en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韩亚宁,女,1997年出生,硕士研究生。主要研究方向为生物化工。E-mail:775329069@qq.com;

姜磊(通信作者),女,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为生物化工,生物传感。E-mail:leijiang@upc.edu.cn

中图分类号:O629

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201208001

参考文献 1
MANN E E,MANNA D,METTETAL M R,et al.Surface micropattern limits bacterial contamination [J].Antimicrobial Resistance and Infection Control,2014,3(1):28.
参考文献 2
YANG H,YOU W,SHEN Q,et al.Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles[J].RSC Advances,2014,4(6):2793-2796.
参考文献 3
BANDARA C D,SINGH S,AFARA I O,et al.Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli[J].ACS Applied Materials and Interfaces,2017,9(8):6746-6760.
参考文献 4
SAKAMOTO A,TERUI Y,HORIE C,et al.Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove [J].FEMS Microbiology Letters,2014,361(1):10-16.
参考文献 5
WAITE J H,TANZER M L.Polyphenolic substance of mytilus edulis:Novel adhesive containing L-dopa and hydroxyproline [J].Science,1981,212(4498):1038-1040.
参考文献 6
MANUSCRIPT A,ADHESIVES M.Mussel-inspired adhesives and coatings[J].Annu Rev Mater Res,2011:99-132.
参考文献 7
LEE H,DELLATORE S M,MILLER W M,et al.Mussel-inspired surface chemistry for multifunctional coatings [J].Journal of Chemical Information and Modeling,2007,318(5849):426-430.
参考文献 8
LIU M,ZENG G,WANG K,et al.Recent developments in polydopamine:An emerging soft matter for surface modification and biomedical applications [J].Nanoscale,2016,38(8):16819-16840.
参考文献 9
LYNGE M E,VAN DER WESTEN R,POSTMA A,et al.Polydopamine-A nature-inspired polymer coating for biomedical science[J].Nanoscale,2011,3(12):4916-4928.
参考文献 10
LEE J Y,KIM S,LEE S,et al.Electrochemical co-deposition of polydopamine/hyaluronic acid for anti-biofouling bioelectrodes [J].Frontiers in Chemistry,2019,7(4):1-11.
参考文献 11
DING Y H,FLOREN M,TAN W.Mussel-inspired polydopamine for bio-surface functionalization [J].Biosurface and Biotribology,2016,2(4):121-136.
参考文献 12
ZAIDI S A.An account on the versatility of dopamine as a functional monomer in molecular imprinting [J].Chemistry Select,2019,4(17):5081-5090.
参考文献 13
LU Z,QUEK A J,MEANEY S P,et al.Polynorepinephrine as an efficient antifouling-coating material and its application as a bacterial killing photothermal agent [J].ACS Applied Bio Materials,2020,3(9):5880-5886.
参考文献 14
CHEN X,YANG W,ZHANG J,et al.Alkalinity triggered the degradation of polydopamine nanoparticles [J].Polymer Bulletin,2020.[2020-12-08].https://doi.org/10.1007/s00289-020-03312-2.
参考文献 15
HONG S,KIM J,NA Y S,et al.Poly(norepinephrine):Ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide[J].Angewandte Chemie-International Edition,2013,52(35):9187-9191.
参考文献 16
SUNG M K,RHO J,CHOI I S,et al.Norepinephrine:Material-independent,multifunctional surface modification reagent[J].Journal of the American Chemical Society,2009,131(37):13224-13225.
参考文献 17
LU Z,DOUEK A M,ROZARIO A M,et al.Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery [J].Journal of Materials Chemistry B,2020,8(5):961-968.
参考文献 18
LIU X,XIE Z,SHI W,et al.Polynorepinephrine nanoparticles:a novel photothermal nanoagent for chemo-photothermal cancer therapy[J].ACS Applied Materials and Interfaces,2019,11(22):19763-19773.
参考文献 19
HE Z,SU H,SHEN Y,et al.Poly(norepinephrine)-coated FeOOH nanoparticles as carriers of artemisinin for cancer photothermal-chemical combination therapy[J].RSC Advances,2019,9(18):9968-9982.
参考文献 20
FARAHMAND N M A,GHASEMI F,HORMOZI-NEZHAD M R.A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples [J].Analytica Chimica Acta,2018,1039:124-131.
参考文献 21
JEON Y J,KANG S M.Chemically stable poly(norepinephrine)coatings on solid substrates by post-oxidation [J].Polymer Degradation and Stability,2013,98(6):1271-1273.
参考文献 22
KHETANI S,YONG K W,GUAN K,et al.UV-triggered polymerization of polycatecholamines enables the production of organ-on-chips inside a biosafety cabinet[J].Applied Materials Today,2020,20:1-17.
参考文献 23
CHWATKO M,ARENA J T,MCCUTCHEON J R.Norepinephrine modified thin film composite membranes for forward osmosis[J].Desalination,2017,423(9):157-164.
参考文献 24
KOHRI M.Artificial melanin particles:New building blocks for biomimetic structural coloration[J].Polymer Journal,2019,51(11):1127-1135.
参考文献 25
SHENG W,LI B,WANG X,et al.Brushing up from “ anywhere ” under sunlight:A universal surface-initiated polymerization from polydopamine-coated surfaces[J].J.Mater.Chem.C,2015,3:10715-10722.
参考文献 26
SHENG W,LI W,LI B,et al.Mussel-inspired photografting on colloidal spheres:A generalized self-template route to stimuli-responsive hollow spheres for controlled pesticide release [J].Macromolecular Rapid Communications,2015,36(18):1640-1645.
参考文献 27
SAIZ-POSEU J,SEDÕ J,GARCÍA B,et al.Versatile nanostructured materials via direct reaction of functionalized catechols [J].Advanced Materials,2013,25(14):2066-2070.
参考文献 28
YANG D,WANG X,AI Q,et al.Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine)and poly(norepinephrine)[J].RSC Advances,2015,5(53):42461-42467.
参考文献 29
JIANG Y,WANG Y,WANG H,et al.Facile immobilization of enzyme on three dimensionally ordered macroporous silica via a biomimetic coating [J].New Journal of Chemistry,2015,39(2):978-984.
参考文献 30
PARK M,SHIN M,KIM E,et al.The promotion of human neural stem cells adhesion using bioinspired poly(norepinephrine)nanoscale coating [J].Journal of Nanomaterials,2014,2014:10.
参考文献 31
KIM E,LEE S,HONG S,et al.Sticky " delivering-from" strategies using viral vectors for efficient human neural stem cell infection by bioinspired catecholamines [J].ACS Applied Materials and Interfaces,2014,6(11):8288-8294.
参考文献 32
KANG S M,LEE H.Surface modification of highly ordered pyrolytic graphite(HOPG)by a mussel-inspired poly(norepinephrine)coating:Characterizations and cell adhesion test[J].Bulletin of the Korean Chemical Society,2013,34(3):960-962.
参考文献 33
DEWEZ J L,BERGER V,SCHNEIDER Y J,et al.Influence of substrate hydrophobicity on the adsorption of collagen in the presence of pluronic F68,albumin,or calf serum[J].Journal of Colloid and Interface Science,1997,191(1):1-10.
参考文献 34
TOITA R,SUNARSO,RASHID A N,et al.Modulation of the osteoconductive property and immune response of poly(ether ether ketone)by modification with calcium ions[J].Journal of Materials Chemistry B,2015,3(44):8738-8746.
参考文献 35
JIANG X,LI Y,LIU Y,et al.Selective enhancement of human stem cell proliferation by mussel inspired surface coating [J].RSC Advances,2016,6(65):60206-60214.
参考文献 36
SUN H,MEI L,SONG C,et al.The in vivo degradation,absorption and excretion of PCL-based implant [J].Biomaterials,2006,27(9):1735-1740.
参考文献 37
LIU Y,ZHOU G,LIU Z,et al.Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration [J].Scientific Reports,2017,7(1):1-10.
参考文献 38
CHEN Y,TASKIN M B,ZHANG Z,et al.Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension [J].Biomaterials Science,2019,7(5):2165-2173.
参考文献 39
JEONG S I,KIM B S,KANG S W,et al.In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-ε-caprolactone)scaffolds[J].Biomaterials,2004,25(28):5939-5946.
参考文献 40
ÇAPKIN M,ÇAKMAK S,KURT F Ö,et al.Random/aligned electrospun PCL/PCL-collagen nanofibrous membranes:comparison of neural differentiation of rat AdMSCs and BMSCs [J].Biomedical Materials(Bristol),2012,7(4):045013.
参考文献 41
FANG Z,FU W,DONG Z,et al.Preparation and biocompatibility of electrospun poly(l-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds [J].Applied Surface Science,2011,257(9):4133-4138.
参考文献 42
NEAL R A,THOLPADY S S,FOLEY P L,et al.Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration[J].Journal of Biomedical Materials Research-Part A,2012,100 A(2):406-423.
参考文献 43
TASKIN M B,XU R,ZHAO H,et al.Poly(norepinephrine)as a functional bio-interface for neuronal differentiation on electrospun fibers [J].Physical Chemistry Chemical Physics,2015,17(14):9446-9453.
参考文献 44
KU S H,PARK C B.Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering [J].Biomaterials,2010,31(36):9431-9437.
参考文献 45
KHETANI S,YONG K W,KOLLATH V O,et al.Engineering shelf-stable coating for microfluidic organ-on-a-chip using bioinspired catecholamine polymers[J].ACS Applied Materials and Interfaces,2020,12(6):6910-6923.
参考文献 46
WANG B,WANG G,ZHAO B,et al.Antigenically shielded universal red blood cells by polydopamine-based cell surface engineering[J].Chemical Science,2014,5(9):3463-3468.
参考文献 47
HONG D,LEE H,KO E H,et al.Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells [J].Chemical Science,2015,6(1):203-208.
参考文献 48
QIU J,CHEN G,LIU S,et al.Bioinspired polyelectrolyte-assembled graphene-oxide-coated C18 composite solid-phase microextraction fibers for in vivo monitoring of acidic pharmaceuticals in fish [J].Analytical Chemistry,2016,88(11):5841-5848.
参考文献 49
KENNEDY L C,BICKFORD L R,LEWINSKI N A,et al.A new era for cancer treatment:gold-nanoparticle-mediated thermal therapies[J].Small,2011,7(2):169-183.
参考文献 50
LEE W,LEE J U,BYUN J H.Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites[J].Composites Science and Technology,2015,110:53-61.
参考文献 51
HORMOZI-NEZHAD M R,MOSLEHIPOUR A,BIGDELI A.Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles [J].Sensors and Actuators,B:Chemical,2017,243:715-720.
参考文献 52
HONG J Y,YU X,BAK B M,et al.Bio-inspired functionalization and redox charge transfer of graphene oxide sponges for pseudocapacitive electrodes[J].Carbon,2015,83:71-78.
参考文献 53
XU H,SHI X,MA H,et al.The preparation and antibacterial effects of dopa-cotton/AgNPs [J].Applied Surface Science,2011,257(15):6799-6803.
参考文献 54
LEE H,RHO J,MESSERSMITH P B.Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings[J].Advanced Materials,2009,21(4):431-434.
参考文献 55
KANG S M,PARK S,KIM D,et al.Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry[J].Advanced Functional Materials,2011,21(1):108-112.
参考文献 56
DAS T K,GANGULY S,REMANAN S,et al.Mussel-inspired Ag/poly(norepinephrine)/MnO2 heterogeneous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline:an alternative approach [J].Research on Chemical Intermediates,2020,46(7):3629-3650.
参考文献 57
SON E J,KIM J H,KO J W,et al.Catecholamine-functionalized graphene as a biomimetic redox shuttle for solar water oxidation[J].Faraday Discussions,2017,198:135-145.
参考文献 58
KIM S,MOON G H,KIM G,et al.TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants [J].Journal of Catalysis,2017,346:92-100.
参考文献 59
WANG Z,LI J,TANG F,et al.Polydopamine nanotubes-templated synthesis of TiO2 and its photocatalytic performance under visible light[J].RSC Advances,2017,7(38):23535-23542.
参考文献 60
KIM J H,LEE M,PARK C B.Polydopamine as a biomimetic electron gate for artificial photosynthesis [J].Angewandte Chemie-International Edition,2014,53(25):6364-6368.
参考文献 61
KIM B J,KIM D H,KWON S L,et al.Selective dissolution of halide perovskites as a step towards recycling solar cells [J].Nature Communications,2016,7:11735.
参考文献 62
WANG Y,LUO L,WANG Z,et al.Growing poly(norepinephrine)layer over individual nanoparticles to boost hybrid perovskite photocatalysts[J].ACS Applied Materials and Interfaces,2020,12(24):27578-27586.
参考文献 63
CAI C,CHEN J.Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J].Analytical Biochemistry,2004,332(1):75-83.
参考文献 64
LIU Y,NAN X,SHI W,et al.A glucose biosensor based on the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine[J].RSC Advances,2019,9(29):16439-16446.
参考文献 65
XIA L,VEMURI B,GADHAMSHETTY V,et al.Poly(ether sulfone)membrane surface modification using norepinephrine to mitigate fouling[J].Journal of Membrane Science,2020,598:117657.
参考文献 66
SHEN H,QU F,XIA Y,et al.Straightforward and ultrastable surface modification of microfluidic chips with norepinephrine bitartrate improves performance in immunoassays[J].Analytical Chemistry,2018,90(6):3697-3702.
参考文献 67
JANKOWSKI P,GARSTECKI P.Stable hydrophilic surface of polycarbonate[J].Sensors and Actuators,B:Chemical,2016,226:151-155.
参考文献 68
CHEN J,LIANG R P,WU L L,et al.One-step preparation and application of mussel-inspired poly(norepinephrine)-coated polydimethylsiloxane microchip for separation of chiral compounds [J].Electrophoresis,2016,37(12):1676-1684.
参考文献 69
BALDONESCHI V,PALLADINO P,BANCHINI M,et al.Norepinephrine as new functional monomer for molecular imprinting:An applicative study for the optical sensing of cardiac biomarkers [J].Biosensors and Bioelectronics,2020,157:112161.
参考文献 70
ZAHRAN S,FIGUEIREDO V P,GRAHAM M M,et al.Proteolytic digestion of serum cardiac troponin I as marker of ischemic severity [J].The Journal of Applied Laboratory Medicine,2018,3(3):450-455.
参考文献 71
WU J,XIAO X,LI Z,et al.Enantioseparation of chiral Β-blockers using polynorepinephrine-coated nanoparticles and chiral capillary electrophoresis [J].Analytical and Bioanalytical Chemistry,2019,411(10):2121-2129.
参考文献 72
QIU J,CHEN G,ZHU F,et al.Sulfonated nanoparticles doped electrospun fibers with bioinspired polynorepinephrine sheath for in vivo solid-phase microextraction of pharmaceuticals in fish and vegetable [J].Journal of Chromatography A,2016,1455:20-27.
参考文献 73
JUNG S,KIM H,LEE J,et al.Bio-inspired catecholamine-derived surface modifier for graphene-based organic solar cells [J].ACS Applied Energy Materials,2018,1(11):6463-6468.
参考文献 74
LIANG R P,XIANG C Y,WANG J W,et al.Preparation of polynorepinephrine adhesive coating via one-step self-polymerization for enantioselective capillary electrochromatography coupled with electrogenerated chemiluminesense detection [J].Journal of Chromatography A,2013,1284(5):194-201.
参考文献 75
KANG S M,LEE H.One-step immobilization of initiators for surface-initiated ring opening polymerization and atom transfer radical polymerization by poly(norepinephrine)coating [J].Journal of Nanoscience and Nanotechnology,2015,15(2):1597-1600.
参考文献 76
KHETANI S,KOLLATH V O,EASTICK E,et al.Single-step functionalization of polycatecholamine nanofilms for ultra-sensitive immunosensing of ubiquitin carboxyl terminal hydrolase-L1(UCHL-1)in spinal cord injury [J].Biosensors and Bioelectronics,2019,145(1):111715.
参考文献 77
OZMEN O,LEE S,HACKETT G,et al.Efficient and controlled nano-catalyst solid-oxide fuel cell electrode infiltration with polynorepinephrine surface modification [J].Journal of Power Sources,2021,485:229232.
参考文献 78
IWASAKI T,TAMAI Y,YAMAMOTO M,et al.Melanin precursor influence on structural colors from artificial melanin particles:PolyDOPA,polydopamine,and polynorepinephrine [J].Langmuir,2018,34(39):11814-11821.
目录contents

