en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

伊浩,男,1988年出生,讲师,博士研究生导师。研究方向为增材制造与智能制造技术。E-mail:haoyi@cqu.edu.cn;

曹华军(通信作者),男(汉),1978年出生,教授,博士研究生导师。研究方向为绿色制造基础理论与关键技术。E-mail:hjcao@cqu.edu.cn

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210408002

参考文献 1
DONACHIE M J.Titanium:A technical guide [ M].Novelty:ASM International,2000.
参考文献 2
SCHAUERTE O.Titanium in automotive production [J].Advanced Engineering Materials,2003,5(6):411-418.
参考文献 3
CARROLL B E,PALMER T A,BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J].Acta Materialia,2015,87:309-320.
参考文献 4
SCHUTZ R W,BAXTER C F,BOSTER P L,et al.Applying titanium alloys in drilling and offshore production systems [J].Journal of Metals,2001,53(4):33-35.
参考文献 5
LUO L,JIANG Z Y,WEI D B,et al.Surface modification of titanium and its alloys for biomedical application[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,887:1115-1120.
参考文献 6
LENYENS,PENTERS M.Titanium and titanium alloys [ M].Hoboken:Wiley Online Library,2003.
参考文献 7
MELLOR S,HAO L,ZHANG D.Additive manufacturing:A framework for implementation [J].International Journal of Production Economics,2014,149:194-201.
参考文献 8
KUMAR M B,SATHIYA P.Methods and materials for additive manufacturing:A critical review on advancements and challenges [J].Thin-Walled Structures,2020:107228.
参考文献 9
李绍伟,郜庆伟,赵健,等.电子束熔丝增材制造研究进展及展望[J].中国材料进展,2021,40(2):130-138.LI S W,GAO Q W,ZHAO J.Research progress and prospect of electron beam fused wire additive manufacturing [J].China Advances in Materials,2021,40(2):130-138.
参考文献 10
DING J,COLEGROVE P,MEHNEN J,et al.Thermo-mechanical analysis of wire and arc additive layer Manufacturing process on large multi-layer parts [J].Computational Materials Science,2011,50(12):3315-3322.
参考文献 11
DICKENS P M,PRIDHAM M S,COBB R C,et al.Rapid prototyping using 3-D welding [ C]//1992 International Solid Freeform Fabrication Symposium.1992.
参考文献 12
SPENCER J D,DICKENS P M,WYKES C M.Rapid prototyping of metal parts by three-dimensional welding [J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1998,212(3):175-182.
参考文献 13
GUNGOR B,KALUC E,TABAN E,et al.Mechanical and microstructural properties of robotic cold metal transfer(CMT)welded 5083-H111 and 6082-T651 aluminum alloys [J].Materials & Design(1980-2015),2014,54:207-211.
参考文献 14
COLEGROVE P A,MARTINA F,ROY M J,et al.High pressure interpass rolling of wire + arc additively manufactured titanium components[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,996:694-700.
参考文献 15
BOISSELIER D,SANKARÉ S.Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing[J].Physics Procedia,2012,39:455-463.
参考文献 16
ANTONYSAMY A A,MEYER J,PRANGNELL P B.Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting[J].Materials Characterization,2013,84:153-168.
参考文献 17
SHI S,TAN Y,JIANG D,et al.Removal of aluminum from silicon by electron beam melting with exponential decreasing power[J].Separation and Purification Technology,2015,152:32-36.
参考文献 18
ZHOU X,ZHANG H,WANG G,et al.Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J].International Journal of Heat and Mass Transfer,2016,103:521-537.
参考文献 19
WANG F,WILLIAMS S,COLEGROVE P,et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J].Metallurgical and Materials Transactions A,2013,44(2):968-977.
参考文献 20
刘桐.激光立体成形 Ti-V-15Cr 系合金微观组织演化及性能 [D].西安:长安大学,2017.LIU T.Microstructural evolution and properties of laser stereolithographic Ti-V-15Cr system alloy[D].Xi'an:Chang'an University,2017.(in Chinese)
参考文献 21
王普强,吴梦杰,王豫跃,等.不同热处理工艺下激光增材制造TC4钛合金组织与性能研究进展[J].航空制造技术,2020,63(10):56-65.WANG P Q,WU M J,WANG Y Y.Research progress on the organization and properties of laser additive manufactured TC4 titanium alloy under different heat treatment processes [J].Aerospace Manufacturing Technology,2020,63(10):56-65.(in Chinese)
参考文献 22
FATOBA O S,LASISI A M,IKUMAPAYI O M,et al.Icosahedral structure influence on the microstructural and mechanical properties of laser additive manufactured(LAM)titanium alloy grade 5[J].Materials Today:Proceedings,2020,44(1):1263-1270.
参考文献 23
何杰,冯曰海,张林,等.高强 Al-Mg 合金钨极氩弧双丝增材制造工艺与组织性能 [J].焊接学报,2019,40(7):109-113,166.HE J,FENG Y H,ZHANG L,et al.Process and tissue properties of high-strength Al-Mg alloy tungsten-argon double-wire additive fabrication[J].Journal of Welding,2019,40(7):109-113,166.(in Chinese)
参考文献 24
许磊,杜彦斌,张磊.表面损伤叶轮激光增材再制造研究 [J].重庆工商大学学报,2021,38(1):1-6.XU L,DU Y B,ZHANG L.Research on laser additive remanufacturing of surface damaged impellers [J].Journal of Chongqing University of Technology and Business,2021,38(1):1-6.(in Chinese)
参考文献 25
夏玉峰,滕海灏,张雪,等.Ti-6Al-4V 合金电弧熔丝增材的组织性能研究进展[ J/OL].重庆大学学报:1-13[2021-07-26].http://kns.cnki.net/kcms/detail/50.1044.N.20201027.1708.004.html.XIA Y F,TENG H H,ZHANG X,et al.Progress in the study of the tissue properties of Ti-6Al-4V alloy arc fusion wire additive [J/OL].Journal of Chongqing University:1-13[2021-03-16].http://kns.cnki.net/kcms/detail/50.1044.N.20201027.1708.004.html.(in Chinese)
参考文献 26
MOTYKA M,KUBIAK K,SIENIAWSKI J,et al.Phase transformations and characterization of α+β titanium alloys[J].Comprehensive Materials Processing,2014,8(8):7-36.
参考文献 27
BAUFELD B,BIEST O V D,GAULT R.Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition [J].Science and Technology of Advanced Mate-rials,2009,100(11):1536-1542.
参考文献 28
BAUFELD B,BIEST O V D,GAULT R.Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties [J].Materials and Design,2010,31:106-111.
参考文献 29
杜子杰,李文渊,刘建荣,等.CMT 增材制造 TC4-DT 合金组织均匀性与力学性能一致性研究[J].金属学报,56(12):1667-1680.DU Z J,LI W Y,LIU J R,et al.Study on the uniformity and mechanical properties of TC4-DT alloy for CMT additive manufacturing[J].Journal of Metals,56(12):1667-1680.(in Chinese)
参考文献 30
杜子杰,李文渊,刘建荣,等.CMT 成型 TC4-DT 合金的组织及其形成机理的CET模型预测[J].材料研究学报,2020,34(7):518-526.DU Z J,LI W Y,LIU J R,et al.CET model prediction of the organization and formation mechanism of CMT-formed TC4-DT alloy [J].Journal of Materials Research,2020,34(7):518-526.(in Chinese)
参考文献 31
WANG X,ZHAO Y,WEI L,et al.In-situ SEM investigation of the fatigue behavior of additive manufactured titanium alloys [ C ]//European Workshop on Structural Health Monitoring.Springer,Cham,2020:612-621.
参考文献 32
张飞奇.基于丝材电弧增材制造 Ti6A14V-xB 合金的组织性能及模拟[D].西安:西安理工大学,2017:39-40.ZHANG F Q.Tissue properties and simulation of Ti6A14V-xB alloy based on filamentary arc additive manufacturing[D].Xi’an:Xi’an University of Technology,2017:39-40.(in Chinese)
参考文献 33
张萍,刘德波,柏久阳,等.电弧增材制造的沉积态TC4钛合金薄壁零件组织特征[J].焊接,2015(11):53-56,72.ZHANG P,LIU D B,BAI J Y et al.Organizational characteristics of thin-walled TC4 titanium alloy parts in the deposited state by arc additive manufacturing [J].Welding,2015(11):53-56,72.(in Chinese)
参考文献 34
李雷,于治水,张培磊,等.TC4 钛合金电弧增材制造叠层组织特征[J].焊接学报,2018,39(12):37-43,130.LI L,YU Z S,ZHANG P L et al.Organizational characteristics of stacked layers of TC4 titanium alloy for arc additive manufacturing[J].Journal of Welding,2018,39(12):37-43,130.(in Chinese)
参考文献 35
