en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李好义(通信作者),1987年出生,男,讲师,博士。主要研究方向为静电纺丝纳米纤维。E-mail:lhy@mail.buct.edu.cn

中图分类号:Q811

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210329001

参考文献 1
SUSAN D,MANOJ K C,JOHN C C.Fast drop movements resulting from the phase change on a gradient surface [J].Science,2001,291(5504):633-636.
参考文献 2
程千会,刘长松.用于油水分离的超疏水氧化锌海绵的制备及其性能[J].中国表面工程,2018,31(1):148-155.CHENG Qianhui,LIU Changsong.Fabrication and properties of superhydrophobic ZnO sponge for oil-water separation[J].China Surface Engineering,2018,31(1):148-155.(in Chinese)
参考文献 3
李志文,齐博浩,刘长松,等.不锈钢网表面润湿性的调控及其油水分离性能 [J].中国表面工程,2020,33(5):10-17.LI Zhiwen,QI Bohao,LIU Changsong,et al.Manipulation of surface wettability on stainless steel mesh and its oil-water separation performance[J].China Surface Engineering,2020,33(5):10-17.(in Chinese)
参考文献 4
LIN W,HAO B.Smart materials for controlled droplet motion [M]//Design,fabrication,properties and applications of smart and advanced materials.Boca Raton:CRC Press,2016:196-229.
参考文献 5
WU J,YIN K,LI M,et al.Under oil selfdriven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry gradient structure [J].Nanoscale,2020,12(6):4077-4084.
参考文献 6
KAN L,JIE J,XUE Z,et al.Structured cone arrays for continuous and effective collection of micronsized oil droplets from water[J].Nature Communications,2013,4(1):2276.
参考文献 7
ZEC,SHIN,WANG.Novel droplet platforms for the detection of disease biomarkers[J].Expert Review of Molecular Diagnostics,2014,14(7):787-801.
参考文献 8
SUN S,LI H,GUO Y,et al.Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “ lotus leaf effect ” [J].Progress in Organic Coatings,2021,151:1-12.
参考文献 9
JING L,YINGLUO Z,WEIBING W,et al.A bioinspired superhydrophobic surface for fog collection and directional water transport [J].Journal of Alloys and Compounds,2020,819(C):152968-152968.
参考文献 10
BARTHLOTT W,MOOSMANN M,NOLL I,et al.Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces:A novel technique for oil-water separation [J].Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2020,378(2167):20190447.
参考文献 11
SI Y,DONG Z C.Bioinspired smart liquid directional transport control [J].Langmuir:The ACS Journal of Surfaces and Colloids,2020,36(3):667-681.
参考文献 12
KONG L B,XU Z Z,XU M.Research and design of functional microstructuresm with directional transport for bionic microfluidics [ C ]//Micro-and Nano-Optics,Catenary Optics,and Subwavelength Electromagnetics,Chengdu,China,2019.
参考文献 13
BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces [J].Planta,1997,202(1):1-8.
参考文献 14
秦现代,安伟伟,苏润洲.水烛叶表面的浸润性研究及其仿生表面的制备[J].哈尔滨师范大学自然科学学报,2019,35(3):83-88.QIN Xiandai,AN Weiwei,SU Runzhou.Study on wettability of typha angustifolia leaves and fabrication of biomimetic surfaces [J].Natural Science Journal of Harbin Normal University,2019,35(3):83-88.(in Chinese)
参考文献 15
YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.
参考文献 16
WENZEL N R.Resistance of solid surfaces to wetting by water [J].Transactions of the Faraday Society,1936,28(8):988-994.
参考文献 17
CASSIE A D.Contact angles [J].Discussions of the Faraday Society,1948,3:11.
参考文献 18
CASSIE A D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
参考文献 19
WENZEL N R.Surface roughness and contact angle[J].Journal of Physical & Colloid Chemistry,1949,53(9):1466-1467.
参考文献 20
BONN D,EGGERS J,INDEKEUBON J,et al.Wetting and spreading [J].Review of Modern Physics,2009,81(2):739-805.
参考文献 21
CHAUDHURY M,WHITESIDES G M.How to make water run uphill[J].Science,1992,256(5063):1539-1541.
参考文献 22
WANG L,LI J,ZHANG B,et al.Counterintuitive ballistic and directional liquid transport on a flexible droplet rectifier [J].Research,2020,2020:1-11.
参考文献 23
FENG S,WANG Q,XING Y,et al.Continuous directional water transport on integrating tapered durfaces [J].Advanced Materials Interfaces,2020,7(2000081):1-7.
参考文献 24
LIU C,JU J,ZHENG Y,et al.Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings[J].Acs Nano,2014,8(2):1321-1329.
参考文献 25
ZHENG Y,BAI H,HUANG Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463(7281):640-643.
参考文献 26
PARKER A R,LAWRENCE C R.Water capture by a desert beetle[J].Nature,2001,414(6859):33-34.
参考文献 27
NORGAARD T,DACKE M.Fog basking behavi-our and water collection efficiency in Namib Desert darkling beetles [J].Frontiers in Zoology,2010,7(1):23.
参考文献 28
GUADARRAMA J,MONGRUEL A,MEDICI M G,et al.Dew condensation on desert beetle skin [J].European Physical Journal E Soft Matter,2014,37(109):109.
参考文献 29
JIE J,HAO B,ZHENG Y,et al.A multistructural and multifunctional integrated fog collection system in cactus [J].Nature Communications,2012,3(1):644-652.
参考文献 30
CHEN H W,ZHANG P F,ZHANG L W,et al.Continuous directional water transport on the peristome surface of Nepenthes alata [J].Nature:International Weekly Journal of Science,2016,532(7597):85-89.
参考文献 31
ZHANG L W,LIU G,CHEN H W,et al.Bioinspired unidirectional liquid transport micronano structures:A Review [J].Journal of Bionic Engineering,2021,18(1):1-29.
参考文献 32
YUE G C,WANG Y Q,LI D M,et al.Bioinspired surface with special wettability for liquid transportation and separation [J].Sustainable Materials and Technologies,2020,25:1-12.
参考文献 33
LORENCEAU L,QUR D.Drops on a conical wire[J].Journal of Fluid Mechanics,2004,510(510):29-45.
参考文献 34
JU J,ZHENG Y,JIANG L.Bioinspired one dimensional materials for directional liquid transport [J].Acc Chem Res,2014,47(8):2342-2352.
参考文献 35
LI P L,ZHANG B,ZHAO H B,et al.Unidirectional droplet transport on the biofabricated butterfly wing [J].Langmuir:The ACS Journal of Surfaces and Colloids,2018,34(41):12482-12487.
参考文献 36
BAI H,SUN R,JU J,et al.Large-scale fabrication of bioinspired fibers for directional water collection [J].Small,2011,7(24):3429-3433.
参考文献 37
DONG H,ZHENG Y,WANG N,et al.Highly efficient fog collection unit by integrating artificial spider silks[J].Advanced Materials Interfaces,2016,3(11):1-5.
参考文献 38
DU M,ZHAO Y,TIAN Y,et al.Electrospun multiscale structured membrane for efficient water collection and directional transport[J].Small,2016,12(8):1000-1005.
参考文献 39
HE X X,WANG W,LIU Y M,et al.Microfluidic fabrication of bioinspired microfibers with controllable magnetic spindle knots for 3D assembly and water collection[J].ACS Applied Materials & Interfaces,2015,7(31):17471-17481.
参考文献 40
SHANG L,FU F,CHENG Y,et al.Bioinspired multifunctional spindle-knotted microfibers from microfluidics[J].Small,2017,13(4):1-8.
参考文献 41
SONG Y Y,LIU Y,JIANG H B,et al.Bioinspired fabrication of one dimensional graphene fiber with collection of droplets application[J].Scientific Reports,2017,7(1):605-606.
参考文献 42
YU Z W,YUN F F,WANG Y Q,et al.Desert beetle inspired superwettable patterned surfaces for water harvesting[J].Small,2017,13(36):1-6.
参考文献 43
SONG Y Y,LIU Y,JIANG H B,et al.Tempera-turetunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport[J].Nanoscale,2018,10(8):3813-3822.
参考文献 44
LIU M,PENG Z L,YAO Y,et al.A flexible functional surface for efficient water collection [J].ACS Applied Materials & Interfaces,2020,12(10):12256-12263.
参考文献 45
CAO M Y,JU J,LI K,et al.Facile and larges-cale fabrication of a cactus inspired continuous fog collector [J].Advanced Functional Materials,2014,24(21):3235-3240.
参考文献 46
ZHOU H,JING X,GUO Z.Optimal design of fog collector:Water unidirectional transport on a system integrated by conical copper needles with gradient wettability and hydrophilic slippery rough surfaces[J].Langmuir,2020,36(24):6801-6810.
参考文献 47
YU C L,ZHANG L H,RU Y F,et al.Drop cargo transfer via unidirectional lubricant spreading on peristomemimetic surface [J].ACS Nano,2018,12(11):11307-11315.
参考文献 48
LI Z M,ZHANG D Y,WANG D Y,et al.A bioinspired flexible film fabricated by surfacetension assisted replica molding for dynamic control of unidirectional liquid spreading [J].ACS Applied Materials & Interfaces,2019,11(51):48505-48511.
参考文献 49
LI C X,YU C L,ZHOU S,et al.Liquid harve-sting and transport on multiscaled curvatures [J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(38):23436-23442.
参考文献 50
马帅.聚合物超细输水纤维的制备与应用[D].北京:北京化工大学,2015.MA Shuai.Preparation and application of polymer superfine fiber [ D ].Beijing:Beijing University of Chemical Technology,2015.(in Chinese)
参考文献 51
马帅,李好义,陈宏波,等.熔体微分静电纺丝法制备亲水型取向纤维及亲水实验研究[J].化工新型材料,2015,3:195-197.MA Shuai,LI Haoyi,CHEN Hongbo,et al.Oriented fibers with hydrophilicity produced by melt differential electrospinning and hydrophilic experiment[J].New Chemical Materials,2015,3:195-197.(in Chinese)
参考文献 52
HUANG S,YIN S,CHEN F,et al.Directional transport of droplets on wettability patterns at high temperature[J].Applied Surface Science,2018,428:432-438.
参考文献 53
LIU M,YAO Y,YANG Y,et al.Directional transport behavior of droplets on wedgeshaped functional surfaces [J].Journal of Physical Chemistry C,2019,123(20),12736-12743.
参考文献 54
HU B B,DUAN Z F,XU B J,et al.Ultrafast self-propelled directional liquid transport on the pyramid structured fibers with concave curved surfaces[J].Journal of the American Chemical Society,2020,142(13):6111-6116.
参考文献 55
WANG Z,LU Y,HUANG S,et al.Bamboojoint-like platforms for fast,long distance,directional,and spontaneous transport of fluids[J].Biomicrofluidics,2020,14(3):034105.
参考文献 56
ZHOU H,WANG H,NIU H,et al.Superphobicity/philicity janus fabrics with switchable,spontaneous,directional transport ability to water and oil fluids[J].Scientific Reports,2013,3(1):2964-2964.
参考文献 57
LUO Y Q,SONG F,XU C,et al.Bioinspired fabrication of asymmetric wood materials for directional liquid manipulation and transport[J].Chemical Engineering Journal,2020,383(C):123168-123168.
参考文献 58
HUANG Y,HU L,CHEN W Y,et al.Directional transport of a liquid drop between parallel non-parallel combinative plates[J].Langmuir the Acs Journal of Surfaces & Colloids,2018,34(15):4484-4493.
参考文献 59
LUO H,LU Y,YIN S H,et al.Robust platform for water harvesting and directional transport [J].Journal of Materials Chemistry A Materials for Energy & Sustainability,2018,6(14):5635-5643.
目录contents

