en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄伟颖,男,1988年出生,博士。主要研究方向为防护与功能涂层,表面改性技术。E-mail:huangwy@csust.edu.cn

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210207001

参考文献 1
曾松盛,吴润,贾冬梅,等.合金化热镀锌带钢表面黑斑缺陷分析[J].材料科学,2019,9(9):829-834.ZENG S S,WU R,JIA D M,et al.Analysis of black spot defects on the surface with the galvanealed steel strip [J].Material Sciences,2019,9(9):829-834.(in Chinese)
参考文献 2
王瑶,赵雪妮,党新安,等.海洋环境下钢材表面镀铝工艺的研究进展[J].材料导报,2018,32(21):3805-3813,3822.WANG Y,ZHAO X N,DANG X A,et al.Aluminizing steel surface for providing protection in marine envirement:a technological reviw [J].Materials Reports,2018,32(21):3805-3813,3822.(in Chinese)
参考文献 3
MEVREL R,DURET C,PICHOIR R.Pack cementation processes[J].Materials Science and Technology,1986,2(3):201-206.
参考文献 4
YENER T,ERDOGAN A,GöK M S,et al.Formation,characterization,and wear behavior of aluminide coating on Mirrax® ESR steel by low-temperature aluminizing process[J].Journal of Tribology,2020,143(1).
参考文献 5
BUKUDUR S V,NAGODE A,KARPE B,et al.Pack aluminization process of heat resistant FeCrAl and NiCr alloys [J].Acta Technica Corviniensis-Bulletin of Engineering,2018,11(1):15-18.
参考文献 6
YENER T.Chromium-aluminide coatings via pack cementation method on inconel 718 alloy and Fe-Cr-Ni super alloy [J].Sakarya University Journal of Science,2019,23(5):817-823.
参考文献 7
FAN X P.Study on the surface packing cementation aluminizing processes of Q345 steel in an air environment [J].Materials Research Express,2020,7(11):116522.
参考文献 8
张冀翔,徐修炎,宋健斐,等.碳钢表面粉末包埋法渗铝的实验研究[J].表面技术,2018(12):68-75.ZHANG J X,XU X Y,SONG J F,et al.Experimental study on aluminizing of carbon steel surface by pack Cementation [J].Surface Technology,2018(12):68-75.(in Chinese)
参考文献 9
HUANG M,WANG Y,CHU C H,et al.Wear resistance of alumina-coated oil casing steel N80 via MAO with rare earth additive [J].Ceramics International,2017,43(8):6397-6402.
参考文献 10
谢孟芸,汪诚,张佩宇,等.复合强化对渗铝K403合金组织和力学性能的影响 [J].中国表面工程,2018,31(1):26-31.XIE M Y,WANG C,ZHANG P Y,et al.Effects of composite strengthening on microstructure and mechanical property of K403 aluminized alloy[J].China Surface Engineering,2018,31(1):26-31.(in Chinese)
参考文献 11
刘红兵,陶杰,张平则,等.316L 不锈钢基材功能梯度Al涂层残余热应力分析[J].核技术,2008,31(2):27-32.LIU H B,TAO J,ZHANG P Z,et al.Analysis of residual thermal stress of functionally graded Al coating on 316L stainless steel substrate[J].Nuclear Techniques,2008,31(2):27-32.(in Chinese)
参考文献 12
NAKAMURA R,IIJIMA Y.Activation volume for interdiffusion in bcc ordered and disordered phases of the Fe-Al system[J].Philosophical Magazine,2004,84(19):1907-1926.
参考文献 13
YENER T,DOLEKER K,ERDO?AN A.High temperature oxidation behavior of low temperature aluminized Mirrax ® ESR steel[J].Materials Research Express,2019,6(11):116407.
参考文献 14
RONG J,WANG X,ZHANG Y,et al.Al2O3/FeAl interfacial behaviors by yttrium doping in high temperature oxidation [J].Ceramics International,2019,45(17,Part A):22273-22280.
参考文献 15
WANG Y,WANG J,HU H,et al.Effect of Y2O3 content in the pack mixtures on the cyclic-oxidation of Y2O3-modified low temperature aluminide coatings on 309 stainless steel [J].Vacuum,2018,158:101-112.
参考文献 16
GUO S,WANG Z B,LU K.An Aluminide surface layer containing lower-al on ferritic-martensitic steel formed by lower-temperature aluminization [J].Journal of Materials Science & Technology,2015,31(12):1268-1273.
参考文献 17
KE S R,WANG J,ZHU C Y,et al.On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process[J].Materials Chemistry and Physics,2015,162:263-272.
参考文献 18
ZHOU Z,XIE F,HU J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coatings Technology,2008,203(1):23-27.
参考文献 19
MAJUMDAR S,PAUL B,KAIN V,et al.Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J].Materials Chemistry Physics,2017,190:31-37.
参考文献 20
ZHAN Z,LIU Z,LIU J,et al.Microstructure and high-temperature corrosion behaviors of aluminide coatings by low-temperature pack aluminizing process [J].Applied Surface Science,2010,256(12):3874-3879.
参考文献 21
YENER T.Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation[J].Vacuum,2019,162:114-120.
参考文献 22
DONG J,SUN Y,HE F.Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation[J].Surface and Coatings Technology,2019,375:833-838.
参考文献 23
LI N N,WANG M Z,LI Y S,et al.Corrosion behavior of Fe-Al coatings fabricated by pack aluminizing method [J].Acta Metallurgica Sinica(English Letters),2016,29(9):813-819.
参考文献 24
LEVIN L,GINZBURG A,KLINGER L,et al.Controlled formation of surface layers by pack aluminization [J].Surface and Coatings Technology,1998,106(2):209-213.
参考文献 25
ZHAN Z,HE Y,WANG D.Low-temperature processing of Fe-Al intermetallic coatings assisted by ball milling [J].Intermetallics,2006,14(1):75-81.
参考文献 26
REZABATENI M,STEPHANIESHAW,PINGWEI,et al.Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell(SOFC)interconnects by pack cementation [J].Advanced Manufacturing Processes,2009,24(6):626-632.
参考文献 27
YING X,ZHANG L,XU H,et al.Efficient Fischer-Tropsch microreactor with innovative aluminizing pretreatment on stainless steel substrate for Co/Al2O3 catalyst coating[J].Fuel Processing Technology,2016,143:51-59.
参考文献 28
XIANG Z D,DATTA P K.Pack aluminisation of low alloy steels at temperatures below 700℃ [J].Surface and Coatings Technology,2004,184(1):108-115.
参考文献 29
SPRINGER H,KOSTKA A,PAYTON E J,et al.On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys [J].Acta Materialia,2011,59(4):1586-1600.
参考文献 30
NOVáK P,MICHALCOVáA,MAREK I,et al.On the formation of intermetallics in Fe-Al system-An in situ XRD study [J].Intermetallics,2013,32:127-136.
参考文献 31
BAHADUR A,SHARMA T L,PARIDA N,et al.Structure-property correlation in Al-diffusion coated steels[J].Journal of Materials Science,1993,28(19):5375-5581.
参考文献 32
SON Y I,CHUNG C H,GOWKANAPALLI R R,et al.Kinetics of Fe2Al5 phase formation on 4130 steel by Al pack cementation and its oxidation resistance [J].Metals and Materials International,2015,21(1):1-6.
参考文献 33
WANG X,FAN Y,ZHAO X,et al.Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron[J].Metals,2019,9(6):648.
参考文献 34
NAOI D,KAJIHARA M.Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures [J].Materials Science and Engineering:A,2007,459(1):375-382.
参考文献 35
YUTANORM W,JUIJERM P.Diffusion enhancement of low-temperature pack aluminizing on austenitic stainless steel AISI 304 by deep rolling process [J].Kovove Mater,2016,54:227-232.
参考文献 36
BATES B L,WANG Y Q,ZHANG Y,et al.Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels [J].Surface and Coatings Technology,2009,204(6):766-770.
参考文献 37
NAJI A,GALETZ M C,SCHüTZE M.Design model for diffusion coatings formed via pack cementation[J].Materials and Corrosion,2014,65(3):312-318.
参考文献 38
HUTTUNEN-SAARIVIRTA E,HONKANEN M,TSIPAS S A,et al.Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel [J].Applied Surface Science,2012,259:674-684.
参考文献 39
邓代玉,叶宏.催渗剂 CeO2 对H13模具钢表面渗铝层组织及性能的影响[J].表面技术,2010,39(6):36-38.DENG D Y,YE H.Effect of CeO2 on microscopic structure and properties of H13 hot die steel[J].Surface Technology,2010,39(6):36-38.(in Chinese)
参考文献 40
卢国鑫,金涛,周亦胄,等.激光冲击强化在高温合金材料应用上的研究进展[J].中国有色金属学报,2018,28(9):1755-1764.LU G X,JIN T,ZHOU Y Z,et al.Research progress of laser shock strengthening in the application of superalloy materials[J].The Chinese Journal of Nonferrous Metals,2018,28(9):1755-1764.(in Chinese)
参考文献 41
BUGAYEV A A,GUPTA M C,PAYNE R.Laser processing of inconel 600 and surface structure [J].Optics and Lasers in Engineering,2006,44(2):102-111.
参考文献 42
DONG J,SUN Y,HE F,et al.Effects of substrate surface roughness and aluminizing agent composition on the aluminide coatings by low-temperature pack cementation [J].Materials Research Express,2018,6(3):036409.
参考文献 43
张超,宋义全.碳钢渗铝的组织与腐蚀行为研究[J].热加工工艺,2015(2):178-181.ZHANG C,SONG Y Q.Experimental study on microstructure and corrosion behavior of carbon steel after alumetizing[J].Hot Working Technology,2015(2):178-181.(in Chinese)
参考文献 44
叶晶,王宇,黄敏.低温助渗剂Zn对 N80 套管钢低温渗铝层组织的影响[J].热加工工艺,2013,42(8):131-134.YE J,WANG Y,HUANG M.Effect of Zn in pack powder on microstructure of aluminized layer on N80 casing steel at low temperature [J].Hot Working Technology,2013,42(8):131-134.(in Chinese)
参考文献 45
SINGH K,FERNANDES A,PAUL B,et al.Preparation and investigation of aluminized coating and subsequent heat treatment on 9Cr-1Mo Grade 91 steel[J].Fusion Engineering and Design,2014,89(11):2534-2544.
参考文献 46
SASAKI T,YAKOU T.Tool wear and surface roughness during machining of high-temperature aluminized steel [J].Journal of Materials Processing Technology,2008,197(1):89-95.
参考文献 47
KOBAYASHI S,YAKOU T.Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment[J].Materials Science and Engineering:A,2002,338(1):44-53.
参考文献 48
RASTKAR A R,REZVANI N.The Effects of processing time on the microstructure and composition of plasma pack-aluminized and-oxidized surface layers on low carbon steel[J].Metallurgical and Materials Transactions A,2015,46(9):4132-4142.
参考文献 49
MADANIPOUR H,SOLTANIEH M,NAYEBPASHAEE N.Investigation of the formation of Al,Fe,N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel[J].Materials & Design,2013,51:43-50.
参考文献 50
KIM J H,WANG J P,KANG C Y.Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel [J].Metals and Materials International,2011,17(6):931-935.
参考文献 51
史新勃,王宇,黄敏.包埋渗剂Al含量对N80套管钢渗层组织和性能的影响[J].热加工工艺,2012,41(4):123-125,129.SHI X B,WANG Y,HUANG M.Effects of Al content in pack powder on microstructure and mechanical properties of aluminized N80 oil casing steel [J].Hot Working Technology,2012,41(4):123-125,129.(in Chinese)
参考文献 52
AHMADI H,LI D Y.Beneficial effects of yttrium on mechanical properties and high-temperature wear behavior of surface aluminized 1045 steel[J].Wear,2003,255(7):933-942.
参考文献 53
纪文文,宋月鹏,陈克丰,等.稀土元素对40Cr钢渗铝层组织性能的影响研究[J].稀土,2009,30(6):55-59.JI W W,SONG Y P,CHEN K F,et al.Effect of rare earth elements on microstructure and properties of 40Cr steel aluminized layer [J].Chinese Rare Earth,2009,30(6):55-59.(in Chinese)
参考文献 54
MA F,GAO Y,ZENG Z,et al.Improving the Tribocorrosion Resistance of Monel 400 Alloy by Aluminizing Surface Modification [J].Journal of Materials Engineering and Performance,2018,27(7):3439-3448.
参考文献 55
HAN L,HUANG D,YAN X,et al.Effects of aluminizing and combined strengthening on the fatigue property of K403 superalloy component under combined high and low cycle loading [J].International Journal of Fatigue,2019,125:491-504.
参考文献 56
董健,窦炳胜,贺飞羽,等.不锈钢表面渗铝层/ZrO2 复合涂层残余应力模拟[J].表面技术,2019,48(6):235-242.DONG J,DOU B S,HE F Y,et al.Residual stress simulation of aluminized layer/ZrO2 composite coating on stainless steel[J].Surface Technology,2019,48(6):235-242.(in Chinese)
参考文献 57
KHAN R H U,YEROKHIN A L,PILKINGTON T,et al.Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current [J].Surface and Coatings Technology,2005,200(5):1580-1586.
参考文献 58
DANGI B,BROWN T W,KULKARNI K N.Effect of silicon,manganese and nickel present in iron on the intermetallic growth at iron-aluminum alloy interface [J].Journal of Alloys and Compounds,2018,769::777-787.
参考文献 59
BOZZA F,BOLELLI G,GIOLLI C,et al.Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys[J].Surface and Coatings Technology,2014,239(1):147-159.
参考文献 60
GOWARD G W,BOONE D H.Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J].Oxidation of Metals,1971,3(5):475-495.
参考文献 61
刘爱萍,张伟.渗铝钢扩散层生长动力学的计算机拟合[J].金属热处理,2011,36(8):124-127.LIU A P,ZHANG W.Computer fitting of growth kinetics of diffusion layer in aluminized steel[J].Heat Treatment of Metals,2011,36(8):124-127.(in Chinese)
参考文献 62
李德元,杨成,张忠礼,等.碳钢热喷涂渗铝互扩散系数计算[J].沈阳工业大学学报,2008,30(3):288-292.LI D Y,YANG C,ZHANG Z L,et al.Calculation of interdiffusivity of Fe and Al in aluminized arc-sprayed coating on mild steel [J].Journal of Shenyang University of Technology,2008,30(3):288-292.(in Chinese)
参考文献 63
黄敦伟,胡爱萍,张宏伟,等.热浸渗铝X70管线钢扩渗工艺研究[J].表面技术,2013,42(4):72-75,109.HUANG D W,HU A P,ZHANG H W,et al.Research on hot diffusion aluminizing process of X70 pipe line steel[J].Surface Technology,2013,42(4):72-75,109.(in Chinese)
参考文献 64
BOUAYAD A,GEROMETTA C,BELKEBIR A,et al.Kinetic interactions between solid iron and molten aluminium [J].Materials Science and Engineering:A,2003,363(1):53-61.
参考文献 65
ZAREI F,NURANIAN H,SHIRVANI K.Characterization,growth kinetics and high-temperature oxidation behavior of aluminide coating formed on HH309 stainless steel by casting and subsequent heat treatment [J].Intermetallics,2020,120:106742.
参考文献 66
ROSA R,VERONESI P,CASAGRANDE A.On the effect of steel substrate alloying elements on the in-situ formation of intermediate thermal diffusion barrier layers [J].Materials Chemistry and Physics,2020,240:122231.
参考文献 67
MOBIN M,SHARMA H K,HASAN S K.High temperature oxidation behaviour of CeO2 and La2O3 modified aluminide coatings on carbon steel [J].Anti-Corrosion Methods and Materials,2002,49(4):283-294.
参考文献 68
YIN F C,ZHAO M X,LIU Y X,et al.Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum[J].Transactions of Nonferrous Metals Society of China,2013,23(2):556-561.
参考文献 69
黄敏,王宇.低温包埋渗铝及其在石油管材防腐蚀应用中的研究进展[J].热加工工艺,2012,41(8):135-139.HUANG M,WANG Y.Research progress of low—temperature pack aluminizing and its potential application on oil-casing steel and pipeline steel[J].Hot Working Technology,2012,41(8):135-139.(in Chinese)
参考文献 70
SMITH C O.The science of engineering materials[J].Physics Today,1957,10(12):26-27.
参考文献 71
闫世成,闫果,卢亚锋,等.原始Mg粉形状对 Mg-B 体系成相行为的影响[J].金属学报,2007,43(4):59-60.YAN S C,YAN G,LU Y F,et al.Influence of raw Mg powder shape on behavior of phase for Mg-B system [J].Acta Metallurgica Sinica,2007,43(4):59-60.(in Chinese)
参考文献 72
刘东亮,邓建国.材料科学基础[M].华东理工大学出版社,2016.LIU D L,DENG J G.Materials science [ M ].East China University of Science and Technology Press,2016.(in Chinese)
参考文献 73
WEI H,SUN X,ZHENG Q,et al.An inverse method for determination of the interdiffusivity in aluminide coatings formed on superalloy[J].Surface and Coatings Technology,2004,182(1):112-116.
参考文献 74
PAZ Y PUENTE A E,DUNAND D C.Effect of Cr content on interdiffusion and Kirkendall pore formation during homogenization of pack-aluminized Ni and Ni-Cr wires [J].Intermetallics,2018,101:108-115.
参考文献 75
ZHU X X,YANG H G,YUAN X M,et al.Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel[J].Journal of Nuclear Materials,2014,455(1):578-581.
参考文献 76
TRIPATHI S,VERMA V,BROWN T W,et al.Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys[J].Journal of Phase Equilibria and Diffusion,2017,38(2):135-142.
参考文献 77
ZAHEDI H,SHAHRIARI NOGORANI F,SAFARI M.Microstructure analysis of the pack cementation aluminide coatings modified by CeO2 addition [J].Metals and Materials International,2019,.
参考文献 78
孟堃,刘忠,王远,等.碳钢粉末包埋低温渗铝工艺的研究进展[J].热加工工艺,2016(24):31-34.MENG K,LIU Z,WANG Y,et al.Research progress of embedding low-temperature aluminizing process for carbon steel powder[J].Hot Working Technology,2016(24):31-34.(in Chinese)
参考文献 79
MANNING J R.Diffusion in a chemical concentration gradient [J].Physical Review,1961,124(2):470.
参考文献 80
CHEN H,MORRAL J E.Variation of the effective diffusivity in two-phase regions [J].Acta Materialia,1999,47(4):1175-1180.
参考文献 81
PéREZ F J,HIERRO M P,TRILLEROS J A,et al.Iron aluminide coatings on ferritic steels by CVD-FBR technology[J].Intermetallics,2006,14(7):811-817.
参考文献 82
SOMRERK C A,KRASAELOM N,THUBLAOR T,et al.High temperature corrosion behaviour of aluminised FC 25 cast iron using pack cementation [J].Anti-Corrosion Methods and Materials,2019,66(2):236-241.
参考文献 83
RONG J,KANG Z,CHEN S,et al.Growth kinetics and thickness prediction of interfacial intermetallic compounds between solid steel and molten aluminum based on thermophysical simulation in a few seconds [J].Materials Characterization,2017,132:413-421.
参考文献 84
GARIBOLDI E,VERANI M,RIVA C.Modelling of phase evolution during aluminizing processes[J].Advanced Materials Research,2011,278:228-233.
参考文献 85
刘洪福,牛宗伟,赵东山.影响热浸镀铝层厚度的因素分析及预测模型的建立[J].材料保护,2012,45(8):4-6,70.LIU H F,NIU Z W,ZHAO D S.Analysis of factors affecting thickness of hot-dip aluminized coating and establishment of prediction model[J].Materials Protection,2012,45(8):4-6,70.(in Chinese)
参考文献 86
KARUNARATNE M S A,JEPSON M A E,SIMMS N J,et al.Modelling of microstructural evolution in multi-layered overlay coatings[J].Journal of Materials Science,2017,52(20):12279-12294.
参考文献 87
GAO F,HUANG X,LIU R,et al.A Study of pack aluminizing process for NiCrAlY coatings using response surface methodology [J].Journal of Materials Engineering and Performance,2014,23(1):83-91.
参考文献 88
DEJTHAMMARONG P,VISUTTIPITUKUL P,LEELACHAO S,et al.Modelling of nickel aluminide layer growth on IN738 and Haynes 214 in pack aluminizing [J].AIP Conference Proceedings,2020,2279(1):050006.
参考文献 89
LU Y H,QI S G,HUANG C M,et al.A study on diffusion in hot-dip aluminizing [J].Advanced Materials Research,2010,97-101:1253-1256.
目录contents