JIAN G,SHEN J Q,HU S S.Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing [J].Journal of Manufacturing Processes,2019:41-50.
参考文献 36
AYED A,VALENCIA A,BRAS G,et al.Effects of WAAM process parameters on metallurgical and mechanical properties of Ti-6Al-4V deposits[M]//Advances in Materials,Mechanics and Manufacturing.Springer,Cham,2020:26-35.
参考文献 37
ROSENTHAL D.The theory of moving sources of heat and its application of metal treatments [J].Transactions of ASME,1946,68:849-866.
参考文献 38
WANG F,WILLIAMS S,COLEGROVE P,et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J].Metallurgical and materials transactions A,2013,44(2):968-977.
参考文献 39
ALMEIDA P S,WILLIAMS S.Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer(CMT)[C]//Proceedings of the twenty-first annual international solid freeform fabrication symposium,University of Texas at Austin,Austin,TX,USA.2010:25-36.
参考文献 40
SHCHITSYN Y D,KRIVONOSOVA E A,TRUSHNIKOV D N,et al.Use of CMT-surfacing for additive formation of titanium alloy workpieces[J].Metallurgist,2020,64:67-74.
参考文献 41
马振书,陈广森,吴倩茹,等.脉冲频率和热输入对电弧增材制造TC4钛合金形貌和组织的影响[J].稀有金属材料与工程,2018,47(7):198-204.MA Z S,CHEN G S,WU Q R,et al.Effects of pulse frequency and heat input on the morphology and organization of TC4 titanium alloy by arc additive manufacturing [J].Rare Metal Materials and Engineering,2018,47(7):198-204.(in Chinese)
参考文献 42
YANG Z W,FU L Q,WANG S L,et al.Balance of strength and plasticity of additive manufactured Ti-6Al-4V alloy by forming TiB whiskers with cyclic gradient distribution [J].Additive Manufacturing,2021,39:101883.
参考文献 43
GOU J,WANG Z,HU S,et al.Effects of trace Nb addition on microstructure and properties of Ti-6Al-4V thin-wall structure prepared via cold metal transfer additive manufacturing [J].Journal of Alloys and Compounds,2020,829:154481.
参考文献 44
GOU J,WANG Z,HU S,et al.Microstructure evolution and mechanical properties of cold metal transfer additive manufactured Ti-6Al-4V wall with trace MoSi2 addition[J].Materials Science and Engineering:A,2020,798:140160.
参考文献 45
ZHANG H,WANG X,WANG G,et al.Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J].Rapid Prototyping Journal,2013,19(6):387-394.
参考文献 46
GU J,DING J,WILLIAMS S W,et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy [J].Materials Science and Engineering:A,2016,651:18-26.
参考文献 47
GU J,WANG X,BAI J,et al.Deformation microstructures and strengthening mechanisms for the wire + arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling [J].Materials Science and Engineering:A,2018,712:292-301.
参考文献 48
何智,胡洋,曲宏韬,等.超声冲击电弧增材制造钛合金零件的各向异性研究[J].航天制造技术,2016(6):11-16.HE Z,HU Y,QU H,WANG ZM,et al.Anisotropy study of ultrasonic impact arc additive manufacturing of titanium alloy parts [J].Aerospace Manufacturing Technology,2016(6):11-16.(in Chinese)
参考文献 49
许明方,陈玉华,邓怀波,等.超声辅助CMT电弧增材制造TC4钛合金微观组织和力学性能研究[J].精密成形工程,2019,11(5):142-148.XU M F,CHEN Y H,DENG H B,et al.Study on microstructure and mechanical properties of TC4 titanium alloy by ultrasonic-assisted CMT arc additive manufacturing [J].Precision Forming Engineering,2019,11(5):142-148.(in Chinese)
参考文献 50
何智.超声冲击电弧增材制造钛合金零件的组织性能研究 [D].武汉:华中科技大学,2016.HE Z.Study on the tissue properties of ultrasonic impact arc additive manufacturing of titanium alloy parts [ D].Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)
参考文献 51
GOU J,WANG Z J,HU S S,et al.Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti-6Al-4V thin wall structure[J].Journal of Manufacturing Processes,2020,54:148-157.
参考文献 52
陈伟.CMT 电弧增材制造TC4钛合金组织及力学性能调控 [D].南昌:南昌航空大学,2019.CHEN W.Tissue and mechanical property tuning of TC4 titanium alloy by CMT arc additive manufacturing [ D ].Nanchang:Nanchang University of Aeronautics,2019.(in Chinese)
参考文献 53
王斌.TC4 钛合金电弧熔丝沉积成形工艺研究[D].沈阳:沈阳航空航天大学,2018.WANG B.Research on TC4 titanium alloy arc fusion wire deposition forming process[D].Shenyang:Shenyang University of Aeronautics and Astronautics,2018.(in Chinese)
参考文献 54
杨海欧,王健,周颖惠,等.电弧增材制造技术及其在TC4钛合金中的应用研究进展[J].材料导报,2018,32(11):1884-1890.YANG H O,WANG J,ZHOU Y H,et al.Research progress of electric arc additive manufacturing technology and its application in TC4 titanium alloy [J].Materials Guide,2018,32(11):1884-1890.(in Chinese)
参考文献 55
李雷.TC4 钛合金电弧增材制造叠层组织演变及其机理研究 [D].上海:上海工程技术大学,2017.LI L.Study on the tissue evolution of TC4 titanium alloy stacked layers by arc additive manufacturing and its mechanism [ D].Shanghai:Shanghai University of Engineering and Technology,2017.(in Chinese)
参考文献 56
张飞奇,陈文革,田美娇.Ti-6Al-4V 丝材电弧增材制造钛合金的组织与性能[J].稀有金属材料与工程,2018,47(6):1890-1895.ZHANG F Q,CHEN W G,TIAN M J.Organization and properties of Ti-6Al-4V wire arc additive manufacturing of titanium alloys [J].Rare Metal Materials and Engineering,2018,47(6):1890-1895.(in Chinese)
参考文献 57
WILSON-HEID A E,WANG Z,MCCORNAC B,et al.Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V [J].Materials Science and Engineering:A,2017,706:287-294.
参考文献 58
高福洋,张毅,孙建刚,等.钛合金多层多道电弧增材制造成形特性研究[J].焊接技术,2019,48(5):23-27,7.GAO F Y,ZHANG Y,SUN J G,et al.Study on the forming characteristics of multi-layer multi-arc additive manufacturing of titanium alloy[J].Welding Technology,2019,48(5):23-27,7.(in Chinese)
参考文献 59
WANG J,LIN X,LI J,et al.A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti-6Al-4V [J].Materials Science and Engineering:A,2020,772:138703.
参考文献 60
杨光,王斌,钦兰云,等.激光和电弧增材制造TC4钛合金组织和性能研究[J].稀有金属,2018,42(9):903-908.YANG G,WANG B,QIN L Y,et al.Study on the organization and properties of TC4 titanium alloy by laser and arc additive manufacturing[J].Rare Metals,2018,42(9):903-908.(in Chinese)
参考文献 61
TANRIKULU A A.Microstructure and mechanical properties of additive manufacturing titanium alloys after thermal processing [D].Porland:Porland State University,2017.
参考文献 62
WAAM3DA.Technology driven company providing comprehensive integrated technical solutions in the field of wire-based directed-energy-deposition additive manufacturing [ EB/OL].https://waam3d.com/parts.
参考文献 63
ZHUO Y,YANG C,FAN C,et al.Microstructure and mechanical properties of wire arc additive repairing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy [J].Materials Science and Technology,2020,36(15):1712-1719.
参考文献 64
沈泳华.电弧增材制造成形系统设计及成形规律研究[D].南京:南京航空航天大学,2017.SHEN,Y H.Research on the design of electric arc additive manufacturing forming system and forming law [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)
参考文献 65
LI Y,HAN Q,HORVATH I,et al.Repairing surface defects of metal parts by groove machining and wire+arc based filling[J].Journal of Materials Processing Technology,2019,274:116268.
参考文献 66
FULLER C.An additive manufacturing technology undergoes tests and trials on numerous applications[R/OL].[2018-08-18].
参考文献 67
金属与粉末冶金[J].新材料产业,2019(4):94-95.Metals and powder metallurgy[J].New Materials Industry,2019(4):94-95.(in Chinese)
参考文献 68
曹勇,朱胜,孟凡军,等.机器人 GMAW& 数控铣削复合快速制造系统[J].焊接,2010(2):54-57,72.CAO Y,ZHU S,MENG F J,et al.Robotic GMAW & CNC milling composite additive manufacturing system[J].Welding,2010(2):54-57,72.(in Chinese)
目录contents