    摘要

    贻贝的足丝可以分泌出贻贝黏附蛋白,使其在潮湿的海洋环境中也可以牢牢黏附在各种物体表面。 聚去甲肾上腺素 (PNE)是类似于贻贝足丝结构的仿生材料,具有制备工艺简单、生物相容性好、黏合性强、易于功能化、光热转换效率高等特点,它可以由去甲肾上腺素(NE)单体在弱碱性 pH 环境中自发聚集形成。 此外,NE 能够在绝大多数材质的基底上聚集成纳米尺度的 PNE 薄膜,产生亲水性强、化学性能稳定、生物相容性优良的仿生表界面。 近年来,基于 PNE 优异的物化性质构建多功能的纳米平台,并开始被用于组织工程、生物传感、电极优化、癌症治疗等应用领域。 这篇综述对近年来 PNE 的结构、性能和应用研究进行分类介绍、分析和总结,并对其存在的挑战和未来发展前景进行讨论和展望。

    Abstract

    Mussels can secrete adhesion proteins, which allow them to adhere firmly to various surfaces even in humid marine environments. Polynorepinephrine (PNE) is a mussel-inspired biomimetic material with many desirable properties, such as simple preparation process, good biocompatibility, strong adhesion, easy functionalization, and high efficiency in photothermal conversion. It can be formed by the selfassembly of norepinephrine (NE) monomers in weak pH environment. In addition, NE is able to aggregate and form nanoscale PNE film on most substrates, providing the bionic surfaces with strong hydrophilicity, chemical stability, and excellent biocompatibility. In recent years, the multifunctional nanoplatforms have been constructed based on the excellent physicochemical properties of PNE, with wide application in tissue engineering, biosensing, electrode optimization, cancer therapy, etc. This review focused on the fundamental structure, properties, and application of PNE, with a view to discussing the challenges and future of PNE research.

  • 0 前言

  • 大自然中的生物遵循“适者生存”的法则,生物体的构造在数十亿年的进化中不断调整,拥有了最适合环境的结构与多样化的功能,例如鲨鱼皮肤可以保持表面清洁[1]、荷叶能够出淤泥而不染[2]、蜻蜓翅膀具有天然抗菌功能[3] 等。科学家们受这些生物的启发而开发出许多模仿生物的各种特性、行为、结构的材料[4],这些材料被称为仿生材料。近年来,在学科交叉领域,仿生材料的研究引起了广泛重视和关注,其相关技术的开发和应用有望为新型工业材料和产品的研发提供新的思路和经济增长点。

  • 近年来,在多功能表界面领域,基于邻苯二酚及其衍生物和类似物的研究引起了众多科学家的兴趣,例如聚多巴胺(Polydopamine,PDA)。 PDA的研发灵感来自于贻贝,它们可以在岩石、礁石甚至是金属船体表面实现湿性黏附,有望克服干性黏附剂在水下失效的难题[5]。贻贝具有湿性黏附力的根本原因在于其足丝可分泌高蛋白黏液,其主要成分3, 4-二羟基-L-苯丙氨酸(L-DOPA)具有高度湿性黏附力[6],是多巴胺(Dopamine,DA)的衍生物。 2007年MESSERSMITH等[7]首次报道了类似贻贝足丝结构的PDA仿生界面,并展示了将DA在弱碱性条件下氧化自聚合形成PDA薄膜的简易制备方法。这种薄膜可以自动黏附在多种有机或无机材料表面,并且在湿润环境中呈现出和贻贝足丝类似的高黏附性。自此之后,PDA的相关研究和报道呈爆发式增长,越来越多的关于PDA及其类似物,包括邻苯二酚类衍生物等化合物在亲水性、光热转化性、电子传递、生物相容性等方面的多种特性被研究和开发出来。基于这些优良性能,这些仿生材料得到了广泛应用,涉及表面涂层[8]、活性金属纳米颗粒的合成[9]、电化学[10]、分子固定[11]、生物分析工具的开发[12]等方面。

  • 随着对PDA的广泛应用和深入研究,科学家们发现PDA具有一些难以克服的缺点,例如其形成的薄膜表面粗糙,并且在强碱性的环境下稳定性较差。其主要原因是PDA在形成过程中产生的中间体阻碍了DA进行有序组装和聚集[13],导致PDA在强碱环境下容易分解[14],进而影响了PDA的表面结构和性能。因此,亟需一种与DA具有类似结构和性能且有望克服以上缺陷的化合物。最近的研究表明,与DA分子结构仅存在一个羟基的差异的去甲肾上腺素(Norepinephrine,NE)(图1) [15] 也可以发生类似DA的自聚合反应,形成具有更好光热、水合、生物相容性的聚合物结构。 2009年KANG等[16]首次报道了关于NE聚合的研究,并且通过浸渍的方法证明聚去甲肾上腺素(Polynorepinephrine, PNE)作为表面改性剂的可行性,以及其聚合过程中的开环聚合等不同于PDA的化学性质。除此之外, PNE的很多应用都是基于其独特的理化性质,例如基于生物相容性的载药能力[17],基于光热转化的光动力治疗[18-19],基于荧光特性的比色传感[20]等。这些都表明PNE有望成为下一代广泛应用的高性能仿生表界面材料。

  • 图1 多巴胺(DA)和去甲肾上腺素(NE)的来源及结构

  • Fig.1 Sources and structure of dopamine(DA) and norepinephrine(NE)

  • NE是一种小分子儿茶酚胺,它既是一种神经递质,也是一种激素。它对应的聚合产物PNE,具有与PDA相同的自聚合、形成黏附膜、光热转化以及诱导电子传递能力等。与数以百计的PDA相关研究相比,对于PNE的研究报道相对较少,相关的综述讨论也较少。这篇综述将针对近年来对PNE的结构、性质、功能和应用领域的科学研究,分类比较和总结PNE的制备方法、作用机制和应用效果(图2),并对这一领域的发展进行综合讨论和展望。

  • 图2 聚去甲肾上腺素(PNE)的特性以及应用范围

  • Fig.2 Characterics and applications of polynorepinephrine(PNE)

  • 1 聚去甲肾上腺素的合成与聚合机理

  • NE单体在一定的条件下会发生聚合反应生成PNE。 NE的聚合过程与DA一样也是一个相对复杂的物理化学过程。如图3所示,首先NE发生氧化反应,邻苯二酚中的羟基去质子化生成醌,紧接着会发生亲核反应、分子内重排形成NE衍生物。 NE的氧化聚合过程中,生成的中间成分3,4-二羟基苯甲醛(DHBA) 与NE发生可逆的席夫碱反应,随后发生亚胺键的还原生成DHBA-NE,DHBA-NE会延迟PNE膜的形成速度,在降低表面粗糙度方面起着重要作用[15]。而PDA形成过程中生成的关键中间体是5,6-二羟基吲哚(DHI),DHI形成于聚合开始的前几分钟,并且在随后的聚合反应中起到先驱物的作用,由它引导的分子力比如 π-π 键和范德华力等增强了PDA的聚集,进而导致表面的粗糙度不受控制。所以PNE涂层相对PDA涂层来说会更加平滑、均一。

  • 图3 PNE与PDA的氧化聚合形成机理比较

  • Fig.3 Comparison of oxidative polymerization formation mechanism of PNE and PDA

  • 迄今为止报道的PNE的聚合方式主要为碱性条件下自聚合[16]、氧化剂氧化聚合[21]、紫外线触发聚合[22]这3种途径,为不同研究应用的需求提供多种制备方法。

  • 1.1 自聚合途径

  • 自聚合指的是单体不借助任何其他物质的辅助就可以形成聚合物,NE和DA均具有自聚合性质。在碱性条件下,NE中的邻苯二酚基团被氧化成相应的醌衍生物,然后在分子内环化、重排,最后发生聚合反应。这是因为碱性条件下NE结构中的羟基发生去质子化,有利于自身的聚合,并且可以形成致密的超光滑涂层。反之,在酸性或中性环境下,NE一般不会发生自聚合。将基底材料在pH 8.5的NE溶液中浸泡数小时后,材料表面会发生明显的颜色变化,如图4所示[16]。如果在碱性条件下聚合时不加入基底,将会获得PNE纳米颗粒。 NE发生聚合后,溶液由原本的无色变为深棕色。但是在氮气环境下溶液颜色不会发生改变,而在氧气环境下溶液会逐步变为深棕色,说明氧气对NE的聚合是必不可少的[18]

  • 1.2 氧化剂氧化聚合途径

  • 在单体聚合过程中,氧化剂的加入往往会提高聚合速率。 PDA在碱性条件下的聚合速度受到氧气浓度的影响,为了克服这一限制,通常加入氧化剂来提高DA聚合速率。由于NE与DA的结构十分相似,因此推测氧气浓度也会影响NE的聚合速率,所以研究了氧化剂对NE聚合的影响。