    摘要

    钢铁作为基础性结构材料,应用在国民经济的各个领域。 由于钢材在工程应用中会发生氧化、腐蚀,采用粉末包埋渗铝对钢材进行表面改性可提高其抗氧化性能和腐蚀性能。 目前为止,关于渗铝工艺参数对渗层微观组织、表面状态和元素扩散机理的研究,比较零散,缺乏系统总结。 综述渗铝工艺参数对粉末包埋渗铝钢的微观组织、表面状态及其性能的影响,分析渗铝工艺参数与渗层微观组织的关联;概括渗铝工艺参数对 Fe-Al 元素扩散系数和扩散激活能的影响规律,分析 Fe-Al 元素扩散机制;总结渗铝层预测模型,对粉末包埋渗铝钢的研究趋势进行展望。

    Abstract

    As fundamental structural materials, steels are widely applied in the national economical fields. Since the oxidation and corrosion occur at steels in engineering applications frequently, surface modification on steel through pack aluminizing can contribute to improve their oxidation resistance and corrosion performance. So far, the effect of aluminizing parameters on the microstructure of coatings, surface integrity and mechanisms for element diffusion is relatively dispersed, which is also deficient and need to be sum up systematically. Accordingly, the impact of aluminizing parameters on the microstructure, surface state and properties of pack aluminized steel was reviewed, and the relationship between aluminizing process parameters and microstructure of the layer was analyzed. In addition, the influence rules of aluminizing process parameters on diffusion coefficient and diffusion activation energy of Fe-Al element were summarized. Also, element diffusion mechanism of Fe-Al and the diffusion mechanism of Fe-Al element was analyzed. The prediction models of aluminized layer is summarized and the tendency of research for aluminized steel prepared via pack cementation has been forecasted.

  • 0 前言

  • 钢材作为结构件受到广泛应用,但其服役环境比较复杂, 容易发生氧化、腐蚀, 降低其力学性能[1]。因此,需要对钢材进行表面处理以提高其抗高温氧化、耐腐蚀和耐磨损等性能。当前,对钢材进行铝涂覆使其在钢材表面形成一层致密的氧化膜, 从而保护基体材料免遭损伤,已成为钢材表面强化的主要手段[2]。其中,粉末包埋渗铝法因具有操作工艺简单,技术难度小,设备投资少,渗件质量好等优势,受到国内外研究者的关注[3]

  • 一般而言,粉末包埋渗铝钢的性能与渗层微观组织密切相关。 TUBA等[4]在650℃对模具钢渗铝4h后的渗层仅为16 μm厚的Fe2Al5 相,而在700℃ 渗铝6h后渗层约为40 μm厚,由Fe2Al5 和Fe3Al组成,其表明更加光滑,表现出更好的耐磨性耐磨性。 BUKUDUR等[5]在670~750℃温度下对Fe-Cr-Al合金渗铝1.5h后发现渗层物相并没有随温度发生改变,均含有Al8Fe5、Fe2Al5 和Fe3Al相,但渗层总厚度随温度升高从30 μm增加到110 μm,此外,渗层厚度越厚其氧化质量增益最小,抗高温氧化性最好。 YENER等[6]在渗剂中加入10%Cr对Fe-Cr-Ni合金进行渗铝,获得了含Al8Cr5 和(SiAl)2Cr的渗层,大幅增加了渗铝钢的硬度,但渗铝钢的脆性也随之增加。 FAN [7]在800℃温度下对Q345钢渗铝2~5h发现渗层物相均为Fe2Al5 和Fe3Al相,尽管渗层厚度随渗铝时间增加,但其渗铝3h后的渗层的抗氧化性能最佳,是渗铝5h后渗层的2倍。总之,渗层的微观组织及其力学性能随渗铝工艺参数的变化而变化,还缺乏统一的认识,需要进一步深入研究。

  • 渗层的表面状态如表面粗糙度、硬度、残余应力等对钢的性能影响很大。张冀翔等[8] 对碳钢在800~1 000℃渗铝4h后,发现800~850℃下获得的渗铝试样表面疏松,表面质量较差;而900℃下获得的渗铝试样表面致密、光滑,具有良好的耐磨性能; 950~1 000℃下获得的渗铝试样表面附着大量细小鼓泡。 HUANG等[9] 研究了渗铝剂中对N80钢的硬度和耐磨性的影响,发现渗剂中添加质量分数为0.15%L2O3 后,渗铝钢硬度最大(约为1 400HV), 其耐磨性优于0.3%L2O3。谢孟芸等[10] 对K403合金渗铝后发现渗层表面存在约70MPa的拉应力, 而在渗层内部存在约60MPa的压应力。刘红兵等[11]对316L梯度功能涂层过程中的残余热应力进行了分析,发现渗层中均为残余压应力,最大约为400MPa。目前,渗层表明状态对钢的性能影响的概括还比较零散, 缺乏系统总结, 需要全面细致研究。

