en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曹鑫(通信作者),男,1991年出生,工程师,博士。主要研究方向为金属表面处理与防护。E-mail:studentcaoxin@163.com

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210225001

参考文献 1
PROUDHON H,SAVKOVA J,BASSEVILLE S,et al.Experimental and numerical wear studies of porous reactive plasma sprayed Ti-6Al-4V/TiN composite coating [J].Wear,2014,311(1):159-166.
参考文献 2
YANG Q,MCKELLAR R.Nanolayered CrAlTiN and multilayered CrAlTiN-AlTiN coatings for solid particle erosion protection[J].Tribology International,2015,83:12-20.
参考文献 3
JOHHANNES V D W,NURICK A.Erosion of dust-filtered helicopter turbine engines Part I:Basic theoretical considerations [J].Journal of Aircraft,1995,32(1):106-111.
参考文献 4
PEPI M,SQUILLACIOTI R,PFLEDDERER L,et al.Solid particle erosion testing of helicopter rotor blade materials [J].Journal of Failure Analysis and Prevention,2012,12(1):96-108.
参考文献 5
SUZUKI M,INABA K,YAMAMOTO M.Numerical simulation of sand erosion phenomena in rotor/stator interaction of compressor[J].Journal of Thermal Science,2008,17(2):125-133.
参考文献 6
IMMARIGEON J P,CHOW D,PARAMESWARAN V R,et al.Erosion testing of coatings for aero engine compressor components [J].Advanced Performance Materials,1997,4(4):371-388.
参考文献 7
CAI F,HUANG X,YANG Q.Mechanical properties,sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems[J].Wear,2015,324-325:27-35.
参考文献 8
FEUERSTEIN A,KLEYMAN A.Ti-N multilayer systems for compressor airfoil sand erosion protection[J].Surface & Coatings Technology,2009,204(6-7):1092-1096.
参考文献 9
YANG Q,SEO D,ZHAO L,et al.Erosion resistance performance of magnetron sputtering deposited TiAlN coatings [J].Surface & Coatings Technology,2004,188:168-173.
参考文献 10
CAO X,HE W F,HE G Y,et al.Sand erosion resistance improvement and damage mechanism of TiAlN coating via the bias-graded voltage in FCVA deposition [J].Surface and Coatings Technology,2019,378:125009.
参考文献 11
WEI R H,LANGA E,RINCON C,et al.Deposition of thick nitrides and carbonitrides for sand erosion protection[J].Surface & Coatings Technology,2006,201(7):4453-4459.
参考文献 12
BONORA R G,VOORWALD H J C,CIOFFI M O H,et al.Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application[J].Procedia Engineering,2010,2(1):1617-1623.
参考文献 13
COSTA M Y P,CIOFFI M O H,VENDITTI M L R,et al.Fatigue fracture behavior of Ti-6Al-4V PVD coated[J].Procedia Engineering,2010,2(1):1859-1864.
参考文献 14
COSTA M Y P,VENDITTI M L R,CIOFFI M O H,et al.Fatigue behavior of PVD coated Ti-6Al-4V alloy [J].International Journal of Fatigue,2011,33(6):759-765.
参考文献 15
COSTA M Y P,VENDITTI M L R,VOORWALD H J C,et al.Effect of WC-10% Co-4% Cr coating on the Ti-6Al-4V alloy fatigue strength [J].Materials Science and Engineering A,2009,507(1):29-36.
参考文献 16
CASSAR G,AVELAR-BATISTA W J C,BANFIELD S,et al.Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti-6Al-4V alloy [J].International Journal of Fatigue,2011,33(9):1313-1323.
参考文献 17
GONZÁLEZ-HERMOSILLA W A,CHICOT D,LESAGE J,et al.Effect of substrate roughness on the fatigue behavior of a SAE 1045 steel coated with a WC-10Co-4Cr cermet,deposited by HVOF thermal spray[J].Materials Science and Engineering A,2010,527(24):6551-6561.
参考文献 18
PUCHI-CABRERA E S,STAIA M H,ORTIZ-MANCILLA M J,et al.Fatigue behavior of a SAE 1045 steel coated with Colmonoy 88 alloy deposited by HVOF thermal spray [J].Surface & Coatings Technology,2010,205(4):1119-1126.
参考文献 19
VOORWALD H J C,VIEIRA L F S,CIOFFI M O H.Evaluation of WC-10Ni thermal spraying coating by HVOF on the fatigue and corrosion AISI 4340 steel [J].Procedia Engineering,2010,2(1):331-340.
参考文献 20
ZHANG X C,ZHANG Y K,LU J Z,et al.Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening [J].Materials Science and Engineering:A,2010,527(15):3411-3415.
参考文献 21
BARLETTA M,RUBINO G,GISARIO A.Adhesion and wear resistance of CVD diamond coatings on laser treated WC-Co substrates[J].Wear,2011,271(9):2016-2024.
参考文献 22
LI Y H,ZHOU L C,HE W F,et al.The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures [J].Science and Technology of Advanced Materials,2013,14(5):055010.
参考文献 23
CORREA C,RUIZ DE LARA L,DÍAZ M,et al.Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening [J].International Journal of Fatigue,2015,79:1-9.
参考文献 24
CAO X,HE W F,LIAO B,et al.Effect of TiN/Ti coating combined with laser shock peening pre-treatment on the fatigue strength of Ti-6Al-4V titanium alloy [J].Surface & Coatings Technology,2020,403:126393.
参考文献 25
李翔.激光冲击强化钛合金高周疲劳试验与寿命预测[D].西安:空军工程大学,2018.LI X.High-cycle fatigue test and life prediction of the titanium alloy processed by laser shock peening[D].Xi’ an:Air Force Engineering University,2018.(in Chinese)
参考文献 26
CAO X,HE W F,LIAO B,et al.Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy [J].Surface & Coatings Technology,2019,365:214-221.
参考文献 27
LV Y,JI L,LIU X,et al.Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering[J].Applied Surface Science,2012,258(8):3864-3870.
参考文献 28
MAXWELL D C,NICHOLAS T.Rapid method for generation of a Haigh diagram for high cycle fatigue [J].ASTM Special Technical Publication,1999,29:626-641.
参考文献 29
LUO S H,NIE X F,ZHOU L C,et al.High cycle fatigue performance in laser shock peened TC4 titanium alloys subjected to foreign object damage [J].Journal of Materials Engineering and Performance,2018,27(3):1466-1474.
参考文献 30
MORITA T,HIRANO Y,ASAKURA K,et al.Effects of plasma carburizing and DLC coating on friction-wear characteristics,mechanical properties and fatigue strength of stainless steel[J].Materials Science and Engineering A,2012,558:349-355.
参考文献 31
LUO S H,LI Y H,ZHOU L C,et al.Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing [J].Materials & Design,2016,104:320-326.
参考文献 32
XI Y,GAO K,PANG X,et al.Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films[J].Ceramics International,2017,43(15):11992-11997.
参考文献 33
MORITA T,ANDATSU K,HIROTA S,et al.Effect of hybrid surface treatment composed of plasma nitriding and DLC coating on friction coefficient and fatigue strength of stainless steel[J].Materials Transactions,2013,54(5):732-737.
参考文献 34
CAI J B,WANG X L,BAI W Q,et al.Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy [J].Applied Surface Science,2013,279:450-457.
参考文献 35
周磊.高温合金涡轮叶片激光冲击强化原理与技术研究 [D].西安:空军工程大学,2011.ZHOU L.Research on the principle and technology of laser shock peening for superalloy turbine blades [ D].Xi’ an:Air Force Engineering University,2011.(in Chinese)
参考文献 36
周留成.激光冲击复合强化机理及在航空发动机涡轮叶片上的应用研究[D].西安:空军工程大学,2014.ZHOU L C.Research on laser shock compound strengthening mechanism and its application to aero-engine turbine blades[D].Xi’an:Air Force Engineering University,2014.(in Chinese)
参考文献 37
DOBRZANSKI L A,LUKASZKOWICZ K.Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J].Journal of Materials Processing Technology,2004,157-158:317-323.
参考文献 38
PUCHI-CABRERA E S,MATÍ NEZ F,HERRERA I,et al.On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit [J].Surface & Coatings Technology,2004,182(2):276-286.
目录contents