    摘要

    钛合金高强度、高耐热的特性决定了其在航空航天、船舶制造等领域的广泛应用,但由于钛合金的难加工性,使得传统锻造+机加的方式模具损耗严重、制造周期长。 增材制造作为一种制造成本低、成形效率高的绿色化制造工艺,凭借其无需模具、直接成形的优势在钛合金制造领域受到国内外学者的广泛关注。 电弧增材制造技术相较于其他增材工艺(如激光增材制造、电子束增材制造等)沉积效率更高,不受零件尺寸的限制,在大型和超大型结构件的制造中具有突出优势,其中基于冷金属过渡(Cold metal transfer, CMT)的电弧增材制造技术由于沉积过程更稳定、热输入量更低,已逐渐成为钛合金增材制造领域的研究热点。 文中对基于冷金属过渡的钛合金电弧增材制造技术的研究现状进行综述,介绍钛合金打印件的微观组织和力学性能特征,总结分析了成形参数对打印件微观组织与力学性能的影响规律,并概述了形核条件调控、轧制和超声冲击等辅助技术对打印件微观组织与力学性能的影响机制,最后展望了钛合金 CMT 电弧增材制造的未来发展趋势。

    Abstract

    Titanium alloys are widely used in aerospace, shipbuilding and some other fields due to their high strength and high heat resistance. However, traditional forging+machining methods are suffering from severe die loss and long manufacturing cycle because of the difficult machining of titanium alloys. Additive manufacturing, as a green manufacturing process with low manufacturing cost and high forming efficiency, has received wide attention from domestic and international scholars in the field of titanium alloy manufacturing with its advantages of direct forming without die. Compared with other additive manufacturing processes,such as laser additive manufacturing, electron beam additive manufacturing, etc. , wire arc additive manufacturing possesses higher deposition efficiency and is not limited by the dimensions of parts, and it has outstanding advantages in the manufacturing of large and ultra-large parts. Wire arc additive manufacturing based on cold metal transfer (CMT) has gradually become a research hotspot in the field of titanium alloy additive manufacturing because of its more stable deposition process and lower heat input. This paper reviews the current research on CMT-based wire arc additive manufacturing for titanium alloy. The microstructure and mechanical properties of titanium alloy printed parts are introduced, and the influence of forming parameters on the microstructure and mechanical properties of printed parts is summarized and analyzed. The influencing mechanism of assisted technologies, such as nucleation condition control, rolling and ultrasonic impact on the microstructure and mechanical properties of printed parts are summarized. Finally, the prospects of CMT-based wire arc additive manufacturing are proposed.

  • 0 前言

  • 钛合金( 如Ti-6Al-4V、Ti-5Al-2.5Sn、TC6等) 是一种强度高、密度低、耐腐蚀性强的金属材料[1],由于其具备高强度重量比、强耐热性、高生物相容性等优点,已在航空航天、武器装备、轨道交通、海洋工程与生物医学等领域得到了广泛应用[2-5]。但钛合金由于锻造温度区间窄、变形抗力大,高温易吸氧吸氢等特性,使得传统的锻造+机加的方式在制备钛合金结构件时存在模具损伤严重、材料利用率低、制造周期长、制造成本高等诸多问题[6]。增材制造( Additive manufacture, AM) 作为一种绿色制造技术,因其无需加工模具、直接成形、绿色可持续的优点被国内外学者广泛关注。与传统减材制造相比,增材制造技术通过逐层堆叠沉积材料,借助计算机辅助设计直接成形任意形状三维零件,可提高材料利用率、节约制造成本并缩短制造周期,在钛合金的绿色、高效、可持续制造的发展方向拥有独特优势[7]。图1展示了2010~2020年钛合金增材制造领域国内外的论文发文量与研究热点,从图中可以看出近10年钛合金增材制造领域的研究论文发表数量逐年攀升, 其中研究热点由早期的工艺参数对微观组织和力学性能影响规律研究,逐渐延伸到打印件组织性能调控、钛合金与异种金属联合打印、表面修复与再制造等。

  • 图1 2010~2020年钛合金增材制造领域论文发文量与研究热点

  • Fig.1 Publication number and research hotpots in the field of titanium alloy additive manufacturing from 2010to 2020

  • 增材制造可以追溯到Charles Hull提出的立体光刻成型技术,自提出以来发展迅速,目前已衍生出多种增材制造工艺[8]。现阶段关于钛合金的增材制造工艺主要包括激光沉积制造( Laser deposition manufacturing, LDM)和电子束熔丝沉积成形(Electron beam wire deposition, EBD),电弧增材制造(Wire arc additive manufacture, WAAM)等。其中激光沉积制造技术制造精度高、沉积质量好, 可以实现高性能复杂构件的快速近净成形,但该技术对钛合金粉末的质量和尺寸要求较高,且高质量粉末制备成本昂贵,导致其制造成本通常较高;电子束熔丝成形通常在真空环境下成形制造, 打印过程热源集中度高,成形效率与制件致密度较高,但同时也存在制造零件尺寸受限于真空箱尺寸、制造成本较高等问题[9];电弧增材制造技术以钛合金丝材作为填充材料,具有沉积效率高、制造周期短、制造成本低、不受零件尺寸限制等优点,在大型和超大型零件快速制造领域具有较大的应用前景。

  • 电弧增材制造技术根据热源的不同通常可分为3种类型:基于熔化极气体保护(GMAW) [10]、基于钨极惰性气体保护(GTAW) [11] 和基于等离子弧焊(PAW) [12]的电弧增材制造。 3种类型的电弧增材制造工艺的特征如表1所示,各工艺的沉积效率普遍较高,但传统的GMAW-WAAM与GTAM-WAAM存在输入热量大、熔池不稳定和熔滴飞溅等问题,容易造成零件缺陷(如气孔、裂纹和残余应力等)。基于此,相关研究人员在GMAW-WAAM基础上进一步研发了基于冷金属过渡( Cold metal transfer, CMT)的电弧增材制造技术,其基本工作原理是:在起弧阶段金属丝材向熔池移动,当金属丝熔融浸入熔池的瞬间实现电路短路、电弧熄灭、焊接电流骤降,随后金属丝快速回抽,进而完成金属熔滴的过渡[13]。该技术具有基体热输入量低、焊接过程稳定、少/无熔滴飞溅的优势,广泛用于多种合金材料的增材制造技术研究。

  • 文中借助Citespace软件对近9年基于CMT的钛合金电弧增材制造文献进行了系统梳理(图2)。图2中的节点表示2012~2020年期间CMT钛合金电弧增材制造的研究热点,弧线表示研究热点之间的相互联系。从图中可知近9年多数研究热点均与微观组织与机械性能有着密切的关联。因此,文中从CMT钛合金电弧增材制造的微观组织、力学性能和性能调控3个方面对国内外的相关文献进行梳理,系统总结目前的研究进展,提出该技术的典型应用领域,并对CMT钛合金增材制造的未来发展方向进行了展望,拟为后续钛合金增材制造技术的研究提供参考。

  • 图2 2012—2020年基于CMT的钛合金电弧增材制造研究热点

  • Fig.2 Research hotspots in CMT-based titanium alloy wire arc additive manufacturing from 2012to 2020

  • 表1 电弧增材制造工艺特征表

  • Table1 Characteristics of WAAM processes

  • 1 CMT电弧增材制造钛合金微观组织研究

  • 微观组织结构包括金属零件的金相组织与晶粒结构,主要由制造工艺所决定,直接影响了最终制件的材料性能[25-26]。相关学者研究了不同打印参数下钛合金的微观组织结构特征,以分析其材料性能的变化。本节主要综述基于CMT的电弧增材制造钛合金微观组织的研究进展,分析总结工艺参数和外部辅助方式对金相与晶粒的影响规律。