  • 图4 底物在pH 8.5的NE溶液中浸泡前后的照片[从左到右: 聚氨酯(PU)、聚醚醚酮(PEEK)、玻璃、金和氧化钽(Ta2O5)] [16]

  • Fig.4 Photographs of substrates before and after immersion in NE solution at pH 8.5 [from left to right: polyurethane(PU), polyether ether ketone(PEEK), glass, gold, and tantalum oxide(Ta2O5)] [16]

  • CHWATKO等[23] 使用过硫酸铵( Ammonium persulfate,APS)作为氧化剂来聚合NE,结果证明在加入APS之后聚合速度大幅增加,反应液的紫外吸光值到达平台期的时间大大缩短。这表明PNE的形成在一定程度上也受到氧气浓度的限制。

  • 已有研究证明NE可以在较温和的反应条件下对任何基底材料进行表面改性[16],并且可以作为表面修饰剂来制备具有生物活性、防腐性和细胞黏附性的功能性表面。但是这些功能性表面在强酸、强碱和极性有机溶剂中不稳定,因此需要增强其稳定性。儿茶酚胺聚合时,既有氧化分子之间的共价相互作用,也有氧化分子与非氧化分子之间的非共价相互作用[24]。因此推测PNE涂层的不稳定性可能源于分子间的非共价相互作用,进行氧化后处理可能会增加共价相互作用的比例,从而解决这一问题。

  • JEON等[21]以NaIO4 为氧化剂,将PNE涂层浸入NaIO4 水溶液中孵育(图5),并用X射线光电子能谱(XPS)分析了氧化前后PNE涂层表面的化学组成变化,C 1s图谱显示用NaIO4处理后C-O/C-N和C=O的数量增加,而C-H的数量有所减少。据报道,与未氧化状态相比,氧化态NE具有更多的C-O/C-N和C=O基团[16],因此C-O/C-N和C=O的峰的增加表明PNE层成功形成。这种涂层对强酸和极性有机溶剂具有优异耐受性,此外,增加后氧化时间可以进一步提高其稳定性,因此PNE涂层可以应用于反应条件苛刻的情况中。

  • 图5 在固体基材上形成PNE涂层示意图[21]

  • Fig.5 Schematic diagram of PNE coating on a solid substrate [21]

  • 1.3 紫外线触发聚合途径

  • 紫外线辐射可以加快DA的聚合速率,这是因为紫外线辐射可以增强氧化醌的分子内环化作用, 进而产生更高浓度的反应性单体,以此加速聚合反应[25]。此外,紫外线辐射还可以稳定邻苯二酚或氮中心自由基,从而有利于聚合反应的进行[25-26]

  • KHETANI等[22] 把单体DA或NE的Tris溶液填充在微流控器件中,利用生物安全柜中紫外灯的照射来引发NE聚合(图6),制得了OOC(organ-on-a-chip) 芯片。紫外光的照射可以产生活性氧(ROS),如二氧化氧( Singlet)(O=O)、羟基自由基(OH·)或超氧化物(O 2-),这些ROS会促进PNE的形成。在UV-ON条件下,反应液在420nm和340nm处的紫外-可见吸收光谱值与其他测试条件相比显著增加。此外,ROS水平随着UV曝光时间的增加而增加,因此聚合速度也随之增加。

  • 由紫外光照射而形成的PNE能够有效地涂覆聚二甲基硅氧烷(PDMS)、玻璃、聚甲基丙烯酸甲酯(PMMA)、硅和纸张。这种简单有效的表面改性方法提高了芯片的质量和可重复性,促进了OOC芯片的进一步应用。

  • 总之,PNE的聚合主要通过碱性、氧化剂、紫外这3种方法完成。其中,自聚合方式最为简单、经济,但聚合速度相对较慢,通常需要两天的时间才能完全聚合。氧化剂与紫外法用时较短,聚合度高,尤其是氧化聚合法最优,然而这两种方法的操作成本较高,并伴有易燃易爆等安全隐患,不便于大规模应用。因此,在实际操作中,可以根据不同的试验需求选择最适聚合方法。

  • 图6 紫外线引发形成PNE的示意图[22]

  • Fig.6 Schematic diagram of UV-induced PNE formation [22]

  • 2 聚去甲肾上腺素的理化特性及应用

  • PNE具有良好的生物相容性、环境稳定性、可生物降解和高亲水性等特点,受到研究者的青睐。下面将对NE的各种理化特性以及应用范围作出详细介绍,包括生物相容性、光热转化性、粘合性、荧光性、电子传递、亲水性和表面活性等方面。

  • 2.1 生物相容性

  • 生物相容性一般是指材料与宿主之间的相容性,分为生物学反应和材料反应两部分,生物相容性主要取决于材料的性质和用途。材料及制品本身的性质,包括形状、大小及表面粗糙程度,材料在体内的降解产物等都与其生物相容性相关。 NE本身就是一种神经递质,因此PNE作为它的聚合物也具有良好的生物相容性,可以应用于细胞黏附、促进细胞增殖分化、细胞保护以及药物载体等方面。

  • 2.1.1 生物黏附

  • 海洋贻贝具有湿性黏附能力,可以通过足丝分泌出含有贻贝黏附蛋白的粘液,由于贻贝黏附蛋白中主要起黏附作用的是3,4-二羟基-L-苯丙氨酸(DOPA)和赖氨酸(Lys) [6],所以具备邻苯二酚基团和氨基的儿茶酚胺被确定为黏附蛋白mefp-5(Mytilus edulis foot protein-5) 模拟物。此外,儿茶酚胺可以通过简单浸泡的方式使多种材料表面功能化,进而形成生物相容性表面。

  • 儿茶酚胺的黏附特性有助于通过各种化学方法将生物分子有效地固定在表面上。例如,PNE涂层中的邻苯二酚和醌基团对各种含硫醇或胺的分子具有化学活性[27],由于酶分子中含有赖氨酸的N末端胺(N-terminal amine)和-胺(-amine),因此不需要加入额外的偶联剂即可实现蛋白质的偶联,利用这种易形成的功能性表面可以将酶固定在不同的底物上。

  • 例如,涂有PNE的钛酸盐纳米管(TNT)可以作为酶固定化的新型杂化载体用于固定过氧化氢酶(CAT) [28]( 图7); 涂有PNE的三维有序大孔(3DOM) 二氧化硅可以固定青霉素G酰基转移酶(PGA) [29]。 PNE与酶分子之间的强共价偶联以及其良好的生物相容性提高了固定化酶的热稳定性与储存稳定性。然而,由于PNE涂层平滑度较高,因此酶的固定量以及牢固程度都要略低于PDA涂层。

  • 由于NE的表面改性不依赖于基底的材料类型,PARK等[30]使用PNE对聚四氟乙烯(PTFE),聚二甲基硅氧烷(PDMS),玻璃和组织培养聚苯乙烯(TCP)表面等多种材料进行了改性,用于人神经干细胞(hNSC)的黏附以及生长。 PNE涂层中的邻苯二酚基团可以与细胞表面蛋白形成共价键,并且PNE表面大量的胺基也有助于促进干细胞黏附。然而,hNSC作为典型的难以黏附在组织培养板上的原代细胞,即使PNE涂层增加了hNSC的黏附率, 其最高黏附率也只能达到25%。 Kim等[31] 也把PNE涂层应用在hNSC技术中, 他们把腺病毒(AAV)黏附在PNE涂层上作为靶向hNSC的基因载体(图8),PNE涂层光滑平整且含有很多烷基,所以PNE涂层具有理想的病毒载体释放曲线,基因传递率远高于现有的基因传递手段。这种利用PNE进行简便表面改性的方法推动力了hNSC技术的快速发展。

  • 图7 过氧化氢酶(CAT)在TNT-PNE表面的固定化[28]

  • Fig.7 Immobilization of catalase(CAT) on TNT-pNE surface [28]

  • 图8 未改性的聚苯乙烯组织培养板(TCP)、PNE改性的培养板,以及原子力显微镜对AAV吸附过程的表征[31]

  • Fig.8 Unmodified polystyrene tissue culture plates(TCP), PNE modified culture plates, and AFM characterization of the AAV adsorption process [31]

  • 除了hNSC之外,成纤维细胞(NIH-3T3)也被用作细胞黏附试验的研究对象,KANG等[32] 将高阶热解石墨烯(HOPG)作为底物浸入NE的碱性溶液中进行改性,得到具有细胞黏附性的HOPG。据报道,蛋白质在低表面能的底物上会发生变性从而导致细胞黏附的减少[33],而PNE涂层为HOPG提供了足够的表面能,从而大大增强了细胞的黏附性。这种方法可以应用于生物活性炭材料的制备,适用于组织工程或再生医疗器械。

  • 综上所述,PNE功能涂层对多种酶及细胞都具有良好的黏附能力,对于细胞来说,PNE涂层除了具有黏附功能外,其良好的生物相容性还有助于促进细胞的增殖分化。

  • 2.1.2 促细胞增殖分化

  • 细胞的增殖与分化在组织工程中具有重要意义,使用具有生物相容性的黏附性分子修饰支架或植入物有助于促进细胞黏附和增殖,从而有益于修复受损组织或器官。 PDA已被广泛用于组织工程中增加细胞黏附和增殖,并且可以降低体内和体外的炎症和毒性。 PNE与PDA具有相似的化学结构, 并且PNE形成的涂层均匀性更高,因此它可能更适合作为组织工程中的功能性涂层材料。

  • TOITA等[34]在聚醚醚酮(PEEK)上涂覆PNE, 然后将其浸泡在Ca(OH)2 溶液中(图9),Ca2+可以通过离子键与PNE上的儿茶酚基结合,从而得到Ca2+改性的PEEK以激活成骨细胞增殖和分化,并使巨噬细胞向促进消炎/伤口愈合的M2表型转变。这种改性的PNE-Ca表面具有更高的骨传导性和抗炎性,不仅适用于骨组织植入,也适用于其他植入型生物材料的改性。但由于PNE涂层在强碱性溶液中易分解,因此使用Ca(OH)2 溶液进行改性的时间应该控制得当。

  • 图9 Ca2+改性PNE涂层[34]

  • Fig.9 Ca2+-modified PNE coating [34]

  • 聚己内酯(PCL)具有良好的生物相容性和较低的免疫原性,可在体内缓慢降解为无毒代谢产物,它对药物具有良好的透过性,被广泛用作药物载体、手术缝合线等。经过PNE改性的PCL可以作为多种细胞增殖分化的载体,JIANG等[35] 使用涂覆PNE的PCL培养人间充质干细胞( hMSCs) 和人诱导性多能干细胞衍生的间充质干细胞( hiPS-MSC)。生物相容性分析和细胞增殖结果表明,PNE涂层优先促进hiPS-MSCs的增殖,而不会促进hMSCs的增殖。这种对细胞具有选择性增殖的特点可以应用于培养特定细胞类型的组织工程。

  • 此外,PCL纤维的降解时间较为缓慢,有时甚至需要两年以上[36],这个时间适合于肌肉的新陈代谢和再生。 LIU等[37] 首次把涂有PNE的PCL纤维用于肌肉组织工程,他们采用静电纺丝技术制备了不同直径的纤维膜,研究表明直径较小的纤维(2 μm)的PNE涂层具有更高的润湿性和更大的比表面积,因此可以实现细胞的最佳黏附和增殖。但是经PNE改性后的PCL会加速降解,纤维直径越小降解速度越快。这会影响到植入材料的稳定性,因此在确定纤维直径时要综合考虑黏附力和降解时间两个因素。

  • CHEN等[38] 首次提出了一种利用PCL与聚环氧乙烷( PEO) 共混物制备具有各向异性纳米形貌和原位PNE生物黏附功能化的三维大孔微纤维支架的方法,该支架可增强3D神经突起的延伸能力。如图10所示,把聚合物溶液装在注射器中,通过在针头上施加高压,将聚合物溶液喷射到含有NE的乙醇溶液中,形成PNE表面功能化的三维纤维网状结构。但即使控制了喷射的速度与距离,这种方法所合成的纤维直径依旧具有差异性。而直径的大小关系到表面曲率和3D孔隙率,最终影响细胞培养的结果。

  • 图10 各向异性的生物黏附性纳米沟槽纤维支架的制备方案[38]

  • Fig.10 Preparation of anisotropic bioadhesive nano-grooved fiber scaffolds [38]