    摘要

    采用磁过滤阴极真空弧技术在 TC4 钛合金表面沉积抗冲蚀多层梯度 TiN/ Ti 涂层,沉积前对基体进行激光冲击强化前处理。 采用原子力显微镜、纳米压痕和划痕仪表征了试件的表面形貌、基本力学性能等,对试件的疲劳性能进行了考核,并分析了疲劳断口形貌。 结果表明,LSP 前处理在 TC4 表面形成了厚度约为 300 μm,具有高硬度和残余压应力的硬化层。 TC4 合金基体的平均疲劳强度为 373. 8 MPa,制备 TiN/ Ti 涂层后试件的疲劳强度为 363. 7 MPa,较基体略有降低。 增加 LSP 前处理后试件的疲劳强度为 411. 9 MPa,较 TiN/ Ti 涂层试件提高 13. 3%,较无涂层试件提高 10. 2%。 TiN/ Ti 涂层可以抑制表面上的裂纹萌生并减缓其扩展速率,但在拉伸过程中发生破碎而与基体发生剥离,裂纹抑制效果有限,且涂层的破裂促进了裂纹扩展。 采用 LSP 前处理后,TC4 表面形成的硬化层增加裂纹萌生难度,且提高的结合强度可降低裂纹扩展速率。

    Abstract

    The anti-erosion TiN/ Ti coating with multilayer gradient structure was prepared on the surface of TC4 titanium alloy by filtered cathodic vacuum arc (FCVA) deposition method. The substrate is subjected to laser shock strengthening pretreatment before deposition. The surface morphologies and mechanical properties of the specimens were characterized by atomic force microscope, nanoindentation, and scratch tester. The fatigue properties of the specimens were evaluated and the fatigue fracture morphologies were analyzed. The results showed that the LSP pretreatment formed a hardened layer with a thickness of about 300 μm, high hardness, and residual compressive stress on the surface of TC4. The average fatigue strength of the TC4 alloy is 373. 8 MPa, and the fatigue strength of the sample after preparing the TiN/ Ti coating is 363. 7 MPa, which is slightly lower than that of the original substrate. The fatigue strength of the sample after LSP-pretreatment is 411. 9 MPa, which is 13. 3% higher than that of the TiN/ Ti coated sample and 10. 2% higher than that of the uncoated sample. TiN/ Ti coating can inhibit the initiation of cracks on the surface and slow down its growth rate. However, the crack suppression effect is limited when the TiN/ Ti coating is broken and peels off from the substrate during the tensile process, and the break of the coating promotes the crack propagation. After LSP pretreatment, the hardened layer formed on the surface of TC4 furtherincreases the difficulty of crack initiation, and the increased bonding strength can reduce the crack growth rate.

  • 0 前言

  • 钛合金因具有高强度/高重量比和优异的耐腐蚀性能,在航空工业中得到广泛应用[1]。但由于钛合金抗砂尘冲蚀性能较差[2],在沙漠或其他恶劣环境中服役时,航空发动机压气机叶片易承受冲蚀损伤[3],破坏了发动机的结构完整性,降低了安全与可靠性[4-5]。压气机叶片表面制备硬质涂层是提高其抗砂尘冲蚀性能的有效方法[6],基于TiN的多层抗冲蚀涂层已应用于航空发动机叶片[7]。 Feuerstein等设计了一种TiN/TiN1-x 多层涂层[8],可显著增强Ti-6Al-4V合金的抗冲蚀性能。此外,诸如TiAlN、TiSiCN等多元氮化物抗冲蚀涂层也相继提出[9-11]

  • 硬质涂层可提高基体的抗冲蚀性能,但航空发动机压气机叶片工作时高速旋转,承受巨大的离心力,因此长期服役过程受到周期性交变载荷作用而发生疲劳损伤。疲劳问题是造成机械零件断裂的最主要原因之一[12],因此研究人员开展了硬质涂层对基材材料疲劳行为影响的研究。 COSTA等[13-14] 报道了Ti-6Al-4V钛合金表面采用PVD技术制备TiN、 CrN及DLC涂层后,疲劳强度降低;HVOF技术制备的WC-10%Co-4%C涂层也降低了基体的疲劳强度, 尤其是在高循环疲劳试验中降幅显著[15]。卡萨尔等[16]研究了旋转弯曲疲劳试验中EB-PAPVD制备的TiN涂层对基体疲劳性能的影响。研究表明,TiN涂层促进了裂纹的产生并降低了耐久极限。