  • 1.1 CMT电弧增材制造钛合金组织结构特征

  • 早期钛合金电弧增材制造研究多基于TIG或MIG焊接技术,BAUFELD等[27-28] 曾针对TIG电弧增材制造Ti-6Al-4V钛合金的微观组织演变进行了研究,研究发现沉积层中主要分布着粗大柱状 β 晶粒,只有在制件的底部和顶部存在着少量的等轴晶。相对于传统的TIG或MIG电弧增材制造,基于CMT的电弧增材制造由于其工艺独特的特性导致钛合金制件的微观组织存在较大差异。杜子杰等[29] 研究发现沉积件自下而上分为基板原始组织区、热影响区和堆积区,其中热影响区多为细等轴晶,堆积区底层为细柱状晶区,中层与顶层为等轴晶与短柱状晶的混合。 WANG等[31]指出在基于CMT的钛合金增材制造过程中,α 相在原始 β 晶界成核,形成 α 晶界(αGB)。板状 α 相继续生长并形成群落,其中群落为层状显微结构,由被残留 β 相隔开的平行 α 板组成。而靠近基板的区域,由于冷却速率较高,α 相以篮状组织形态在剩余的 β 相中成核。张飞奇等[32]以Ti-6Al-4V钛合金丝材为原料,采用CMT电弧增材制造,得到堆积层底部为柱状晶、顶部为等轴晶的组织结构,在堆积区与熔合区均没有钛马氏体相的出现。杜子杰等[30] 通过研究钛合金制件的金相组织和晶粒进一步分析了沉积层的微观组织(图3),发现Ti-6Al-4V合金层的显微结构主要由晶粒边界 α(αGB)和马氏体 α′相、集群组织及编织状组织组成,粗大柱状晶贯穿多个组织结构。张萍和李雷等[33-34] 同样观察到在基于CMT的电弧增材制造工艺下,制件内部具有从高温保留下来贯穿数个堆积层的原始 β 柱状晶晶界、水平层带条纹、马氏体组织、群簇组织和网篮组织,而底部热影响区则主要由网篮组织、魏氏组织、平直 α 丛、马氏体 α′相、初生 α 相、次生 α 相及原始 β 晶界组成。 GOU等[35] 进一步对 β 晶粒进行EBSD表征(图4),发现红色的长 β 晶粒沿<001>方向分布并沿沉积方向生长,形成高度各向异性的柱状微结构。

  • 图3 连续沉积钛合金微观组织结构[30]

  • Fig.3 Microstructure of continuously deposited titanium alloy [30]

  • 图4 钛合金微观组织 β 晶粒EBSD图[35]

  • Fig.4 EBSD of β grain in titanium alloy microstructure [35]

  • 根据以上国内外研究现状表明:相较于传统电弧增材制造技术,CMT电弧增材制造的钛合金组织等轴晶的质量分数明显增加,部分粗大 β 相转变为 α 相,沿沉积方向从上至下分别形成了柱状马氏体、束域组织和网篮状组织,细化了部分晶粒组织。与TIG电弧增材制造的制件组织相类似,β 晶粒仍沿最大温度梯度方向生长形成高度各向异性的柱状结构。分析认为可能是低热输入量、多次热循环及不同冷却速率等因素导致了CMT电弧增材制造钛合金微观组织的独特结构,并产生分布不均匀的显微组织。而这种独特的组织结构会导致材料力学性能的各向异性,从而大幅限制钛合金制件的应用。因此如何消除粗大晶粒,均匀化组织结构已成为该领域的前沿研究热点。

  • 1.2 CMT电弧增材制造成形参数对组织结构影响

  • 为抑制打印件粗大 β 晶粒的形成、均匀化组织结构,国内外诸多学者对CMT钛合金电弧增材制造的工艺展开了系统深入的研究,希望通过优化成形参数调控制件的微观组织。

  • 不同成形参数对组织结构的影响程度不同。 AYED等[36]分析了送丝速度与焊接速度对制件组织和力学性能的影响,研究发现在宏观结构上焊道高度与宽度随焊接速度的增加而减小,随着送丝速度的增加而增加。在微观组织方面,随着焊接速度的增加, 晶粒的尺寸逐渐减小。如图5所示,当焊接速度由5mm/s提升至13mm/s时,打印制件晶粒尺寸由0.56mm降低至0.34mm。杜子杰等[30]在研究CMT成形TC4-DT合金的组织及其形成机理时,引入了3D-Rosenthal移动热源模型[37],指出随着输入功率P的增加,沉积层温度梯度逐渐下降,低倍组织中完全柱状晶区逐渐向混合区过渡。随着焊枪移动速度的增加,凝固速度逐渐增加,当焊接速度大于3.2mm/s时,制件主要由柱状晶与等轴晶的混合组织组成,且晶粒尺寸逐渐下降。对于这些试验现象, WANG等[38]认为送丝速度的增加使得更多的Ti-6Al-4V焊丝被送入熔池,进而提供了更多的异质形核点,促使柱状晶粒向等轴晶粒转变。 SHCHITSYN等[40] 分析认为焊接速度对组织结构的影响主要是通过改变冷却速率,在高冷却速率下形成篮状组织结构,而在缓慢冷却时形成由平行的 α-片晶群组成的马氏体层状结构。 ALMEIDA等[39]在研究中获得了类似的试验结果,即随着焊接速度的增加晶粒逐渐细化,制件组织由马氏体向网篮状组织转变; 此外, 研究还发现了气体的种类同样影响晶粒组织的生长。图6展示了采用30%、50%和70%氦(余量为氩)的混合气体进行试验得到的制件组织结构,分析发现随着氦含量的增加,电弧的热输入量逐渐增加,使得沉积层温度梯度增大,进一步促使 β 晶粒细化并沿沉积方向外延生长,导致粗大柱状晶区逐渐减少。

  • 图5 不同焊接速度下晶粒变化[36]

  • Fig.5 Grain variation at different welding speeds [36]

  • 图6 不同氦含量对微观组织的影响[39]

  • Fig.6 Effect of different helium contents on microstructure [39]

  • 马振书等[41] 设计两组相同热输入量的钛合金增材对比试验,分别改变脉冲频率,研究发现提高脉冲频率能促进熔融态金属的流动,进而促使柱状晶粒破碎形成等轴晶粒,但 β 晶粒内 α 相形貌主要与热输入量有关,增加脉冲频率不能细化 α 相。

  • 根据以上国内外研究现状表明:现阶段对成形参数的研究主要集中在送丝速度、焊接速度、气体种类、脉冲频率与输入功率等方面,该5类参数对制件微观组织的影响程度如图7所示。其中送丝速度的增加会提供更多的形核点促进等轴晶的形成;焊接速度影响冷却速率,随着焊接速度的增加组织趋向于网篮状结构;气体含量与输入功率主要影响热输入量,随着热输入量的增加温度梯度增大,促进柱状晶向等轴晶转变。上述研究主要集中于不同成形参数下试验现象的描述与分析,对微观组织伴随成形参数变化的演变规律及机理尚未研究透彻,为实现微观组织的精确调控,仍需要对其深层次机理做进一步的研究分析。

  • 图7 工艺参数对微观组织影响

  • Fig.7 Effect of process parameters on microstructure

  • 1.3 CMT电弧增材制造钛合金微观组织调控

  • 为抑制粗大柱状 β 晶粒和组织的不均匀分布对合金材料性能的影响,相关学者除了通过调控成形参数外,也考虑采用外部辅助手段来实现细化晶粒、均匀化组织,如引入热处理、轧制、超声冲击处理和元素合金化等方法。