    摘要

    液体输送在化工过程中起着至关重要的作用,目前的液体输送是主动的,需要消耗大量的能量,而自然界中部分生物可以实现无动力的液体输送。 在能源匮乏的今天,模仿这些生物体无动力液体输送原理、结构,制得具有同样或超越其性能的仿生液体输送系统成为近年来的研究热点。 通过列举自然界的特殊生物实例,分析这些生物所特有的结构、液体输送现象, 阐述无动力液体输送机理。 在此基础上对比分析相应的仿生液体输送系统的结构、制备材料、方法、特点等,指出随着各种新材料加工技术的出现,无动力液体输送系统从模仿单一的生物结构,向基于无动力液体输送原理设计新型结构的方向发展。 最后提出该领域研究存在的挑战和未来研究方向,以促进该领域进一步的研究及工程应用。

    Abstract

    Liquid transportation plays an important role in chemical engineering and industrial process, and the current liquid transportation is active and requires a lot of energy. Some organisms in nature can transport liquid without power through the special structure of the surface. It has become a research hotspot to make the system with the same or better performance by imitating the nonpowered liquid transportation structure of the organisms. By enumerating special biological examples in nature, the unique structures of these creatures and the phenomenon of liquid transportation are analyzied, and the mechanism of unpowered liquid transportation is exponded; the structural characteristics, preparation materials, methods, characteristics, etc. of the corresponding bionic liquid delivery system are compared and analyzed. The development trend of non-powered liquid transportation system is also pointed out, no longer imitate a particular organism, but the design of new structures based on the principle of transporting materials and the latest processing technology innovation. Finally, the existing challenges and future research directions in this field are pointed out in order to promote further research and engineering applications.