  • 由于渗铝过程中渗层生成是通过元素扩散实现的,因此准确描述元素扩散行为是对于调控渗层微观组织及其表明状态至关重要。 NAKAMURA等[12] 研究了Fe-Al相在900~1 200℃ 时的互扩散系数, 发现温度升高时,扩散系数随之增大,Fe、Al原子能够获得了足够的能量生成物相稳定的FeAl。 DOLEKER等[13]分析Mirrax模具钢在700℃渗铝2~6h后的渗层只有Fe2Al5 相的原因,认为Fe2Al5 相的自由能最低,在低温下最易形成。 RONG等[14] 支出渗剂中加入了1%的Y元素不仅可以降低物相的扩散激活能,还可以显著提高Al2O3 薄膜在高温氧化过程中的抗剥落性能。此外,WANG等[15]也发现了类似效果,指出渗剂中加入10%Y2O3 后,可以在较低温度得到FeAl相,同时其在900℃ 温度下氧化循环50h后,与未加Y2O3 的渗层相比,表面氧化质量增益降低了70%,抗氧化性提高了约1.3倍。总之,扩散系数和扩散激活能是影响渗铝过程中元素扩散的主要因素,其影响机制还没有统一的认识。

  • 基于此,文中概括分析了钢表面粉末包埋渗渗层的表面状态和元素扩散机理,以期为后续高质量和高性能钢表面渗铝的开发和设计提供借鉴和参考。

  • 1 渗层微观组织演变

  • 1.1 渗铝温度

  • 渗铝温度对渗层微观组织有重要影响,不同的渗铝温度会生成不同物相的渗层[16-18]。 MAJUMDAR等[19] 发现, 在550℃ 渗铝温度下, 渗层主要由30 μm厚的Fe2Al5 相组成;而在900℃ 渗铝温度下对316不锈钢进行渗铝,其渗层总厚度为120 μm, 物相成分沿渗层厚度方向由外向内依次是Fe2Al5、 FeAl和Fe(Al)物相,由于FeAl相的渗层与基体紧密结合,没有裂缝或剥落,具有良好的抗高温氧化性。 ZHAN等[20]研究了低碳钢在440~600℃ 渗铝温度范围渗层微观组织,发现渗层的结构为单层,主要由Fe2Al5 组成,但渗层总厚度随着温度升高从20 μm增加到了110 μm;在600℃ 下硫化50h后, 渗铝钢的硫化增益较原始钢低了2个数量级,这是因为具有较高Al含量的Fe2Al5 可以提高低碳钢抗硫化腐蚀性能。 YENER [21]对Fe-Cr-Ni合金在500~700℃渗铝得到的渗层进行了XRD物相分析,发现渗层物相成分随温度和时间增加从多种物相结构(Fe3Al、Al13Fe4 和Al8Cr2) 变成单一的FeAl相(渗层横截面形貌图及XRD图见图1和图2),表面硬度较基体增加了500HV,表现出良好的耐磨性。 DONG等[22]对316L不锈钢在不同渗铝温度下渗铝, 发现渗铝温度从600℃升高到680℃,渗层从26 μm厚的单一物相结构(Fe2Al5)变成了多层结构(沿渗层厚度方向从外到内依次是FeAl3(25 μm),Fe2Al5(50 μm)、FeAl(3 μm)和Fe3Al(8 μm)),其渗层各层结合紧密,具有良好的防氚渗透性。

  • 图1 渗铝试验SEM显微图像[21]

  • Fig.1 SEM micrographs for the aluminized samples [21]

  • 图2 Fe-Cr-Ni合金渗层XRD物相分析图[21]

  • Fig.2 XRD patterns of Fe-Cr-Ni alloy layer [21]

  • 从上述文献可知,渗层的物相成分对渗铝温度非常敏感,渗铝温度不同,铁铝原子互扩散速率不同,从而使渗层物相成分差异明显,但总体来说,各种成分的物相对表面性能均有所改善。表1归纳了在不同温度范围内渗铝钢组织和性能的情况。从表1可知,在700℃以下渗铝,渗层主要以Fe2Al5 相为主,而温度高于700℃后,渗层中大多会出现多种低铝相渗层。这种现象的原因是渗铝过程中,Fe2Al5 相所需要的能量是最少的,而温度是物相形成的主要能量来源。因此,温度高于700℃后,原子的振动能变大,Fe2Al5 相得到更多能量,向低铝相转化。另外,温度越高,铝、铁原子的扩散能力越强,渗层厚度值增加。

  • 表1 不同温度范围内渗铝钢组织和性能

  • Table1 Microstructure and properties of aluminized steels in different temperature ranges

  • 1.2 渗铝时间

  • 渗铝时间是影响渗层物相成分的另一个重要因素[17,26-30]。 BAHADUR等[31] 研究了304不锈钢在950℃ 温度下粉末包埋渗铝后渗铝层微观组织变化,发现渗铝时间为2h时,渗层外层为20 μm厚的Fe2Al5、内层为50 μm厚的FeAl;而渗铝时间为4h, 渗层中则只有115 μm厚的FeAl。文献[21]报导了Fe-Cr-Ni合金600℃温度下渗铝2h的渗层物相成分是Fe3Al和FeAl2 相,当渗铝时间延长至4h,渗层中新增了FeAl和Al13Fe4 相,同时渗层总厚度从11 μm变为17 μm。然而,SON等[32] 用XRD分析了AISI 4130钢在500℃ 温度下分别渗铝6、12和24h后的渗层物相成分,发现渗层物相并不会随随渗铝时间变化,均为Fe2Al5 相,但是其厚度随着渗铝时间从20 μm增加到了52 μm,如图3所示。 WANG等[33]也发现了类似现象,指出铸铁在830℃ 温度下渗铝不同时间后的渗层物相成分没有发生改变,沿渗层厚度方向由外向内依次为Fe2Al5 和FeAl相,但是渗层总厚度随着渗铝时间的变化(1~5h) 从40 μm增加到了105 μm。综合来看,不是所有的渗铝试验中,渗层的物相成分都会随着渗铝时间发生变化,但是在较短的时间范围内渗层厚度均会随渗铝时间增加而增加,而渗层厚度的增加,在不降低渗铝钢抗氧化、抗腐蚀等性能的同时,极大地延长了渗铝钢的使用寿命。有研究表明,在一定时间范围内,渗铝层厚度的生长动力学与时间的关系如式(1)所示[21,29-30,34-35] :

  • d=kt1/2
    (1)
  • 式中,d 为渗层厚度;k 为线性常数;t 为渗铝时间。然而,当渗铝时间延长到一定时间时,该公式不再适用。试验也表明渗层厚度不会随渗铝时间无休止的增加;反而,渗铝时间过长,可能会出现表面出现粘结现象,使渗铝层表面质量下降。分析认为一方面可能是金属间化合的生成对Al原子的扩散有一定的阻碍作用,另一方面活化剂也会有一部分的消耗挥发,当Cl离子的浓度减少到一定的范围内时,渗铝反应无法继续进行。

  • 图3 AISI 4130钢在500℃渗铝后的XRD和渗层截面图[32]

  • Fig.3 XRD and cross-sectional graphs of the aluminized layer of AISI 4130steel at 500℃ [32]

  • 1.3 渗铝剂

  • 渗铝剂包括活化剂、铝源、添加剂等,是影响粉末包埋渗铝化学反应的关键因素,其中,活化剂的种类和含量对渗层的物相成分有很大影响。表2列出了低碳钢在不同成分的渗铝剂下进行渗铝的渗层物相成分[27]。由表2可知,当活化剂为AlCl3 时,渗层由Fe14Al86 相构成;当活化剂分别是AlF3 和NaF时,渗层物相均是FeAl和AlF3;当活化剂为NaCl时,渗层主要由FeAl相组成。 KE等[17] 指出采用质量分数为2%NH4Cl作为活化剂对P92钢进行渗铝,获得的渗层是Ni3Al;而当采用2%AlCl3 作为活化剂时,制备的渗层沿渗层厚度方向从外到内依次是Ni2Al3、NiAl和Ni3Al相。

  • 铝源的成分不同,其活性不同,也会影响渗层的物相成分。 BATES等[36] 发现采用纯铝粉作为铝源对T91钢进行渗铝,生成的渗层是Fe2Al5 相,而采用Cr-25Al作为铝源,其渗层主要是由Fe2Al5 相和FeAl相构成;采用Cr-15Al作为铝源,其渗层为FeAl相。 SPRINGER等[29] 发现铝源含量对渗层的物相和后厚度均有影响,如图4a所示,用含量(质量分数,下同) 为99.99%的Al对低碳钢渗铝后发现渗层中含有Fe2Al5 相和Al13Fe4 相,渗层总厚度约为40 μm;而使用Al-5%Si渗铝后,渗层主要物相成分为Al8Fe2 Si, 渗层总厚度约为15 μm( 图4b)。 NAJI等[37]也发现类似现象,对AISI321钢渗铝后发现Al粉含量较高时(10%Al)生成的渗层沿渗层厚度从外到内依次是50 μm厚的Fe2A15 相和15 μm厚的FeA1相;而Al粉含量较低时(用1%Al的铝源),渗层中只有27 μm厚的FeA1相。这些研究结果表明渗剂中铝源含量越高,渗层中越容易形成高铝相( Fe2Al5、 Al13Fe4 等), 同时渗层的厚度值也越大。

  • 表2 不同活化剂对低合金钢在650℃温度粉末包埋渗铝8h的物相[28]

  • Table2 Phases of pack aluminizing of low alloy steel with different activators at 650℃ for 8h

  • 图4 低碳钢使用不同铝含量渗铝剂渗铝后形成的渗层[29]

  • Fig.4 Layer formed by aluminizing with aluminizing agents of different aluminum content in low carbon steel [29]

  • 通常,在渗剂中加入其他合金粉末,会对渗铝层物相产生一定影响。 WANG等[15] 研究了用Y2O3 代替20%Al2O3 作填充剂对309不锈钢在700℃ 温度下进行渗铝,发现生成的渗层是Fe24Al76.8 ,该相与Fe2Al5 相比具有更高的铝含量,分析原因是稀有元素促进了渗铝过程的发生。 HUTTUNEN-SAARIVIRTA等[38]在渗剂中加入Bi4C,对P91钢在715℃ 温度下粉末包埋渗铝,获得的渗层由Fe2Al5,FeAl,FeCr2 和AlN这4种物相组成。邓代玉等[39] 研究了在渗剂中添加稀土元素CeO2 对H13模具钢渗层的影响,发现未添加CeO2 时,渗层主要由Fe2Al5,FeAl和FeAl2 相组成,渗层总厚度约为50 μm;加入0.7%CeO2 后,渗层表面还出现了Al3Ce化合物相和Al8CeFe4 相,渗层总厚度为230 μm,但当CeO2 添加量大于1%,则无法观测到明显的渗层。然而,张冀翔等[8]发现在渗剂中掺入不同比例的石墨粉(5%~30%)渗铝物相物相成分没有变化,主要为Fe2Al5 相,同时渗层厚度也随着石墨粉含量的增加从370 μm减少到了245 μm。

  • 综合来看,渗铝剂对渗层组织的影响是活化剂、铝源、添加剂3者共同的作用,活化剂主要为铝源中的Al原子提供活性,其活性的高低决定了物相的种类和厚度;添加剂则根据种类的不同,可以提升或者抑制活化剂。因此,对于有不同表面需求的渗铝钢, 难以量化渗铝剂配方。

  • 2 表面状态

  • 2.1 粗糙度

  • 渗铝钢表面粗糙度对渗层质量有影响,粗糙度越高,其表面容易出现应力集中,导致渗铝钢的疲劳寿命下降[40-41]。目前的研究多集中在渗剂成分(如活化剂、添加剂等) 对渗铝钢表面粗糙度的影响。 DONG等[42]研究了活化剂含量对316L不锈钢表面粗糙度的影响。渗剂中AlCl3 含量为3%时,活性铝原子的数量较少,不能全部覆盖钢材表面,导致初始镀铝层不连续,随着渗铝继续进行,渗铝层表面逐渐呈现不均匀的外观(粗糙度为4.007 μm)。而渗剂中AlCl3 含量为5%时,钢材表面上会形成连续且致密的活性铝原子层,从而获得比较均匀的渗铝层(表面粗糙度为2.814 μm),其渗铝过程图如图5所示。