  • 钛合金难以形成等轴晶,是因为合金元素中异质形核点过少,凝固时难以在固液界面前沿形成过冷区。为此研究人员尝试人为添加微量合金元素调控钛合金微观组织。 YANG等[42] 在钛合金CMT电弧增材制造过程中添加硼元素,研究微量合金元素对试件微观组织的影响。试验发现添加微量硼元素可显著细化柱状初生 β 晶,原位合成了TiB晶须(图8a),其数量从单个沉积层的底部逐渐增加到顶部。随着硼含量的增加,TiB晶须由散状分布逐渐演变为沿初生 β 晶界生长的项链状连续结构, 形成粗等轴晶、树枝晶和细等轴晶3种形貌的初生 β 晶粒。 GOU等[43] 指出在钛合金增材制造过程中添加Nb元素可阻止定向柱状晶在重熔条件下的外延生长,形成Nb固溶体,即( β-Ti,Nb) 相(图8b),进而细化柱状晶晶粒,使得篮式组织颗粒的平均宽度约为0.2mm,针状颗粒的宽度约为0.56mm,得到了近等轴晶和柱状晶的混合组织。 GOU等[44] 添加微量MoSi2 研究Ti-6Al-4V薄壁件微观组织的演变(图8c),试验观察到两个显著的微观结构变化:一方面,原始 β 晶粒从柱状晶转变为等轴晶或近等轴晶;另一方面,固溶体(β-Ti, Mo)的形成使得二次针状 α′马氏体减少,二次 β 相增加,形成层状 α+β 相。分析原因发现,加入微量MoSi2 后得到微量(β-Ti, Mo)相和二氧化硅颗粒,抑制了部分 β→α′相变,进而细化晶粒形成篮状组织。

  • 图8 不同元素对钛合金组织影响[43]

  • Fig.8 Effect of different elements on the microstructure of titanium alloys [43]

  • 金属材料经过压力加工后,其内部组织结构与力学性能通常都得到较大的改善。基于此,部分学者将轧制工艺与电弧增材制造相结合, 以此改善材料微观组织结构。 ZHANG等[ 45] 采用连续轧制处理合金制件,对比未处理零件的微观组织结构发现层间轧制可以有效的细化粗大晶粒,形成较为均匀的微观组织结构。 GU等[ 46] 研究发现轧制工艺对制件的初生 β 组织和织构的细化有显著作用。不同轧制载荷下的晶粒变形程度各不相同。 WANG等[ 47] 进一步改变轧制载荷的大小研究微观组织晶粒的变化,发现初生粗晶组织明显细化。随着轧制载荷的增加, 晶粒进一步破碎与细化( 图9), 在45kN载荷下,小于10 μm的细晶粒占全部晶粒的82.2%。在晶粒内部区域发现了大量的低角度晶粒。

  • 图9 不同载荷轧制后的IPF图[47]

  • Fig.9 IPF plots after rolling with different loads [47]

  • 此外除了通过轧制的方式对制件进行处理, 一些学者通过超声冲击的方式对钛合金增材制造进行辅助加工。胡洋和许明方等[48-49] 针对钛合金CMT电弧增材制造制件存在部分区域 β 晶粒粗大、力学性能各向异性的问题,采用超声冲击的方式对制件进行处理。研究发现超声冲击能促进沉积层的位错增殖与迁移,造成内部粗大的柱状晶破碎形成更多的形核质点,使其在后续沉积层热作用下通过再结晶与相变形,形成细小等轴晶。何智[50]在此基础上进一步探究超声冲击参数对CMT电弧增材制造Ti-6Al-4V钛合金零件组织性能的影响规律和机理,研究发现随着焊接速度的减小,晶粒变形及破碎趋于严重,形核质点增多, 沉积层平均宽度逐渐增加,等轴晶的平均直径逐渐变小。随着冲击次数的增加,沉积层平均宽度逐渐增大,等轴晶平均直径逐渐减小。 GOU等[51] 改进常规的超声冲击方式,采用三向超声喷丸对沉积件进行处理(图10),研究发现 β 晶粒破碎区域增大,柱状晶向等轴晶或近等轴晶转化,柱状初始 β 晶粒与次 α 相明显进一步细化,制件的各向异性获得改善。

  • 图10 三向超声冲击试验系统图[51]

  • Fig.10 Diagram of the three-way ultrasonic impact experiment setup [51]

  • 已有研究表明热输入量影响着钛合金增材制造的微观组织,GOU等[35] 在此基础上研究了不同热处理条件下微观组织的变化,分别选择900℃ 热处理4h后炉冷和1 200℃热处理2h后炉冷两种热处理工艺,研究结果表明:与未处理的组织结构(图11a) 相比,900℃热处理后 α 板明显粗大,马氏体 α′相转变为 α+β 相,并在 β 转变点以下热处理后形成了一层晶粒边界 α,β 晶粒轮廓更加明显(图11b),1 200℃热处理后出现熔断现象(图11c),粗大的 β 晶明显细化,由原始的粗大晶粒(平均宽度170 μm) 转变为细长晶粒(平均宽度20 μm) 并在晶化过程中形成层状 α+β 混合相。陈伟等[52]对不规则晶粒的CMT电弧增材制造Ti-6Al-4V钛合金试样进行不同温度的固溶时效处理,试验发现热处理对晶内和集束组织的晶界 α 相有一定粗化作用,α 板条随固溶时效处理温度的升高依次变短、变粗,长宽比减小。马氏体 α′针状内部析出的板状 α 相宽度依次变小。王斌[53]在研究中也观察到类似的现象:退火状态下的试样 α 相不断生长并互相截断以短棒状形式存在, α 相长宽比减小,形成粗大的网篮组织。

  • 根据以上国内外研究现状表明,现阶段CMT钛合金电弧增材制造组织调控手段主要包括合金元素化、超声冲击与轧制、热处理。合金元素化通过增加大量的异质形核点,促使柱状晶向等轴晶或近等轴晶转变,但同时改变了制件的材料性能。超声冲击或轧制等压力加工手段主要是通过微细塑性变形实现晶粒的破碎与细化,有效改善了组织的不均匀性, 但会延长制造周期,降低制造效率,不利于工程化应用。热处理工艺是现阶段较为成熟的辅助手段,能够有效优化组织结构,但热量对晶粒破碎、薄片 α 粗化的影响机理与规律还尚不明确,不利于微观组织的进一步精细调控。综上所述,现阶段的组织调控手段仍不成熟,需要更深入全面的机理研究。

  • 图11 不同处理条件下微观组织[35]

  • Fig.11 Microstructure under different heat treatment [35]

  • 2 CMT电弧增材制造钛合金力学性能研究

  • CMT电弧增材制造钛合金的力学性能是仅次于微观组织的研究热点之一,其中主要的研究内容包括钛合金的拉伸性能、显微硬度等力学行为。

  • 2.1 CMT电弧增材制造钛合金组织力学性能特征

  • 电弧增材制造过程中熔池和热影响区的尺寸较大,在电弧热源往复移动下打印件将持续受到热循环影响,成形过程中积累较高的热量[54]。随着沉积层数的增加,制件各部位的受热状态不同,微观组织结构存在差异,使得钛合金成形件的力学性能存在各向异性。李雷等[34,55] 在研究钛合金构件力学性能时,对制件沿沉积方向进行显微硬度测试,发现沿沉积方向 α 相的面积相对减少,中下部区域显微硬度相对较高(图12)。分析认为中下部区域经历多次热循环使得部分 α′等亚稳相发生分解,α 相增多,对该区域产生了强化作用。张飞奇等[56] 对比了铸造和电弧增材制造的Ti-6Al-4V合金的微观组织与力学性能,拉伸断口形貌如图13所示,对比发现电弧增材制造组织的初始 β 晶粒及 α+β 片层间距较小,在拉伸试验中,材料进行塑性变形,大量位错进行滑移,而初始 β 晶界与 α/β 相界对位错滑移有阻碍作用,晶(相)界越多,位错滑移阻力越大,使得其合金强度显著升高, 抗拉强度相比铸态提高3.6%,延伸率提高37%,拉伸断口形貌呈现更细小的韧窝( 图13)。杜子江等[30] 在CMT增材制造TC4-DT合金组织均匀性与力学性能一致性的研究中发现,根据Hall-Petch公式[37] 计算,晶内 α 板条对变形或位错运动的阻力远小于原始 β 晶界阻力, 变形主要集中在原始 β 晶,为此分布不均匀的组织结构使得制件不同区域的拉伸性能与加工硬化系数有明显的差异。陈伟[52] 进一步研究了不同方向上CMT电弧增材制造钛合金制件的拉伸性能,试验发现制件沿沉积方向45°时的抗拉强度和屈服强度最高,而处于水平方向的抗拉强度和屈服强度优于垂直方向。结果表明微观组织的分布不均匀会导致试样拉伸性能的各向异性。 ALEXANDER等[57] 进一步地提出了塑性各向异性(横向延伸率/纵向延伸率,y)和柱状晶比例(柱状晶高度/柱状晶宽度,x) 存在一定关系: y=0.001 25e 0.91x + 0.98,当柱状晶比例大于6时,试样呈现出塑性各向异性。