  • 0 前言

  • 液体输送在化工[1-4]、环境[5-6]、医疗[7] 等领域有着广泛的应用,常规液体输送是主动的,需要消耗大量能量。液体的被动输送是指自发地进行无能耗的液体输送,这一直是人们追求的目标。受自然界生物启发,研究人员研制了具有无能耗液体定向输送能力的不同仿生材料及结构,并将其应用于制作涂层[8]、集水[9]以及油水分离[10]等不同领域。液体定向输送的核心策略是在固体表面构建由形貌结构决定的润湿梯度[11-12]

  • 润湿是液体与固体接触时固体表面上的气体被液体取代的过程,是液体输送材料表面的重要特征。荷叶效应为润湿提供了形象的演示[13]。材料表面的润湿性强弱程度是由其接触角来表征的[14]。一般来说,接触角大于90°为疏液性,接触角小于90° 为亲液性。润湿性最基本研究可以追溯到1805年YOUNG提出的杨氏方程[15],它是描述固气、固液、液气界面张力 γsgγslγlg 与接触角 θ 之间的关系式,亦称润湿方程,表达式为:

  • γsg-γsl=γlgcosθ
    (1)
  • 式中,界面张力的大小决定了接触角的大小。但杨氏方程仅适用于光滑表面,不适用于粗糙表面。随后WENZEL [16] 和CASSIE等[17-18] 提出考虑表面粗糙度对表面润湿性的影响并建立了新的理论模型。新模型的出现扩展了对表面粗糙度调节表面湿润性变化的理解。表面的粗糙度会提高润湿性能。 1936年WENZEL [19]指出由于实际固体表面上存在粗糙度,固体的实际表面积大于完全光滑时的表面积,并提出了粗糙因子 r:

  • r=S1S2
    (2)
  • 式中,S1 为固体实际表面积,S2 为假想完全光滑固体表面积。 1948年CASSIE [17-18] 指出在润湿方程中接触角的余弦值为形成单位面积固-液界面所获得的能量与形成单位面积液-气界面所需要的能量之比,认为固-液界面的表面积取决于固体表面的实际情况即固体表面的粗糙程度,并且将粗糙表面假设成有两种物质1和2,提出

  • cosθ''=σ1cosθ1+σ2cosθ2
    (3)
  • 式中, θ″ 表示粗糙表面实际接触角,σ1θ1 分别表示液体与物质1接触面积和接触角, σ2θ2 表示液体与物质2接触面积和接触角,且 σ1 + σ2=1。然而实际的润湿条件是复杂的,除了受到表面粗糙程度的影响,还会受到固体表面化学能的影响[20]。 1992年CHANDHURY和WHITESIDES [21] 指出固体材料表面化学能会影响材料的表面润湿性。

  • 近年来,研究人员通过模仿生物结构以及调控固体表面形貌结构来实现液体的无能耗输送。润湿性基本理论为仿生液体定向输送研究提供了有意义的指导。本文从自然界生物所特有的无动力液体输送案例分析出发,总结归纳了目前无动力液体输送仿生结构,并对无动力液体输送方面亟待解决的问题进行了展望。

  • 1 动植物液体输送结构

  • 自然界许多生物的表面经过证明具有独特的润湿性,且可以进行液体定向输送。图1为几种可实现无动力液体定向输送的生物实例。

  • 高湿度环境生存的蛾蚋,通过将所有冷凝液滴输送到触角的尖端后脱落,来保持全身高疏水性,这得益于触角的多尺度、周期性结构和柔韧性。如图1a所示,蛾蚋触角具有多个周期性抛物线形结构, 每个抛物线形结构周围覆盖着锥形刚毛阵列,刚毛的长度和尺寸约为120 μm和15°,刚毛阵列的顶端延伸到下一个抛物线形结构,每个刚毛上具有纳米级棘轮机构,棘轮向锥形刚毛尖端倾斜,并且棘轮的倾斜角范围约为15°~51°,棘轮的长度和中心间距约为1.26 μm和0.49 μm。微小的冷凝液滴随机在单个抛物线形结构上形成,随后液滴在单个结构成核并生长,生长的液滴与临近的液滴频繁的合并后聚集在刚毛顶点,由刚毛引导液滴移动至下一个抛物线形状结构上,在周期性结构的作用下液滴被输送到触角的尖端,通过柔性触角的振动使液滴脱落[22]

  • 热带雨林生存的蝴蝶可以保持蝶翼疏水性实现灵活飞行,是因为蝶翼表面具有不对称的多尺度结构。如图1b所示蝶翼表面具有重叠的鳞片,鳞片长约200 μm,宽约150 μm,鳞片朝向表面弯曲,鳞片表面由于弯曲形成平行的脊和微纳米尖端且向蝶翼边缘倾斜,微纳米尖端使得鳞片表面呈现出不对称的棘轮结构,导致蝶翼具有各向异性润湿性。液滴通过蝶翼上微纳米棘轮结构生长、聚集及定向输送最终被去除[23-24]

  • 蛛丝可以从潮湿的空气中收集水分,使其部分结构得到润湿,同样得益于多尺度结构和周期性结构。如图1c所示蛛丝具有周期性纺锤形结构,纺锤结和其之间的接头的直径分别为21.0±2.7 μm和5.9± 1.2 μm,间隔为89.3±13.5 μm,该结构表面粗糙。液滴凝结在蛛丝接头以及纺锤形结构上,随着液滴聚集,液体移动到最近的纺锤形结构,液滴继续聚集形成更大的液滴,最终蛛丝从空气中收集水分[23,25]

  • 纳米布沙漠生存的沙漠甲虫在风中收集水,使其部分结构得到润湿,也是因为甲虫鞘翅表面具有多尺度结构、周期性结构和润湿差异性。如图1d所示甲虫鞘翅表面存在疏水性蜡质涂层和亲水性非蜡涂层区域的交替。鞘翅表面覆盖着无规则排列间隔为0.5~1.5mm、直径约为0.5mm的凸起,凸起峰处是光滑的,凹坑以及凸起的侧面则是被蜡质涂覆的微结构覆盖。起初,雾中的液滴在凸起上形成液滴,液滴通过鞘翅亲水凸起域内生长聚集和沿着疏水凹陷区域滚动至甲虫口器[26-28]

  • 干旱地区生长的仙人掌可以从空气中收集水分,使其部分结构得到润湿,同样得益于其多尺度结构。如图1e所示仙人掌收集水分的系统主要包括圆锥刺、倒刺、定向倒刺、梯度凹槽和带状结构的毛状体。圆锥刺顶角为12.3±1.6°,倒刺顶角为19.5±3.3 °,梯度凹槽沿脊柱由针刺脊柱的底部的6.8 μm到顶部时的4.3 μm,毛状体上刺之间平均夹角为18.1±5.3°,刺的长度为800~2 500 μm。起初,雾滴最初在圆锥刺和倒刺上聚集形成液滴,液滴随后沿着倒刺指向的方向移动,随着液滴积聚进行,液滴体积增加。较大的液滴随后沿着梯度凹槽进一步运输,并通过基部的毛状体吸收[29]

  • 热带植物猪笼草因其笼口具有特殊的表面结构,可将笼口内侧边缘的水滴输送至外侧,而外侧水滴无法向内侧输送,使其部分结构得到润湿。如图1f所示笼口表面对齐分层排列的规则两级径向脊形成了平行微槽。一级微槽宽度为461.72 ± 49.93 μm并包含大约十个二级微槽,二级微槽宽度从一级微槽的顶部到低部逐渐增加。弓形微腔沿二级微槽规则分布,整体向上倾斜,弓形拱顶指向外侧,微腔顶部封闭且顶部表面略微倾斜。液滴连续填充单个微腔,从而完成从内侧到外侧水输送[30]

  • 图1 无动力液体定向输送的生物结构实例

  • Fig.1 Non-powered liquid transportation of biological structure

  • 上述6种生物通过其表面形貌结构实现了无动力液体定向输送。对于每种生物来说表面形貌都采用多级结构方式构建成梯度结构。单个或多个周期性结构梯度相结合可以实现液体的无动力定向输送。由独特的结构决定的液体输送驱动力存在明显差异[31-32]。这为仿生无动力液体输送结构的研究提供了有价值的参考,研究人员已经制备出了许多不同种类的仿生无动力液体输送系统。