  • 为了提高涂层试件的疲劳性能,可在涂层沉积前进行基体前处理。常见的前处理工艺如喷砂和喷丸处理[15,17-19]等,可在基体表面引入残余压应力,有利于疲劳强度的提高。但同时也可能造成表面缺陷,例如凹痕、颗粒嵌入等,这些缺陷将易导致疲劳裂纹的产生。激光冲击强化( Laser shock peening, LSP)是一种有效改善材料表面性能的处理技术,包括提高表面硬度、耐磨性和疲劳性能等[20-23]。与喷砂和喷丸相比,LSP提高疲劳性能效果更显著,且表面几乎无缺陷引入。目前,LSP前处理与抗冲蚀涂层复合的研究工作少有报道。

  • 文中采用激光冲击强化技术对基体进行前处理后进行抗砂尘冲蚀TiN/Ti涂层制备,针对压气机叶片工作中的拉伸交变载荷,对涂层试件进行疲劳考核,研究激光冲击强化前处理对TiN/Ti涂层试件疲劳性能的影响,并结合断口形貌特征,探究涂层试件在交变载荷作用下的损伤机理及激光冲击强化提高TiN/Ti涂层试件疲劳性能的机制。

  • 1 试验

  • 1.1 激光冲击强化前处理与涂层制备

  • 选取Ti-6Al-4V钛合金作为基体材料,该材料主要应用于航空发动机的压气机叶片和叶盘,是一种 α+β 相的双相结构材料。表1为该钛合金基体材料在室温下的力学性能。

  • 表1 室温下的力学性能

  • Table1 Static mechanical properties at room temperature

  • 根据国家标准GB/T3075-2008中拉伸疲劳试件相关尺寸要求,对TC4合金样品进行切割加工, 具体试件尺寸如图1所示。易知在加载过程中,试件圆弧区域的工作应力最大,因此确定圆弧区域为激光冲击强化区域。进行表面处理前,将基材材料进行研磨并抛光至表面粗糙度 Ra<0.1 μm。激光冲击强化试验在西安天瑞达公司YD60-M165成套设备上进行。在LSP处理过程中,使用厚度约1mm的水层作为约束层,试件表面粘贴约100 μm厚的铝箔作为吸收层,其物理过程示意如图2a所示[24]。根据前期研究[25],确定了激光强化强化的工艺参数,具体见表2。选用的激光波长 λ 为1064nm,脉宽内采用高斯时间分布。采用双面对冲工艺,冲击次数为两次,光斑搭接方式及光斑冲击路径如图2b所示。

  • 图1 疲劳试件尺寸示意图

  • Fig.1 Schematic diagram of fatigue specimen size

  • 表2 激光冲击强化工艺参数

  • Table2 Process parameters of laser shock peening

  • LSP处理之后, 采用磁过滤阴极真空弧(FCVA)技术在试件双面均进行抗冲蚀涂层制备。涂层选择前期研究中抗冲蚀性能最优的梯度结构涂层MLG-4,该涂层包含两层TiN层、两层Ti层以及三层梯度层, 厚度分别约为4.5 μm、 0.5 μm和0.5 μm,总厚度约为11.5 μm,涂层的具体结构及制备过程参考文献[26]。将复合LSP和涂层制备的试件记作LC。为了对比研究LSP前处理对试件疲劳性能的影响,对未经LSP前处理的疲劳试件也进行相同结构涂层的制备,并记作NC。

  • 图2 激光冲击强化原理及光斑路径示意图[24]

  • Fig.2 Schematic diagrams of LSP principle and shock path

  • 1.2 结构表征及力学性能测试

  • 为研究激光冲击强化前处理对涂层/基体性能的影响,对涂层试件的微观形貌及力学性能进行了观察与表征。采用原子力显微镜(Anton paar tosca400)对试件的表面形貌、表面粗糙度进行观察与测量,测量区域面积为5 μm×5 μm。采用纳米压痕仪(Agilent nano-indenter G200) 对涂层表面硬度进行测试,压痕深度选择1 000nm。原始TC4钛合金及LSP处理后TC4钛合金的表面硬度采用相同参数测量。每个样品随机选择6个位置进行测试,取其平均值。采用HX-1000TM型维氏显微硬度计测量试件的硬度随深度分布规律,测量前需进行截面试件制备。采用线切割将试件切为两部分后对粘,并进行镶嵌,再研磨、抛光,获得截面试件。 TC4试件深度为零时的硬度值,即为试件表面硬度,直接测量试件表面获得。涂层试件定义涂层/基体界面处深度为零,通过截面试件测得。同一深度测3个点,取其平均值作为该深度的硬度值。试验载荷为200g, 持续10s,试验温度为室温。

  • 采用PROTO公司的LXRD型残余应力仪测试不同试件残余应力随深度分布,测试选择同倾固定 Ψθ-θ 对称扫描法。选用Cu靶,衍射线为Cu-Kα, 波长为1.541nm。选择(213)衍射晶面,衍射角2θ 为142°,侧倾角度分别为0°、±5.03°、±13.6°、±20°。扫描步距为0.10°/s,计数时间为1s。每个深度至少测3个点,若差异较大,则增加至5个点,去除偏差较大的点,取平均值。涂层试件定义涂层/基体界面处深度为零,无涂层试件定义试件表面处深度为零。为获取不同深度的应力分布,采用电解抛光剥离的方法逐层去除表面材料,到达相应的深度。抛光机型号为PROTO公司的POLISHER 8818V-3,电解液的成分( 体积分数) 为10%HClO4 + 90%CH3OH。涂层试件先用pH值在10~11的过氧化氢、EDTA和氢氧化钠组成的化学溶液腐蚀去表面涂层。涂层内应力( σ/MPa) 测试采用Stoney公式[27]进行计算,其方程为