  • 聚(乳酸-己内酯共聚物)(PLCL)是一种可生物降解的、生物相容性良好的乳酸( L) 和己内酯(CL)单体共聚物。电纺PLCL纤维支架具有良好的体内生物相容性,并且已经成功地应用于再生医学研究[39]。为了使合成表面具有生物活性,PLCL支架通常加入天然分子作为修饰物,如细胞外基质(ECM) 蛋白层粘连蛋白、纤维蛋白和胶原[40,42]。 TASKIN等[43]首次把PNE涂覆于电纺PLCL纳米纤维表面,开发了一种能够使PC12细胞分化的功能性生物界面(图11),PNE涂层的邻苯二酚基团有助于锚定胶原蛋白以增强细胞黏附力。研究表明, PDA能够将血清蛋白定位于细胞来提高细胞活力[44],而PNE不仅能锚定细胞外基质(ECM)蛋白胶原以增强细胞黏附能力和活性,还可以定位神经生长因子(NGF) 以促进神经元样分化。这种改性纤维可以增加生长因子、药物以及具有较低负载量的生物活性分子的利用率,从而提高治疗效果并减少不良反应。

  • 图11 PLCL纤维修饰PNE和胶原黏附层以及培养PC12细胞的示意图[43]

  • Fig.11 Schematic representation of PLCL fibers modifying PNE and collagen adhesion layers and culturing PC12cells [43]

  • KHETANI等[45] 开发了一种基于流动相的流动包覆技术,将NE溶液通入聚二甲基硅氧烷(PDMS) 微流控通道中来涂覆PNE(图12)。涂覆完成后在PNE表面接种小鼠CAD细胞(Cath.a.differentiated)和永生化人脑微血管内皮细胞(hCMEC/D3)。细胞活力、细胞表型和细胞功能的评估结果证明,涂有PNE的微流控芯片保持了CAD细胞和hCMEC/D3细胞的高活性、正常表型和功能。此外,这种芯片可以储存在室温下长达120d。由此可知,PNE流动包覆技术可以用来产生即用型微流控OOC(organ-on-a-chip) 芯片,这种芯片为细胞培养提供了长期稳定的条件, 并能够使细胞应用于病理生理学研究和药物筛选。

  • 图12 使用流动包覆技术在微流控芯片上修饰PNE [45]

  • Fig.12 Modifying PNE on microfluidic chips using flow wrapping technology [45]

  • 综上,PNE涂层可以用于多种细胞类型的黏附与增殖,如成骨细胞、人诱导性多能干细胞衍生的间充质干细胞、肌细胞、神经细胞等。在实际培养中, 应针对不同的应用方向选择合适的底物,如用于组织修复可选用PCL, 用于药物治疗可选用电纺PLCL,用于病理学研究可选用PDMS。

  • 2.1.3 细胞保护

  • 体外和日常生活条件下单个活细胞的保护是各种基于细胞应用的先决条件,包括细胞疗法、基于细胞的传感器、再生医学以及食品工业。可以通过模仿细菌内生孢子来实现细胞保护,即给细胞封装上一层外壳,坚韧的外壳不但保护细胞免受极端压力,而且会增加细胞对某些外界刺激的耐受性。 PDA现已被用于细胞的封装,并且能够有效抵抗酶对细胞的损伤[46]

  • HONG等[47] 使用细胞相容性两步法将酿酒酵母封装在高度均匀的纳米级(<100nm)壳中,该壳由PNE和二氧化硅层组成(图13)。具体来说就是通过在含有NE的Tris-HCl缓冲溶液中轻轻摇动酵母悬液,在单个酵母细胞上形成PNE层,涂层的氢醌部分通过1,4共轭加成反应连接聚乙烯亚胺(PEI)。然后以PEI为催化模板进行硅化作用,在PNE层的顶部上形成无机二氧化硅层。这种结构模仿了细菌内生孢子,壳中细胞可以获得对裂解酶,干燥环境和UV-C辐射的多重抵抗力,为基于单细胞的传感器、细胞治疗和组织工程的实际开发提供了一个可行的方法。

  • 图13 酿酒酵母细胞封装示意图[47]

  • Fig.13 Diagram of Saccharomyces cerevisiae cell encapsulation [47]

  • 除了对离体细胞的保护外,PNE涂层还可以进行生物活体应用,QIU等[48]把C18粒子表面修饰上氧化石墨烯( GO) 和聚二烯丙基二甲基氯化铵(PDDA),然后通过聚苯胺(PANI)将这种复合粒子(C18@GO@PDDA) 固定到石英纤维上,从而制备了一种新型的固相微萃取( SPME) 纤维(图14)。 SPME纤维表面涂有PNE,该涂层为纤维表面提供了平滑且具有良好生物相容性的生物界面,使其适合于活体采样。这种新型纤维被成功地用于监测活体鱼类中酸性药物的存在,表明定制的纤维具有体内长期连续药物监测的可行性。

  • 图14 新型固相微萃取纤维的制备和应用流程图[48]

  • Fig.14 Flowchart of preparation and application of novel solid phase microextraction fibers [48]

  • 以上两个例子证明PNE涂层在体外及体内均具有细胞保护的功能,但是对离体细胞进行封装的过程同样会带给细胞一些亚致死压力,因此不适用于应激性能较差的细胞。

  • 2.1.4 纳米载药

  • 目前,药物递送的主要挑战是将有效剂量的细胞毒剂特异性递送至肿瘤部位,同时将脱靶副作用降至最低。纳米载体经常被应用于药物递送,通过修饰其表面,可以获得良好的靶向性。尽管PNE已被用于多种表面涂层应用中,但在PNE纳米颗粒的制备及其应用方面的研究相对较少[18],此小节着重介绍了PNE纳米颗粒在药物运输方面的应用。

  • 阿霉素(DOX)是一类抗生素,常用做广谱抗癌药物应用于肿瘤的治疗。 LU等[17] 使用PNE纳米颗粒负载DOX进行药物递送(图15)。 PNE纳米颗粒的稳定性和尺寸可以通过改变颗粒合成中使用的NE单体或乙醇的剂量来控制。 PNE纳米粒子在体外HeLa细胞试验和斑马鱼胚胎体内试验中表现出良好的生物相容性。研究表明,以PNE纳米颗粒为药物载体时的细胞摄取速率明显高于游离DOX。

  • 除了直接在PNE纳米颗粒上负载药物之外,还可以制备复合纳米颗粒用于载药运输。 LIU等[18] 把PNE纳米颗粒表面修饰上聚乙二醇(PEG)并负载DOX制备了PNE-PEG@DOX复合纳米颗粒, PNE-PEG@DOX可以在溶酶体pH微环境( pH 5.0)或808nm激光照射下实现DOX的响应释放(图16),从而提高DOX的化疗功效。除了DOX这种模型药物之外,PNE修饰的FeOOH还可以负载青蒿素用于光热疗法[19]。此外,与其他儿茶酚胺纳米颗粒(如PDA)相比,PNE纳米颗粒具有更好的防污性能[48]

  • 综上所述,PNE纳米颗粒优异的生物相容性、较高的给药效率和较好的靶向释放性使其成为一种优良的肿瘤治疗药物载体,具有进一步探索的价值。应当注意的是,虽然PNE纳米颗粒具有良好的生物相容性,但高浓度的PNE纳米颗粒依旧有产生细胞毒性的可能,因此在药物运输中要谨慎选择剂量。

  • 总得来说,PNE的生物相容性在酶固定化、细胞粘附与增殖分化、纳米载药等方面具有广泛应用, 它能够提升酶的稳定性、加速细胞增殖分化、实现药物响应性释放等。然而依旧有一些缺点需要克服, 例如PNE平滑的表面使酶和细胞固定量减少、高剂量的PNE纳米颗粒依旧具有细胞毒性、PNE涂层细胞黏附量依旧未达理想值等。

  • 图15 PNE纳米颗粒的制备、体内毒性测试及载有DOX的PNE纳米颗粒的产生及其在HeLa细胞中发挥作用的示意图[17]

  • Fig.15 Preparation of PNE nanoparticles,in vivo testing of the toxicity of PNE nanoparticles,DOX-containing PNE nanoparticles’ schematic diagram of production and its role in HeLa cells [17]

  • 图16 PNE-PEG@DOX的制备示意图及其在化疗-光热治疗联合中的应用[18]

  • Fig.16 Schematic diagram of the preparation of PNE-PEG@DOX and its application in the combination of chemotherapy-photothermal therapy [18]

  • 2.2 光热转化性

  • 化学疗法是一种广泛使用的临床癌症治疗方法,它通过各种化学治疗药物杀死肿瘤细胞,而光热疗法(PTT)是最近兴起的一种癌症治疗方法,它的主要原理是在治疗过程中,光热纳米剂( PTNA) 在近红外光照射下可以吸收光能并将其转换为热能, 从而导致肿瘤细胞损伤甚至死亡的一种微创的肿瘤治疗方法[49]。光热化学联合疗法在癌症治疗中显示出巨大的潜力,PDA纳米颗粒是一种广泛使用的PTNA,与之相比PNE纳米颗粒具有更高的光热转换效率和更高的细胞摄取率(UE),更适用于肿瘤治疗。

  • HE等[19]以青蒿素(ART)作为化疗模型药物, 通过静电相互作用和 π-π 堆积将其负载到FeOOH@PNE纳米粒子上,开发了肿瘤特异性的FeOOH@PNE-Art纳米颗粒(图17),用于癌症的光热化学联合治疗。这种复合纳米颗粒具有出色的生物相容性,高效的近红外(NIR) 吸收率以及pH响应的青蒿素和铁离子同步释放。复合纳米颗粒释放的铁离子除了与亚铁离子反应产生活性氧外,还能与肿瘤微环境中的H2O2 反应生成羟自由基。此外,由于温度升高有助于活性氧的产生,因此近红外光热效应进一步增强了活性氧的细胞毒性。这种局部产生ROS的方式可以进行肿瘤特异性杀伤,为临床肿瘤治疗提供了一种新型手段。

  • PNE特殊的黏附性和共轭分子结构使得PNE纳米粒子在装载化疗药物时具有很大的优势,LIU等[ 18] 把PNE纳米颗粒修饰上聚乙二醇( PEG) 并负载DOX以实现条件响应性释放,进而导致肿瘤细胞部位特异性药物蓄积,药物作用与PNE的光热杀伤效果叠加,从而对肿瘤细胞进行精准杀伤。

  • 图17 FeOOH@PNE-Art纳米粒子的制备和体内抗癌应用[19]

  • Fig.17 Preparation of FeOOH@PNE-Art nanoparticles and in vivo anticancer applications [19]

  • PNE优异的光热转化性能不仅能够杀伤肿瘤细胞而且还可除菌。研究表明,红外光照射下PNE涂层对于革兰氏阳性菌和革兰氏阴性菌均有较好的杀伤效果[13],因此有望应用于医学植入设备。

  • 由于PNE纳米粒子含有丰富的氨基和羟基,因此有利于表面的生物功能化修饰,从而获得多功能光热纳米平台。 PNE复合纳米颗粒在联合化疗及杀菌方面显示出巨大的潜力,但目前相关研究较少, 仍需更多证据支撑其实际应用的可行性。

  • 2.3 黏合性

  • 近年来,贻贝仿生材料在材料科学、酶固定化和生物矿化等领域引起了研究者的浓厚兴趣,因为它们几乎对任何类型的固体表面都具有快速、坚韧的黏合能力,即所谓的生物黏合[16]。 PNE涂层中烷基羟基、邻苯二酚和醌基的存在使得PNE可以有效地提高复合材料的界面强度。

  • LEE等[50]使用PNE作为表面改性剂,以增强碳和玻璃纤维复合材料的界面强度(图18)。儿茶酚胺聚合物独特的粘合能力可以使其与环氧树脂结合,赋予纤维良好的亲和力。 PNE除了具有粘合性外,还含有羟基(-OH)和仲胺(-NH-)等含氢官能团,可以与环氧树脂中的多个位点建立氢键,提高固化程度[9],用PNE涂覆的纤维对环氧树脂具有更好的润湿性。基于PNE优良的表面改性能力,能够有效地改善纤维的界面剪切强度( IFSS) 和层状复合材料的层间剪切强度( ILSS)。但由于涂覆PNE的纤维及其复合材料的表面粗糙度相对较低,因此对界面强度的提高较小。在适当控制纤维表面粗糙度的情况下,儿茶酚胺类聚合物可以作为一种新型复合材料来增强纤维的界面性能。此外,虽然PNE涂层能够赋予纤维一定黏合能力,但是较之贻贝的黏合力相差甚远,因此有待于开发新型工艺进一步提升其黏合力。