  • 图5 不同含量活化剂对渗层表面粗糙度影响示意图[42]

  • Fig.5 Influence of activators with different contents on the surface roughness of aluminized layer [42]

  • 添加剂对表面粗糙度的影响主要取决于其目的。张超等[43]为了提高Q235碳钢的电化学腐蚀性能,在渗铝剂中加入20%石墨粉和18%Fe2O3,使其在980℃温度下粉末包埋渗铝6h,获得了白亮色表面,试样表面没有烧结等现象发生,大幅度降低了渗铝层表面粗糙度。然而,WANG等[15]在渗铝剂中加入20%Y2O3 对309不锈钢渗铝以增加其抗氧化能力,结果表明,加入Y2O3 后的渗铝层表面粗糙度明显增加。分析认为,Y2O3 的加入使渗铝层表面快速形成氧化铝,增强了其抗氧化能力,但同时也增加了表面粗糙度。叶晶等[44] 在渗铝剂中加入与铝粉质量成比例的Zn粉(Zn ∶Al=40 ∶60),对N80套管钢在530℃温度下渗铝2h后,也发现渗铝层表面粗糙度增大,这是因为加Zn粉后试样表面连续性较差,表面会有块状物形成,故渗铝层表面粗糙度变大,但是加锌后会使渗层致密、均匀。由此可见,渗铝钢表面粗糙度的大小取决于添加剂的种类,虽然小的粗糙度有利于渗铝钢的疲劳寿命,但由于渗铝钢的服役环境不同,往往会在渗剂中加入添加剂来增强某方面性能,这难免会增加表面粗糙度,所以应根据实际需求选择利益最大化的渗层组织。

  • 2.2 显微硬度

  • 2.2.1 渗铝温度

  • 有研究表明,渗铝钢的显微硬度受渗铝温度的影响[21]。 LI等[23]发现,在650℃温度下对Q235钢进行渗铝, 渗层物相只有Fe2Al5 相, 其硬度为820HV;而在750℃ 温度下渗层物相主要是Fe2Al5 和FeAl3 相,其平均硬度为740HV。 SINGH等[45] 研究了91Cr钢在不同渗铝温度下制备的渗层表面硬度变化:在650℃温度下,表面硬度为595HV(渗层主要为Fe2Al5 相和少量的FeAl3 相参杂在其中), 在750℃温度下,表面硬度为635HV(渗层外层为Fe2Al5 相,内层为FeAl相),而在950℃ 温度下,表面硬度为420HV(渗层外层为FeAl相,内层为Fe(Al))。由此可见,渗铝温度使渗铝钢的显微硬度发生变化的主要原因是渗层物相随温度发生改变, 在低温渗铝时,渗铝钢表面主要是由Fe2Al5 相组成,其具有较高的硬度,而随着温度升高,Fe2Al5 相逐渐转换成其他硬度较低的物相( Fe3Al、 FeAl等) [31,46-47];然而,YENER [21]发现Fe-Cr-Ni钢700℃ 渗铝得到连续致密的FeAl单相渗层的显微硬度为855HV,高于其在600℃ 温度下得到的含有Fe3Al、 Al13Fe4 和Al8Cr2 相渗层硬度(760HV)。所以,最终关于物相对渗层表面硬度的影响需要综合考虑物相种类及其成型状态。

  • 2.2.2 渗铝时间

  • 由于不同的渗铝时间会产生不同的物相,故渗铝时间对渗铝钢表面硬度也会有影响。 RASTKAR等[48]发现低碳钢在700℃ 温度下渗铝5min后,渗层主要有FeAl3 和Fe2Al5 相,其硬度为950HV;渗铝10和15min后渗层中均为Fe2Al5 相,其硬度分别为980和960HV。然而,MADANIPOUR等[49] 报道了碳钢在500℃温度下渗铝2.5~10h,渗层物相主要是Fe2Al5 相,但表面硬度从590HV增加到750HV。分析认为,随着渗铝时间的增加,Fe2Al5 相变得更加均匀,所以表面硬度增加。 KIM等[50] 发现增加渗铝时间会增加渗层硬度的深度,对12Cr钢在750℃温度下分别渗铝5min、10min和30min后,发现渗层表面硬度变化不大,均在880HV左右;然而渗铝30min,渗层硬度的深度约为200 μm, 渗铝5和10min,渗层硬度的深度分别约为20和30 μm。综合而言,渗铝时间可以使渗层物相发生变化或者使渗层厚度和均匀性发生改变,从而达到改变渗层表面硬度的目的。

  • 2.2.3 渗铝剂

  • 关于渗铝剂对表面硬度的影响,铝粉含量及添加剂是关键。如表3所示,用35%Al的渗铝剂渗铝生成的物相为FeAl相, 渗层表面硬度最大约为500HV,而用10%和20%渗剂渗层均生成Fe3Al相,其硬度为370HV [51]。添加剂则主要以稀土元素添加为主,其在渗铝过程中生成含有稀土元素的合金化合物可以提高渗铝钢表面硬度的同时增加其防腐蚀性能[52]。但是添加剂存在着一个量的问题, 纪文文等[53]发现当稀土元素超过5%,40Cr钢渗铝后渗层中含有大量孔洞且渗层厚度非常不均匀,甚至出现严重漏渗现象。分析认为,适量稀土元素的加入,使得Al原子扩散加速,得到的渗层组织细小, 有利于形成连续致密的渗铝层,起到了细晶强化的作用,故而增大了表面硬度,但稀土加入量过高时, 会导致稀土夹杂物过多,反而使硬度降低。

  • 表3 不同添加剂对渗层组织和表面硬度的影响

  • Table3 Influence of different additives on the microstructure and surface hardness of the Aluminizing layer

  • 2.3 残余应力

  • MA等[54]研究了M400钢在900℃ 渗铝4h后渗层表面的抗磨性能。结果表明,渗层为单层的Ni2Al3 相,检测出其残余压应力为(-360±25) MPa, 分析认为残余压应力可能通过降低金属原子的活性来减缓渗层表面磨损,同时,当发现铝涂层和基体之间的界面集成没有分层和裂纹,这表明渗铝层的压缩残余应力不超过临界值,可以适当延缓疲劳裂纹萌生。 HAN等[55]发现渗铝后的残余应力可以通过工艺调整,在对K403钢在950℃ 渗铝3h后,用X射线应力分析仪检测出试样表面存在着约50MPa的拉应力;而在对K403钢经过渗铝后进行喷丸强化,检测到渗层中存在着最大约600MPa的压应力。文献[56]研究了沉积温度(400~700℃)对不锈钢表面渗铝层/ZrO2 复合涂层残余应力的影响, 发现残余应力均为压应力, 最大值出现在渗层。 Khan等[57]发现铝合金氧化铝涂层中a-Al2O3 组分的残余应力存在应力梯度,应力范围为(-45±27) MPa到(-422 ± 24) MPa,分析认为,当应力值较大时,极高的压应力可能导致涂层与母材分离,涂层内部发生散裂,或在涂层中形成裂纹。综合来看,残余压应力可以使渗层产生剥落裂纹的倾向减小,可以通过渗铝后续工艺调整获得。

  • 3 渗铝过程中Fe-Al元素扩散机理

  • 3.1 影响Fe-Al元素扩散的因素

  • 粉末包埋渗铝过程中Fe-Al元素扩散主要有两个阶段,首先,活性铝原子的沉积在基体金属的表面上,随后溶入基体金属中,形成表面同溶体层或金属化合物层,即最初的渗铝层;然后,活性铝原子继续沉积和吸收,已溶入的活性铝原子在高温下向基体金属内部扩散,同时,基体金属的铁原子也向渗铝层扩散,从而使渗层物相发生变化并增加渗层厚度[58-59]。整个扩散过程中,铁铝原子结合生成合金化合物所需的能量由扩散激活能表示,而扩散系数则反应了铁铝原子的扩散速率,扩散系数越大,渗层厚度越大,同时渗层物相也会发生改变。因此,Fe-Al元素扩散主要由扩散激活能和扩散系数决定,而这些都与渗铝工艺参数( 如温度, 渗剂成分等) 有关。

  • (1)扩散激活能。 GOWARD和BOONE [60] 研究了镍基渗铝的固相扩散机制,指出可以通过渗铝过程中铝的活性高低、铝原子扩散的激活能大小来了解渗铝涂层的结构类型,高活性铝、小的扩散激活能会生成富铝相,在这之后,众多研究者将其理论应用到了铁铝扩散之中进行研究。研究表明,在研究渗铝过程中,Al原子和Fe原子的相互扩散符合Fick定律[61-63],随温度升高,原子的振动能越大,铝、铁元素的扩散能力越强。 KOBAYASHI [47] 和BOUAYAD [64]根据公式(2)计算了Fe2Al5、FeAl3 和FeAl的扩散激活能,指出Fe2Al5 相的扩散激活能最小,因此渗铝过程中Fe2Al5 总是最先生成。

  • X=K0exp-QRTt1/2
    (2)
  • 式中,X 为渗层厚度;K 0 为线性常数;R 为气压常数;T 为渗铝温度;Q 为扩散激活能;t 为渗铝时间。

  • YENER [21]发现Fe-Cr-Ni合金在550~650℃ 渗铝2h后渗层厚度随温度升高从0 μm增加到15 μm,其物相主要是Al13Fe4 相,分析认为渗铝温度越高,更容易激活基体Fe元素与活性Al原子相互扩散。 SON等[32] 也发现类似现象, 指出AISI 4130钢在500~700℃渗铝后渗层中只有Fe2Al5 相, 这是因为在该温度范围内不能够给Fe、Al原子提供足够的能量使其生成Fe3Al、 FeAl等其他物相。 FARHAD等[65]对HH309不锈钢在900~1050℃ 渗铝后得到了含有Fe2Al5 +FeAl2 相和FeAl相的复合渗层,认为在该温度范围内,随温度升高,Fe2Al5 + FeAl2 相能够获得了更多能量并向具有更高激活能的FeAl相转变。总之,温度是影响渗铝过程中激活Fe、Al元素扩散的主要因素。

  • 渗铝剂中的活化剂种类以及渗剂中的添加剂均对扩撒激活能有影响。 XIANG等[28] 对比了AlCl3、 AlF3、NaCl和NaF这4种活化剂对低碳钢粉末包埋渗铝中扩散激活能的影响,结果表明AlCl3 具有最好的活化能力,其降低渗层物相的激活能效率是其它活化剂的3倍。纪文文等[53] 研究了在渗剂中加入4%CeO2 后对40Cr钢渗铝过程中扩散激活能的影响,发现由于CeO2 参与了活性Al原子的反应过程,使活性Al原子产生过程减少了约4.3kJ/mol能量,为激活生成FeAl和Fe3Al相提供了更多能量。 ROBERTO等[66]等也发现类似现象,指出在P91钢渗铝的渗剂中加入Cr元素,可以得到具有较高活化能的FeAl相。刘爱萍等[61] 研究了稀土元素La对20钢渗铝过程中扩散激活能的影响,计算得出渗剂中加入0.5%La,生成物相扩散激活能降低了4.5~7.8kJ/mol。 MOBIN等[67] 报导了渗剂中加入CeO2 或La2O3 后,碳钢在800℃渗铝1h所生成渗层需要的扩散激活能,结果表明,与未加入稀有元素相比较,渗剂中加入1.5%CeO2 后,扩散激活能降低了143.6kJ/mol;当加入1.5%La2O3 后,扩散激活能较则降低了122.6kJ/mol。这是因为稀土原子半径较大,在渗铝过程中会使铁原子晶格产生畸变,可以显著增大Fe基体中c轴方向的空位及缺陷个数,从而使活性Al原子在该方向上实现低阻力扩散,降低了扩散激活能[39,68-69]

  • (2)扩散系数。扩散系数反映了渗铝过程中Fe、Al原子的扩散速度,可以帮助了解渗铝过程中的元素扩散。对于扩散系数的研究,通常是采用Arrhenius方程,其方程式为

  • D=D0exp-QRT
    (3)
  • 式中,D 为扩散系数;D 0 为准指数常数;Q 为扩散激活能;R 为气压常数;T 为渗铝温度。

  • 从该公式可看出,扩散系数主要取决于温度和扩散激活能Q,而扩散激活能是由物体晶格的固有性质所决定[70-71]。因此在其他条件一定时,扩散系数D与温度T的关系服从指数规律,扩散系数随温度的升高而提高[72]。 WEI等[73] 研究了超级合金渗铝时铁铝原子在不同渗铝温度下(850℃、950℃ 和1 050℃)的互扩散系数,发现当铝原子的浓度为50%时,扩散系数随渗铝温度的升高而增大。 Pazy等[74]也发现类似现象,指出在825~1 100℃ 对Cr钢渗铝后,其渗层物相的扩散激活能并没有发生改变,但是扩散系数随温度提高从1.6 × 10-6 增加到9.2×10-6m 2/s。李德元等[62]在分析Q235渗铝后渗层中铝浓度分布曲线和Fe-Al互扩散系数时发现, 当铝浓度一定时,铁铝原子的互扩散系数随温度变化(800~900℃)增加了一个数量级。