  • σ=16Esh2s1-νshc1R2-1R1
    (1)
  • 式中,E s 为基体的弹性模量,h s 为基体的厚度,νs 为基体材料的泊松比,h c 为涂层厚度。 R 1R 2 分别为涂层沉积前后基体的曲率半径,采用Talysurf 5P120轮廓仪测量获得。基体沉积之前被认作是平面,因而R 1 值为无限大。采用划痕测试仪(Anton paar revetest)对涂层与基体的结合力进行测量,测试参数如下:划痕长度为5mm,加载速率为98N/min, 加载速度为10mm/min,开始载荷为1N,最终载荷为100N。

  • 1.3 疲劳试验

  • 采用逐级加载(Step-loading test method)的试验方法,确定试件的高周疲劳强度。逐级加载方法由MAXWELL等[28]基于线性累积损伤理论提出并发展,该方法对于每一个试件均能确定出其疲劳强度(超过一级载荷时)。逐级加载试验具体试验方法参见文献[29]。拉伸高周疲劳考核试验在电磁激振高频疲劳试验机QBG-100上开展。第一级应力载荷水平设为300MPa,后续试件根据试验情况进行调整,步长为30MPa,应力比为0.1,循环次数为10 6,加载频率根据试件自身属性进行自适应控制, 其范围为90~105Hz。试件分为原始TC4钛合金基体、NC及LC试件,每组试件为6个。疲劳试验后对试件进行超声波清洗, 采用扫描电镜( SEM, Hitachi SU-8010)对TC4钛合金基体及涂层试件的疲劳断口进行观察,比较不同状态试件的疲劳损伤特征,探究拉伸交变载荷作用下涂层试件的疲劳损伤机理。

  • 2 结果与讨论

  • 2.1 表面形貌

  • 3 种不同状态试件(TC4、NC、LC)的AFM表面微观形貌如图3 所示,由图可知,TiN/Ti涂层表面致密,这是由于沉积过程中磁过滤弯管可将中性大颗粒及液滴过滤并去除[26]。不同工艺试件表面微观形貌相似,无明显差异,表明FCVA涂层沉积及复合工艺对原始试件微观形貌影响较低。由AFM形貌计算获得3 种试件的表面局部均方根粗糙度值( Root mean square, RMS), 分别为13.4 nm、 14.4 nm和14.5 nm,数值差异较小且均处在极低水平,表明LSP前处理对TiN/Ti涂层表面粗糙度几乎无不利影响。

  • 图3 3种不同状态样品的表面形态

  • Fig.3 Surface morphology of samples in three different states

  • 2.2 力学性能

  • 图4 为原始TC4、LSP、NC(TiN/Ti)及LC(LSP+ TiN/Ti)试件的硬度测试结果。硬度值随深度变化的规律如图4a所示,由图可知,基体的表面硬度为299.5Hv,且随深度保持不变。制备TiN/Ti涂层之后,界面处基体的硬度提高至319.5HV, 提高了6.7%,这是由于涂层制备过程中元素扩散导致[30]。深度大于80 μm后,两者硬度分布接近,表明此时元素扩散作用几乎消失。 LSP处理后,试件表面硬度提高到372.25HV,提高了24.3%,但随着深度的增加,硬度值迅速降低。在深度为150 μm左右处, 硬度下降速率减慢;在深度为300 μm左右时,硬度值趋于稳定,与基体硬度相当。上述结果表明,LSP形成了约30 0 μm厚的硬化层,硬度的增加是由于LSP处理后发生塑性变形而引起微观组织变化所导致[31]。 LC试件界面处基体的硬度进一步提高,这同样是由于制备TiN/Ti涂层过程中元素扩散造成。

  • 表面硬度如图4b所示,TiN/Ti试件表面硬度约为(30.37±0.45) GPa,根据硬度换算关系(1GPa≈ 100HV),可知其硬度远高于原始基体。 LSP +TiN/Ti试件表面硬度为(31.21±0.3) GPa。 LSP前处理后基体表面形成的硬化层为TiN/Ti涂层提供更好的载荷支撑,对硬度值有一定贡献。但由于压入深度不足涂层厚度的1/10,基体表面硬度对最终测量值的影响微弱。因而,LSP+TiN/Ti试件的表面硬度值与TiN/Ti涂层试件相近。

  • 图5a为残余应力随深度的分布结果,由图可知,原始TC4试件的表面残余应力值为8.23MPa,处于拉应力状态。随着深度的增加,残余应力值变化不大。 LSP处理后, 试件表面残余应力值为-497.9MPa,可见LSP在试件表面引入较高的残余压应力。在深度为50 μm时,残余压应力增至最大,为-521.3MPa。当深度进一步增加时,残余压应力逐渐降低。当深度约为400 μm时,残余应力与原始试件趋于一致,表明LSP引入的残余压应力影响深度最高可达400 μm。 TiN/Ti涂层试件的应力随深度分布与原始试件相似。 LSP +TiN/Ti试件表现出与LSP试件类似的应力变化规律,但略低于LSP试件的应力值,表明LSP前处理引入的硬化层在涂层沉积过程中较为稳定,几乎未发生应力松弛。

  • 图4 不同工艺试件硬度

  • Fig.4 Hardness of different process specimens

  • 图5 不同试件残余应力

  • Fig.5 Residual stress of different process specimens

  • 涂层试件的内部应力及TC4钛合金表面应力结果如图5b所示,TiN/Ti涂层及复合工艺TiN/Ti涂层的内部残余应力分别为-3 952MPa和-4 125MPa, 均处于压缩状态。涂层中的残余压应力一般认为是由沉积过程中的原子喷丸效应引起的[32]。复合工艺TiN/Ti涂层的内部残余应力与无LSP前处理TiN/Ti涂层比较相近,表明LSP前处理对涂层自身性能影响不大。

