全反射傅里叶红变换外光谱仪(ATR-FTIR)对氟硅烷改性后的泡沫镍表面成分进行分析,扫描范围为4 000~500cm-1。使用SL200KS型接触角测试仪对泡沫镍改性前后的接触角及粘附性进行测试,测量时采用的水滴大小为10 μL,采用Nikon-610数码相机对其水滴进行宏观拍照。分别将苏丹红一号着色的甲苯、正己烷、氯仿滴入水中,观察泡沫镍对其的吸附性能。根据下式计算吸附率 η:

  • η=M/m×100%
    (1)
  • 式中,M 为吸附油污的质量,g;m 是泡沫镍样品质量,g。

  • 2 结果与讨论

  • 2.1 表面形貌成分分析

  • 图2 为泡沫镍经水热处理前后的SEM图。从图2a可以看出,原始泡沫镍具有三维多孔网络骨架结构,泡沫镍的平均孔径在200 μm左右,骨架表面光滑。经水热反应处理后泡沫镍表面形成一层微纳米级的粗糙结构,如图2b所示。可以明显看到表面存在“团簇状”的颗粒物,经放大后可进一步看出, “团簇状”的颗粒物由“鸟巢状”垂直排列的纳米片阵列构成,形成微纳多级粗糙结构,这种多级粗糙结构,也为后续氟硅烷修饰形成超疏水表面奠定了结构基础。

  • 图3 为原始泡沫镍和水热处理后泡沫镍的XRD图谱。二者的衍射图谱均含有3个明显的特征峰2θ=44.507 °、2θ=51.846 °、2θ=76.370 °, 分别对应Ni的(111)、(200)、(220)的晶面衍射峰。经水热处理后泡沫镍的晶体结构并未发生变化,衍射峰强度降低与表面有新的物质覆盖有关[21]。由于泡沫镍基体峰较强,难以分析改性后泡沫镍表面的新物相组成。因此,对水热反应后溶液中粉末经洗涤干燥后进行了XRD分析,如图4所示。可以看到, 粉末样品的衍射峰位于11.01°、 21.97°、 33.7°、60.43°,与 α-Ni ( OH) 2 的标准衍射峰卡 ( JCPDS:38-0715)相吻合,表明经水热反应后泡沫镍表面生成的产物可能是 α-Ni(OH) 2,与文献结果一致[22]

  • 为验证氟硅烷是否成功组装到水热处理后的泡沫镍表面,进行了红外光谱分析,其结果如图5所示。可以看到,水热处理后的泡沫镍表面出现了3 223.01cm-1 (m(OHstr))和1 650.31cm -1 (δ(H2O))的吸收峰,主要由H2O分子的伸缩和弯曲振动引起的, 其中2 184.47cm-1 的吸收峰来自于 α-Ni(OH)2 [23]。 1 362.41cm-1 附近的吸收峰可能为CO 2- 3 或者是中的NO- 3,可能是形成了层状Ni(OH)2 的插层结构所致[24]。 500~700cm-1 附近的谱峰则为金属氧键 (Ni-O、Ni-O-Ni和O-Ni-O) 的晶格振动吸收峰, 也说明了其表面生成了Ni的氢氧化物[12]。此外, 经过氟硅烷修饰后的超疏水泡沫镍表面出现了1 210cm-1 和1 150cm-1 附近的吸收峰,分别归属于C-F和Si-O的吸收峰[25],说明氟硅烷成功修饰到经水热处理后的泡沫镍多级粗糙结构上。

  • 图2 泡沫镍经水热处理前后的SEM图

  • Fig.2 SEM images of original nickel foam and nickel foam treated by hydrothermal method

  • 图3 原始泡沫镍(A)与水热处理后泡沫镍(B)的XRD图谱

  • Fig.3 XRD patterns of original nickel foam (A) and nickel foam treated by hydrothermal method (B)

  • 图4 水热反应后溶液中沉淀经洗涤干燥后的XRD图谱

  • Fig.4 XRD pattern of the precipitation formed after the hydrothermal reaction

  • 图5 原始泡沫镍(A)、水热处理后泡沫镍(B)与超疏水泡沫镍(C)的FT-IR图谱

  • Fig.5 FT-IR spectra of original nickel foam (A), nickel foam treated by hydrothermal method, and superhydrophobic nickel foam (C)