  • 2 仿生无动力液体输送系统

  • 近年来,随着仿生技术的发展,仿生技术制备的系统已具备无动力液体定向输送的能力。如上所述,无动力液体输送系统仍采用改变表面形貌结构实现液体输送的。

  • 固体表面形貌结构的改变会产生润湿梯度-拉普拉斯梯度和表面能梯度,从而产生力驱动液体的定向输送。这里以纺锤形结构为例介绍拉普拉斯梯度。纺锤形结构可以认为是由两个底面相连接的圆锥体组成的[25]。这种具有曲率梯度的表面会使得液滴产生拉普拉斯梯度,从而产生压力差 ΔP [33] :

  • ΔP=-r1r2 2γr+R02sinβdz
    (4)
  • 式中, γ 是表面张力,r 是局部半径,R0 是液滴半径,β 是纺锤形结构的半顶角,z 是沿轴心的直径积分变量。由于 r1< r2,所以 ΔP> 0,即纺锤形结构两端的拉普拉斯压力大于纺锤节中间部位的拉普拉斯压力,所以拉普拉斯压力差驱使液滴从直径小的位置移动到直径大的位置,从而使得液滴聚集。另一个驱动力是由表面能梯度产生的。由于表面粗糙度和化学组成存在差异性,液滴与表面接触后不同接触位置的表面张力不同,因此存在力驱动液滴从接触角大的区域移动到接触角小的区域[34] :

  • FπR0γcosθB-cosθA
    (5)
  • 式中, R0 是液滴的半径,γ 是表面张力,θA θB 分别为液滴在润湿性差和容易润湿侧的接触角。下面对目前仿生液体输送的研究进行归类与分析。

  • 2.1 仿蛾蚋液体输送

  • 受蛾蚋触角实现液体定向输送的周期性结构的启发,WANG等[22] 使用机械加工创建倾斜角范围30°~50°的凹槽阵列并用软光刻技术将图案从铜模转移到聚二甲基硅氧烷( PDMS) 基板上,再用喷涂工艺将纳米ZnO颗粒修饰到PDMS表面,最终设计一个按比例放大的周期性结构组成的柔性液滴整流器,如图2所示。

  • 图2 仿蛾蚋液体输送结构

  • Fig.2 Imitating liquid transportation structure of drain fly

  • 2.2 仿蝶翼液体输送

  • 受蝶翼实现液体定向输送的独特不对称表面的启发,LI等[35]通过结合软光刻和晶体生长的方法制备出液滴定向输送表面,如图3所示,其中通过PDMS复制蝶翼的微结构,ZnO纳米颗粒提高表面粗糙度,十七氟癸基三丙氧基硅烷(FAS-17)来降低表面自由能。结果表明非对称排列的微结构会使得液滴在表面上具有各向异性的附加力,从而导致液滴会沿着特定方向向边缘移动。

  • 图3 仿蝶翼液体输送结构

  • Fig.3 Imitating liquid transportation structure of butterfly wing

  • 2.3 仿蛛丝液体输送

  • 受蛛丝实现液体输送的独特纺锤形结构的启发,2010年,ZHENG等[25]将均匀的尼龙纤维浸入聚甲基丙烯酸甲酯/N, N-二甲基甲酰胺-乙醇 (PMMA/DMF-EtOH)溶液中,然后将尼龙纤维抽出制得人造蜘蛛丝。由于瑞利泰勒不稳定性,液体膜破一系列微小的液滴交替分布在纤维上。这些液滴干燥后,形成周期的纺锤结,如图4a所示。用相应稀释的十二烷基硫酸钠( SDS) 对人造蛛丝进行不同时间的处理。结果表明:处理后变形的人造蛛丝具有纺锤形结构的仍具有定向集水能力,损坏的没有纺锤形结构的蛛丝失去了定向集水的能力,证实了蛛丝特殊的纺锤形结构确实在水定向输送中起着至关重要的作用。该研究得到的纺锤结的尺寸是固定不变的。 2011年,该研究团队BAI等[36]通过液体涂层的方法大规模地在尼龙纤维上连续制造周期性的纺锤结,且纺锤结的形成与溶液参数和纤维拉伸速度有关,纺锤结的尺寸可以在一定程度上进行调整,如图4b所示。涂层溶液选用PMMA和N,N-二甲基甲酰胺(DMF)共混的聚合物溶液。这种具有蛛丝结构特点的纤维同样具有定向集水的能力。 2016年,DONG等[37] 指出相邻人造蛛丝之间的角度增加,集水效率首先增加,然后达到顶峰后降低,当相邻夹角达到30°时,效率最高,如图4c所示。同年,DU等[38] 通过左旋聚乳酸( PLLA) 静电纺丝技术设计了一种具有串珠状的纤维膜,如图4d所示,实现了水在多尺度结构膜上的定向输送,并且液滴由于表面张力会定向输送到纤维相交的位置,使得珠粒重新收集空气中水分,提高集水以及输送效率。

  • 为了达到同样的目的,越来越多的研究者提出用不同的方法来连续、可控地制造纺锤结结构并实现液体输送。 2015年HE等[39] 通过微流体喷射模板将海藻酸钠(NaAlg)和氯化钙(CaCl2)结合制造出连续且具有纺锤形结构的可调磁性海藻酸钙 (CaAlg)纤维,单个纺锤结19s内可收集365nL水, 通过调控模板结构、流量、交联反应、磁场、溶剂蒸发和干燥过程,可以轻松调节所得纤维的结构,以实现可控和图案化组装,如图4e所示。 2016年,SHANG等[40]通过同轴毛细管微流控技术将NaAlg和CaCl2 结合经过纺丝、涂层和乳化过程后制备出具有纺锤形结构的超细纤维,如图4f所示,调节乳化过程中的流速可以控制纺锤结的尺寸和间距。因为纺锤形结构直接在外部乳化和固化后固定在纤维上,所以在纤维脱水前后,纺锤形结构都是稳定的。以上综述的研究主要关注水滴的单向传输能力,无法控制微小水滴在一定方向上的可逆传输,且制作工艺复杂、成本高。 2017年,SONG等[41] 通过二次浸涂以及激光蚀刻技术将PDMS和氧化石墨烯(GO)结合制造出具有纺锤形结构的纤维,如图4g所示,可以通过控制石墨烯表面的润湿性来有效地调节微小水滴在固定方向上的运动。结果证明:曲率和梯度润湿性方向之间的配合在集水和输水中起着重要的作用。

  • 图4 仿蛛丝液体输送结构

  • Fig.4 Imitating liquid transportation structure of spider silk

  • 2.4 仿甲虫液体输送

  • 受甲虫实现液体输送的独特周期性结构的启发,2017年,YU等[42]通过使用带有图案掩模的脉冲激光沉积 (PLD)方法在PDMS涂层的超疏水表面上制造了超亲水/超疏水图案。与单一的超疏水或超亲水表面相比,超亲水/超疏水润湿图案表面具有更优异的集水能力。同年,SONG等[43] 结合PDMS和石墨烯设计一种具有尖端形状图案的表面,并且经过激光蚀刻的多孔石墨烯复合涂层可以产生受温度调节的润湿性变化,且该尖端形状表面具有显著的机械耐久性和化学稳定性。尽管液滴可以从疏水区扩散至亲水区,但是由于接触角滞后,液滴的后缘将被固定在不同可润湿性区域的边界上,这将导致液体输送缓慢。 2020年, LIU等[44]设计一种在超疏水区域和疏水区域之间具有润湿梯度的柔性功能表面,水滴可以在疏水区域滑动或者滚动,并且通过设计不同形状的疏水区,可实现液滴的定向输送。