  • 两种工艺TiN/Ti涂层的划痕形貌如图6所示, 根据ASTM标准C1624-05,采用临界载荷LC2对结合力进行定量评估,并在图中用红色箭头标出。对于未经LSP前处理TiN/Ti涂层,其结合力为54.9N。经LSP前处理的TiN/Ti涂层, 其结合力增加至79.1N。 LSP在TC4基体表面形成的硬化层可抑制TiN/Ti涂层下方基体的塑性变形[33],并且具有与涂层相同的应力状态(残余压应力),有利于于降低界面处的应力集中[34],提高垂直载荷下涂层的抗破裂能力。上述这两个因素共同作用下,涂层与基体的结合力显著提高。

  • 图6 划痕形貌

  • Fig.6 Scratch morphologies

  • 2.3 疲劳性能

  • TC4钛合金基体与TiN/Ti涂层试件的拉伸疲劳加载参数及疲劳强度结果如表3、4所示。由表3可知,试件TC4-8在第一级加载步骤中失效,数据无效。计算可得,TC4钛合金基体的平均拉伸疲劳强度为373.8MPa。由表4可知,TiN/Ti涂层试件NC-8在第一级加载步骤中失效,数据无效。计算可得, TiN/Ti涂层试件的平均拉伸疲劳强度为363.7MPa,与TC4钛合金基体疲劳强度相比略有降低。

  • LSP前处理TiN/Ti涂层试件的拉伸疲劳加载参数及试验结果见表5。由表可知,该组试件疲劳强度数据的离散度几乎不变。试件LC-11在第一级加载步骤中失效,故数据无效,取剩余数据计算得平均拉伸疲劳强度为411.9MPa,相比于原始TC4, 提高了10.2%;相比于无LSP前处理工艺对照组, 提高了13.3%。上述结果表明,增加LSP对基体的前处理后, 涂层试件的拉伸疲劳强度均有提高。 LSP前处理工艺是有效提高基体制备涂层后疲劳性能的技术方法。

  • 表3 TC4钛合金基体拉伸疲劳加载参数及试验结果

  • Table3 Tensile fatigue loading parameters and test results of TC4titanium alloy specimens

  • 表4 TiN/Ti涂层试件拉伸疲劳加载参数及试验结果

  • Table4 Tensile fatigue loading parameters and test results of TiN/Ti specimens

  • 表5 LSP+TiN/Ti涂层试件拉伸疲劳加载参数及试验结果

  • Table5 Tensile fatigue loading parameters and test results of LSP+TiN/Tispeciments

  • 疲劳试验后采用扫描电镜对TC4钛合金基体及涂层试件的疲劳断口进行观察。图7是TC4钛合金基体试件的宏观断口形貌及不同区域微观形貌。图7a中宏观断口形貌呈现出明显的疲劳纹路。试件受载时,金属材料内部滑移系统受到的剪切力增加,当达到临界分解切应力时,该区域滑移系统开始发生滑移。随着疲劳加载的持续进行,滑移系统逐渐联合成裂纹,在较少的平行平面上前进,形成了疲劳纹路[35]。根据不同特征,疲劳断口可分为裂纹源区、裂纹扩展区和瞬间断裂区[36]。裂纹源区如图7b为所示,可以推断基体的裂纹源位于断口的左下角,且位于试件的表面。试件受载时同一横截面处的应力水平保持一致,在内部无杂质的情况下, 试件表面易由于机械加工留下的微小缺陷形成局部应力集中,从而导致裂纹在试件表面萌生。裂纹萌生之后,呈放射状向材料内部扩展。图7c为基体裂纹扩展区的微观形貌,表现出典型的解理特征,存在大量解理台阶和解理面,以及疲劳条带和大量的二次裂纹。关于二次裂纹的形成机理, 相关研究认为是因为在材料内部第二相及晶界处易存在应力集中,从而导致材料容易沿裂纹所处平面发生撕裂而形成[36],但目前还未有普遍公认的模型。图7d是基体疲劳瞬间的微观形貌,呈现出大量韧窝特征。

  • 图7 TC4钛合金试件疲劳断口形貌

  • Fig.7 Fatigue fracture morphologies of the TC4titanium alloy specimen

  • 图8 为TiN/Ti涂层试件疲劳断口形貌,其中图8a为宏观形貌。与基体试件类似,涂层试件断口也呈现出明显的疲劳纹路,可推断出裂纹源位于试件的左端偏上位置。图8b为裂纹源区微观形貌,可以看出裂纹源处涂层已经完全剥落。疲劳加载过程中,涂层与基体均受到轴向拉伸应力, TiN/Ti涂层的延展率相对于基体更低,相同循环拉伸应力下界面变形不匹配,易产生应力集中而形成裂纹源[37]。虽然涂层中存在较大的残余压应力,能够抵消部分拉应力,但涂层材料的延展率较低,在循环拉伸应力下仍发生了破裂,并与基体发生分层后完全剥落,无法继续抑制裂纹在界面处萌生,且涂层破裂的同时存在促进裂纹向基体扩展的可能[38]。裂纹源之外的涂层与基体结合较好,表明裂纹源的涂层剥落后,裂纹主要向基体内部扩展,涂层对疲劳性能的影响减弱。因此,制备TiN/Ti涂层后试件的拉伸疲劳强度小幅下降。图8c是TiN/Ti涂层试件裂纹扩展区的微观形貌, 可以看出,涂层与基体结合良好,界面处及涂层中无明显裂纹。由上可知,涂层对基体疲劳裂纹扩展阶段的影响很低。图8d为疲劳瞬断边缘区域的微观形貌,可以看出基体区域存在大量韧窝特征。右侧边缘侧面存在破碎的涂层,这是在试件最终断裂过程中,剩下承载材料的截面积大幅降低,应力大幅增加,涂层在超高应力载荷水平下, 由于自身的脆性而发生了破碎。