  • 对超疏水泡沫镍表面的成分分布,进行了表面EDS分析,如图6所示。对图中方框区域内的能谱分析显示含有大量的Ni、O元素,说明其表面存在着Ni的氧化物或者氢氧化物,结合XRD和红外结果进一步证明了其经过水热处理后的表面膜层成分为 α-Ni(OH)2。此外,还检测改性泡沫镍表面存在原子百分比分别为13.807和1.101的C和Si元素,同时对样品表面进行EDS面扫后检测到改性泡沫镍基体表面均匀分布着C、F、Si等元素,为氟硅烷的主要组成元素,进一步说明氟硅烷成功地修饰在泡沫镍基体表面的粗糙结构上。

  • 图6 超疏水泡沫镍表面的能谱分析

  • Fig.6 EDS analysis of superhydrophobic nickel foam

  • 2.2 润湿性能分析

  • 泡沫镍改性前后的水滴浸润性测试结果如图7所示。从图7a中可以看出,将原始泡沫镍和改性后的泡沫镍从盛水的培养皿中拿出放在滤纸上,可以明显观察到原始泡沫镍周围的滤纸被润湿,而改性后的泡沫镍所放的滤纸处依然干燥,完全没有被润湿,表明改性后的泡沫镍具有优异的超疏水性能。改性后的泡沫镍网在水中展现的抗润湿现象主要是由于在泡沫镍网上的超疏水结构膜层和水之间形成了一层均匀的空气层,符合润湿理论中的Cassie-Baxter模型。当水滴在制备的泡沫镍网上,水滴呈现出球形(图7b)。采用接触角测试仪对水滴在改性后泡沫镍表面的接触角进行测试发现,水滴不能粘附到改性泡沫镍表面(图7c),进一步说明了其优异的超疏水性能。

  • 超疏水表面可以通过构建合适的微纳结构和低表面能物质修饰来实现。本研究得到的超疏水泡沫镍材料主要就归因于这两个因素。一方面,水热反应过程中泡沫镍表面形成的“鸟巢状”垂直排列的Ni(OH)2 纳米片与部分“团簇状”凸起形成了纳微结构,结合泡沫镍本身拥有的微米级相互连接的孔骨架,共同构成超疏水表面所需要的微纳米多级粗糙结构。另一方面,氟硅烷分子里含有17个C-F键,包括-CF3 的表面能为6.7mJ/m 2,-CF2-的表面能为18mJ/m 2[25],经过氟硅烷修饰后,水滴与泡沫镍界面上可容纳较多的空气气囊,表现出良好的超疏水性能。其反应过程如式(2)和(3)所示[26] :

  • CF3CF27CH22SiOCH33+3H2OCF3CF27CH22Si(OH)3+3CH3OH
    (2)
  • CF3CF27CH22Si(OH)3+3Surface-OHCF3CF27CH22Si(O- Surface )3+3H2O
    (3)
  • 图7 泡沫镍改性前后的水滴润湿性测试

  • Fig.7 Wettability of unmodified and modified Ni foams in the water

  • 此反应氟硅烷中的Si-OCH3 首先水解生成SiOH,然后Si-OH与-OH基团通过缩合反应在表面生成CF3(CF2)7 ( CH2)2 Si (O-Surface)3 化合物,显著降低了Ni(OH)2/泡沫镍的表面能,最终自组装形成超疏水膜层。

  • 2.3 油水分离性能

  • 为了评价制备的超疏水泡沫镍的油水分离性能,选用与水密度不同的甲苯、氯仿与正己烷进行油水分离试验。图8是超疏水泡沫镍进行油水分离的过程图。图8a是密度小于水的甲苯(用苏丹红一号着色)浮在水面上的油水混合物。当泡沫镍接触到甲苯/水混合物时,由于泡沫镍具有超疏水超亲油性能,甲苯迅速润湿了泡沫镍网,进入到泡沫镍网的内部空隙结构中,而水无法润湿泡沫镍,从而实现甲苯/水混合物的分离。可以看到,经过泡沫镍将甲苯吸走后,原来的甲苯/水混合物表面恢复澄清。图8b为超疏水泡沫镍对密度大于水的着色氯仿沉入水中后的分离过程,可以看到与分离甲苯相同的过程和结果。由此表明制备的改性泡沫镍对密度不同的油品均可实现良好的分离效果。