  • 图18 PNE在微纤维表面的涂层示意图[50]

  • Fig.18 Schematic diagram of PNE coating on microfiber surface [50]

  • 2.4 荧光性

  • 低聚合度的小分子聚儿茶酚胺具有荧光特性, 可以利用这一点进行其低水平检测[51]。 NE在碱性介质中能够形成氧化聚合产物,这些聚合物在紫外线照射下可以发出肉眼可见的荧光。基于这一点, NEJAD等[20]将PNE纳米颗粒与牛血清白蛋白稳定的红色荧光金纳米团簇(BSA-AuNCs) 结合用于尿样中微量NE的肉眼检测。在紫外灯下,随着NE浓度的升高,纳米探针颜色从红色转变为粉红色、橙色、黄色和绿色(图19),这种比色传感为实际临床生物样本的检测提供了简便的方法。

  • 图19 纳米探针在不同NE浓度下的荧光图像[20]

  • Fig.19 Fluorescence images of nanoprobes at different NE concentrations [20]

  • 然而,随着反应时间的增加,PNE纳米颗粒聚合度也不断增加,这会引起分子链的缠结,形成主链的分子内或分子间堆积,芳香环的 π-π 堆积会导致聚集引起的荧光淬灭(AQC) 效应,PNE粒子尺寸达到170nm时呈现出非荧光的状态。因此该方法的时效性较短,在进行检测时应该严格控制反应时间。

  • 2.5 电子传递

  • PNE的醌配体具有氧化还原特性,因此赋予了PNE电子转移能力。基于这种特性, PNE可以作为还原剂来合成还原氧化石墨烯( RGO) 和贵金属[ 52]。在还原条件下,PNE中的邻苯二酚部分释放两个电子和两个质子,然后迅速氧化成醌,为氧化石墨烯(GO) 或金属离子提供电子,从而促进电荷转移[ 53]。此外,PNE中残留的醌配体的氧化还原性质较为稳定,不会因氧化聚合过程而改变[ 54]

  • KANG等[ 55] 首次利用PNE对GO进行改性, 一步完成氧化石墨烯的官能化和还原。 PNE涂层能够提供多种功能,包括表面引发的聚合反应和金属纳米颗粒的自发形成[ 56],并且改善了石墨烯的生物相容性。这种简单的表面改性方法极大地拓宽了石墨烯的应用范围。例如PNE/RGO膜可以模拟光合作用中光系统II的醌受体, 在光催化水氧化中促进正向电子传递,同时增加电活性醌基团[ 57]( 图20);PNE功能化的GO海绵可以用做赝电容器[ 52], 将初始电容大幅提升等。

  • 图20 PNE促进光催化水氧化电子传递示意图[57]

  • Fig.20 Schematic representation of electron transfer in PNE-promoted photocatalytic water oxidation[57]

  • 此外,PNE涂层在可见光至紫外区具有光吸收能力[58],因此可以用做光催化系统中的光敏剂以促进光生载流子的生成[59],它的光电导性还可以促进电子空穴对的分离和转移[60]。 NE在侧链上多出的羟基取代基,能够有效降低聚集的倾向,生成致密、可控、超光滑的涂层。 PNE涂层中的烷基羟基,邻苯二酚和醌基团的存在赋予涂层强劲的黏合力,不需要加入偶联分子就可以形成含胺键[28]。基于PNE表面的强亲和力和光催化活性等优越性能, PNE壳层封装后的钙钛矿纳米颗粒可以获得性能提升[60]

  • 卤化钙钛矿( LHPs) 是一种半导体材料,在多个领域都有广泛的应用。然而,由于钙钛矿材料的形成能低,其稳定性较差,并对环境因素较为敏感[61],因此后处理能力受到限制。为解决这一问题,WANG等[62]通过原位聚合法将单分散甲基铵溴化铅(MAPbBr3,M-PE)纳米颗粒用PNE进行封装(图21)。 PNE层赋予了M-PE纳米颗粒较高的结构稳定性,可以抵抗恶劣的环境条件。此外,由于PNE具有电子-空穴对的分离和转移能力,并且在紫外可见光区有很强的吸收,且M-PE和PNE之间的化学相互作用有助于构建核壳复合材料以及增强光收集能力,因此用PNE包裹的钙钛矿增加了光催化活性中的光电转换效率,进一步促进了钙钛矿工程的发展。值得注意的是,PNE对钙钛矿的封装是在碱性条件下进行的,而碱性条件会对钙钛矿产生一定损伤,因此该方法还有待进一步优化。

  • 图21 PNE封装M-PE光催化降解孔雀石绿[62]

  • Fig.21 PNE encapsulated M-PE photocatalytic degradation of malachite green [62]

  • 基于葡萄糖氧化酶(GOD)的生物传感器在临床诊断、医疗保健和食品行业有着广泛的应用。但仍旧面临着GOD活性中心与电极材料之间电子传递效率低的问题[63]。 PDA具有良好的导电率和丰富的氨基,可以用于结合生物识别探针,因此十分适合用于生物传感器的电极修饰。然而, PDA涂层表面较为粗糙,不易于控制酶的活性中心与电极之间的距离,不利于电子传输。相比之下,在电极表面涂覆PNE可以获得更稳定、更灵敏的电化学生物传感器, 例如基于金纳米颗粒(AuNPs)、GOD和PNE的葡萄糖生物传感器[64](图22)。由于PNE具有良好的生物相容性,所以极大地提高了葡萄糖氧化酶的活性。所制得的生物传感器具有良好的灵敏度以及较宽的检测范围,同时具有较低的米氏常数以及出色的选择性和抗干扰能力。

  • 图22 PNE/GOD/AuNPs@PNE/Au电极的制造[64]

  • Fig.22 PNE/GOD/AuNPs@PNE/Au electrode fabrication [64]

  • 由上述内容可知,由于PNE涂层具有良好的电子传递能力,因此可以用于电极的表面改性而不会降低电极本身的性能。不仅如此,PNE本身的生物相容性以及广泛的紫外吸收范围等都会赋予电极新的优良性能,从而有助于新型电极的开发。

  • 2.6 亲水性

  • NE化学结构中的胺基以及与邻苯二酚旁边的脂肪族碳原子相连的羟基增强了亲水性。增加亲水性有助于减少非特异性吸附,提高材料抗污性。例如,PNE改性后的30kDa聚醚砜(PES)超滤膜增加了润湿率以及超纯水透过率,与未改性膜相比具有更低的能耗和更高的抗污染性能[65]

  • 由聚合物组成的微流控芯片表面通常是疏水的,这种疏水性不利于溶液在微流控通道中的流动, 因此会影响其生化分析性能。用重酒石酸去甲肾上腺素修饰微流控芯片可以改善其亲水性、降低芯片免疫分析的背景噪音[66],且改性后表面的亲水性保持时间是现有方法的两倍以上[67]。同样地,CHEN等[68]利用NE的自聚反应及其良好的成膜性,开发了一种基于PDMS基底的手性化合物对映体分离通道的制备方法(图23)。由于PNE含有丰富的邻苯二酚和胺官能团,PNE包覆的PDMS微芯片具有更好的润湿性和更稳定的电渗流(EOF),非特异性吸附更少[15]

  • 基于PNE涂层可以减少非特异性吸附这一特点,BALDONESCHI等[69] 通过将分子印迹聚合物(MIP)生物传感器与表面等离振子共振(SPR)检测结合起来,开发了一种基于PNE的印迹生物传感器,用于肌钙蛋白I(一种心力衰竭的重要生物标志物) [70]的早期检测。 PNE的羟基官能团使MIP表面具有更高的亲水性,减少了蛋白质的非特异性吸附并有利于目标分析物的选择性结合,因此具有良好的目标蛋白选择性。

  • 图23 对映体分离微通道制备方法及检测原理[68]

  • Fig.23 Enantiomer separation microchannel preparation method and detection principle [68]

  • 在药物的分离与检测领域,PNE涂层在体外和体内的检测方面均有应用。在体外,WU等[71] 使用PNE功能化的磁性纳米颗粒( polyNE-MNPs) 开发了一种结合磁性固相分离( MSPE) 和手性毛细管电泳(CE) 的方法来对映分离痕量的 β-阻滞剂。这种方法可以有效地从尿样中提取靶 β-阻滞剂,且检测用时较短,为手性药物在人体内的药动学和药效学研究开辟了一条新的途径。进行体内检测时,首先将磺化的Al2O3 纳米颗粒掺杂在聚(乳酸-己内酯)(PLCL)纳米纤维中[72],其中的磺酸基可以提高阳离子交换吸附亲和力,进而提高对磺胺类药物的萃取效率( 图24)。之后进一步涂覆上PNE涂层,平滑均一且亲水的PNE涂层使萃取相的内表面易于与分析物接触,高度改善了纤维负载能力,提高了萃取效率。此外,这种该纤维在重复采样-解吸循环中稳定,具有良好的重复性和抗生物污垢能力。

  • 除了应用于分离检测,PNE的亲水性也可用于电极改性。在石墨烯电极表面涂覆PNE可以把疏水性电极变为亲水性,并且PNE涂层可以均匀覆盖传统的空穴传输材料,且不会明显降低光透射率或电导率。 JUNG等[73]将PNE修饰的石墨烯电极应用于有机太阳能电池( OSCs)( 图25)。 PNE涂层的形貌和厚度可控,并且修饰后电极的化学或电学性能没有明显的下降,研究结果表明其性能可与ITO参考器件相媲美,因此它在基于溶液处理或印刷技术的各种石墨烯光电器件中具有很好的应用前景。

  • 综上可知,亲水的PNE表面可以改善材料与分析物的接触能力,并且减少非特异性吸附。基于此开发的器件具有良好的重复性和稳定性,具有在复杂的生物分析中进行应用的潜力。

  • 图24 新型固相微萃取纤维制备及应用流程图[72]

  • Fig.24 Flowchart of the preparation and application of a new solid-phase microextraction fiber [72]

  • 图25 NE在石墨烯上的包覆和聚合[73]

  • Fig.25 Encapsulation and polymerization of norepinephrine on graphene [73]

  • 2.7 表面活性

  • NE化学结构中比DA多出的羟基赋予了PNE涂层良好的化学反应能力,由于烷基羟基的存在, PNE涂层修饰的表面可以发生生物分子偶联反应和开环聚合反应[16]。此外,PNE还具有多个氢键基团和芳香环,可以通过氢键和疏水相互作用与分析物相互作用,比如PNE修饰的毛细管可以分离组氨酸对映体[74]

  • 由于羟基与胺基的存在,PNE还可以用作释放NO等小分子药物的涂层。 HONG等[15]制备了PNE涂层基板,然后将其浸泡在暴露于高压NO气体的碱性溶液中。经过此步骤,PNE层中的羟基与重氮二醇酸盐形成氢键,从而促进重氮二醇酸盐的表面固定。重氮二醇酸盐自发解离时可以释放出两个当量的NO气体分子。

  • 此外,PNE涂层侧链上的羟基还起到了ROP(表面引发开环聚合) 引发剂的作用,KANG等[75] 将NE与色氨酸引发剂固定在Au基板上,形成了能够同时引发ATRP( 原子转移自由基聚合) 和ROP的表面(图26)。这种引发剂固定化技术可以将各种功能聚合物引入到固体基质中,以实现不同的应用方向。

  • 图26 PNE涂层表面上的SI-ROP和-ATRP示意图[75]

  • Fig.26 Schematic representation of SI-ROP and-ATRP on PNE-coated surfaces [75]

  • 不仅如此,PNE邻苯二酚官能团还能够与抗体的羧基结合,使抗体与PNE涂层之间发生亲核反应或席夫碱反应,KHETANI等[76] 使用PNE对电极表面进行修饰(图27),并固定化泛素羧基末端水解酶L1(UCHL-1)抗体以检测脑和脊髓损伤的生物标志物UCHL-1,这种传感器检测速度比目前用于临床检测的金标准ELISA快6倍。虽然抗体的修饰会略微影响导电率,但该方法依旧具有高灵敏度。

  • PNE还可以作为一种表面活性剂添加到前体溶液中,使各种金属氧化物形成致密的沉积薄层。例如PNE与硝酸铈溶液混合即可在电极上沉积一层均匀的氧化铈膜,从而提升固体氧化物燃料电池(SOFC)电极的性能[77]

  • 图27 生成用于检测泛素羧基末端水解酶L1(UCHL-1)检测的免疫传感器所需的丝网印刷电极(SPE)修饰步骤的示意图[76]