  • 图8 TiN/Ti涂层试件疲劳断口形貌

  • Fig.8 Fatigue fracture morphologies of the TiN/Ti specimen

  • 图9 为LSP前处理TiN/Ti涂层试件的拉伸疲劳断口形貌。其中,图9a为宏观形貌,由断口纹路可以看出裂纹源位于试件右上角,且为单一疲劳源。图9b为裂纹源区Region A微观形貌,可以看出裂纹源仍在界面处,但由前述结果可知,LSP前处理在TC4表面形成一层硬化层,可降低基体与涂层的变形不匹配度,提高界面处抵抗裂纹萌生能力。与无LSP前处理TiN/Ti涂层试件不同, 涂层并未完全剥落,这是由于经LSP前处理后,基体硬度提高,增加了涂层的自支撑能力,且提高了涂层与基体的结合力。裂纹形成后向外扩展时, 由于涂层内及硬化层内均为压应力,可抑制裂纹的扩展[15,19]。图9c是裂纹扩展区Region B附近的微观形貌,可以看出涂层与基体结合紧密。在基体内部,可观察到二次裂纹存在。综上,经LSP前处理后,界面处的裂纹萌生及后续裂纹扩展均受到抑制,因而LSP提高了TiN/Ti涂层试件的拉伸疲劳强度。

  • 图9 LSP前处理TiN/Ti涂层试件拉伸疲劳断口形貌

  • Fig.9 Fatigue fracture morphologies of the LSP+TiN/Ti specimen

  • 3 结论

  • 研究了激光冲击强化前处理对TC4基体制备TiN/Ti涂层后疲劳性能的影响,结合断口特征,探究了梯度涂层/基体的疲劳损伤机理及激光冲击强化前处理提高梯度涂层试件疲劳性能的机制,主要结论如下。

  • (1) LSP前处理在TC4钛合金表面形成约300 μm厚的硬化层,且该硬化层在涂层沉积过程中性能稳定。 TC4钛合金基体表面硬度从299.5HV提高至372.2HV,表面应力由低拉应力状态转变为-497.9MPa的压应力状态,涂层与基体的结合力从54.9N提高到79.1N。

  • (2) TC4钛合金基体的平均拉伸疲劳强度为373.8MPa,TiN/Ti涂层试件为363.7MPa,较基体略有降低。 LSP前处理后TiN/Ti涂层试件平均拉伸疲劳强度为411.9MPa, 较TiN/Ti试件提高13.3%,较基体提高10.2%。

  • (3) 原始TC4拉伸疲劳裂纹源位于试件表面。梯度TiN/Ti涂层内部存在较高的残余压应力,具有一定抗裂纹萌生能力,涂层试件的拉伸疲劳裂纹源位于基体与涂层界面处。拉伸过程中,TiN/Ti涂层破碎并与基体发生剥离,裂纹抑制效果有限,且涂层的破裂促进了裂纹扩展。

  • (4) LSP前处理在TC4基体表面引入的高残余压应力硬化层,裂纹萌生难度增加。同时,降低了界面的变形不匹配度,提高了涂层与基体的结合力,从而减缓了裂纹在界面处的扩展速率。

  • 参考文献

    • [1] PROUDHON H,SAVKOVA J,BASSEVILLE S,et al.Experimental and numerical wear studies of porous reactive plasma sprayed Ti-6Al-4V/TiN composite coating [J].Wear,2014,311(1):159-166.

    • [2] YANG Q,MCKELLAR R.Nanolayered CrAlTiN and multilayered CrAlTiN-AlTiN coatings for solid particle erosion protection[J].Tribology International,2015,83:12-20.

    • [3] JOHHANNES V D W,NURICK A.Erosion of dust-filtered helicopter turbine engines Part I:Basic theoretical considerations [J].Journal of Aircraft,1995,32(1):106-111.

    • [4] PEPI M,SQUILLACIOTI R,PFLEDDERER L,et al.Solid particle erosion testing of helicopter rotor blade materials [J].Journal of Failure Analysis and Prevention,2012,12(1):96-108.

    • [5] SUZUKI M,INABA K,YAMAMOTO M.Numerical simulation of sand erosion phenomena in rotor/stator interaction of compressor[J].Journal of Thermal Science,2008,17(2):125-133.

    • [6] IMMARIGEON J P,CHOW D,PARAMESWARAN V R,et al.Erosion testing of coatings for aero engine compressor components [J].Advanced Performance Materials,1997,4(4):371-388.

    • [7] CAI F,HUANG X,YANG Q.Mechanical properties,sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems[J].Wear,2015,324-325:27-35.

    • [8] FEUERSTEIN A,KLEYMAN A.Ti-N multilayer systems for compressor airfoil sand erosion protection[J].Surface & Coatings Technology,2009,204(6-7):1092-1096.

    • [9] YANG Q,SEO D,ZHAO L,et al.Erosion resistance performance of magnetron sputtering deposited TiAlN coatings [J].Surface & Coatings Technology,2004,188:168-173.

    • [10] CAO X,HE W F,HE G Y,et al.Sand erosion resistance improvement and damage mechanism of TiAlN coating via the bias-graded voltage in FCVA deposition [J].Surface and Coatings Technology,2019,378:125009.

    • [11] WEI R H,LANGA E,RINCON C,et al.Deposition of thick nitrides and carbonitrides for sand erosion protection[J].Surface & Coatings Technology,2006,201(7):4453-4459.

    • [12] BONORA R G,VOORWALD H J C,CIOFFI M O H,et al.Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application[J].Procedia Engineering,2010,2(1):1617-1623.

    • [13] COSTA M Y P,CIOFFI M O H,VENDITTI M L R,et al.Fatigue fracture behavior of Ti-6Al-4V PVD coated[J].Procedia Engineering,2010,2(1):1859-1864.

    • [14] COSTA M Y P,VENDITTI M L R,CIOFFI M O H,et al.Fatigue behavior of PVD coated Ti-6Al-4V alloy [J].International Journal of Fatigue,2011,33(6):759-765.

    • [15] COSTA M Y P,VENDITTI M L R,VOORWALD H J C,et al.Effect of WC-10% Co-4% Cr coating on the Ti-6Al-4V alloy fatigue strength [J].Materials Science and Engineering A,2009,507(1):29-36.

    • [16] CASSAR G,AVELAR-BATISTA W J C,BANFIELD S,et al.Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti-6Al-4V alloy [J].International Journal of Fatigue,2011,33(9):1313-1323.

    • [17] GONZÁLEZ-HERMOSILLA W A,CHICOT D,LESAGE J,et al.Effect of substrate roughness on the fatigue behavior of a SAE 1045 steel coated with a WC-10Co-4Cr cermet,deposited by HVOF thermal spray[J].Materials Science and Engineering A,2010,527(24):6551-6561.