  • 图9 为制备的超疏水泡沫镍网在磁场控制下实现正己烷与水的分离过程。可以看出,采用泡沫镍进行油水分离时,可用磁铁来控制泡沫镍吸附正己烷的方向。通过移动磁铁,可以控制泡沫镍向不同的方向吸附正己烷。最后,吸附正己烷的泡沫镍还可以在磁铁的协助下离开水面,从而实现正己烷与水的完全分离。泡沫镍的磁性能,使其在油水分离中有着更多的应用场景。比如采用位移传感器加电磁铁就可以控制超疏水泡沫镍移动来进行油水分离。

  • 图8 超疏水泡沫镍在甲苯与氯仿中的油水分离试验

  • Fig.8 Oil-water separation of superhydrophobic Ni foam in toluene and chloroform

  • 图9 超疏水泡沫镍在磁场控制下的正己烷/水分离过程图

  • Fig.9 N-hexane-water separation of superhydrophobic Ni foam under the control of magnetic field

  • 表1 不同材料及方法的重复利用率对比

  • Table1 Comparison of different materials and methods

  • 油水分离材料的重复使用性能在实际的油水分离中具有十分重要的意义,不仅可以提高材料的使用率还能节约资源。图10为改性泡沫镍对正己烷的吸附量随着使用次数的变化图,经过20次循环吸附检测后改性泡沫镍的吸附量并未明显减少,其平均吸附量达到0.355g,根据式(1)计算出吸附率 η 为230.07%。对比表1可以得到该方法制备的超疏水泡沫镍具有良好的油水分离重复利用性。

  • 3 结论

  • (1) 通过水热法在泡沫镍表面制备出“鸟巢状”垂直排列的Ni(OH)2 纳米片阵列并形成部分 “团簇状”凸起,在泡沫镍本身微米级孔骨架的基础上成功构成了多级微纳米粗糙结构。通过低表面能含氟硅烷在多级微纳结构表面进行自组装修饰,经接触角检测,得到的改性泡沫镍具有优异的超疏水性能。

  • 图10 改性泡沫镍的吸附量循环检测

  • Fig.10 Cyclic detection of adsorption capacity of modified Ni foam

  • (2) 通过对甲苯、氯仿、正己烷与水的混合物吸附分离试验表明,制备的改性泡沫镍能有效实现油水分离。在经过20次油水分离循环吸附测试后改性泡沫镍的吸附量并未减少, 且吸附率高达230.07%,具有着良好的重复利用性。

  • (3) 改性泡沫镍可在磁场控制下实现对正己烷/水混合物的分离,使得其在实现油水分离的过程更加可控,是一种高效、智能的油水分离材料。该材料对于实际环境下的复杂含油污水的处理方式有待进一步研究。

  • 参考文献

    • [1] WANG B,LIANG W X,GUO Z G,et al.Biomimetic superlyophobic and super-lyophilic materials applied for oil/water separation:A new strategy beyond nature.[J].Chemical Society Reviews,2015,44(1):336-61.

    • [2] CHU Z,FENG Y,SEEGER S.Oil/Water separation with selective superantiwetting/superwetting surface materials [J].Angewandte Chemie International Edition,2015,54(8):2328-2338.

    • [3] WANG F,CHANG R,MA R,et al.Eco-friendly and superhydrophobic nano-starch based coatings for self-cleaning application and oil-water separation.[J].Carbohydrate Polymers,2021,271:118410-118410.

    • [4] WEI G,HE Q,ZHANG T,et al.Tunable infrared radiation properties of hybrid films co-assembled with semiconductor quantum chips and exfoliated ultra-thin LDH nanosheets [J].Journal of Alloys and Compounds,2018,751:215-223.