  • 2.5 仿仙人掌液体输送

  • 受仙人掌在沙漠中实现集成雾收集以及液体输送的特殊结构的启发,2014年,CAO等[45] 通过改良的磁粉辅助成型技术,在外部磁场下使用PDMS和钴磁性颗粒(MP)制得有序的仙人掌脊柱状疏水圆锥形尖端阵列,如图5a所示,将疏水圆锥形尖端阵列与亲水棉基材整合,实现水的定向输送。结果发现,PDMS与MP的最佳重量比为2 ∶1时可获得圆锥形微尖端。设计选用的基材大多是亲水性海绵,因此该设计存在一些缺点,如从基材中去除水分的过程不仅耗时而且耗能。所以,设计一个最大限度地提高水滴收集效率的结构仍是一个巨大的挑战。 2020年,ZHOU等[46] 通过电化学沉积和氨腐蚀反应制备的具有多种微纳米粗糙结构的超疏水-亲水锥形铜针 ( SHB-HL CNN)垂直插入亲水性光滑-粗糙表面( SRS),如图5b所示,得到高效雾气收集、聚集以及输送的集成系统。结果表明,SHB-HL CNN倾斜角为0° 时,液滴输送速度最快。由于锥形铜针上存在拉普拉斯压力差,铜针上的润湿差异性与液滴凝结时释放的表面能之间协同,可作为一种新的增强雾气收集以及液体输送的机理。

  • 图5 仿仙人掌液体输送结构

  • Fig.5 Imitating liquid transportation structure of cactus

  • 2.6 仿猪笼草液体输送

  • 受猪笼草笼笼口唇部表面实现液体自下而上、自内向外液体定向输送的特殊结构的启发, 2018年,YU等[47]通过3D打印技术对猪笼草唇部表面进行复制并构建出光滑、具有微细沟槽的PDMS表面,如图6a所示,可实现在表面上对液体的定向输送。液滴体积为4 μL时具有较低的输送速度,2 μL时输送速度最高,1 μL时输送速度最低。研究表明,为了实现有效的液体输送,液滴的体积应与微细沟槽的体积相近,并且表面张力小的液体输送速度快。该研究最终形成的形状无法调整,一个特定的曲面只能呈现一种液体铺展状态,极大地限制了其潜在的应用。 2019年,LI等[48]将PDMS浇筑在猪笼草唇部表面,经过脱模得到模板,再将溶解在甲苯中的苯乙烯嵌段共聚物( SBS)倒入模板上,最终得到具有多级微观结构的人工膜,如图6b所示,并且该膜在弯曲和平展状态下均表现出液体输送,其中通过拉伸膜,使得微腔的楔角变小,液体输送的速度增加。结果表明微腔随拉伸比的增加而减小,较小的楔角可以导致更强的液体输送能力。如图6c所示,2020年,LI等[49]通过CT扫描猪笼草笼唇部形貌,使用数字光处理3D打印技术构建唇部表面结构的互补结构,将聚乙烯醇( PVA) 亲水凝胶对该结构形貌进行复制。使用3D打印技术对唇部表面形貌进行复制,并用PVA、水、二甲基亚砜( DMSO) 混合溶液倒在打印的基材上。将两部分复制后的结构组合得到液体收集输送系统。该系统通过棘齿上液滴成核、凹槽内液滴聚集和输送三个连续的步骤完成液滴的收集和输送。

  • 图6 仿猪笼草液体输送结构

  • Fig.6 Imitating liquid transportation structure of nepenthes

  • 2.7 其他无动力液体输送结构

  • 随着各种新的材料加工技术的出现,目前无动力液体输送系统从模仿单一的生物结构,向基于无动力液体输送原理设计新型的结构的方向发展。在本课题组前期的研究中,马帅等[50-51] 通过熔体微分电纺技术制得输水纤维,通过纤维之间的孔隙形成 “毛细管”产生毛细作用将水分进行输送,并且通过优化后处理调控纤维的形貌结构及孔隙率进而改善其输水性能。表1展示了无动力液体输送系统的结构和制备方法。

  • 3 结论与展望

  • 在介绍润湿机理基础上介绍了生物无动力液体定向输送的案例,可以看出生物通过形貌结构来产生润湿梯度,梯度产生驱动力,从而导致液体的定向输送。仿照这几种生物案例,国内外学者研制了各种无动力液体输送系统,其定向输送液体的原理基本相同,但选用材料及表面结构各有不同。

  • 基于目前国内外研究进展,对已发现生物以及现有的仿生结构进行分析,仿生无动力液体输送的研究有以下几点趋势:

  • (1)目前该研究缺乏标准的评估方法,以至于很难将不同研究团队的成果进行比对,因此需要有统一或者可以互相转换的评估标准。

  • (2)目前应用于无动力液体输送固体表面材料以及处理的工艺种类有限,有待开发更多种类的材料以及相应工艺,提高材料及结构的耐久性和液体输送效率。

  • (3)需要结合适当的驱动力,以更快的速度、更远的距离驱动液体。

  • (4)寻找更多具有液体输送能力的生物实例, 探索其液体输送机理。

  • (5)提高液体输送的可控性和对环境的自适应能力。

  • (6)扩大这种具有生物启发性液体定向输送系统的应用领域,例如节能技术、生物医疗和环境保护等。

  • 综上,无动力液体输送方向的研究具有广阔的前景,未来的研究应该更多地关注该技术标准化评估、开发新材料、新工艺,实现仿生液体输送结构的工业化应用。将液体输送技术及设备进行应用,进一步深化该技术的研究。

  • 表1 无动力液体输送系统

  • Table1 Non-powered liquid transportation system

  • 参考文献

    • [1] SUSAN D,MANOJ K C,JOHN C C.Fast drop movements resulting from the phase change on a gradient surface [J].Science,2001,291(5504):633-636.

    • [2] 程千会,刘长松.用于油水分离的超疏水氧化锌海绵的制备及其性能[J].中国表面工程,2018,31(1):148-155.CHENG Qianhui,LIU Changsong.Fabrication and properties of superhydrophobic ZnO sponge for oil-water separation[J].China Surface Engineering,2018,31(1):148-155.(in Chinese)

    • [3] 李志文,齐博浩,刘长松,等.不锈钢网表面润湿性的调控及其油水分离性能 [J].中国表面工程,2020,33(5):10-17.LI Zhiwen,QI Bohao,LIU Changsong,et al.Manipulation of surface wettability on stainless steel mesh and its oil-water separation performance[J].China Surface Engineering,2020,33(5):10-17.(in Chinese)

    • [4] LIN W,HAO B.Smart materials for controlled droplet motion [M]//Design,fabrication,properties and applications of smart and advanced materials.Boca Raton:CRC Press,2016:196-229.