  • 除温度是影响扩散系数的主要因素之外,渗铝剂的成分(主要是铝粉含量、添加剂) 对其也有影响。铝粉含量主要影响渗层中铝离子浓度, Zhu等[75]研究了马氏体钢粉末包埋渗铝后在980℃ 温度下退火30min,利用Wagner方程计算了铁铝的互扩散系数,发现扩散系数随铝离子浓度先增加后减小,当铝浓度为28%时,互扩散系数最大。而添加剂会促进铝离子的扩散。 TRIPATHI等[76]在渗铝剂中加入1.5%~2%的Mn,发现Mn的存在降低了铝在固溶体中的溶解度,从而增加钢铝界面金属间化合物的生长速率,扩散系数有明显的增加。 HAMID等[77]研究了渗剂中加入CeO2 对80镍基钢粉末包埋渗铝后渗层的影响,结果表明,Ce粒子的存在为中间层晶粒细被化为铝化物涂层形成过程中的铝和镍提供了短的扩散路径,与未添加CeO2 的同类试样相比,扩散系数显著提高。

  • 综合而言,渗铝温度是影响Fe-Al元素扩散的主要因素,高温可以为渗铝反应扩散提供充足的能量,同时扩散系数也随温度升高而增大,Fe、Al原子的迁移也越容易发生,渗层厚度也相应的增大。然而,温度过高会导致钢材基体完全奥氏体化,经过再次冷却,钢材基体组织会发生重结晶,使得钢材基体心部晶粒强烈粗化,导致钢材原有力学性能的降低[78]。所以当前主要通过改变渗剂配方,在保证活性Al原子具有相当大的扩散系数的同时,降低扩散激活能Q,从而在相对较低的温度下得到各种渗层组织。由于稀土元素可以减小钢材基体内部进行扩散过程的活性铝原子的扩散阻力,使得铝原子、铁原子拥有快速畅通的扩散路径,因此,调控渗剂中稀土元素的种类和含量,实现Fe-Al元素扩散能力提升的有效方法。

  • 3.2 Fe-Al元素扩散机制分析

  • 渗铝过程中Fe-Al元素扩散属于晶界扩散,其本质是渗剂分解出的活性铝原子与基体的铁原子相互换位进而生成Fe-Al合金层。而渗层物相种类主要与铁铝原子的互扩散系数D∗有关,其可以用Darken方程求得[79]

  • D*=xFeDAl+xAlDFeφ
    (4)
  • 式中,D为互扩散系数, D FeD Al 为Fe、Al原子的自扩散系数, xFe 和xAl 为Fe、Al原子的质量分数, φ 为热力学因子。从Darken方程可以看出,影响互扩散系数的主要因素是Fe、Al原子的质量分数和热力学因子,即Fe、Al原子浓度和温度。而已有研究证明铝原子浓度对互扩散系数的影响比温度的影响大一个数量级[80],因此渗铝过中互扩散系数主要随着铁铝原子的浓度差(化学势能)发生变化。

  • DONG等[22]对316L不锈钢在680℃渗铝后发现渗铝初期活性铝原子和铁原子浓度差最大,化学势能最高,首先在渗层表面生成Fe2Al5 相,随后铁铝原子浓度差发生变化,其他物相逐渐生成,最终在不锈钢表面得到了沿渗层厚度方向由外向内依次为FeAl3、Fe2Al5、FeAl、Fe3Al相结构的涂层,其铁铝原子互扩散过程如图6所示。 ZAREI等[65] 发现渗剂中的Al元素是渗铝过程中钢铁奥氏体向铁素体转变的关键原因,因此高Al含量的渗剂有助于快速渗铝;但是其对HH309不锈钢渗铝后发现基体中Ni、 Mn和C的存在可以阻碍奥氏体向铁素体转变,因此虽然该渗铝过程中铝原子的化学势能很高,但是互扩散系数很小,主要生成FeAl相。 PÉREZ等[81] 等认为,渗铝初期活性铝原子会和基体铁原子置换形成富铝相,但在渗铝后的热处理过程中,由于活性铝原子数量减少,铁原子化学势能变大,渗层中的富铝相会向富铁相转变。如Fe2Al5 相在700℃ 温度下长时间热处理后,渗层转换为Fe3Al、FeAl和Fe(Al)相。 SOMRERK等[82]对FC25铸铁渗铝过程中也发现类似现象,在1 050℃渗铝7h过程中主要是铝原子化学势能高,互扩散系数较大,在表面沿渗层厚度方向由外向内形成Fe2Al5、FeAl2 和FeAl相,随后在850℃热处理过程中,铝原子化学势能降低,铁基体原子向Fe2Al5 和FeAl2 中的铝原子进行互扩散,最终形成单一的FeAl相。

  • 图6 316L不锈钢渗层形成模型示意图[22]

  • Fig.6 Schematic diagram of 316L stainless steel infiltration layer formation model

  • 综合而言,渗铝过程中Fe-Al元素扩散主要是以铁铝原子的化学势能为驱动力,使互扩散系数随化学势能而改变,从而生成不同的物相。当铁铝原子化学势能高,互扩散系数很大时,在Fe-Al合金层形成的化合物主要为FeAl3 和Fe2Al5 两种富铝相。随着铁铝原子的相互扩散,浓度差减小,化学势能降低,互扩散速度降低,Fe-Al合金层形成的化合物主要为FeAl和FeAl2 相。

  • 4 渗铝层的生长动力学预测模型

  • 基于渗铝过程中Fe-Al元素扩散机理,对渗铝钢渗铝过程进行仿真建模,从而简化试验过程,这为渗层的研究提供了新的思路。 NAJI等[37] 基于Fick第一定律设计了渗铝时间、温度和渗铝剂成分对渗铝层厚度影响的粉末包埋渗铝预测模型,采用该模型对AISI 321钢粉末包埋渗铝试验进行验证,发现预测的渗层厚度与试验值吻合良好,但该模型采用的扩散系数需在计算前实际渗铝测得,这存在着一定的误差。 RONG等[83] 用热力学仿真方法建立了一种预测渗层最大生长速率和渗层平均厚度的模型。模型中表明渗层最大生长速率主要受反应界面控制,与基于Fick第二定律所求的扩散系数相关; 渗层的平均厚度则由反应界面和渗铝工艺(时间、温度)控制。 RONG等对Q235钢进行渗铝试验与预测模型进行了对比,结果表明,预测渗层厚度跟试验渗层厚度误差均小于10 μm。然而,该预测模型主要基于热循环模式,另外不能精确地预测渗层微观结构。 GARIBOLDI等[84] 基于Fick第二定律提出了一种根据渗铝时间预测渗层厚度的一种模型,该模型主要优化了Fick第二定律公式中的浓度计算值,采用V型界面速度,自适应地将旧计算域的空间网格点的浓度值映射到新计算域的空间网格点,加强(显式)数值格式的稳定性,时间步长有一个可变的上界,因此,可以为每个模型运行指定最小时间和空间步长。 GARIBOLDI对纯镍进行渗铝,结果表明预测模型与试验结果吻合良好。刘洪福等[85] 通过BP神经网络模型预测了温度、时间、提升速度和镀液中Si含量4个因素对Q235热浸渗铝钢渗层厚度的影响,发现试验结果与预测结果曲线走势一致,在误差范围内满足试验规律,但是该模型在建立训练样本时,对不同钢材, 渗铝参数的基础试验数据需求量大,因此其应用有一定的局限性。

  • 综上,目前的研究主要以菲克第一定律、菲克第二定律以及BP神经网络等建立了渗铝模型,但是每个模型对渗铝温度和时间等主要控制参数侧重点并不一样,进行预测的目标主要集中在渗层厚度上。以此为基础,作者总结了迄今为止文献中报道的不同渗铝模型,见表4。从表4汇总结果可知,渗层工艺参数中,渗铝温度是当前预测模型中最主要的控制变量参数。另外,当前对于渗层物相的预测停留在计算渗层中某种元素的含量,因此渗铝层生长预测模型仍需进一步研究。

  • 表4 渗铝钢渗铝模型

  • Table4 Aluminizing model of aluminized steel

  • 5 结论

  • 渗铝工艺参数对微观组织、表面状态和元素扩散有着显著影响,尽管关于渗铝工艺参数对渗铝钢性能的影响有大量的报导,但是由于渗铝工艺参数变化会导致渗层随之变化,从而使其表现出不同的表面性能。因此,粉末包埋渗铝钢的研究和发展依然还有很长的路要走。

  • (1)稀土元素已被证明对渗层具有良好作用, 但稀土元素在不同渗铝环境中添加量不确定,仍然需要大量试验进行总结。另外,目前的研究中,大多以添加单一元素为主,而关于渗剂中添加两种或多种复合元素报导较少,有待于进一步深入研究。

  • (2)在工程应用中,当渗铝钢材料承受疲劳荷载时,往往会出现渗层与基体钢材变形能力不统一的情况,导致渗层提前开裂,降低材料的疲劳性能。因此,如何同步提升渗层的抗塑性变形能力,从而提高基体材料的服役寿命,有待于后续进行全面细致的研究。

  • (3)渗铝模型的开发可以改变传统的试错试验模式,减少成本浪费,目前关于渗铝模型的预测主要集中在渗层厚度方面,而关于渗层物相的结构、分布以及元素含量的预测报导较少,特别是综合考虑温度、时间、渗铝剂等因素对渗层的影响更少。在已有的定性结果上建立量化数学模型,更有利于指导工业生产,这将是今后粉末包埋渗铝钢研究的一个方向。

  • 参考文献

    • [1] 曾松盛,吴润,贾冬梅,等.合金化热镀锌带钢表面黑斑缺陷分析[J].材料科学,2019,9(9):829-834.ZENG S S,WU R,JIA D M,et al.Analysis of black spot defects on the surface with the galvanealed steel strip [J].Material Sciences,2019,9(9):829-834.(in Chinese)

    • [2] 王瑶,赵雪妮,党新安,等.海洋环境下钢材表面镀铝工艺的研究进展[J].材料导报,2018,32(21):3805-3813,3822.WANG Y,ZHAO X N,DANG X A,et al.Aluminizing steel surface for providing protection in marine envirement:a technological reviw [J].Materials Reports,2018,32(21):3805-3813,3822.(in Chinese)

    • [3] MEVREL R,DURET C,PICHOIR R.Pack cementation processes[J].Materials Science and Technology,1986,2(3):201-206.

    • [4] YENER T,ERDOGAN A,GöK M S,et al.Formation,characterization,and wear behavior of aluminide coating on Mirrax® ESR steel by low-temperature aluminizing process[J].Journal of Tribology,2020,143(1).

    • [5] BUKUDUR S V,NAGODE A,KARPE B,et al.Pack aluminization process of heat resistant FeCrAl and NiCr alloys [J].Acta Technica Corviniensis-Bulletin of Engineering,2018,11(1):15-18.

    • [6] YENER T.Chromium-aluminide coatings via pack cementation method on inconel 718 alloy and Fe-Cr-Ni super alloy [J].Sakarya University Journal of Science,2019,23(5):817-823.

    • [7] FAN X P.Study on the surface packing cementation aluminizing processes of Q345 steel in an air environment [J].Materials Research Express,2020,7(11):116522.

    • [8] 张冀翔,徐修炎,宋健斐,等.碳钢表面粉末包埋法渗铝的实验研究[J].表面技术,2018(12):68-75.ZHANG J X,XU X Y,SONG J F,et al.Experimental study on aluminizing of carbon steel surface by pack Cementation [J].Surface Technology,2018(12):68-75.(in Chinese)

    • [9] HUANG M,WANG Y,CHU C H,et al.Wear resistance of alumina-coated oil casing steel N80 via MAO with rare earth additive [J].Ceramics International,2017,43(8):6397-6402.