  • Fig.27 Schematic diagram of the screen-printed electrode(SPE) modification steps required to generate an immunosensor for the detection of ubiquitin carboxy-terminal hydrolase L1(UCHL-1) [76]

  • PNE的这种化学反应活性有助于进行表面二次修饰,可以作为桥梁把目标修饰物与底物进行连接,增加了底物与二次修饰物的配对组合种类,因此这种改性方法具有广阔应用前景。

  • 2.8 其他特性

  • 除了具有上文中提到的各种特性之外,PNE还属于一种黑色素模拟材料,可用于制备结构颜色材料。由纳米颗粒组成的PNE壳层显示出与角度相关的颜色,IWASAKI等[78] 以聚苯乙烯( PS) 为芯, NE为壳合成人造黑色素粒子,所制备的颗粒阵列产生了高可见度的结构色(图28)。如果将PS核心去除,那么PNE外壳纳米粒子的折射率会发生改变,进而引起壳层颜色的变化。此外,聚合度的变化也将对其颜色产生影响。由于聚合机理不同,PNE壳层与PDA壳层的结构不尽相同,因而颜色也具有差异。基于此,选择不同配比、不同聚合度的PNE与PDA就能够展现出各种结构色彩,以应用于油墨等着色材料。

  • 图28 材料组成对人造黑色素粒子结构颜色的影响[78]

  • Fig.28 Effects of material composition on the structural color of artificial melanin particles [78]

  • 3 总结与展望

  • 作为一种儿茶酚胺类化合物,NE在众多领域都有着广阔的应用前景。与其他聚儿茶酚胺一样, PNE是一种安全、生物相容性好的表面涂层和药物、基因输送,分子识别,分离和传感的多功能工具。采用NE氧化自聚合形成黏附性PNE涂层是一种简便、易操作的涂布修饰技术以及材料表面功能化手段。在众多不同材质、形状各异的材料表面实施的功能化修饰和改性已经得到广泛应用。不仅如此,PNE中的邻苯二酚基团以及羟基可通过自身的作用,例如,螯合能力、还原能力及氧化后与有机基团(氨基/巯基)的反应能力等,为后续制备出纳米材料、生物材料以及聚合物材料等提供了功能化的平台。表1将近年来基于PNE各种物化特性的应用方向进行了简单描述和汇总,可以看出,无论是在黏附小分子化合物、高分子蛋白质、活细胞和组织等生物医药领域,还是在太阳能电池、颜料涂料领域, PNE均展现出优异的性能和广泛的应用前景。

  • 图29 以PNE涂覆的基底物质为分类标准,对近年来基于PNE的氧化聚合、生物相容性、光热转化性、粘合性、荧光性、电子传递、亲水性、表面活性等物化特性的应用方向进行总结。其中,图中的数字代表了相应的应用数量。由图中分析得知,PNE最常被用于氧化物、聚合物以及碳基物质的表面改性,比如二氧化硅、聚二甲基硅氧烷、石墨烯等。此外,PNE各种理化特性中应用最广泛的是生物相容性,其次是亲水性。它常常用于黏附细胞以促进细胞增殖分化、固定化酶以提升酶活性与稳定性、充当纳米载药平台、或减少表面非特异性吸附等。同时,可以从图中看出,基于自组装、细胞等更绿色和安全的更多工艺仍待开发。

  • 表1 PNE涂层功能化的表面材料及其应用

  • Table1 Functionalized substrates for PNE coatings and their applications

  • (Continued)

  • 图29 以基底类型为分类依据,总结PNE各特性的应用情况(数字代表应用数量)

  • Fig.29 Based on the classification of basement types, the application of PNE characteristics is summarized(Number represents the number of applications)

  • 虽然PNE涂层的形成不具有基板材料依赖性, 其光热转换能力、亲水性、二次修饰能力以及涂层平滑度等均优于PDA。但是相比PDA上百篇的论文来说,针对PNE的应用研究报道仍十分有限,例如在抗菌、抗氧化活性的领域的应用还有待开发。与此同时,还有一些亟待解决的PNE相关理论和技术挑战。首先是PNE具体聚合过程的精准结构变化还未明了,因此无法从根源上解释PNE的一些试验现象。例如为何PNE能够牢固结合于基底上;为何不同材质的基底与PNE的黏性不同;这其中是否有螯合作用;其次,PNE聚合后形成的结构是否处于动态平衡中,还是属于不可逆的反应过程? 这些问题的答案也与目前的一些机理不明的试验现象相关。例如,PNE聚合成膜后的厚度不会太厚,其最大厚度一般不超过50nm(类似PDA薄膜)。是什么物化因素决定了薄膜的厚度,PNE在强碱环境下会缓慢分解,课题组的前期试验表明在强碱环境中原本棕黑色的PNE溶液会逐渐变成透明的浅棕色。 PNE过于平滑的表面虽然在涂层性能上表现较好, 但同时也使得酶固定量减少,如何控制沉积和成膜的动态过程? 最后,扩展PNE在生物医学领域的应用时,尤其要考虑PNE的长期安全性和生物毒性。虽然NE是安全稳定的,但不同聚合度及活性的PNE的生物安全试验仍未见报道。以上这些问题和挑战都有待研究者们进一步设计试验研究和优化PNE。除此之外,目前制备PNE的单体绝大部分是使用价格昂贵的去甲肾上腺素盐酸盐,比起便宜的DA来说,经济效益较差。相比之下,重酒石酸去甲肾上腺素的价格比去甲肾上腺素盐酸盐更为低廉, 有望成为性价比更高的单体替代物和原材料[66]

  • 综上所述,通过对PNE的结构性质、黏附机理以及应用进行总结、分析和展望,希望为其在今后材料学、仿生学、生物医学等领域中的应用提供相关的理论参考和指导。虽然目前关于PNE的相关研究还比较有限,但是以PDA的大量研究做为参考可以引导和催化基于PNE的多功能生物仿生表界面平台和系统的快速发展,为新型复合仿生材料的设计和构建提供关键要素和方案。

  • 参考文献

    • [1] MANN E E,MANNA D,METTETAL M R,et al.Surface micropattern limits bacterial contamination [J].Antimicrobial Resistance and Infection Control,2014,3(1):28.

    • [2] YANG H,YOU W,SHEN Q,et al.Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles[J].RSC Advances,2014,4(6):2793-2796.

    • [3] BANDARA C D,SINGH S,AFARA I O,et al.Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli[J].ACS Applied Materials and Interfaces,2017,9(8):6746-6760.

    • [4] SAKAMOTO A,TERUI Y,HORIE C,et al.Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove [J].FEMS Microbiology Letters,2014,361(1):10-16.

    • [5] WAITE J H,TANZER M L.Polyphenolic substance of mytilus edulis:Novel adhesive containing L-dopa and hydroxyproline [J].Science,1981,212(4498):1038-1040.

    • [6] MANUSCRIPT A,ADHESIVES M.Mussel-inspired adhesives and coatings[J].Annu Rev Mater Res,2011:99-132.

    • [7] LEE H,DELLATORE S M,MILLER W M,et al.Mussel-inspired surface chemistry for multifunctional coatings [J].Journal of Chemical Information and Modeling,2007,318(5849):426-430.

    • [8] LIU M,ZENG G,WANG K,et al.Recent developments in polydopamine:An emerging soft matter for surface modification and biomedical applications [J].Nanoscale,2016,38(8):16819-16840.

    • [9] LYNGE M E,VAN DER WESTEN R,POSTMA A,et al.Polydopamine-A nature-inspired polymer coating for biomedical science[J].Nanoscale,2011,3(12):4916-4928.

    • [10] LEE J Y,KIM S,LEE S,et al.Electrochemical co-deposition of polydopamine/hyaluronic acid for anti-biofouling bioelectrodes [J].Frontiers in Chemistry,2019,7(4):1-11.

    • [11] DING Y H,FLOREN M,TAN W.Mussel-inspired polydopamine for bio-surface functionalization [J].Biosurface and Biotribology,2016,2(4):121-136.

    • [12] ZAIDI S A.An account on the versatility of dopamine as a functional monomer in molecular imprinting [J].Chemistry Select,2019,4(17):5081-5090.

    • [13] LU Z,QUEK A J,MEANEY S P,et al.Polynorepinephrine as an efficient antifouling-coating material and its application as a bacterial killing photothermal agent [J].ACS Applied Bio Materials,2020,3(9):5880-5886.

    • [14] CHEN X,YANG W,ZHANG J,et al.Alkalinity triggered the degradation of polydopamine nanoparticles [J].Polymer Bulletin,2020.[2020-12-08].https://doi.org/10.1007/s00289-020-03312-2.

    • [15] HONG S,KIM J,NA Y S,et al.Poly(norepinephrine):Ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide[J].Angewandte Chemie-International Edition,2013,52(35):9187-9191.

    • [16] SUNG M K,RHO J,CHOI I S,et al.Norepinephrine:Material-independent,multifunctional surface modification reagent[J].Journal of the American Chemical Society,2009,131(37):13224-13225.

    • [17] LU Z,DOUEK A M,ROZARIO A M,et al.Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery [J].Journal of Materials Chemistry B,2020,8(5):961-968.

    • [18] LIU X,XIE Z,SHI W,et al.Polynorepinephrine nanoparticles:a novel photothermal nanoagent for chemo-photothermal cancer therapy[J].ACS Applied Materials and Interfaces,2019,11(22):19763-19773.

    • [19] HE Z,SU H,SHEN Y,et al.Poly(norepinephrine)-coated FeOOH nanoparticles as carriers of artemisinin for cancer photothermal-chemical combination therapy[J].RSC Advances,2019,9(18):9968-9982.

    • [20] FARAHMAND N M A,GHASEMI F,HORMOZI-NEZHAD M R.A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples [J].Analytica Chimica Acta,2018,1039:124-131.

    • [21] JEON Y J,KANG S M.Chemically stable poly(norepinephrine)coatings on solid substrates by post-oxidation [J].Polymer Degradation and Stability,2013,98(6):1271-1273.

    • [22] KHETANI S,YONG K W,GUAN K,et al.UV-triggered polymerization of polycatecholamines enables the production of organ-on-chips inside a biosafety cabinet[J].Applied Materials Today,2020,20:1-17.

    • [23] CHWATKO M,ARENA J T,MCCUTCHEON J R.Norepinephrine modified thin film composite membranes for forward osmosis[J].Desalination,2017,423(9):157-164.

    • [24] KOHRI M.Artificial melanin particles:New building blocks for biomimetic structural coloration[J].Polymer Journal,2019,51(11):1127-1135.

    • [25] SHENG W,LI B,WANG X,et al.Brushing up from “ anywhere ” under sunlight:A universal surface-initiated polymerization from polydopamine-coated surfaces[J].J.Mater.Chem.C,2015,3:10715-10722.

    • [26] SHENG W,LI W,LI B,et al.Mussel-inspired photografting on colloidal spheres:A generalized self-template route to stimuli-responsive hollow spheres for controlled pesticide release [J].Macromolecular Rapid Communications,2015,36(18):1640-1645.

    • [27] SAIZ-POSEU J,SEDÕ J,GARCÍA B,et al.Versatile nanostructured materials via direct reaction of functionalized catechols [J].Advanced Materials,2013,25(14):2066-2070.

    • [28] YANG D,WANG X,AI Q,et al.Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine)and poly(norepinephrine)[J].RSC Advances,2015,5(53):42461-42467.

    • [29] JIANG Y,WANG Y,WANG H,et al.Facile immobilization of enzyme on three dimensionally ordered macroporous silica via a biomimetic coating [J].New Journal of Chemistry,2015,39(2):978-984.

    • [30] PARK M,SHIN M,KIM E,et al.The promotion of human neural stem cells adhesion using bioinspired poly(norepinephrine)nanoscale coating [J].Journal of Nanomaterials,2014,2014:10.

    • [31] KIM E,LEE S,HONG S,et al.Sticky " delivering-from" strategies using viral vectors for efficient human neural stem cell infection by bioinspired catecholamines [J].ACS Applied Materials and Interfaces,2014,6(11):8288-8294.

    • [32] KANG S M,LEE H.Surface modification of highly ordered pyrolytic graphite(HOPG)by a mussel-inspired poly(norepinephrine)coating:Characterizations and cell adhesion test[J].Bulletin of the Korean Chemical Society,2013,34(3):960-962.

    • [33] DEWEZ J L,BERGER V,SCHNEIDER Y J,et al.Influence of substrate hydrophobicity on the adsorption of collagen in the presence of pluronic F68,albumin,or calf serum[J].Journal of Colloid and Interface Science,1997,191(1):1-10.