    • [5] LIANG C,HE X,LIU Q,et al.Adsorption-based synthesis of magnetically responsive and interfacially active composite nanoparticles for dewatering of water-in-diluted bitumen emulsions[J].Energy & Fuels,2018,32(8):8078-8089.

    • [6] JIAN L,BAI X,TANG X,et al.Underwater superoleophobic/underoil superhydrophobic corn cob coated meshes for on-demand oil/water separation[J].Separation and Purification Technology,2017,195:232-237.

    • [7] XIE Y,GY Y,MENG J,et al.Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes(LDH-SSMs)[J].Journal of Hazardous Materials,2020,398:122862.

    • [8] HE J,LI J,MA L,et al.High-flux oil-water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@ Cu(OH)2 nanowire membrane[J].Journal of Materials Science,2021,56(4):1-15.

    • [9] ZHANG J,JI K,CHEN J,et al.A three-dimensional porous metal foam with selective-wettability for oil-water separation[J].Journal of Materials Science,2015,50(16):5371-5377.

    • [10] YIN G,ZHAO D,ZHANG L,et al.Highly porous 3D PLLA materials composed of nanosheets,fibrous nanosheets,or nanofibrous networks:Preparation and the potential application in oil-water separation [J].Chemical Engineering Journal,2016,302:1-11.

    • [11] GE B,ZHANG Z,ZHU X,et al.A superhydrophobic/superoleophilic sponge for the selective absorption oil pollutants from water [J].Colloids & Surfaces A:Physicochemical & Engineering Aspects,2014,457:397-401.

    • [12] CHEN H,ZHANG F,FU S,et al.In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J].Advanced Materials,2006,18(23):3089-3093.

    • [13] SHARMA V K,YANG X,CIZMAS L,et al.Impact of metal ions,metal oxides,and nanoparticles on the formation of disinfection byproducts during chlorination [J].Chemical Engineering Journal,2017,317:777-792.

    • [14] CHEN S,HE G,HU H,et al.Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption [J].Energy & Environmental Science,2013,6(8):2435-2439.

    • [15] WANG S,SONG Y,JIANG L.Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J].Nanotechnology,2007,18(1):15103-15105.

    • [16] LI J,KANG R,TANG X,et al.Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation [J].Nanoscale,2016,8(14):7638-7645.

    • [17] 杨宇.疏水性三维多孔材料的制备及其在油水分离中的应用 [D].广州:华南理工大学,2015.YANG Y.Preparation of hydrophobic 3d porous material and its application in oil-water separation[D].Guangzhou:South China University of Technology,2015.(in Chinese)

    • [18] WANG E,WANG H,LIU Z,et al.One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil-water separation[J].Journal of Materials Science,2015,50(13):4707-4716.

    • [19] RUI G,QI L,WANG J,et al.Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture [J].Applied Surface Science,2014,289(15):417-424.

    • [20] LIU C,FENG X,LI N,et al.Super-hydrophobic Co3O4 - loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification [J].Surface & Coatings Technology,2016,309:1111-1118.

    • [21] 宋玉丰,李西营,王玉超.泡沫镍基底的超疏水表面制备及其油水分离特性的探究 [J].化学研究,2017,28(4):513-517.SONG Y,LI X,WANG Y.Preparation of superhydrophobic surface of nickel foam substrate and its oil-water separation characteristics [J].Chemical Research,2017,28(4):513-517.(in Chinese)

    • [22] 刘超林,苏峰华,李助军.二维层状 Ni/β-Ni(OH)2 纳米复合材料的制备及其摩擦学性能研究[J].润滑与密封,2020,343(3):38-42.LIU C,SU F,LI Z.Preparation and tribological properties of two-dimensional layered Ni/β-Ni(OH)2 nanocomposites [J].Lubrication Engineering,2020,343(3):38-42.(in Chinese)

    • [23] ZHU Z,NA W,HUI L,et al.Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO[J].Advanced Powder Technology,2011,22(3):422-426.