    • [10] 谢孟芸,汪诚,张佩宇,等.复合强化对渗铝K403合金组织和力学性能的影响 [J].中国表面工程,2018,31(1):26-31.XIE M Y,WANG C,ZHANG P Y,et al.Effects of composite strengthening on microstructure and mechanical property of K403 aluminized alloy[J].China Surface Engineering,2018,31(1):26-31.(in Chinese)

    • [11] 刘红兵,陶杰,张平则,等.316L 不锈钢基材功能梯度Al涂层残余热应力分析[J].核技术,2008,31(2):27-32.LIU H B,TAO J,ZHANG P Z,et al.Analysis of residual thermal stress of functionally graded Al coating on 316L stainless steel substrate[J].Nuclear Techniques,2008,31(2):27-32.(in Chinese)

    • [12] NAKAMURA R,IIJIMA Y.Activation volume for interdiffusion in bcc ordered and disordered phases of the Fe-Al system[J].Philosophical Magazine,2004,84(19):1907-1926.

    • [13] YENER T,DOLEKER K,ERDO?AN A.High temperature oxidation behavior of low temperature aluminized Mirrax ® ESR steel[J].Materials Research Express,2019,6(11):116407.

    • [14] RONG J,WANG X,ZHANG Y,et al.Al2O3/FeAl interfacial behaviors by yttrium doping in high temperature oxidation [J].Ceramics International,2019,45(17,Part A):22273-22280.

    • [15] WANG Y,WANG J,HU H,et al.Effect of Y2O3 content in the pack mixtures on the cyclic-oxidation of Y2O3-modified low temperature aluminide coatings on 309 stainless steel [J].Vacuum,2018,158:101-112.

    • [16] GUO S,WANG Z B,LU K.An Aluminide surface layer containing lower-al on ferritic-martensitic steel formed by lower-temperature aluminization [J].Journal of Materials Science & Technology,2015,31(12):1268-1273.

    • [17] KE S R,WANG J,ZHU C Y,et al.On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process[J].Materials Chemistry and Physics,2015,162:263-272.

    • [18] ZHOU Z,XIE F,HU J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coatings Technology,2008,203(1):23-27.

    • [19] MAJUMDAR S,PAUL B,KAIN V,et al.Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J].Materials Chemistry Physics,2017,190:31-37.

    • [20] ZHAN Z,LIU Z,LIU J,et al.Microstructure and high-temperature corrosion behaviors of aluminide coatings by low-temperature pack aluminizing process [J].Applied Surface Science,2010,256(12):3874-3879.

    • [21] YENER T.Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation[J].Vacuum,2019,162:114-120.

    • [22] DONG J,SUN Y,HE F.Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation[J].Surface and Coatings Technology,2019,375:833-838.

    • [23] LI N N,WANG M Z,LI Y S,et al.Corrosion behavior of Fe-Al coatings fabricated by pack aluminizing method [J].Acta Metallurgica Sinica(English Letters),2016,29(9):813-819.

    • [24] LEVIN L,GINZBURG A,KLINGER L,et al.Controlled formation of surface layers by pack aluminization [J].Surface and Coatings Technology,1998,106(2):209-213.

    • [25] ZHAN Z,HE Y,WANG D.Low-temperature processing of Fe-Al intermetallic coatings assisted by ball milling [J].Intermetallics,2006,14(1):75-81.

    • [26] REZABATENI M,STEPHANIESHAW,PINGWEI,et al.Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell(SOFC)interconnects by pack cementation [J].Advanced Manufacturing Processes,2009,24(6):626-632.

    • [27] YING X,ZHANG L,XU H,et al.Efficient Fischer-Tropsch microreactor with innovative aluminizing pretreatment on stainless steel substrate for Co/Al2O3 catalyst coating[J].Fuel Processing Technology,2016,143:51-59.

    • [28] XIANG Z D,DATTA P K.Pack aluminisation of low alloy steels at temperatures below 700℃ [J].Surface and Coatings Technology,2004,184(1):108-115.

    • [29] SPRINGER H,KOSTKA A,PAYTON E J,et al.On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys [J].Acta Materialia,2011,59(4):1586-1600.

    • [30] NOVáK P,MICHALCOVáA,MAREK I,et al.On the formation of intermetallics in Fe-Al system-An in situ XRD study [J].Intermetallics,2013,32:127-136.

    • [31] BAHADUR A,SHARMA T L,PARIDA N,et al.Structure-property correlation in Al-diffusion coated steels[J].Journal of Materials Science,1993,28(19):5375-5581.

    • [32] SON Y I,CHUNG C H,GOWKANAPALLI R R,et al.Kinetics of Fe2Al5 phase formation on 4130 steel by Al pack cementation and its oxidation resistance [J].Metals and Materials International,2015,21(1):1-6.

    • [33] WANG X,FAN Y,ZHAO X,et al.Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron[J].Metals,2019,9(6):648.

    • [34] NAOI D,KAJIHARA M.Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures [J].Materials Science and Engineering:A,2007,459(1):375-382.

    • [35] YUTANORM W,JUIJERM P.Diffusion enhancement of low-temperature pack aluminizing on austenitic stainless steel AISI 304 by deep rolling process [J].Kovove Mater,2016,54:227-232.

    • [36] BATES B L,WANG Y Q,ZHANG Y,et al.Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels [J].Surface and Coatings Technology,2009,204(6):766-770.

    • [37] NAJI A,GALETZ M C,SCHüTZE M.Design model for diffusion coatings formed via pack cementation[J].Materials and Corrosion,2014,65(3):312-318.

    • [38] HUTTUNEN-SAARIVIRTA E,HONKANEN M,TSIPAS S A,et al.Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel [J].Applied Surface Science,2012,259:674-684.

    • [39] 邓代玉,叶宏.催渗剂 CeO2 对H13模具钢表面渗铝层组织及性能的影响[J].表面技术,2010,39(6):36-38.DENG D Y,YE H.Effect of CeO2 on microscopic structure and properties of H13 hot die steel[J].Surface Technology,2010,39(6):36-38.(in Chinese)

    • [40] 卢国鑫,金涛,周亦胄,等.激光冲击强化在高温合金材料应用上的研究进展[J].中国有色金属学报,2018,28(9):1755-1764.LU G X,JIN T,ZHOU Y Z,et al.Research progress of laser shock strengthening in the application of superalloy materials[J].The Chinese Journal of Nonferrous Metals,2018,28(9):1755-1764.(in Chinese)

    • [41] BUGAYEV A A,GUPTA M C,PAYNE R.Laser processing of inconel 600 and surface structure [J].Optics and Lasers in Engineering,2006,44(2):102-111.

    • [42] DONG J,SUN Y,HE F,et al.Effects of substrate surface roughness and aluminizing agent composition on the aluminide coatings by low-temperature pack cementation [J].Materials Research Express,2018,6(3):036409.

    • [43] 张超,宋义全.碳钢渗铝的组织与腐蚀行为研究[J].热加工工艺,2015(2):178-181.ZHANG C,SONG Y Q.Experimental study on microstructure and corrosion behavior of carbon steel after alumetizing[J].Hot Working Technology,2015(2):178-181.(in Chinese)

    • [44] 叶晶,王宇,黄敏.低温助渗剂Zn对 N80 套管钢低温渗铝层组织的影响[J].热加工工艺,2013,42(8):131-134.YE J,WANG Y,HUANG M.Effect of Zn in pack powder on microstructure of aluminized layer on N80 casing steel at low temperature [J].Hot Working Technology,2013,42(8):131-134.(in Chinese)

    • [45] SINGH K,FERNANDES A,PAUL B,et al.Preparation and investigation of aluminized coating and subsequent heat treatment on 9Cr-1Mo Grade 91 steel[J].Fusion Engineering and Design,2014,89(11):2534-2544.

    • [46] SASAKI T,YAKOU T.Tool wear and surface roughness during machining of high-temperature aluminized steel [J].Journal of Materials Processing Technology,2008,197(1):89-95.

    • [47] KOBAYASHI S,YAKOU T.Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment[J].Materials Science and Engineering:A,2002,338(1):44-53.

    • [48] RASTKAR A R,REZVANI N.The Effects of processing time on the microstructure and composition of plasma pack-aluminized and-oxidized surface layers on low carbon steel[J].Metallurgical and Materials Transactions A,2015,46(9):4132-4142.

    • [49] MADANIPOUR H,SOLTANIEH M,NAYEBPASHAEE N.Investigation of the formation of Al,Fe,N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel[J].Materials & Design,2013,51:43-50.

    • [50] KIM J H,WANG J P,KANG C Y.Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel [J].Metals and Materials International,2011,17(6):931-935.

    • [51] 史新勃,王宇,黄敏.包埋渗剂Al含量对N80套管钢渗层组织和性能的影响[J].热加工工艺,2012,41(4):123-125,129.SHI X B,WANG Y,HUANG M.Effects of Al content in pack powder on microstructure and mechanical properties of aluminized N80 oil casing steel [J].Hot Working Technology,2012,41(4):123-125,129.(in Chinese)

    • [52] AHMADI H,LI D Y.Beneficial effects of yttrium on mechanical properties and high-temperature wear behavior of surface aluminized 1045 steel[J].Wear,2003,255(7):933-942.

    • [53] 纪文文,宋月鹏,陈克丰,等.稀土元素对40Cr钢渗铝层组织性能的影响研究[J].稀土,2009,30(6):55-59.JI W W,SONG Y P,CHEN K F,et al.Effect of rare earth elements on microstructure and properties of 40Cr steel aluminized layer [J].Chinese Rare Earth,2009,30(6):55-59.(in Chinese)

    • [54] MA F,GAO Y,ZENG Z,et al.Improving the Tribocorrosion Resistance of Monel 400 Alloy by Aluminizing Surface Modification [J].Journal of Materials Engineering and Performance,2018,27(7):3439-3448.

    • [55] HAN L,HUANG D,YAN X,et al.Effects of aluminizing and combined strengthening on the fatigue property of K403 superalloy component under combined high and low cycle loading [J].International Journal of Fatigue,2019,125:491-504.

    • [56] 董健,窦炳胜,贺飞羽,等.不锈钢表面渗铝层/ZrO2 复合涂层残余应力模拟[J].表面技术,2019,48(6):235-242.DONG J,DOU B S,HE F Y,et al.Residual stress simulation of aluminized layer/ZrO2 composite coating on stainless steel[J].Surface Technology,2019,48(6):235-242.(in Chinese)

    • [57] KHAN R H U,YEROKHIN A L,PILKINGTON T,et al.Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current [J].Surface and Coatings Technology,2005,200(5):1580-1586.

    • [58] DANGI B,BROWN T W,KULKARNI K N.Effect of silicon,manganese and nickel present in iron on the intermetallic growth at iron-aluminum alloy interface [J].Journal of Alloys and Compounds,2018,769::777-787.

    • [59] BOZZA F,BOLELLI G,GIOLLI C,et al.Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys[J].Surface and Coatings Technology,2014,239(1):147-159.

    • [60] GOWARD G W,BOONE D H.Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J].Oxidation of Metals,1971,3(5):475-495.

    • [61] 刘爱萍,张伟.渗铝钢扩散层生长动力学的计算机拟合[J].金属热处理,2011,36(8):124-127.LIU A P,ZHANG W.Computer fitting of growth kinetics of diffusion layer in aluminized steel[J].Heat Treatment of Metals,2011,36(8):124-127.(in Chinese)

    • [62] 李德元,杨成,张忠礼,等.碳钢热喷涂渗铝互扩散系数计算[J].沈阳工业大学学报,2008,30(3):288-292.LI D Y,YANG C,ZHANG Z L,et al.Calculation of interdiffusivity of Fe and Al in aluminized arc-sprayed coating on mild steel [J].Journal of Shenyang University of Technology,2008,30(3):288-292.(in Chinese)

    • [63] 黄敦伟,胡爱萍,张宏伟,等.热浸渗铝X70管线钢扩渗工艺研究[J].表面技术,2013,42(4):72-75,109.HUANG D W,HU A P,ZHANG H W,et al.Research on hot diffusion aluminizing process of X70 pipe line steel[J].Surface Technology,2013,42(4):72-75,109.(in Chinese)

    • [64] BOUAYAD A,GEROMETTA C,BELKEBIR A,et al.Kinetic interactions between solid iron and molten aluminium [J].Materials Science and Engineering:A,2003,363(1):53-61.

    • [65] ZAREI F,NURANIAN H,SHIRVANI K.Characterization,growth kinetics and high-temperature oxidation behavior of aluminide coating formed on HH309 stainless steel by casting and subsequent heat treatment [J].Intermetallics,2020,120:106742.

    • [66] ROSA R,VERONESI P,CASAGRANDE A.On the effect of steel substrate alloying elements on the in-situ formation of intermediate thermal diffusion barrier layers [J].Materials Chemistry and Physics,2020,240:122231.

    • [67] MOBIN M,SHARMA H K,HASAN S K.High temperature oxidation behaviour of CeO2 and La2O3 modified aluminide coatings on carbon steel [J].Anti-Corrosion Methods and Materials,2002,49(4):283-294.