    • [5] WU J,YIN K,LI M,et al.Under oil selfdriven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry gradient structure [J].Nanoscale,2020,12(6):4077-4084.

    • [6] KAN L,JIE J,XUE Z,et al.Structured cone arrays for continuous and effective collection of micronsized oil droplets from water[J].Nature Communications,2013,4(1):2276.

    • [7] ZEC,SHIN,WANG.Novel droplet platforms for the detection of disease biomarkers[J].Expert Review of Molecular Diagnostics,2014,14(7):787-801.

    • [8] SUN S,LI H,GUO Y,et al.Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “ lotus leaf effect ” [J].Progress in Organic Coatings,2021,151:1-12.

    • [9] JING L,YINGLUO Z,WEIBING W,et al.A bioinspired superhydrophobic surface for fog collection and directional water transport [J].Journal of Alloys and Compounds,2020,819(C):152968-152968.

    • [10] BARTHLOTT W,MOOSMANN M,NOLL I,et al.Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces:A novel technique for oil-water separation [J].Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2020,378(2167):20190447.

    • [11] SI Y,DONG Z C.Bioinspired smart liquid directional transport control [J].Langmuir:The ACS Journal of Surfaces and Colloids,2020,36(3):667-681.

    • [12] KONG L B,XU Z Z,XU M.Research and design of functional microstructuresm with directional transport for bionic microfluidics [ C ]//Micro-and Nano-Optics,Catenary Optics,and Subwavelength Electromagnetics,Chengdu,China,2019.

    • [13] BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces [J].Planta,1997,202(1):1-8.

    • [14] 秦现代,安伟伟,苏润洲.水烛叶表面的浸润性研究及其仿生表面的制备[J].哈尔滨师范大学自然科学学报,2019,35(3):83-88.QIN Xiandai,AN Weiwei,SU Runzhou.Study on wettability of typha angustifolia leaves and fabrication of biomimetic surfaces [J].Natural Science Journal of Harbin Normal University,2019,35(3):83-88.(in Chinese)

    • [15] YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [16] WENZEL N R.Resistance of solid surfaces to wetting by water [J].Transactions of the Faraday Society,1936,28(8):988-994.

    • [17] CASSIE A D.Contact angles [J].Discussions of the Faraday Society,1948,3:11.

    • [18] CASSIE A D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [19] WENZEL N R.Surface roughness and contact angle[J].Journal of Physical & Colloid Chemistry,1949,53(9):1466-1467.

    • [20] BONN D,EGGERS J,INDEKEUBON J,et al.Wetting and spreading [J].Review of Modern Physics,2009,81(2):739-805.

    • [21] CHAUDHURY M,WHITESIDES G M.How to make water run uphill[J].Science,1992,256(5063):1539-1541.

    • [22] WANG L,LI J,ZHANG B,et al.Counterintuitive ballistic and directional liquid transport on a flexible droplet rectifier [J].Research,2020,2020:1-11.

    • [23] FENG S,WANG Q,XING Y,et al.Continuous directional water transport on integrating tapered durfaces [J].Advanced Materials Interfaces,2020,7(2000081):1-7.

    • [24] LIU C,JU J,ZHENG Y,et al.Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings[J].Acs Nano,2014,8(2):1321-1329.

    • [25] ZHENG Y,BAI H,HUANG Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463(7281):640-643.

    • [26] PARKER A R,LAWRENCE C R.Water capture by a desert beetle[J].Nature,2001,414(6859):33-34.

    • [27] NORGAARD T,DACKE M.Fog basking behavi-our and water collection efficiency in Namib Desert darkling beetles [J].Frontiers in Zoology,2010,7(1):23.

    • [28] GUADARRAMA J,MONGRUEL A,MEDICI M G,et al.Dew condensation on desert beetle skin [J].European Physical Journal E Soft Matter,2014,37(109):109.

    • [29] JIE J,HAO B,ZHENG Y,et al.A multistructural and multifunctional integrated fog collection system in cactus [J].Nature Communications,2012,3(1):644-652.

    • [30] CHEN H W,ZHANG P F,ZHANG L W,et al.Continuous directional water transport on the peristome surface of Nepenthes alata [J].Nature:International Weekly Journal of Science,2016,532(7597):85-89.

    • [31] ZHANG L W,LIU G,CHEN H W,et al.Bioinspired unidirectional liquid transport micronano structures:A Review [J].Journal of Bionic Engineering,2021,18(1):1-29.

    • [32] YUE G C,WANG Y Q,LI D M,et al.Bioinspired surface with special wettability for liquid transportation and separation [J].Sustainable Materials and Technologies,2020,25:1-12.

    • [33] LORENCEAU L,QUR D.Drops on a conical wire[J].Journal of Fluid Mechanics,2004,510(510):29-45.

    • [34] JU J,ZHENG Y,JIANG L.Bioinspired one dimensional materials for directional liquid transport [J].Acc Chem Res,2014,47(8):2342-2352.

    • [35] LI P L,ZHANG B,ZHAO H B,et al.Unidirectional droplet transport on the biofabricated butterfly wing [J].Langmuir:The ACS Journal of Surfaces and Colloids,2018,34(41):12482-12487.

    • [36] BAI H,SUN R,JU J,et al.Large-scale fabrication of bioinspired fibers for directional water collection [J].Small,2011,7(24):3429-3433.

    • [37] DONG H,ZHENG Y,WANG N,et al.Highly efficient fog collection unit by integrating artificial spider silks[J].Advanced Materials Interfaces,2016,3(11):1-5.

    • [38] DU M,ZHAO Y,TIAN Y,et al.Electrospun multiscale structured membrane for efficient water collection and directional transport[J].Small,2016,12(8):1000-1005.

    • [39] HE X X,WANG W,LIU Y M,et al.Microfluidic fabrication of bioinspired microfibers with controllable magnetic spindle knots for 3D assembly and water collection[J].ACS Applied Materials & Interfaces,2015,7(31):17471-17481.

    • [40] SHANG L,FU F,CHENG Y,et al.Bioinspired multifunctional spindle-knotted microfibers from microfluidics[J].Small,2017,13(4):1-8.

    • [41] SONG Y Y,LIU Y,JIANG H B,et al.Bioinspired fabrication of one dimensional graphene fiber with collection of droplets application[J].Scientific Reports,2017,7(1):605-606.

    • [42] YU Z W,YUN F F,WANG Y Q,et al.Desert beetle inspired superwettable patterned surfaces for water harvesting[J].Small,2017,13(36):1-6.

    • [43] SONG Y Y,LIU Y,JIANG H B,et al.Tempera-turetunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport[J].Nanoscale,2018,10(8):3813-3822.

    • [44] LIU M,PENG Z L,YAO Y,et al.A flexible functional surface for efficient water collection [J].ACS Applied Materials & Interfaces,2020,12(10):12256-12263.

    • [45] CAO M Y,JU J,LI K,et al.Facile and larges-cale fabrication of a cactus inspired continuous fog collector [J].Advanced Functional Materials,2014,24(21):3235-3240.

    • [46] ZHOU H,JING X,GUO Z.Optimal design of fog collector:Water unidirectional transport on a system integrated by conical copper needles with gradient wettability and hydrophilic slippery rough surfaces[J].Langmuir,2020,36(24):6801-6810.