  • 图12 沿制件沉积方向的显微硬度[34]

  • Fig.12 Micro-hardness of the deposited specimen along the deposition direction [34]

  • 图13 钛合金拉伸断口形貌[56]

  • Fig.13 Tensile fracture morphology of titanium alloy parts [56]

  • 上述研究表明,电弧增材制造的钛合金制件由于组织结构分布的不均匀性与晶粒的粗大导致其在拉伸性能上存在各向异性,强度分布不均匀,极大地限制了钛合金增材制造技术的实际应用。因此开发新型方法改善钛合金组织的力学性能已成为该领域的研究热点。

  • 2.2 CMT电弧增材制造钛合金力学性能调控

  • 工艺参数影响着打印微观组织结构,进而影响着钛合金制件的力学性能。相关学者着手于调控成形参数以优化制件的力学性能。 AYED等[36] 研究了送丝速度与焊接速度对零件力学性能的影响,指出送丝速度对沉积件硬度的影响较小,而焊接速度的增加会导致制件硬度微量增加,直到焊接速度达到9mm/s时,硬度保持不变(350~360HV)。高福洋等[58]采用交错式堆积策略,使得层间交界组织受到多次热循环作用,柱状晶破碎趋向于等轴化,平均抗拉强度为870MPa,断后伸长率为13.3%,表现出良好的力学性能,相邻层的材料均匀性较好,无明显差异。 WANG等[59]提出优化送丝速度可以改变沉积层的温度梯度方向,抑制柱状晶的生长,得到质量分数为80%的等轴晶组织,试件各向异性显著降低。

  • 除了工艺参数的调控,部分研究人员尝试引入外部辅助加工方式优化材料的力学性能。 YANG等[42] 在打印过程中添加硼元素后,发现合金组织的细化作用和TiB晶须的梯度分布改善了制件的力学性能。如图14所示,Ti-6Al-4V-0.05B合金的抗拉强度达到1 089MPa,比Ti-6Al-4V合金提高了17%,延伸率保持在8%,没有明显降低。随着硼含量的增加,拉伸强度增加,延伸率降低。当硼元素含量达到0.05%时, 试件的各向异性达到最小。 GOU等[43-44] 分别添加MoSi2 与Nb分析合金元素的调控作用,表2为添加两种微量合金对材料力学性能的影响。试验结果表明加入微量MoSi2、Nb粉末后原始 β 晶粒由柱状晶转变为等轴晶或近等轴晶,针状马氏体减少,增加了平均应力和显微硬度并降低了各向异性。

  • 图14 B%对制件拉伸性能的影响[42]

  • Fig.14 Effect of B%on the tensile properties of the parts [42]

  • 表2 添加元素对样件力学性能的影响[43-44]

  • Table2 Effect of added elements on the mechanical properties of samples [43-44]

  • 热处理是目前改善电弧增材制造钛合金制件组织结构最成熟的方法。陈伟[52] 在进行了钛合金CMT电弧增材制造后,将制件分别进行不同温度和冷却条件下的固溶时效处理( FC表示炉冷,AC表示空冷),再分别沿焊接方向、与焊接方向成45°、 90°角方向取样,测试其力学性能。表3为不同时效处理后的制件力学性能,研究发现固溶时效下的微观组织 α 片层明显粗化,马氏体区 α 板条均匀析出,抗拉强度随热处理温度的升高而降低,但塑性随温度升高而提高,各向异性随温度的升高得到改善。王斌[53]研究发现随着退火温度的升高,α 相会不断长大,导致相邻 α 相会互相截断,并产生次生 α 相, 使得退火后抗拉强度整体呈下降趋势,而塑性得到提升, 并减小制件力学性能的各向异性。 GOU等[51]同样对沉积样件做900℃热处理,发现马氏体α′相全部转变为 α+β 相,拉伸强度从1 017MPa降至841MPa,延伸率从7.54%降至4.83%。杨光、 AHMET等[60-61]分析了退火态的CMT电弧增材制造样件的力学性能,发现经过退火处理后 α 相粗化形成篮网组织,硬度值略有下降,强度相当,但塑性略低,拉伸强度的各向异性得到改善。

  • 针对钛合金电弧增材制造制件拉伸性能普遍较低的问题,研究人员通过引入塑性变形来改善其拉伸性能。部分学者采用超声冲击的方式对沉积试件进行后处理,研究发现经超声冲击后,粗大柱状晶转变为细小的等轴晶,同时增大了沉积层平均宽度,试样两个方向塑性各向异性减小,拉伸强度增大,并且随着冲击幅度的增加,等轴晶的尺寸先增大后逐渐减小[49-50]。当振幅为40%时,制件的平均宽度达到最大,等轴晶平均直径达到最小。 GOU等[51] 改用三向超声冲击处理调控沉积制件,研究发现该工艺细化了原始 β 晶粒和次 α 晶粒(图15),而表面没有明显的塑性变形,平均极限抗拉强度从996MPa增加到1 059MPa,各向异性百分比从6%减少到0.8%,实现了晶粒组织的均匀化,提高了力学性能。其他研究人员引入层间轧制的方法,发现轧制载荷的大小施对平均粒度和分布有着显著影响,拉伸强度和显微硬度随着载荷的增加而增加[45-47],以韧性方式断裂具有明显的线状韧窝特征,β 晶粒的尺寸显著减小,使材料性质更加均匀。

  • 表3 热处理工艺下制件的力学性能[52]

  • Table3 Mechanical properties of the parts under heat treatment process [52]

  • 图15 超声冲击下微观组织[50]

  • Fig.15 Microstructure under ultrasonic impact [50]

  • 根据以上国内外研究现状表明,CMT电弧增材制造工艺存在较大温度梯度和多次高温热循环,导致了粗大柱状初生 β-Ti晶粒的形成。粗大柱状初生晶粒的存在通常导致沉积态合金的力学性能较差且具有高度的各向异性。为此研究人员通过热处理、成形参数控制、轧制、超声喷丸和元素合金化等方法调控电弧增材制造钛合金的显微组织,进而优化制件力学性能。其中改变成形参数可在一定程度内改变微观组织的生成方式,实现晶粒细化,但成形参数的可调范围一般较窄,力学性能的提升通常有限。添加微量元素对晶粒的形核与生长有促进作用,可改善制件的力学性能,但合金元素化会带来合金成分的变化,从而改变材料特性。热处理是改善电弧增材制造钛合金制件微观组织的有效手段,但在高温条件下连续晶界破碎和薄片 α 粗化的变化规律尚不明确,如何采用热处理方式精确调控制件组织和力学性能仍需进一步研究。轧制、超声冲击等压力加工方式通过增加位错密度,细化晶粒,改善制件拉伸性能的各向异性,但该方式受限于冲击穿透深度,并且会增加零件的制造周期。综上所述,现有的打印制件力学性能调控方式均存在一定的局限性,仍需要开展进一步的研究。

  • 3 应用前景

  • 基于CMT的钛合金电弧增材制造技术弥补了传统工艺加工难度大、材料利用率低、生产成本高、制造周期长等缺点,使得该技术在多个领域具有巨大的应用潜力。

  • 3.1 大型结构件成形

  • 钛合金以其独特的性能优势,已成为航空航天等领域理想的结构材料之一。基于CMT的电弧增材制造技术可以完成大型或超大型钛合金零件的直接制造,在航空航天等领域大型结构件成形方面具有较大应用前景。挪威金属增材制造公司Norsk Titanium(NTi)已通过CMT电弧增材制造技术制造飞机机翼和主承力构件,与同类技术相比,成本缩减50%~70%,制造周期缩短75%[66]。雷兹阿莱尼亚宇航公司、克兰菲尔德大学和Glenalmond技术公司共同组成的研究团队通过电弧增材制造技术成功制造了第一个全尺寸的钛合金压力容器原型(图16a), 拟用于未来的载人航天探索任务[67]。英国WAAM3D公司通过CMT电弧增材制造实现了燃气轮叶片的直接成形(图16b),大幅度地减少了零件制造时间与成本。此外该公司还联合克兰菲尔德大学,借助CMT电弧增材制造与冷轧加工实现了空客A320后挂支架的直接制造(图16c) [62]