    • [68] YIN F C,ZHAO M X,LIU Y X,et al.Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum[J].Transactions of Nonferrous Metals Society of China,2013,23(2):556-561.

    • [69] 黄敏,王宇.低温包埋渗铝及其在石油管材防腐蚀应用中的研究进展[J].热加工工艺,2012,41(8):135-139.HUANG M,WANG Y.Research progress of low—temperature pack aluminizing and its potential application on oil-casing steel and pipeline steel[J].Hot Working Technology,2012,41(8):135-139.(in Chinese)

    • [70] SMITH C O.The science of engineering materials[J].Physics Today,1957,10(12):26-27.

    • [71] 闫世成,闫果,卢亚锋,等.原始Mg粉形状对 Mg-B 体系成相行为的影响[J].金属学报,2007,43(4):59-60.YAN S C,YAN G,LU Y F,et al.Influence of raw Mg powder shape on behavior of phase for Mg-B system [J].Acta Metallurgica Sinica,2007,43(4):59-60.(in Chinese)

    • [72] 刘东亮,邓建国.材料科学基础[M].华东理工大学出版社,2016.LIU D L,DENG J G.Materials science [ M ].East China University of Science and Technology Press,2016.(in Chinese)

    • [73] WEI H,SUN X,ZHENG Q,et al.An inverse method for determination of the interdiffusivity in aluminide coatings formed on superalloy[J].Surface and Coatings Technology,2004,182(1):112-116.

    • [74] PAZ Y PUENTE A E,DUNAND D C.Effect of Cr content on interdiffusion and Kirkendall pore formation during homogenization of pack-aluminized Ni and Ni-Cr wires [J].Intermetallics,2018,101:108-115.

    • [75] ZHU X X,YANG H G,YUAN X M,et al.Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel[J].Journal of Nuclear Materials,2014,455(1):578-581.

    • [76] TRIPATHI S,VERMA V,BROWN T W,et al.Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys[J].Journal of Phase Equilibria and Diffusion,2017,38(2):135-142.

    • [77] ZAHEDI H,SHAHRIARI NOGORANI F,SAFARI M.Microstructure analysis of the pack cementation aluminide coatings modified by CeO2 addition [J].Metals and Materials International,2019,.

    • [78] 孟堃,刘忠,王远,等.碳钢粉末包埋低温渗铝工艺的研究进展[J].热加工工艺,2016(24):31-34.MENG K,LIU Z,WANG Y,et al.Research progress of embedding low-temperature aluminizing process for carbon steel powder[J].Hot Working Technology,2016(24):31-34.(in Chinese)

    • [79] MANNING J R.Diffusion in a chemical concentration gradient [J].Physical Review,1961,124(2):470.

    • [80] CHEN H,MORRAL J E.Variation of the effective diffusivity in two-phase regions [J].Acta Materialia,1999,47(4):1175-1180.

    • [81] PéREZ F J,HIERRO M P,TRILLEROS J A,et al.Iron aluminide coatings on ferritic steels by CVD-FBR technology[J].Intermetallics,2006,14(7):811-817.

    • [82] SOMRERK C A,KRASAELOM N,THUBLAOR T,et al.High temperature corrosion behaviour of aluminised FC 25 cast iron using pack cementation [J].Anti-Corrosion Methods and Materials,2019,66(2):236-241.

    • [83] RONG J,KANG Z,CHEN S,et al.Growth kinetics and thickness prediction of interfacial intermetallic compounds between solid steel and molten aluminum based on thermophysical simulation in a few seconds [J].Materials Characterization,2017,132:413-421.

    • [84] GARIBOLDI E,VERANI M,RIVA C.Modelling of phase evolution during aluminizing processes[J].Advanced Materials Research,2011,278:228-233.

    • [85] 刘洪福,牛宗伟,赵东山.影响热浸镀铝层厚度的因素分析及预测模型的建立[J].材料保护,2012,45(8):4-6,70.LIU H F,NIU Z W,ZHAO D S.Analysis of factors affecting thickness of hot-dip aluminized coating and establishment of prediction model[J].Materials Protection,2012,45(8):4-6,70.(in Chinese)

    • [86] KARUNARATNE M S A,JEPSON M A E,SIMMS N J,et al.Modelling of microstructural evolution in multi-layered overlay coatings[J].Journal of Materials Science,2017,52(20):12279-12294.

    • [87] GAO F,HUANG X,LIU R,et al.A Study of pack aluminizing process for NiCrAlY coatings using response surface methodology [J].Journal of Materials Engineering and Performance,2014,23(1):83-91.

    • [88] DEJTHAMMARONG P,VISUTTIPITUKUL P,LEELACHAO S,et al.Modelling of nickel aluminide layer growth on IN738 and Haynes 214 in pack aluminizing [J].AIP Conference Proceedings,2020,2279(1):050006.

    • [89] LU Y H,QI S G,HUANG C M,et al.A study on diffusion in hot-dip aluminizing [J].Advanced Materials Research,2010,97-101:1253-1256.

  • 参考文献

    • [1] 曾松盛,吴润,贾冬梅,等.合金化热镀锌带钢表面黑斑缺陷分析[J].材料科学,2019,9(9):829-834.ZENG S S,WU R,JIA D M,et al.Analysis of black spot defects on the surface with the galvanealed steel strip [J].Material Sciences,2019,9(9):829-834.(in Chinese)

    • [2] 王瑶,赵雪妮,党新安,等.海洋环境下钢材表面镀铝工艺的研究进展[J].材料导报,2018,32(21):3805-3813,3822.WANG Y,ZHAO X N,DANG X A,et al.Aluminizing steel surface for providing protection in marine envirement:a technological reviw [J].Materials Reports,2018,32(21):3805-3813,3822.(in Chinese)

    • [3] MEVREL R,DURET C,PICHOIR R.Pack cementation processes[J].Materials Science and Technology,1986,2(3):201-206.

    • [4] YENER T,ERDOGAN A,GöK M S,et al.Formation,characterization,and wear behavior of aluminide coating on Mirrax® ESR steel by low-temperature aluminizing process[J].Journal of Tribology,2020,143(1).

    • [5] BUKUDUR S V,NAGODE A,KARPE B,et al.Pack aluminization process of heat resistant FeCrAl and NiCr alloys [J].Acta Technica Corviniensis-Bulletin of Engineering,2018,11(1):15-18.

    • [6] YENER T.Chromium-aluminide coatings via pack cementation method on inconel 718 alloy and Fe-Cr-Ni super alloy [J].Sakarya University Journal of Science,2019,23(5):817-823.

    • [7] FAN X P.Study on the surface packing cementation aluminizing processes of Q345 steel in an air environment [J].Materials Research Express,2020,7(11):116522.

    • [8] 张冀翔,徐修炎,宋健斐,等.碳钢表面粉末包埋法渗铝的实验研究[J].表面技术,2018(12):68-75.ZHANG J X,XU X Y,SONG J F,et al.Experimental study on aluminizing of carbon steel surface by pack Cementation [J].Surface Technology,2018(12):68-75.(in Chinese)

    • [9] HUANG M,WANG Y,CHU C H,et al.Wear resistance of alumina-coated oil casing steel N80 via MAO with rare earth additive [J].Ceramics International,2017,43(8):6397-6402.

    • [10] 谢孟芸,汪诚,张佩宇,等.复合强化对渗铝K403合金组织和力学性能的影响 [J].中国表面工程,2018,31(1):26-31.XIE M Y,WANG C,ZHANG P Y,et al.Effects of composite strengthening on microstructure and mechanical property of K403 aluminized alloy[J].China Surface Engineering,2018,31(1):26-31.(in Chinese)

    • [11] 刘红兵,陶杰,张平则,等.316L 不锈钢基材功能梯度Al涂层残余热应力分析[J].核技术,2008,31(2):27-32.LIU H B,TAO J,ZHANG P Z,et al.Analysis of residual thermal stress of functionally graded Al coating on 316L stainless steel substrate[J].Nuclear Techniques,2008,31(2):27-32.(in Chinese)

    • [12] NAKAMURA R,IIJIMA Y.Activation volume for interdiffusion in bcc ordered and disordered phases of the Fe-Al system[J].Philosophical Magazine,2004,84(19):1907-1926.

    • [13] YENER T,DOLEKER K,ERDO?AN A.High temperature oxidation behavior of low temperature aluminized Mirrax ® ESR steel[J].Materials Research Express,2019,6(11):116407.

    • [14] RONG J,WANG X,ZHANG Y,et al.Al2O3/FeAl interfacial behaviors by yttrium doping in high temperature oxidation [J].Ceramics International,2019,45(17,Part A):22273-22280.

    • [15] WANG Y,WANG J,HU H,et al.Effect of Y2O3 content in the pack mixtures on the cyclic-oxidation of Y2O3-modified low temperature aluminide coatings on 309 stainless steel [J].Vacuum,2018,158:101-112.

    • [16] GUO S,WANG Z B,LU K.An Aluminide surface layer containing lower-al on ferritic-martensitic steel formed by lower-temperature aluminization [J].Journal of Materials Science & Technology,2015,31(12):1268-1273.

    • [17] KE S R,WANG J,ZHU C Y,et al.On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process[J].Materials Chemistry and Physics,2015,162:263-272.

    • [18] ZHOU Z,XIE F,HU J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coatings Technology,2008,203(1):23-27.

    • [19] MAJUMDAR S,PAUL B,KAIN V,et al.Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J].Materials Chemistry Physics,2017,190:31-37.

    • [20] ZHAN Z,LIU Z,LIU J,et al.Microstructure and high-temperature corrosion behaviors of aluminide coatings by low-temperature pack aluminizing process [J].Applied Surface Science,2010,256(12):3874-3879.

    • [21] YENER T.Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation[J].Vacuum,2019,162:114-120.

    • [22] DONG J,SUN Y,HE F.Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation[J].Surface and Coatings Technology,2019,375:833-838.

    • [23] LI N N,WANG M Z,LI Y S,et al.Corrosion behavior of Fe-Al coatings fabricated by pack aluminizing method [J].Acta Metallurgica Sinica(English Letters),2016,29(9):813-819.

    • [24] LEVIN L,GINZBURG A,KLINGER L,et al.Controlled formation of surface layers by pack aluminization [J].Surface and Coatings Technology,1998,106(2):209-213.

    • [25] ZHAN Z,HE Y,WANG D.Low-temperature processing of Fe-Al intermetallic coatings assisted by ball milling [J].Intermetallics,2006,14(1):75-81.

    • [26] REZABATENI M,STEPHANIESHAW,PINGWEI,et al.Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell(SOFC)interconnects by pack cementation [J].Advanced Manufacturing Processes,2009,24(6):626-632.

    • [27] YING X,ZHANG L,XU H,et al.Efficient Fischer-Tropsch microreactor with innovative aluminizing pretreatment on stainless steel substrate for Co/Al2O3 catalyst coating[J].Fuel Processing Technology,2016,143:51-59.

    • [28] XIANG Z D,DATTA P K.Pack aluminisation of low alloy steels at temperatures below 700℃ [J].Surface and Coatings Technology,2004,184(1):108-115.

    • [29] SPRINGER H,KOSTKA A,PAYTON E J,et al.On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys [J].Acta Materialia,2011,59(4):1586-1600.

    • [30] NOVáK P,MICHALCOVáA,MAREK I,et al.On the formation of intermetallics in Fe-Al system-An in situ XRD study [J].Intermetallics,2013,32:127-136.

    • [31] BAHADUR A,SHARMA T L,PARIDA N,et al.Structure-property correlation in Al-diffusion coated steels[J].Journal of Materials Science,1993,28(19):5375-5581.

    • [32] SON Y I,CHUNG C H,GOWKANAPALLI R R,et al.Kinetics of Fe2Al5 phase formation on 4130 steel by Al pack cementation and its oxidation resistance [J].Metals and Materials International,2015,21(1):1-6.

    • [33] WANG X,FAN Y,ZHAO X,et al.Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron[J].Metals,2019,9(6):648.

    • [34] NAOI D,KAJIHARA M.Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures [J].Materials Science and Engineering:A,2007,459(1):375-382.

    • [35] YUTANORM W,JUIJERM P.Diffusion enhancement of low-temperature pack aluminizing on austenitic stainless steel AISI 304 by deep rolling process [J].Kovove Mater,2016,54:227-232.

    • [36] BATES B L,WANG Y Q,ZHANG Y,et al.Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels [J].Surface and Coatings Technology,2009,204(6):766-770.

    • [37] NAJI A,GALETZ M C,SCHüTZE M.Design model for diffusion coatings formed via pack cementation[J].Materials and Corrosion,2014,65(3):312-318.