    • [24] 王文帝,刘金华,王大志,等.氢氧化镍纳米晶的水热合成和结构表征[J].过程工程学报,2006(1):128-131.WANG W,LIU J,WANG D,et al.Hydrothermal synthesis and structural characterization of nickel hydroxide nanocrystals [J].Chinese Journal of Process Engineering,2006(1):128-131.(in Chinese)

    • [25] YEN M,CHUANG W,SHEEN Y,et al.Structural control of silane-grafted polymethylsilsesquioxane [J].European Polymer Journal,2013,49(3):646-651.

    • [26] ZHANG Y,LIU J,LI Y,et al.A facile approach to superhydrophobic LiAl layered double hydroxide film on Al-Li alloy substrate [J].Journal of Coatings Technology and Research,2015,12(3):595-601.

    • [27] 喻溪亭,缑晓丹,张延宗.超亲水-水下超疏油镍镀层材料制备及其油水分离性能研究[J].表面技术,2021,50(6):177-183.YU X,GOU X,ZHANG Y.Preparation and oil-water separation performance of superhydrophilic and underwater superhydrophobic Nickel coatings [J].Surface Technology,2021,50(6):177-183.(in Chinese)

    • [28] XIE Y,GU Y,MENG J,et al.Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes(LDH-SSMs)[J].Journal of Hazardous Materials,2020,398:122862.

    • [29] 张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG D,LI L,WU Y,et al.One-step preparation of superhydrophobic/superoleophilic copper mesh surface and its oil-water separation application[J].China Surface Engineering,2019,32(1):31-37.(in Chinese)

    • [30] GAO Q,ZHAO J,HU J,et al.Applying a switchable superhydrophobic and hydrophilic ZnO nanorod array-coated stainless-steel mesh to electrically-induced oil/water separation [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:12-15.

  • 参考文献

    • [1] WANG B,LIANG W X,GUO Z G,et al.Biomimetic superlyophobic and super-lyophilic materials applied for oil/water separation:A new strategy beyond nature.[J].Chemical Society Reviews,2015,44(1):336-61.

    • [2] CHU Z,FENG Y,SEEGER S.Oil/Water separation with selective superantiwetting/superwetting surface materials [J].Angewandte Chemie International Edition,2015,54(8):2328-2338.

    • [3] WANG F,CHANG R,MA R,et al.Eco-friendly and superhydrophobic nano-starch based coatings for self-cleaning application and oil-water separation.[J].Carbohydrate Polymers,2021,271:118410-118410.

    • [4] WEI G,HE Q,ZHANG T,et al.Tunable infrared radiation properties of hybrid films co-assembled with semiconductor quantum chips and exfoliated ultra-thin LDH nanosheets [J].Journal of Alloys and Compounds,2018,751:215-223.

    • [5] LIANG C,HE X,LIU Q,et al.Adsorption-based synthesis of magnetically responsive and interfacially active composite nanoparticles for dewatering of water-in-diluted bitumen emulsions[J].Energy & Fuels,2018,32(8):8078-8089.

    • [6] JIAN L,BAI X,TANG X,et al.Underwater superoleophobic/underoil superhydrophobic corn cob coated meshes for on-demand oil/water separation[J].Separation and Purification Technology,2017,195:232-237.

    • [7] XIE Y,GY Y,MENG J,et al.Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes(LDH-SSMs)[J].Journal of Hazardous Materials,2020,398:122862.

    • [8] HE J,LI J,MA L,et al.High-flux oil-water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@ Cu(OH)2 nanowire membrane[J].Journal of Materials Science,2021,56(4):1-15.

    • [9] ZHANG J,JI K,CHEN J,et al.A three-dimensional porous metal foam with selective-wettability for oil-water separation[J].Journal of Materials Science,2015,50(16):5371-5377.

    • [10] YIN G,ZHAO D,ZHANG L,et al.Highly porous 3D PLLA materials composed of nanosheets,fibrous nanosheets,or nanofibrous networks:Preparation and the potential application in oil-water separation [J].Chemical Engineering Journal,2016,302:1-11.

    • [11] GE B,ZHANG Z,ZHU X,et al.A superhydrophobic/superoleophilic sponge for the selective absorption oil pollutants from water [J].Colloids & Surfaces A:Physicochemical & Engineering Aspects,2014,457:397-401.

    • [12] CHEN H,ZHANG F,FU S,et al.In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J].Advanced Materials,2006,18(23):3089-3093.