    • [18] PUCHI-CABRERA E S,STAIA M H,ORTIZ-MANCILLA M J,et al.Fatigue behavior of a SAE 1045 steel coated with Colmonoy 88 alloy deposited by HVOF thermal spray [J].Surface & Coatings Technology,2010,205(4):1119-1126.

    • [19] VOORWALD H J C,VIEIRA L F S,CIOFFI M O H.Evaluation of WC-10Ni thermal spraying coating by HVOF on the fatigue and corrosion AISI 4340 steel [J].Procedia Engineering,2010,2(1):331-340.

    • [20] ZHANG X C,ZHANG Y K,LU J Z,et al.Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening [J].Materials Science and Engineering:A,2010,527(15):3411-3415.

    • [21] BARLETTA M,RUBINO G,GISARIO A.Adhesion and wear resistance of CVD diamond coatings on laser treated WC-Co substrates[J].Wear,2011,271(9):2016-2024.

    • [22] LI Y H,ZHOU L C,HE W F,et al.The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures [J].Science and Technology of Advanced Materials,2013,14(5):055010.

    • [23] CORREA C,RUIZ DE LARA L,DÍAZ M,et al.Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening [J].International Journal of Fatigue,2015,79:1-9.

    • [24] CAO X,HE W F,LIAO B,et al.Effect of TiN/Ti coating combined with laser shock peening pre-treatment on the fatigue strength of Ti-6Al-4V titanium alloy [J].Surface & Coatings Technology,2020,403:126393.

    • [25] 李翔.激光冲击强化钛合金高周疲劳试验与寿命预测[D].西安:空军工程大学,2018.LI X.High-cycle fatigue test and life prediction of the titanium alloy processed by laser shock peening[D].Xi’ an:Air Force Engineering University,2018.(in Chinese)

    • [26] CAO X,HE W F,LIAO B,et al.Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy [J].Surface & Coatings Technology,2019,365:214-221.

    • [27] LV Y,JI L,LIU X,et al.Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering[J].Applied Surface Science,2012,258(8):3864-3870.

    • [28] MAXWELL D C,NICHOLAS T.Rapid method for generation of a Haigh diagram for high cycle fatigue [J].ASTM Special Technical Publication,1999,29:626-641.

    • [29] LUO S H,NIE X F,ZHOU L C,et al.High cycle fatigue performance in laser shock peened TC4 titanium alloys subjected to foreign object damage [J].Journal of Materials Engineering and Performance,2018,27(3):1466-1474.

    • [30] MORITA T,HIRANO Y,ASAKURA K,et al.Effects of plasma carburizing and DLC coating on friction-wear characteristics,mechanical properties and fatigue strength of stainless steel[J].Materials Science and Engineering A,2012,558:349-355.

    • [31] LUO S H,LI Y H,ZHOU L C,et al.Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing [J].Materials & Design,2016,104:320-326.

    • [32] XI Y,GAO K,PANG X,et al.Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films[J].Ceramics International,2017,43(15):11992-11997.

    • [33] MORITA T,ANDATSU K,HIROTA S,et al.Effect of hybrid surface treatment composed of plasma nitriding and DLC coating on friction coefficient and fatigue strength of stainless steel[J].Materials Transactions,2013,54(5):732-737.

    • [34] CAI J B,WANG X L,BAI W Q,et al.Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy [J].Applied Surface Science,2013,279:450-457.

    • [35] 周磊.高温合金涡轮叶片激光冲击强化原理与技术研究 [D].西安:空军工程大学,2011.ZHOU L.Research on the principle and technology of laser shock peening for superalloy turbine blades [ D].Xi’ an:Air Force Engineering University,2011.(in Chinese)

    • [36] 周留成.激光冲击复合强化机理及在航空发动机涡轮叶片上的应用研究[D].西安:空军工程大学,2014.ZHOU L C.Research on laser shock compound strengthening mechanism and its application to aero-engine turbine blades[D].Xi’an:Air Force Engineering University,2014.(in Chinese)

    • [37] DOBRZANSKI L A,LUKASZKOWICZ K.Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J].Journal of Materials Processing Technology,2004,157-158:317-323.

    • [38] PUCHI-CABRERA E S,MATÍ NEZ F,HERRERA I,et al.On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit [J].Surface & Coatings Technology,2004,182(2):276-286.

  • 参考文献

    • [1] PROUDHON H,SAVKOVA J,BASSEVILLE S,et al.Experimental and numerical wear studies of porous reactive plasma sprayed Ti-6Al-4V/TiN composite coating [J].Wear,2014,311(1):159-166.

    • [2] YANG Q,MCKELLAR R.Nanolayered CrAlTiN and multilayered CrAlTiN-AlTiN coatings for solid particle erosion protection[J].Tribology International,2015,83:12-20.

    • [3] JOHHANNES V D W,NURICK A.Erosion of dust-filtered helicopter turbine engines Part I:Basic theoretical considerations [J].Journal of Aircraft,1995,32(1):106-111.

    • [4] PEPI M,SQUILLACIOTI R,PFLEDDERER L,et al.Solid particle erosion testing of helicopter rotor blade materials [J].Journal of Failure Analysis and Prevention,2012,12(1):96-108.

    • [5] SUZUKI M,INABA K,YAMAMOTO M.Numerical simulation of sand erosion phenomena in rotor/stator interaction of compressor[J].Journal of Thermal Science,2008,17(2):125-133.

    • [6] IMMARIGEON J P,CHOW D,PARAMESWARAN V R,et al.Erosion testing of coatings for aero engine compressor components [J].Advanced Performance Materials,1997,4(4):371-388.

    • [7] CAI F,HUANG X,YANG Q.Mechanical properties,sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems[J].Wear,2015,324-325:27-35.

    • [8] FEUERSTEIN A,KLEYMAN A.Ti-N multilayer systems for compressor airfoil sand erosion protection[J].Surface & Coatings Technology,2009,204(6-7):1092-1096.

    • [9] YANG Q,SEO D,ZHAO L,et al.Erosion resistance performance of magnetron sputtering deposited TiAlN coatings [J].Surface & Coatings Technology,2004,188:168-173.