  • 3.2 表面修复与再制造

  • 除了在钛合金结构件的制造方面,CMT电弧增材制造技术在钛合金制件的表面修复与再制造领域也具有巨大应用潜力。该技术可通过对损伤零件的原位沉积完成表面修复与再制造。如钛合金压气机叶片和整体叶盘经常遭受各种损坏,包括叶尖缺失、表面裂纹和叶尖磨损、叶片断裂等,直接更换零部件会增加制造成本,不符合绿色可持续发展的理念。因此,相关学者考虑通过原位修复工艺来修复受损零件。 ZHUO等[63]直接将钛合金叶片作为母材,在叶片缺陷处进行电弧增材制造完成表面修复,通过检测发现沉积层与母材形成良好的冶金结合,修复后的零件力学性能良好。类似地,沈泳华等[64] 基于冷金属过渡技术设计搭建电弧增材制造成形系统,通过再制造加工实现了热作模具的修复工艺。曹勇等[68]将机器人电弧增材系统和数控铣床结合,对破损的凸轮零件进行了电弧增材再制造试验,实现缺陷零件的高精度再制造修复(图17)。 LI等[65] 针对具有表面缺陷的零件(如裂纹、凹坑等),将电弧增材制造与减材工艺相结合,首先通过机械加工将缺陷部分去除形成特定的凹槽,再利用电弧增材制造沉积材料进行填充,最后减材去除多余的填充材料,进而完成零件表面缺陷的修复与再制造过程(图18)。

  • 图16 CMT电弧增材制造钛合金零件[62]

  • Fig.16 CMT based WAAM of titanium alloy parts [62]

  • 图17 再制造凸轮零件[68]

  • Fig.17 Remanufactured cam part [68]

  • 图18 表面修复再制造工艺流程[65]

  • Fig.18 Process flow of surface repair [65]

  • 4 结论

  • 综上所述,目前基于CMT的钛合金电弧增材制造的研究主要集中在制件微观组织与力学性能,分析了不同工艺条件下微观组织和力学性能的变化, 并针对CMT电弧增材制造制件晶粒粗大、组织分布不均匀、力学性能各向异性等问题,提出了多种调控手段,主要包括成形参数控制(送丝速度、输入功率等)、塑性变形(轧制、超声冲击等)、合金元素化、热处理(时效处理、退火处理等)。此类调控方式都一定程度上实现了细化晶粒、均匀化组织结构的作用, 但同样存在着各自的局限性,尚无法实现工程化推广应用。

  • 总体而言,目前CMT电弧增材制造技术在钛合金微观组织和力学性能的研究取得了较大的进展, 但对一些微观组织变化的机理和一般性规律的研究尚不完善。此外现有辅助调控手段仍存在诸多局限性,需要进一步优化。为实现CMT钛合金电弧增材制造技术在大型或超大型结构件成形、零件表面修复与再制造等领域中的广泛应用,针对现阶段存在的问题,可以从以下角度考虑未来的研究方向。

  • (1) 组织性能与成形精度的协同控制和优化。现有的研究主要集中在不同成形参数下制件微观组织与力学性能的研究,但尚未将成形的微观组织与宏观尺寸精度、表面形貌等关联起来。因此,引入智能制造的相关技术,实现CMT电弧增材制件微观组织、力学性能与成形精度的协同优化控制将会是未来发展趋势之一。

  • (2) 制件组织性能调控手段的开发与优化。 CMT电弧增材制造的钛合金制件普遍存在晶粒粗大、组织结构不均匀等特点,导致其力学性能存在各向异性。尽管目前提出了部分辅助方式来调控制件的微观组织,但相关调控方式的基础理论规律仍不成熟,尚未能面向工程化生产应用。因此,如何更经济有效地抑制粗大晶粒的产生,控制逐层沉积时组织结构的分布将成为未来的主攻研究方向之一。

  • (3) CMT电弧增材制造异种合金构件的性能研究与优化控制。异种合金构件可以充分发挥多种合金的优势,弥补彼此的缺点,逐渐成为了材料优化的一种重要手段。而目前CMT电弧增材制造关于钛合金与其他异种金属联合打印的研究较少,对异种合金组织性能调控的相关理论尚不完善。因此, CMT电弧增材制造异种合金材料制件的组织性能调控与成形优化方法可能会成为未来重要研究方向之一。

  • (4) 基于CMT电弧增材制造技术的钛合金构件复杂曲面修复与再制造。随着绿色化制造理念的普及和钛合金构件的广泛应用,CMT电弧增材制造技术的原位修复工艺具有巨大的发展潜力,而现阶段基于CMT电弧增材制造技术的修复与再制造研究主要是针对水平或近水平表面构件,对复杂曲面零件的表面修复相关研究较少。随着制造零件的大型化与复杂化,现阶段的再制造技术逐渐无法满足要求,基于CMT电弧增材制造技术的钛合金复杂曲面修复与再制造技术可能会成为新的研究热点。

  • 参考文献

    • [1] DONACHIE M J.Titanium:A technical guide [ M].Novelty:ASM International,2000.

    • [2] SCHAUERTE O.Titanium in automotive production [J].Advanced Engineering Materials,2003,5(6):411-418.

    • [3] CARROLL B E,PALMER T A,BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J].Acta Materialia,2015,87:309-320.

    • [4] SCHUTZ R W,BAXTER C F,BOSTER P L,et al.Applying titanium alloys in drilling and offshore production systems [J].Journal of Metals,2001,53(4):33-35.

    • [5] LUO L,JIANG Z Y,WEI D B,et al.Surface modification of titanium and its alloys for biomedical application[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,887:1115-1120.

    • [6] LENYENS,PENTERS M.Titanium and titanium alloys [ M].Hoboken:Wiley Online Library,2003.

    • [7] MELLOR S,HAO L,ZHANG D.Additive manufacturing:A framework for implementation [J].International Journal of Production Economics,2014,149:194-201.

    • [8] KUMAR M B,SATHIYA P.Methods and materials for additive manufacturing:A critical review on advancements and challenges [J].Thin-Walled Structures,2020:107228.

    • [9] 李绍伟,郜庆伟,赵健,等.电子束熔丝增材制造研究进展及展望[J].中国材料进展,2021,40(2):130-138.LI S W,GAO Q W,ZHAO J.Research progress and prospect of electron beam fused wire additive manufacturing [J].China Advances in Materials,2021,40(2):130-138.

    • [10] DING J,COLEGROVE P,MEHNEN J,et al.Thermo-mechanical analysis of wire and arc additive layer Manufacturing process on large multi-layer parts [J].Computational Materials Science,2011,50(12):3315-3322.

    • [11] DICKENS P M,PRIDHAM M S,COBB R C,et al.Rapid prototyping using 3-D welding [ C]//1992 International Solid Freeform Fabrication Symposium.1992.

    • [12] SPENCER J D,DICKENS P M,WYKES C M.Rapid prototyping of metal parts by three-dimensional welding [J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1998,212(3):175-182.

    • [13] GUNGOR B,KALUC E,TABAN E,et al.Mechanical and microstructural properties of robotic cold metal transfer(CMT)welded 5083-H111 and 6082-T651 aluminum alloys [J].Materials & Design(1980-2015),2014,54:207-211.

    • [14] COLEGROVE P A,MARTINA F,ROY M J,et al.High pressure interpass rolling of wire + arc additively manufactured titanium components[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,996:694-700.

    • [15] BOISSELIER D,SANKARÉ S.Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing[J].Physics Procedia,2012,39:455-463.

    • [16] ANTONYSAMY A A,MEYER J,PRANGNELL P B.Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting[J].Materials Characterization,2013,84:153-168.

    • [17] SHI S,TAN Y,JIANG D,et al.Removal of aluminum from silicon by electron beam melting with exponential decreasing power[J].Separation and Purification Technology,2015,152:32-36.

    • [18] ZHOU X,ZHANG H,WANG G,et al.Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J].International Journal of Heat and Mass Transfer,2016,103:521-537.

    • [19] WANG F,WILLIAMS S,COLEGROVE P,et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J].Metallurgical and Materials Transactions A,2013,44(2):968-977.