    • [13] SHARMA V K,YANG X,CIZMAS L,et al.Impact of metal ions,metal oxides,and nanoparticles on the formation of disinfection byproducts during chlorination [J].Chemical Engineering Journal,2017,317:777-792.

    • [14] CHEN S,HE G,HU H,et al.Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption [J].Energy & Environmental Science,2013,6(8):2435-2439.

    • [15] WANG S,SONG Y,JIANG L.Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J].Nanotechnology,2007,18(1):15103-15105.

    • [16] LI J,KANG R,TANG X,et al.Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation [J].Nanoscale,2016,8(14):7638-7645.

    • [17] 杨宇.疏水性三维多孔材料的制备及其在油水分离中的应用 [D].广州:华南理工大学,2015.YANG Y.Preparation of hydrophobic 3d porous material and its application in oil-water separation[D].Guangzhou:South China University of Technology,2015.(in Chinese)

    • [18] WANG E,WANG H,LIU Z,et al.One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil-water separation[J].Journal of Materials Science,2015,50(13):4707-4716.

    • [19] RUI G,QI L,WANG J,et al.Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture [J].Applied Surface Science,2014,289(15):417-424.

    • [20] LIU C,FENG X,LI N,et al.Super-hydrophobic Co3O4 - loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification [J].Surface & Coatings Technology,2016,309:1111-1118.

    • [21] 宋玉丰,李西营,王玉超.泡沫镍基底的超疏水表面制备及其油水分离特性的探究 [J].化学研究,2017,28(4):513-517.SONG Y,LI X,WANG Y.Preparation of superhydrophobic surface of nickel foam substrate and its oil-water separation characteristics [J].Chemical Research,2017,28(4):513-517.(in Chinese)

    • [22] 刘超林,苏峰华,李助军.二维层状 Ni/β-Ni(OH)2 纳米复合材料的制备及其摩擦学性能研究[J].润滑与密封,2020,343(3):38-42.LIU C,SU F,LI Z.Preparation and tribological properties of two-dimensional layered Ni/β-Ni(OH)2 nanocomposites [J].Lubrication Engineering,2020,343(3):38-42.(in Chinese)

    • [23] ZHU Z,NA W,HUI L,et al.Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO[J].Advanced Powder Technology,2011,22(3):422-426.

    • [24] 王文帝,刘金华,王大志,等.氢氧化镍纳米晶的水热合成和结构表征[J].过程工程学报,2006(1):128-131.WANG W,LIU J,WANG D,et al.Hydrothermal synthesis and structural characterization of nickel hydroxide nanocrystals [J].Chinese Journal of Process Engineering,2006(1):128-131.(in Chinese)

    • [25] YEN M,CHUANG W,SHEEN Y,et al.Structural control of silane-grafted polymethylsilsesquioxane [J].European Polymer Journal,2013,49(3):646-651.

    • [26] ZHANG Y,LIU J,LI Y,et al.A facile approach to superhydrophobic LiAl layered double hydroxide film on Al-Li alloy substrate [J].Journal of Coatings Technology and Research,2015,12(3):595-601.

    • [27] 喻溪亭,缑晓丹,张延宗.超亲水-水下超疏油镍镀层材料制备及其油水分离性能研究[J].表面技术,2021,50(6):177-183.YU X,GOU X,ZHANG Y.Preparation and oil-water separation performance of superhydrophilic and underwater superhydrophobic Nickel coatings [J].Surface Technology,2021,50(6):177-183.(in Chinese)

    • [28] XIE Y,GU Y,MENG J,et al.Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes(LDH-SSMs)[J].Journal of Hazardous Materials,2020,398:122862.

    • [29] 张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG D,LI L,WU Y,et al.One-step preparation of superhydrophobic/superoleophilic copper mesh surface and its oil-water separation application[J].China Surface Engineering,2019,32(1):31-37.(in Chinese)

    • [30] GAO Q,ZHAO J,HU J,et al.Applying a switchable superhydrophobic and hydrophilic ZnO nanorod array-coated stainless-steel mesh to electrically-induced oil/water separation [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:12-15.

  • 手机扫一扫看