    • [34] TOITA R,SUNARSO,RASHID A N,et al.Modulation of the osteoconductive property and immune response of poly(ether ether ketone)by modification with calcium ions[J].Journal of Materials Chemistry B,2015,3(44):8738-8746.

    • [35] JIANG X,LI Y,LIU Y,et al.Selective enhancement of human stem cell proliferation by mussel inspired surface coating [J].RSC Advances,2016,6(65):60206-60214.

    • [36] SUN H,MEI L,SONG C,et al.The in vivo degradation,absorption and excretion of PCL-based implant [J].Biomaterials,2006,27(9):1735-1740.

    • [37] LIU Y,ZHOU G,LIU Z,et al.Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration [J].Scientific Reports,2017,7(1):1-10.

    • [38] CHEN Y,TASKIN M B,ZHANG Z,et al.Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension [J].Biomaterials Science,2019,7(5):2165-2173.

    • [39] JEONG S I,KIM B S,KANG S W,et al.In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-ε-caprolactone)scaffolds[J].Biomaterials,2004,25(28):5939-5946.

    • [40] ÇAPKIN M,ÇAKMAK S,KURT F Ö,et al.Random/aligned electrospun PCL/PCL-collagen nanofibrous membranes:comparison of neural differentiation of rat AdMSCs and BMSCs [J].Biomedical Materials(Bristol),2012,7(4):045013.

    • [41] FANG Z,FU W,DONG Z,et al.Preparation and biocompatibility of electrospun poly(l-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds [J].Applied Surface Science,2011,257(9):4133-4138.

    • [42] NEAL R A,THOLPADY S S,FOLEY P L,et al.Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration[J].Journal of Biomedical Materials Research-Part A,2012,100 A(2):406-423.

    • [43] TASKIN M B,XU R,ZHAO H,et al.Poly(norepinephrine)as a functional bio-interface for neuronal differentiation on electrospun fibers [J].Physical Chemistry Chemical Physics,2015,17(14):9446-9453.

    • [44] KU S H,PARK C B.Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering [J].Biomaterials,2010,31(36):9431-9437.

    • [45] KHETANI S,YONG K W,KOLLATH V O,et al.Engineering shelf-stable coating for microfluidic organ-on-a-chip using bioinspired catecholamine polymers[J].ACS Applied Materials and Interfaces,2020,12(6):6910-6923.

    • [46] WANG B,WANG G,ZHAO B,et al.Antigenically shielded universal red blood cells by polydopamine-based cell surface engineering[J].Chemical Science,2014,5(9):3463-3468.

    • [47] HONG D,LEE H,KO E H,et al.Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells [J].Chemical Science,2015,6(1):203-208.

    • [48] QIU J,CHEN G,LIU S,et al.Bioinspired polyelectrolyte-assembled graphene-oxide-coated C18 composite solid-phase microextraction fibers for in vivo monitoring of acidic pharmaceuticals in fish [J].Analytical Chemistry,2016,88(11):5841-5848.

    • [49] KENNEDY L C,BICKFORD L R,LEWINSKI N A,et al.A new era for cancer treatment:gold-nanoparticle-mediated thermal therapies[J].Small,2011,7(2):169-183.

    • [50] LEE W,LEE J U,BYUN J H.Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites[J].Composites Science and Technology,2015,110:53-61.

    • [51] HORMOZI-NEZHAD M R,MOSLEHIPOUR A,BIGDELI A.Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles [J].Sensors and Actuators,B:Chemical,2017,243:715-720.

    • [52] HONG J Y,YU X,BAK B M,et al.Bio-inspired functionalization and redox charge transfer of graphene oxide sponges for pseudocapacitive electrodes[J].Carbon,2015,83:71-78.

    • [53] XU H,SHI X,MA H,et al.The preparation and antibacterial effects of dopa-cotton/AgNPs [J].Applied Surface Science,2011,257(15):6799-6803.

    • [54] LEE H,RHO J,MESSERSMITH P B.Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings[J].Advanced Materials,2009,21(4):431-434.

    • [55] KANG S M,PARK S,KIM D,et al.Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry[J].Advanced Functional Materials,2011,21(1):108-112.

    • [56] DAS T K,GANGULY S,REMANAN S,et al.Mussel-inspired Ag/poly(norepinephrine)/MnO2 heterogeneous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline:an alternative approach [J].Research on Chemical Intermediates,2020,46(7):3629-3650.

    • [57] SON E J,KIM J H,KO J W,et al.Catecholamine-functionalized graphene as a biomimetic redox shuttle for solar water oxidation[J].Faraday Discussions,2017,198:135-145.

    • [58] KIM S,MOON G H,KIM G,et al.TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants [J].Journal of Catalysis,2017,346:92-100.

    • [59] WANG Z,LI J,TANG F,et al.Polydopamine nanotubes-templated synthesis of TiO2 and its photocatalytic performance under visible light[J].RSC Advances,2017,7(38):23535-23542.

    • [60] KIM J H,LEE M,PARK C B.Polydopamine as a biomimetic electron gate for artificial photosynthesis [J].Angewandte Chemie-International Edition,2014,53(25):6364-6368.

    • [61] KIM B J,KIM D H,KWON S L,et al.Selective dissolution of halide perovskites as a step towards recycling solar cells [J].Nature Communications,2016,7:11735.

    • [62] WANG Y,LUO L,WANG Z,et al.Growing poly(norepinephrine)layer over individual nanoparticles to boost hybrid perovskite photocatalysts[J].ACS Applied Materials and Interfaces,2020,12(24):27578-27586.

    • [63] CAI C,CHEN J.Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J].Analytical Biochemistry,2004,332(1):75-83.

    • [64] LIU Y,NAN X,SHI W,et al.A glucose biosensor based on the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine[J].RSC Advances,2019,9(29):16439-16446.

    • [65] XIA L,VEMURI B,GADHAMSHETTY V,et al.Poly(ether sulfone)membrane surface modification using norepinephrine to mitigate fouling[J].Journal of Membrane Science,2020,598:117657.

    • [66] SHEN H,QU F,XIA Y,et al.Straightforward and ultrastable surface modification of microfluidic chips with norepinephrine bitartrate improves performance in immunoassays[J].Analytical Chemistry,2018,90(6):3697-3702.

    • [67] JANKOWSKI P,GARSTECKI P.Stable hydrophilic surface of polycarbonate[J].Sensors and Actuators,B:Chemical,2016,226:151-155.

    • [68] CHEN J,LIANG R P,WU L L,et al.One-step preparation and application of mussel-inspired poly(norepinephrine)-coated polydimethylsiloxane microchip for separation of chiral compounds [J].Electrophoresis,2016,37(12):1676-1684.

    • [69] BALDONESCHI V,PALLADINO P,BANCHINI M,et al.Norepinephrine as new functional monomer for molecular imprinting:An applicative study for the optical sensing of cardiac biomarkers [J].Biosensors and Bioelectronics,2020,157:112161.

    • [70] ZAHRAN S,FIGUEIREDO V P,GRAHAM M M,et al.Proteolytic digestion of serum cardiac troponin I as marker of ischemic severity [J].The Journal of Applied Laboratory Medicine,2018,3(3):450-455.

    • [71] WU J,XIAO X,LI Z,et al.Enantioseparation of chiral Β-blockers using polynorepinephrine-coated nanoparticles and chiral capillary electrophoresis [J].Analytical and Bioanalytical Chemistry,2019,411(10):2121-2129.

    • [72] QIU J,CHEN G,ZHU F,et al.Sulfonated nanoparticles doped electrospun fibers with bioinspired polynorepinephrine sheath for in vivo solid-phase microextraction of pharmaceuticals in fish and vegetable [J].Journal of Chromatography A,2016,1455:20-27.

    • [73] JUNG S,KIM H,LEE J,et al.Bio-inspired catecholamine-derived surface modifier for graphene-based organic solar cells [J].ACS Applied Energy Materials,2018,1(11):6463-6468.

    • [74] LIANG R P,XIANG C Y,WANG J W,et al.Preparation of polynorepinephrine adhesive coating via one-step self-polymerization for enantioselective capillary electrochromatography coupled with electrogenerated chemiluminesense detection [J].Journal of Chromatography A,2013,1284(5):194-201.

    • [75] KANG S M,LEE H.One-step immobilization of initiators for surface-initiated ring opening polymerization and atom transfer radical polymerization by poly(norepinephrine)coating [J].Journal of Nanoscience and Nanotechnology,2015,15(2):1597-1600.

    • [76] KHETANI S,KOLLATH V O,EASTICK E,et al.Single-step functionalization of polycatecholamine nanofilms for ultra-sensitive immunosensing of ubiquitin carboxyl terminal hydrolase-L1(UCHL-1)in spinal cord injury [J].Biosensors and Bioelectronics,2019,145(1):111715.

    • [77] OZMEN O,LEE S,HACKETT G,et al.Efficient and controlled nano-catalyst solid-oxide fuel cell electrode infiltration with polynorepinephrine surface modification [J].Journal of Power Sources,2021,485:229232.

    • [78] IWASAKI T,TAMAI Y,YAMAMOTO M,et al.Melanin precursor influence on structural colors from artificial melanin particles:PolyDOPA,polydopamine,and polynorepinephrine [J].Langmuir,2018,34(39):11814-11821.

  • 参考文献

    • [1] MANN E E,MANNA D,METTETAL M R,et al.Surface micropattern limits bacterial contamination [J].Antimicrobial Resistance and Infection Control,2014,3(1):28.

    • [2] YANG H,YOU W,SHEN Q,et al.Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles[J].RSC Advances,2014,4(6):2793-2796.

    • [3] BANDARA C D,SINGH S,AFARA I O,et al.Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli[J].ACS Applied Materials and Interfaces,2017,9(8):6746-6760.

    • [4] SAKAMOTO A,TERUI Y,HORIE C,et al.Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove [J].FEMS Microbiology Letters,2014,361(1):10-16.

    • [5] WAITE J H,TANZER M L.Polyphenolic substance of mytilus edulis:Novel adhesive containing L-dopa and hydroxyproline [J].Science,1981,212(4498):1038-1040.

    • [6] MANUSCRIPT A,ADHESIVES M.Mussel-inspired adhesives and coatings[J].Annu Rev Mater Res,2011:99-132.

    • [7] LEE H,DELLATORE S M,MILLER W M,et al.Mussel-inspired surface chemistry for multifunctional coatings [J].Journal of Chemical Information and Modeling,2007,318(5849):426-430.

    • [8] LIU M,ZENG G,WANG K,et al.Recent developments in polydopamine:An emerging soft matter for surface modification and biomedical applications [J].Nanoscale,2016,38(8):16819-16840.

    • [9] LYNGE M E,VAN DER WESTEN R,POSTMA A,et al.Polydopamine-A nature-inspired polymer coating for biomedical science[J].Nanoscale,2011,3(12):4916-4928.

    • [10] LEE J Y,KIM S,LEE S,et al.Electrochemical co-deposition of polydopamine/hyaluronic acid for anti-biofouling bioelectrodes [J].Frontiers in Chemistry,2019,7(4):1-11.

    • [11] DING Y H,FLOREN M,TAN W.Mussel-inspired polydopamine for bio-surface functionalization [J].Biosurface and Biotribology,2016,2(4):121-136.

    • [12] ZAIDI S A.An account on the versatility of dopamine as a functional monomer in molecular imprinting [J].Chemistry Select,2019,4(17):5081-5090.

    • [13] LU Z,QUEK A J,MEANEY S P,et al.Polynorepinephrine as an efficient antifouling-coating material and its application as a bacterial killing photothermal agent [J].ACS Applied Bio Materials,2020,3(9):5880-5886.

    • [14] CHEN X,YANG W,ZHANG J,et al.Alkalinity triggered the degradation of polydopamine nanoparticles [J].Polymer Bulletin,2020.[2020-12-08].https://doi.org/10.1007/s00289-020-03312-2.

    • [15] HONG S,KIM J,NA Y S,et al.Poly(norepinephrine):Ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide[J].Angewandte Chemie-International Edition,2013,52(35):9187-9191.

    • [16] SUNG M K,RHO J,CHOI I S,et al.Norepinephrine:Material-independent,multifunctional surface modification reagent[J].Journal of the American Chemical Society,2009,131(37):13224-13225.

    • [17] LU Z,DOUEK A M,ROZARIO A M,et al.Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery [J].Journal of Materials Chemistry B,2020,8(5):961-968.

    • [18] LIU X,XIE Z,SHI W,et al.Polynorepinephrine nanoparticles:a novel photothermal nanoagent for chemo-photothermal cancer therapy[J].ACS Applied Materials and Interfaces,2019,11(22):19763-19773.