    • [38] HUTTUNEN-SAARIVIRTA E,HONKANEN M,TSIPAS S A,et al.Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel [J].Applied Surface Science,2012,259:674-684.

    • [39] 邓代玉,叶宏.催渗剂 CeO2 对H13模具钢表面渗铝层组织及性能的影响[J].表面技术,2010,39(6):36-38.DENG D Y,YE H.Effect of CeO2 on microscopic structure and properties of H13 hot die steel[J].Surface Technology,2010,39(6):36-38.(in Chinese)

    • [40] 卢国鑫,金涛,周亦胄,等.激光冲击强化在高温合金材料应用上的研究进展[J].中国有色金属学报,2018,28(9):1755-1764.LU G X,JIN T,ZHOU Y Z,et al.Research progress of laser shock strengthening in the application of superalloy materials[J].The Chinese Journal of Nonferrous Metals,2018,28(9):1755-1764.(in Chinese)

    • [41] BUGAYEV A A,GUPTA M C,PAYNE R.Laser processing of inconel 600 and surface structure [J].Optics and Lasers in Engineering,2006,44(2):102-111.

    • [42] DONG J,SUN Y,HE F,et al.Effects of substrate surface roughness and aluminizing agent composition on the aluminide coatings by low-temperature pack cementation [J].Materials Research Express,2018,6(3):036409.

    • [43] 张超,宋义全.碳钢渗铝的组织与腐蚀行为研究[J].热加工工艺,2015(2):178-181.ZHANG C,SONG Y Q.Experimental study on microstructure and corrosion behavior of carbon steel after alumetizing[J].Hot Working Technology,2015(2):178-181.(in Chinese)

    • [44] 叶晶,王宇,黄敏.低温助渗剂Zn对 N80 套管钢低温渗铝层组织的影响[J].热加工工艺,2013,42(8):131-134.YE J,WANG Y,HUANG M.Effect of Zn in pack powder on microstructure of aluminized layer on N80 casing steel at low temperature [J].Hot Working Technology,2013,42(8):131-134.(in Chinese)

    • [45] SINGH K,FERNANDES A,PAUL B,et al.Preparation and investigation of aluminized coating and subsequent heat treatment on 9Cr-1Mo Grade 91 steel[J].Fusion Engineering and Design,2014,89(11):2534-2544.

    • [46] SASAKI T,YAKOU T.Tool wear and surface roughness during machining of high-temperature aluminized steel [J].Journal of Materials Processing Technology,2008,197(1):89-95.

    • [47] KOBAYASHI S,YAKOU T.Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment[J].Materials Science and Engineering:A,2002,338(1):44-53.

    • [48] RASTKAR A R,REZVANI N.The Effects of processing time on the microstructure and composition of plasma pack-aluminized and-oxidized surface layers on low carbon steel[J].Metallurgical and Materials Transactions A,2015,46(9):4132-4142.

    • [49] MADANIPOUR H,SOLTANIEH M,NAYEBPASHAEE N.Investigation of the formation of Al,Fe,N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel[J].Materials & Design,2013,51:43-50.

    • [50] KIM J H,WANG J P,KANG C Y.Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel [J].Metals and Materials International,2011,17(6):931-935.

    • [51] 史新勃,王宇,黄敏.包埋渗剂Al含量对N80套管钢渗层组织和性能的影响[J].热加工工艺,2012,41(4):123-125,129.SHI X B,WANG Y,HUANG M.Effects of Al content in pack powder on microstructure and mechanical properties of aluminized N80 oil casing steel [J].Hot Working Technology,2012,41(4):123-125,129.(in Chinese)

    • [52] AHMADI H,LI D Y.Beneficial effects of yttrium on mechanical properties and high-temperature wear behavior of surface aluminized 1045 steel[J].Wear,2003,255(7):933-942.

    • [53] 纪文文,宋月鹏,陈克丰,等.稀土元素对40Cr钢渗铝层组织性能的影响研究[J].稀土,2009,30(6):55-59.JI W W,SONG Y P,CHEN K F,et al.Effect of rare earth elements on microstructure and properties of 40Cr steel aluminized layer [J].Chinese Rare Earth,2009,30(6):55-59.(in Chinese)

    • [54] MA F,GAO Y,ZENG Z,et al.Improving the Tribocorrosion Resistance of Monel 400 Alloy by Aluminizing Surface Modification [J].Journal of Materials Engineering and Performance,2018,27(7):3439-3448.

    • [55] HAN L,HUANG D,YAN X,et al.Effects of aluminizing and combined strengthening on the fatigue property of K403 superalloy component under combined high and low cycle loading [J].International Journal of Fatigue,2019,125:491-504.

    • [56] 董健,窦炳胜,贺飞羽,等.不锈钢表面渗铝层/ZrO2 复合涂层残余应力模拟[J].表面技术,2019,48(6):235-242.DONG J,DOU B S,HE F Y,et al.Residual stress simulation of aluminized layer/ZrO2 composite coating on stainless steel[J].Surface Technology,2019,48(6):235-242.(in Chinese)

    • [57] KHAN R H U,YEROKHIN A L,PILKINGTON T,et al.Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current [J].Surface and Coatings Technology,2005,200(5):1580-1586.

    • [58] DANGI B,BROWN T W,KULKARNI K N.Effect of silicon,manganese and nickel present in iron on the intermetallic growth at iron-aluminum alloy interface [J].Journal of Alloys and Compounds,2018,769::777-787.

    • [59] BOZZA F,BOLELLI G,GIOLLI C,et al.Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys[J].Surface and Coatings Technology,2014,239(1):147-159.

    • [60] GOWARD G W,BOONE D H.Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J].Oxidation of Metals,1971,3(5):475-495.

    • [61] 刘爱萍,张伟.渗铝钢扩散层生长动力学的计算机拟合[J].金属热处理,2011,36(8):124-127.LIU A P,ZHANG W.Computer fitting of growth kinetics of diffusion layer in aluminized steel[J].Heat Treatment of Metals,2011,36(8):124-127.(in Chinese)

    • [62] 李德元,杨成,张忠礼,等.碳钢热喷涂渗铝互扩散系数计算[J].沈阳工业大学学报,2008,30(3):288-292.LI D Y,YANG C,ZHANG Z L,et al.Calculation of interdiffusivity of Fe and Al in aluminized arc-sprayed coating on mild steel [J].Journal of Shenyang University of Technology,2008,30(3):288-292.(in Chinese)

    • [63] 黄敦伟,胡爱萍,张宏伟,等.热浸渗铝X70管线钢扩渗工艺研究[J].表面技术,2013,42(4):72-75,109.HUANG D W,HU A P,ZHANG H W,et al.Research on hot diffusion aluminizing process of X70 pipe line steel[J].Surface Technology,2013,42(4):72-75,109.(in Chinese)

    • [64] BOUAYAD A,GEROMETTA C,BELKEBIR A,et al.Kinetic interactions between solid iron and molten aluminium [J].Materials Science and Engineering:A,2003,363(1):53-61.

    • [65] ZAREI F,NURANIAN H,SHIRVANI K.Characterization,growth kinetics and high-temperature oxidation behavior of aluminide coating formed on HH309 stainless steel by casting and subsequent heat treatment [J].Intermetallics,2020,120:106742.

    • [66] ROSA R,VERONESI P,CASAGRANDE A.On the effect of steel substrate alloying elements on the in-situ formation of intermediate thermal diffusion barrier layers [J].Materials Chemistry and Physics,2020,240:122231.

    • [67] MOBIN M,SHARMA H K,HASAN S K.High temperature oxidation behaviour of CeO2 and La2O3 modified aluminide coatings on carbon steel [J].Anti-Corrosion Methods and Materials,2002,49(4):283-294.

    • [68] YIN F C,ZHAO M X,LIU Y X,et al.Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum[J].Transactions of Nonferrous Metals Society of China,2013,23(2):556-561.

    • [69] 黄敏,王宇.低温包埋渗铝及其在石油管材防腐蚀应用中的研究进展[J].热加工工艺,2012,41(8):135-139.HUANG M,WANG Y.Research progress of low—temperature pack aluminizing and its potential application on oil-casing steel and pipeline steel[J].Hot Working Technology,2012,41(8):135-139.(in Chinese)

    • [70] SMITH C O.The science of engineering materials[J].Physics Today,1957,10(12):26-27.

    • [71] 闫世成,闫果,卢亚锋,等.原始Mg粉形状对 Mg-B 体系成相行为的影响[J].金属学报,2007,43(4):59-60.YAN S C,YAN G,LU Y F,et al.Influence of raw Mg powder shape on behavior of phase for Mg-B system [J].Acta Metallurgica Sinica,2007,43(4):59-60.(in Chinese)

    • [72] 刘东亮,邓建国.材料科学基础[M].华东理工大学出版社,2016.LIU D L,DENG J G.Materials science [ M ].East China University of Science and Technology Press,2016.(in Chinese)

    • [73] WEI H,SUN X,ZHENG Q,et al.An inverse method for determination of the interdiffusivity in aluminide coatings formed on superalloy[J].Surface and Coatings Technology,2004,182(1):112-116.

    • [74] PAZ Y PUENTE A E,DUNAND D C.Effect of Cr content on interdiffusion and Kirkendall pore formation during homogenization of pack-aluminized Ni and Ni-Cr wires [J].Intermetallics,2018,101:108-115.

    • [75] ZHU X X,YANG H G,YUAN X M,et al.Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel[J].Journal of Nuclear Materials,2014,455(1):578-581.

    • [76] TRIPATHI S,VERMA V,BROWN T W,et al.Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys[J].Journal of Phase Equilibria and Diffusion,2017,38(2):135-142.

    • [77] ZAHEDI H,SHAHRIARI NOGORANI F,SAFARI M.Microstructure analysis of the pack cementation aluminide coatings modified by CeO2 addition [J].Metals and Materials International,2019,.

    • [78] 孟堃,刘忠,王远,等.碳钢粉末包埋低温渗铝工艺的研究进展[J].热加工工艺,2016(24):31-34.MENG K,LIU Z,WANG Y,et al.Research progress of embedding low-temperature aluminizing process for carbon steel powder[J].Hot Working Technology,2016(24):31-34.(in Chinese)

    • [79] MANNING J R.Diffusion in a chemical concentration gradient [J].Physical Review,1961,124(2):470.

    • [80] CHEN H,MORRAL J E.Variation of the effective diffusivity in two-phase regions [J].Acta Materialia,1999,47(4):1175-1180.

    • [81] PéREZ F J,HIERRO M P,TRILLEROS J A,et al.Iron aluminide coatings on ferritic steels by CVD-FBR technology[J].Intermetallics,2006,14(7):811-817.

    • [82] SOMRERK C A,KRASAELOM N,THUBLAOR T,et al.High temperature corrosion behaviour of aluminised FC 25 cast iron using pack cementation [J].Anti-Corrosion Methods and Materials,2019,66(2):236-241.

    • [83] RONG J,KANG Z,CHEN S,et al.Growth kinetics and thickness prediction of interfacial intermetallic compounds between solid steel and molten aluminum based on thermophysical simulation in a few seconds [J].Materials Characterization,2017,132:413-421.

    • [84] GARIBOLDI E,VERANI M,RIVA C.Modelling of phase evolution during aluminizing processes[J].Advanced Materials Research,2011,278:228-233.

    • [85] 刘洪福,牛宗伟,赵东山.影响热浸镀铝层厚度的因素分析及预测模型的建立[J].材料保护,2012,45(8):4-6,70.LIU H F,NIU Z W,ZHAO D S.Analysis of factors affecting thickness of hot-dip aluminized coating and establishment of prediction model[J].Materials Protection,2012,45(8):4-6,70.(in Chinese)

    • [86] KARUNARATNE M S A,JEPSON M A E,SIMMS N J,et al.Modelling of microstructural evolution in multi-layered overlay coatings[J].Journal of Materials Science,2017,52(20):12279-12294.

    • [87] GAO F,HUANG X,LIU R,et al.A Study of pack aluminizing process for NiCrAlY coatings using response surface methodology [J].Journal of Materials Engineering and Performance,2014,23(1):83-91.

    • [88] DEJTHAMMARONG P,VISUTTIPITUKUL P,LEELACHAO S,et al.Modelling of nickel aluminide layer growth on IN738 and Haynes 214 in pack aluminizing [J].AIP Conference Proceedings,2020,2279(1):050006.

    • [89] LU Y H,QI S G,HUANG C M,et al.A study on diffusion in hot-dip aluminizing [J].Advanced Materials Research,2010,97-101:1253-1256.

  • 手机扫一扫看