    • [10] CAO X,HE W F,HE G Y,et al.Sand erosion resistance improvement and damage mechanism of TiAlN coating via the bias-graded voltage in FCVA deposition [J].Surface and Coatings Technology,2019,378:125009.

    • [11] WEI R H,LANGA E,RINCON C,et al.Deposition of thick nitrides and carbonitrides for sand erosion protection[J].Surface & Coatings Technology,2006,201(7):4453-4459.

    • [12] BONORA R G,VOORWALD H J C,CIOFFI M O H,et al.Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application[J].Procedia Engineering,2010,2(1):1617-1623.

    • [13] COSTA M Y P,CIOFFI M O H,VENDITTI M L R,et al.Fatigue fracture behavior of Ti-6Al-4V PVD coated[J].Procedia Engineering,2010,2(1):1859-1864.

    • [14] COSTA M Y P,VENDITTI M L R,CIOFFI M O H,et al.Fatigue behavior of PVD coated Ti-6Al-4V alloy [J].International Journal of Fatigue,2011,33(6):759-765.

    • [15] COSTA M Y P,VENDITTI M L R,VOORWALD H J C,et al.Effect of WC-10% Co-4% Cr coating on the Ti-6Al-4V alloy fatigue strength [J].Materials Science and Engineering A,2009,507(1):29-36.

    • [16] CASSAR G,AVELAR-BATISTA W J C,BANFIELD S,et al.Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti-6Al-4V alloy [J].International Journal of Fatigue,2011,33(9):1313-1323.

    • [17] GONZÁLEZ-HERMOSILLA W A,CHICOT D,LESAGE J,et al.Effect of substrate roughness on the fatigue behavior of a SAE 1045 steel coated with a WC-10Co-4Cr cermet,deposited by HVOF thermal spray[J].Materials Science and Engineering A,2010,527(24):6551-6561.

    • [18] PUCHI-CABRERA E S,STAIA M H,ORTIZ-MANCILLA M J,et al.Fatigue behavior of a SAE 1045 steel coated with Colmonoy 88 alloy deposited by HVOF thermal spray [J].Surface & Coatings Technology,2010,205(4):1119-1126.

    • [19] VOORWALD H J C,VIEIRA L F S,CIOFFI M O H.Evaluation of WC-10Ni thermal spraying coating by HVOF on the fatigue and corrosion AISI 4340 steel [J].Procedia Engineering,2010,2(1):331-340.

    • [20] ZHANG X C,ZHANG Y K,LU J Z,et al.Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening [J].Materials Science and Engineering:A,2010,527(15):3411-3415.

    • [21] BARLETTA M,RUBINO G,GISARIO A.Adhesion and wear resistance of CVD diamond coatings on laser treated WC-Co substrates[J].Wear,2011,271(9):2016-2024.

    • [22] LI Y H,ZHOU L C,HE W F,et al.The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures [J].Science and Technology of Advanced Materials,2013,14(5):055010.

    • [23] CORREA C,RUIZ DE LARA L,DÍAZ M,et al.Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening [J].International Journal of Fatigue,2015,79:1-9.

    • [24] CAO X,HE W F,LIAO B,et al.Effect of TiN/Ti coating combined with laser shock peening pre-treatment on the fatigue strength of Ti-6Al-4V titanium alloy [J].Surface & Coatings Technology,2020,403:126393.

    • [25] 李翔.激光冲击强化钛合金高周疲劳试验与寿命预测[D].西安:空军工程大学,2018.LI X.High-cycle fatigue test and life prediction of the titanium alloy processed by laser shock peening[D].Xi’ an:Air Force Engineering University,2018.(in Chinese)

    • [26] CAO X,HE W F,LIAO B,et al.Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy [J].Surface & Coatings Technology,2019,365:214-221.

    • [27] LV Y,JI L,LIU X,et al.Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering[J].Applied Surface Science,2012,258(8):3864-3870.

    • [28] MAXWELL D C,NICHOLAS T.Rapid method for generation of a Haigh diagram for high cycle fatigue [J].ASTM Special Technical Publication,1999,29:626-641.

    • [29] LUO S H,NIE X F,ZHOU L C,et al.High cycle fatigue performance in laser shock peened TC4 titanium alloys subjected to foreign object damage [J].Journal of Materials Engineering and Performance,2018,27(3):1466-1474.

    • [30] MORITA T,HIRANO Y,ASAKURA K,et al.Effects of plasma carburizing and DLC coating on friction-wear characteristics,mechanical properties and fatigue strength of stainless steel[J].Materials Science and Engineering A,2012,558:349-355.

    • [31] LUO S H,LI Y H,ZHOU L C,et al.Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing [J].Materials & Design,2016,104:320-326.

    • [32] XI Y,GAO K,PANG X,et al.Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films[J].Ceramics International,2017,43(15):11992-11997.

    • [33] MORITA T,ANDATSU K,HIROTA S,et al.Effect of hybrid surface treatment composed of plasma nitriding and DLC coating on friction coefficient and fatigue strength of stainless steel[J].Materials Transactions,2013,54(5):732-737.

    • [34] CAI J B,WANG X L,BAI W Q,et al.Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy [J].Applied Surface Science,2013,279:450-457.

    • [35] 周磊.高温合金涡轮叶片激光冲击强化原理与技术研究 [D].西安:空军工程大学,2011.ZHOU L.Research on the principle and technology of laser shock peening for superalloy turbine blades [ D].Xi’ an:Air Force Engineering University,2011.(in Chinese)

    • [36] 周留成.激光冲击复合强化机理及在航空发动机涡轮叶片上的应用研究[D].西安:空军工程大学,2014.ZHOU L C.Research on laser shock compound strengthening mechanism and its application to aero-engine turbine blades[D].Xi’an:Air Force Engineering University,2014.(in Chinese)

    • [37] DOBRZANSKI L A,LUKASZKOWICZ K.Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J].Journal of Materials Processing Technology,2004,157-158:317-323.

    • [38] PUCHI-CABRERA E S,MATÍ NEZ F,HERRERA I,et al.On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit [J].Surface & Coatings Technology,2004,182(2):276-286.

  • 手机扫一扫看