    • [19] HE Z,SU H,SHEN Y,et al.Poly(norepinephrine)-coated FeOOH nanoparticles as carriers of artemisinin for cancer photothermal-chemical combination therapy[J].RSC Advances,2019,9(18):9968-9982.

    • [20] FARAHMAND N M A,GHASEMI F,HORMOZI-NEZHAD M R.A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples [J].Analytica Chimica Acta,2018,1039:124-131.

    • [21] JEON Y J,KANG S M.Chemically stable poly(norepinephrine)coatings on solid substrates by post-oxidation [J].Polymer Degradation and Stability,2013,98(6):1271-1273.

    • [22] KHETANI S,YONG K W,GUAN K,et al.UV-triggered polymerization of polycatecholamines enables the production of organ-on-chips inside a biosafety cabinet[J].Applied Materials Today,2020,20:1-17.

    • [23] CHWATKO M,ARENA J T,MCCUTCHEON J R.Norepinephrine modified thin film composite membranes for forward osmosis[J].Desalination,2017,423(9):157-164.

    • [24] KOHRI M.Artificial melanin particles:New building blocks for biomimetic structural coloration[J].Polymer Journal,2019,51(11):1127-1135.

    • [25] SHENG W,LI B,WANG X,et al.Brushing up from “ anywhere ” under sunlight:A universal surface-initiated polymerization from polydopamine-coated surfaces[J].J.Mater.Chem.C,2015,3:10715-10722.

    • [26] SHENG W,LI W,LI B,et al.Mussel-inspired photografting on colloidal spheres:A generalized self-template route to stimuli-responsive hollow spheres for controlled pesticide release [J].Macromolecular Rapid Communications,2015,36(18):1640-1645.

    • [27] SAIZ-POSEU J,SEDÕ J,GARCÍA B,et al.Versatile nanostructured materials via direct reaction of functionalized catechols [J].Advanced Materials,2013,25(14):2066-2070.

    • [28] YANG D,WANG X,AI Q,et al.Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine)and poly(norepinephrine)[J].RSC Advances,2015,5(53):42461-42467.

    • [29] JIANG Y,WANG Y,WANG H,et al.Facile immobilization of enzyme on three dimensionally ordered macroporous silica via a biomimetic coating [J].New Journal of Chemistry,2015,39(2):978-984.

    • [30] PARK M,SHIN M,KIM E,et al.The promotion of human neural stem cells adhesion using bioinspired poly(norepinephrine)nanoscale coating [J].Journal of Nanomaterials,2014,2014:10.

    • [31] KIM E,LEE S,HONG S,et al.Sticky " delivering-from" strategies using viral vectors for efficient human neural stem cell infection by bioinspired catecholamines [J].ACS Applied Materials and Interfaces,2014,6(11):8288-8294.

    • [32] KANG S M,LEE H.Surface modification of highly ordered pyrolytic graphite(HOPG)by a mussel-inspired poly(norepinephrine)coating:Characterizations and cell adhesion test[J].Bulletin of the Korean Chemical Society,2013,34(3):960-962.

    • [33] DEWEZ J L,BERGER V,SCHNEIDER Y J,et al.Influence of substrate hydrophobicity on the adsorption of collagen in the presence of pluronic F68,albumin,or calf serum[J].Journal of Colloid and Interface Science,1997,191(1):1-10.

    • [34] TOITA R,SUNARSO,RASHID A N,et al.Modulation of the osteoconductive property and immune response of poly(ether ether ketone)by modification with calcium ions[J].Journal of Materials Chemistry B,2015,3(44):8738-8746.

    • [35] JIANG X,LI Y,LIU Y,et al.Selective enhancement of human stem cell proliferation by mussel inspired surface coating [J].RSC Advances,2016,6(65):60206-60214.

    • [36] SUN H,MEI L,SONG C,et al.The in vivo degradation,absorption and excretion of PCL-based implant [J].Biomaterials,2006,27(9):1735-1740.

    • [37] LIU Y,ZHOU G,LIU Z,et al.Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration [J].Scientific Reports,2017,7(1):1-10.

    • [38] CHEN Y,TASKIN M B,ZHANG Z,et al.Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension [J].Biomaterials Science,2019,7(5):2165-2173.

    • [39] JEONG S I,KIM B S,KANG S W,et al.In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-ε-caprolactone)scaffolds[J].Biomaterials,2004,25(28):5939-5946.

    • [40] ÇAPKIN M,ÇAKMAK S,KURT F Ö,et al.Random/aligned electrospun PCL/PCL-collagen nanofibrous membranes:comparison of neural differentiation of rat AdMSCs and BMSCs [J].Biomedical Materials(Bristol),2012,7(4):045013.

    • [41] FANG Z,FU W,DONG Z,et al.Preparation and biocompatibility of electrospun poly(l-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds [J].Applied Surface Science,2011,257(9):4133-4138.

    • [42] NEAL R A,THOLPADY S S,FOLEY P L,et al.Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration[J].Journal of Biomedical Materials Research-Part A,2012,100 A(2):406-423.

    • [43] TASKIN M B,XU R,ZHAO H,et al.Poly(norepinephrine)as a functional bio-interface for neuronal differentiation on electrospun fibers [J].Physical Chemistry Chemical Physics,2015,17(14):9446-9453.

    • [44] KU S H,PARK C B.Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering [J].Biomaterials,2010,31(36):9431-9437.

    • [45] KHETANI S,YONG K W,KOLLATH V O,et al.Engineering shelf-stable coating for microfluidic organ-on-a-chip using bioinspired catecholamine polymers[J].ACS Applied Materials and Interfaces,2020,12(6):6910-6923.

    • [46] WANG B,WANG G,ZHAO B,et al.Antigenically shielded universal red blood cells by polydopamine-based cell surface engineering[J].Chemical Science,2014,5(9):3463-3468.

    • [47] HONG D,LEE H,KO E H,et al.Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells [J].Chemical Science,2015,6(1):203-208.

    • [48] QIU J,CHEN G,LIU S,et al.Bioinspired polyelectrolyte-assembled graphene-oxide-coated C18 composite solid-phase microextraction fibers for in vivo monitoring of acidic pharmaceuticals in fish [J].Analytical Chemistry,2016,88(11):5841-5848.

    • [49] KENNEDY L C,BICKFORD L R,LEWINSKI N A,et al.A new era for cancer treatment:gold-nanoparticle-mediated thermal therapies[J].Small,2011,7(2):169-183.

    • [50] LEE W,LEE J U,BYUN J H.Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites[J].Composites Science and Technology,2015,110:53-61.

    • [51] HORMOZI-NEZHAD M R,MOSLEHIPOUR A,BIGDELI A.Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles [J].Sensors and Actuators,B:Chemical,2017,243:715-720.

    • [52] HONG J Y,YU X,BAK B M,et al.Bio-inspired functionalization and redox charge transfer of graphene oxide sponges for pseudocapacitive electrodes[J].Carbon,2015,83:71-78.

    • [53] XU H,SHI X,MA H,et al.The preparation and antibacterial effects of dopa-cotton/AgNPs [J].Applied Surface Science,2011,257(15):6799-6803.

    • [54] LEE H,RHO J,MESSERSMITH P B.Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings[J].Advanced Materials,2009,21(4):431-434.

    • [55] KANG S M,PARK S,KIM D,et al.Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry[J].Advanced Functional Materials,2011,21(1):108-112.

    • [56] DAS T K,GANGULY S,REMANAN S,et al.Mussel-inspired Ag/poly(norepinephrine)/MnO2 heterogeneous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline:an alternative approach [J].Research on Chemical Intermediates,2020,46(7):3629-3650.

    • [57] SON E J,KIM J H,KO J W,et al.Catecholamine-functionalized graphene as a biomimetic redox shuttle for solar water oxidation[J].Faraday Discussions,2017,198:135-145.

    • [58] KIM S,MOON G H,KIM G,et al.TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants [J].Journal of Catalysis,2017,346:92-100.

    • [59] WANG Z,LI J,TANG F,et al.Polydopamine nanotubes-templated synthesis of TiO2 and its photocatalytic performance under visible light[J].RSC Advances,2017,7(38):23535-23542.

    • [60] KIM J H,LEE M,PARK C B.Polydopamine as a biomimetic electron gate for artificial photosynthesis [J].Angewandte Chemie-International Edition,2014,53(25):6364-6368.

    • [61] KIM B J,KIM D H,KWON S L,et al.Selective dissolution of halide perovskites as a step towards recycling solar cells [J].Nature Communications,2016,7:11735.

    • [62] WANG Y,LUO L,WANG Z,et al.Growing poly(norepinephrine)layer over individual nanoparticles to boost hybrid perovskite photocatalysts[J].ACS Applied Materials and Interfaces,2020,12(24):27578-27586.

    • [63] CAI C,CHEN J.Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J].Analytical Biochemistry,2004,332(1):75-83.

    • [64] LIU Y,NAN X,SHI W,et al.A glucose biosensor based on the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine[J].RSC Advances,2019,9(29):16439-16446.

    • [65] XIA L,VEMURI B,GADHAMSHETTY V,et al.Poly(ether sulfone)membrane surface modification using norepinephrine to mitigate fouling[J].Journal of Membrane Science,2020,598:117657.

    • [66] SHEN H,QU F,XIA Y,et al.Straightforward and ultrastable surface modification of microfluidic chips with norepinephrine bitartrate improves performance in immunoassays[J].Analytical Chemistry,2018,90(6):3697-3702.

    • [67] JANKOWSKI P,GARSTECKI P.Stable hydrophilic surface of polycarbonate[J].Sensors and Actuators,B:Chemical,2016,226:151-155.

    • [68] CHEN J,LIANG R P,WU L L,et al.One-step preparation and application of mussel-inspired poly(norepinephrine)-coated polydimethylsiloxane microchip for separation of chiral compounds [J].Electrophoresis,2016,37(12):1676-1684.

    • [69] BALDONESCHI V,PALLADINO P,BANCHINI M,et al.Norepinephrine as new functional monomer for molecular imprinting:An applicative study for the optical sensing of cardiac biomarkers [J].Biosensors and Bioelectronics,2020,157:112161.

    • [70] ZAHRAN S,FIGUEIREDO V P,GRAHAM M M,et al.Proteolytic digestion of serum cardiac troponin I as marker of ischemic severity [J].The Journal of Applied Laboratory Medicine,2018,3(3):450-455.

    • [71] WU J,XIAO X,LI Z,et al.Enantioseparation of chiral Β-blockers using polynorepinephrine-coated nanoparticles and chiral capillary electrophoresis [J].Analytical and Bioanalytical Chemistry,2019,411(10):2121-2129.

    • [72] QIU J,CHEN G,ZHU F,et al.Sulfonated nanoparticles doped electrospun fibers with bioinspired polynorepinephrine sheath for in vivo solid-phase microextraction of pharmaceuticals in fish and vegetable [J].Journal of Chromatography A,2016,1455:20-27.

    • [73] JUNG S,KIM H,LEE J,et al.Bio-inspired catecholamine-derived surface modifier for graphene-based organic solar cells [J].ACS Applied Energy Materials,2018,1(11):6463-6468.

    • [74] LIANG R P,XIANG C Y,WANG J W,et al.Preparation of polynorepinephrine adhesive coating via one-step self-polymerization for enantioselective capillary electrochromatography coupled with electrogenerated chemiluminesense detection [J].Journal of Chromatography A,2013,1284(5):194-201.

    • [75] KANG S M,LEE H.One-step immobilization of initiators for surface-initiated ring opening polymerization and atom transfer radical polymerization by poly(norepinephrine)coating [J].Journal of Nanoscience and Nanotechnology,2015,15(2):1597-1600.

    • [76] KHETANI S,KOLLATH V O,EASTICK E,et al.Single-step functionalization of polycatecholamine nanofilms for ultra-sensitive immunosensing of ubiquitin carboxyl terminal hydrolase-L1(UCHL-1)in spinal cord injury [J].Biosensors and Bioelectronics,2019,145(1):111715.

    • [77] OZMEN O,LEE S,HACKETT G,et al.Efficient and controlled nano-catalyst solid-oxide fuel cell electrode infiltration with polynorepinephrine surface modification [J].Journal of Power Sources,2021,485:229232.

    • [78] IWASAKI T,TAMAI Y,YAMAMOTO M,et al.Melanin precursor influence on structural colors from artificial melanin particles:PolyDOPA,polydopamine,and polynorepinephrine [J].Langmuir,2018,34(39):11814-11821.

  • 手机扫一扫看