    • [47] YU C L,ZHANG L H,RU Y F,et al.Drop cargo transfer via unidirectional lubricant spreading on peristomemimetic surface [J].ACS Nano,2018,12(11):11307-11315.

    • [48] LI Z M,ZHANG D Y,WANG D Y,et al.A bioinspired flexible film fabricated by surfacetension assisted replica molding for dynamic control of unidirectional liquid spreading [J].ACS Applied Materials & Interfaces,2019,11(51):48505-48511.

    • [49] LI C X,YU C L,ZHOU S,et al.Liquid harve-sting and transport on multiscaled curvatures [J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(38):23436-23442.

    • [50] 马帅.聚合物超细输水纤维的制备与应用[D].北京:北京化工大学,2015.MA Shuai.Preparation and application of polymer superfine fiber [ D ].Beijing:Beijing University of Chemical Technology,2015.(in Chinese)

    • [51] 马帅,李好义,陈宏波,等.熔体微分静电纺丝法制备亲水型取向纤维及亲水实验研究[J].化工新型材料,2015,3:195-197.MA Shuai,LI Haoyi,CHEN Hongbo,et al.Oriented fibers with hydrophilicity produced by melt differential electrospinning and hydrophilic experiment[J].New Chemical Materials,2015,3:195-197.(in Chinese)

    • [52] HUANG S,YIN S,CHEN F,et al.Directional transport of droplets on wettability patterns at high temperature[J].Applied Surface Science,2018,428:432-438.

    • [53] LIU M,YAO Y,YANG Y,et al.Directional transport behavior of droplets on wedgeshaped functional surfaces [J].Journal of Physical Chemistry C,2019,123(20),12736-12743.

    • [54] HU B B,DUAN Z F,XU B J,et al.Ultrafast self-propelled directional liquid transport on the pyramid structured fibers with concave curved surfaces[J].Journal of the American Chemical Society,2020,142(13):6111-6116.

    • [55] WANG Z,LU Y,HUANG S,et al.Bamboojoint-like platforms for fast,long distance,directional,and spontaneous transport of fluids[J].Biomicrofluidics,2020,14(3):034105.

    • [56] ZHOU H,WANG H,NIU H,et al.Superphobicity/philicity janus fabrics with switchable,spontaneous,directional transport ability to water and oil fluids[J].Scientific Reports,2013,3(1):2964-2964.

    • [57] LUO Y Q,SONG F,XU C,et al.Bioinspired fabrication of asymmetric wood materials for directional liquid manipulation and transport[J].Chemical Engineering Journal,2020,383(C):123168-123168.

    • [58] HUANG Y,HU L,CHEN W Y,et al.Directional transport of a liquid drop between parallel non-parallel combinative plates[J].Langmuir the Acs Journal of Surfaces & Colloids,2018,34(15):4484-4493.

    • [59] LUO H,LU Y,YIN S H,et al.Robust platform for water harvesting and directional transport [J].Journal of Materials Chemistry A Materials for Energy & Sustainability,2018,6(14):5635-5643.

  • 参考文献

    • [1] SUSAN D,MANOJ K C,JOHN C C.Fast drop movements resulting from the phase change on a gradient surface [J].Science,2001,291(5504):633-636.

    • [2] 程千会,刘长松.用于油水分离的超疏水氧化锌海绵的制备及其性能[J].中国表面工程,2018,31(1):148-155.CHENG Qianhui,LIU Changsong.Fabrication and properties of superhydrophobic ZnO sponge for oil-water separation[J].China Surface Engineering,2018,31(1):148-155.(in Chinese)

    • [3] 李志文,齐博浩,刘长松,等.不锈钢网表面润湿性的调控及其油水分离性能 [J].中国表面工程,2020,33(5):10-17.LI Zhiwen,QI Bohao,LIU Changsong,et al.Manipulation of surface wettability on stainless steel mesh and its oil-water separation performance[J].China Surface Engineering,2020,33(5):10-17.(in Chinese)

    • [4] LIN W,HAO B.Smart materials for controlled droplet motion [M]//Design,fabrication,properties and applications of smart and advanced materials.Boca Raton:CRC Press,2016:196-229.

    • [5] WU J,YIN K,LI M,et al.Under oil selfdriven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry gradient structure [J].Nanoscale,2020,12(6):4077-4084.

    • [6] KAN L,JIE J,XUE Z,et al.Structured cone arrays for continuous and effective collection of micronsized oil droplets from water[J].Nature Communications,2013,4(1):2276.

    • [7] ZEC,SHIN,WANG.Novel droplet platforms for the detection of disease biomarkers[J].Expert Review of Molecular Diagnostics,2014,14(7):787-801.

    • [8] SUN S,LI H,GUO Y,et al.Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “ lotus leaf effect ” [J].Progress in Organic Coatings,2021,151:1-12.

    • [9] JING L,YINGLUO Z,WEIBING W,et al.A bioinspired superhydrophobic surface for fog collection and directional water transport [J].Journal of Alloys and Compounds,2020,819(C):152968-152968.

    • [10] BARTHLOTT W,MOOSMANN M,NOLL I,et al.Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces:A novel technique for oil-water separation [J].Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2020,378(2167):20190447.

    • [11] SI Y,DONG Z C.Bioinspired smart liquid directional transport control [J].Langmuir:The ACS Journal of Surfaces and Colloids,2020,36(3):667-681.

    • [12] KONG L B,XU Z Z,XU M.Research and design of functional microstructuresm with directional transport for bionic microfluidics [ C ]//Micro-and Nano-Optics,Catenary Optics,and Subwavelength Electromagnetics,Chengdu,China,2019.

    • [13] BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces [J].Planta,1997,202(1):1-8.

    • [14] 秦现代,安伟伟,苏润洲.水烛叶表面的浸润性研究及其仿生表面的制备[J].哈尔滨师范大学自然科学学报,2019,35(3):83-88.QIN Xiandai,AN Weiwei,SU Runzhou.Study on wettability of typha angustifolia leaves and fabrication of biomimetic surfaces [J].Natural Science Journal of Harbin Normal University,2019,35(3):83-88.(in Chinese)

    • [15] YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [16] WENZEL N R.Resistance of solid surfaces to wetting by water [J].Transactions of the Faraday Society,1936,28(8):988-994.

    • [17] CASSIE A D.Contact angles [J].Discussions of the Faraday Society,1948,3:11.

    • [18] CASSIE A D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [19] WENZEL N R.Surface roughness and contact angle[J].Journal of Physical & Colloid Chemistry,1949,53(9):1466-1467.

    • [20] BONN D,EGGERS J,INDEKEUBON J,et al.Wetting and spreading [J].Review of Modern Physics,2009,81(2):739-805.

    • [21] CHAUDHURY M,WHITESIDES G M.How to make water run uphill[J].Science,1992,256(5063):1539-1541.

    • [22] WANG L,LI J,ZHANG B,et al.Counterintuitive ballistic and directional liquid transport on a flexible droplet rectifier [J].Research,2020,2020:1-11.

    • [23] FENG S,WANG Q,XING Y,et al.Continuous directional water transport on integrating tapered durfaces [J].Advanced Materials Interfaces,2020,7(2000081):1-7.

    • [24] LIU C,JU J,ZHENG Y,et al.Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings[J].Acs Nano,2014,8(2):1321-1329.

    • [25] ZHENG Y,BAI H,HUANG Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463(7281):640-643.

    • [26] PARKER A R,LAWRENCE C R.Water capture by a desert beetle[J].Nature,2001,414(6859):33-34.

    • [27] NORGAARD T,DACKE M.Fog basking behavi-our and water collection efficiency in Namib Desert darkling beetles [J].Frontiers in Zoology,2010,7(1):23.

    • [28] GUADARRAMA J,MONGRUEL A,MEDICI M G,et al.Dew condensation on desert beetle skin [J].European Physical Journal E Soft Matter,2014,37(109):109.

    • [29] JIE J,HAO B,ZHENG Y,et al.A multistructural and multifunctional integrated fog collection system in cactus [J].Nature Communications,2012,3(1):644-652.

    • [30] CHEN H W,ZHANG P F,ZHANG L W,et al.Continuous directional water transport on the peristome surface of Nepenthes alata [J].Nature:International Weekly Journal of Science,2016,532(7597):85-89.

    • [31] ZHANG L W,LIU G,CHEN H W,et al.Bioinspired unidirectional liquid transport micronano structures:A Review [J].Journal of Bionic Engineering,2021,18(1):1-29.

    • [32] YUE G C,WANG Y Q,LI D M,et al.Bioinspired surface with special wettability for liquid transportation and separation [J].Sustainable Materials and Technologies,2020,25:1-12.

    • [33] LORENCEAU L,QUR D.Drops on a conical wire[J].Journal of Fluid Mechanics,2004,510(510):29-45.

    • [34] JU J,ZHENG Y,JIANG L.Bioinspired one dimensional materials for directional liquid transport [J].Acc Chem Res,2014,47(8):2342-2352.

    • [35] LI P L,ZHANG B,ZHAO H B,et al.Unidirectional droplet transport on the biofabricated butterfly wing [J].Langmuir:The ACS Journal of Surfaces and Colloids,2018,34(41):12482-12487.

    • [36] BAI H,SUN R,JU J,et al.Large-scale fabrication of bioinspired fibers for directional water collection [J].Small,2011,7(24):3429-3433.

    • [37] DONG H,ZHENG Y,WANG N,et al.Highly efficient fog collection unit by integrating artificial spider silks[J].Advanced Materials Interfaces,2016,3(11):1-5.

    • [38] DU M,ZHAO Y,TIAN Y,et al.Electrospun multiscale structured membrane for efficient water collection and directional transport[J].Small,2016,12(8):1000-1005.

    • [39] HE X X,WANG W,LIU Y M,et al.Microfluidic fabrication of bioinspired microfibers with controllable magnetic spindle knots for 3D assembly and water collection[J].ACS Applied Materials & Interfaces,2015,7(31):17471-17481.

    • [40] SHANG L,FU F,CHENG Y,et al.Bioinspired multifunctional spindle-knotted microfibers from microfluidics[J].Small,2017,13(4):1-8.

    • [41] SONG Y Y,LIU Y,JIANG H B,et al.Bioinspired fabrication of one dimensional graphene fiber with collection of droplets application[J].Scientific Reports,2017,7(1):605-606.

    • [42] YU Z W,YUN F F,WANG Y Q,et al.Desert beetle inspired superwettable patterned surfaces for water harvesting[J].Small,2017,13(36):1-6.

    • [43] SONG Y Y,LIU Y,JIANG H B,et al.Tempera-turetunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport[J].Nanoscale,2018,10(8):3813-3822.

    • [44] LIU M,PENG Z L,YAO Y,et al.A flexible functional surface for efficient water collection [J].ACS Applied Materials & Interfaces,2020,12(10):12256-12263.

    • [45] CAO M Y,JU J,LI K,et al.Facile and larges-cale fabrication of a cactus inspired continuous fog collector [J].Advanced Functional Materials,2014,24(21):3235-3240.

    • [46] ZHOU H,JING X,GUO Z.Optimal design of fog collector:Water unidirectional transport on a system integrated by conical copper needles with gradient wettability and hydrophilic slippery rough surfaces[J].Langmuir,2020,36(24):6801-6810.

    • [47] YU C L,ZHANG L H,RU Y F,et al.Drop cargo transfer via unidirectional lubricant spreading on peristomemimetic surface [J].ACS Nano,2018,12(11):11307-11315.

    • [48] LI Z M,ZHANG D Y,WANG D Y,et al.A bioinspired flexible film fabricated by surfacetension assisted replica molding for dynamic control of unidirectional liquid spreading [J].ACS Applied Materials & Interfaces,2019,11(51):48505-48511.

    • [49] LI C X,YU C L,ZHOU S,et al.Liquid harve-sting and transport on multiscaled curvatures [J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(38):23436-23442.

    • [50] 马帅.聚合物超细输水纤维的制备与应用[D].北京:北京化工大学,2015.MA Shuai.Preparation and application of polymer superfine fiber [ D ].Beijing:Beijing University of Chemical Technology,2015.(in Chinese)

    • [51] 马帅,李好义,陈宏波,等.熔体微分静电纺丝法制备亲水型取向纤维及亲水实验研究[J].化工新型材料,2015,3:195-197.MA Shuai,LI Haoyi,CHEN Hongbo,et al.Oriented fibers with hydrophilicity produced by melt differential electrospinning and hydrophilic experiment[J].New Chemical Materials,2015,3:195-197.(in Chinese)

    • [52] HUANG S,YIN S,CHEN F,et al.Directional transport of droplets on wettability patterns at high temperature[J].Applied Surface Science,2018,428:432-438.

    • [53] LIU M,YAO Y,YANG Y,et al.Directional transport behavior of droplets on wedgeshaped functional surfaces [J].Journal of Physical Chemistry C,2019,123(20),12736-12743.

    • [54] HU B B,DUAN Z F,XU B J,et al.Ultrafast self-propelled directional liquid transport on the pyramid structured fibers with concave curved surfaces[J].Journal of the American Chemical Society,2020,142(13):6111-6116.

    • [55] WANG Z,LU Y,HUANG S,et al.Bamboojoint-like platforms for fast,long distance,directional,and spontaneous transport of fluids[J].Biomicrofluidics,2020,14(3):034105.

    • [56] ZHOU H,WANG H,NIU H,et al.Superphobicity/philicity janus fabrics with switchable,spontaneous,directional transport ability to water and oil fluids[J].Scientific Reports,2013,3(1):2964-2964.

    • [57] LUO Y Q,SONG F,XU C,et al.Bioinspired fabrication of asymmetric wood materials for directional liquid manipulation and transport[J].Chemical Engineering Journal,2020,383(C):123168-123168.

    • [58] HUANG Y,HU L,CHEN W Y,et al.Directional transport of a liquid drop between parallel non-parallel combinative plates[J].Langmuir the Acs Journal of Surfaces & Colloids,2018,34(15):4484-4493.

    • [59] LUO H,LU Y,YIN S H,et al.Robust platform for water harvesting and directional transport [J].Journal of Materials Chemistry A Materials for Energy & Sustainability,2018,6(14):5635-5643.

  • 手机扫一扫看