    • [20] 刘桐.激光立体成形 Ti-V-15Cr 系合金微观组织演化及性能 [D].西安:长安大学,2017.LIU T.Microstructural evolution and properties of laser stereolithographic Ti-V-15Cr system alloy[D].Xi'an:Chang'an University,2017.(in Chinese)

    • [21] 王普强,吴梦杰,王豫跃,等.不同热处理工艺下激光增材制造TC4钛合金组织与性能研究进展[J].航空制造技术,2020,63(10):56-65.WANG P Q,WU M J,WANG Y Y.Research progress on the organization and properties of laser additive manufactured TC4 titanium alloy under different heat treatment processes [J].Aerospace Manufacturing Technology,2020,63(10):56-65.(in Chinese)

    • [22] FATOBA O S,LASISI A M,IKUMAPAYI O M,et al.Icosahedral structure influence on the microstructural and mechanical properties of laser additive manufactured(LAM)titanium alloy grade 5[J].Materials Today:Proceedings,2020,44(1):1263-1270.

    • [23] 何杰,冯曰海,张林,等.高强 Al-Mg 合金钨极氩弧双丝增材制造工艺与组织性能 [J].焊接学报,2019,40(7):109-113,166.HE J,FENG Y H,ZHANG L,et al.Process and tissue properties of high-strength Al-Mg alloy tungsten-argon double-wire additive fabrication[J].Journal of Welding,2019,40(7):109-113,166.(in Chinese)

    • [24] 许磊,杜彦斌,张磊.表面损伤叶轮激光增材再制造研究 [J].重庆工商大学学报,2021,38(1):1-6.XU L,DU Y B,ZHANG L.Research on laser additive remanufacturing of surface damaged impellers [J].Journal of Chongqing University of Technology and Business,2021,38(1):1-6.(in Chinese)

    • [25] 夏玉峰,滕海灏,张雪,等.Ti-6Al-4V 合金电弧熔丝增材的组织性能研究进展[ J/OL].重庆大学学报:1-13[2021-07-26].http://kns.cnki.net/kcms/detail/50.1044.N.20201027.1708.004.html.XIA Y F,TENG H H,ZHANG X,et al.Progress in the study of the tissue properties of Ti-6Al-4V alloy arc fusion wire additive [J/OL].Journal of Chongqing University:1-13[2021-03-16].http://kns.cnki.net/kcms/detail/50.1044.N.20201027.1708.004.html.(in Chinese)

    • [26] MOTYKA M,KUBIAK K,SIENIAWSKI J,et al.Phase transformations and characterization of α+β titanium alloys[J].Comprehensive Materials Processing,2014,8(8):7-36.

    • [27] BAUFELD B,BIEST O V D,GAULT R.Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition [J].Science and Technology of Advanced Mate-rials,2009,100(11):1536-1542.

    • [28] BAUFELD B,BIEST O V D,GAULT R.Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties [J].Materials and Design,2010,31:106-111.

    • [29] 杜子杰,李文渊,刘建荣,等.CMT 增材制造 TC4-DT 合金组织均匀性与力学性能一致性研究[J].金属学报,56(12):1667-1680.DU Z J,LI W Y,LIU J R,et al.Study on the uniformity and mechanical properties of TC4-DT alloy for CMT additive manufacturing[J].Journal of Metals,56(12):1667-1680.(in Chinese)

    • [30] 杜子杰,李文渊,刘建荣,等.CMT 成型 TC4-DT 合金的组织及其形成机理的CET模型预测[J].材料研究学报,2020,34(7):518-526.DU Z J,LI W Y,LIU J R,et al.CET model prediction of the organization and formation mechanism of CMT-formed TC4-DT alloy [J].Journal of Materials Research,2020,34(7):518-526.(in Chinese)

    • [31] WANG X,ZHAO Y,WEI L,et al.In-situ SEM investigation of the fatigue behavior of additive manufactured titanium alloys [ C ]//European Workshop on Structural Health Monitoring.Springer,Cham,2020:612-621.

    • [32] 张飞奇.基于丝材电弧增材制造 Ti6A14V-xB 合金的组织性能及模拟[D].西安:西安理工大学,2017:39-40.ZHANG F Q.Tissue properties and simulation of Ti6A14V-xB alloy based on filamentary arc additive manufacturing[D].Xi’an:Xi’an University of Technology,2017:39-40.(in Chinese)

    • [33] 张萍,刘德波,柏久阳,等.电弧增材制造的沉积态TC4钛合金薄壁零件组织特征[J].焊接,2015(11):53-56,72.ZHANG P,LIU D B,BAI J Y et al.Organizational characteristics of thin-walled TC4 titanium alloy parts in the deposited state by arc additive manufacturing [J].Welding,2015(11):53-56,72.(in Chinese)

    • [34] 李雷,于治水,张培磊,等.TC4 钛合金电弧增材制造叠层组织特征[J].焊接学报,2018,39(12):37-43,130.LI L,YU Z S,ZHANG P L et al.Organizational characteristics of stacked layers of TC4 titanium alloy for arc additive manufacturing[J].Journal of Welding,2018,39(12):37-43,130.(in Chinese)

    • [35] JIAN G,SHEN J Q,HU S S.Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing [J].Journal of Manufacturing Processes,2019:41-50.

    • [36] AYED A,VALENCIA A,BRAS G,et al.Effects of WAAM process parameters on metallurgical and mechanical properties of Ti-6Al-4V deposits[M]//Advances in Materials,Mechanics and Manufacturing.Springer,Cham,2020:26-35.

    • [37] ROSENTHAL D.The theory of moving sources of heat and its application of metal treatments [J].Transactions of ASME,1946,68:849-866.

    • [38] WANG F,WILLIAMS S,COLEGROVE P,et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J].Metallurgical and materials transactions A,2013,44(2):968-977.

    • [39] ALMEIDA P S,WILLIAMS S.Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer(CMT)[C]//Proceedings of the twenty-first annual international solid freeform fabrication symposium,University of Texas at Austin,Austin,TX,USA.2010:25-36.

    • [40] SHCHITSYN Y D,KRIVONOSOVA E A,TRUSHNIKOV D N,et al.Use of CMT-surfacing for additive formation of titanium alloy workpieces[J].Metallurgist,2020,64:67-74.

    • [41] 马振书,陈广森,吴倩茹,等.脉冲频率和热输入对电弧增材制造TC4钛合金形貌和组织的影响[J].稀有金属材料与工程,2018,47(7):198-204.MA Z S,CHEN G S,WU Q R,et al.Effects of pulse frequency and heat input on the morphology and organization of TC4 titanium alloy by arc additive manufacturing [J].Rare Metal Materials and Engineering,2018,47(7):198-204.(in Chinese)

    • [42] YANG Z W,FU L Q,WANG S L,et al.Balance of strength and plasticity of additive manufactured Ti-6Al-4V alloy by forming TiB whiskers with cyclic gradient distribution [J].Additive Manufacturing,2021,39:101883.

    • [43] GOU J,WANG Z,HU S,et al.Effects of trace Nb addition on microstructure and properties of Ti-6Al-4V thin-wall structure prepared via cold metal transfer additive manufacturing [J].Journal of Alloys and Compounds,2020,829:154481.

    • [44] GOU J,WANG Z,HU S,et al.Microstructure evolution and mechanical properties of cold metal transfer additive manufactured Ti-6Al-4V wall with trace MoSi2 addition[J].Materials Science and Engineering:A,2020,798:140160.

    • [45] ZHANG H,WANG X,WANG G,et al.Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J].Rapid Prototyping Journal,2013,19(6):387-394.

    • [46] GU J,DING J,WILLIAMS S W,et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy [J].Materials Science and Engineering:A,2016,651:18-26.

    • [47] GU J,WANG X,BAI J,et al.Deformation microstructures and strengthening mechanisms for the wire + arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling [J].Materials Science and Engineering:A,2018,712:292-301.

    • [48] 何智,胡洋,曲宏韬,等.超声冲击电弧增材制造钛合金零件的各向异性研究[J].航天制造技术,2016(6):11-16.HE Z,HU Y,QU H,WANG ZM,et al.Anisotropy study of ultrasonic impact arc additive manufacturing of titanium alloy parts [J].Aerospace Manufacturing Technology,2016(6):11-16.(in Chinese)

    • [49] 许明方,陈玉华,邓怀波,等.超声辅助CMT电弧增材制造TC4钛合金微观组织和力学性能研究[J].精密成形工程,2019,11(5):142-148.XU M F,CHEN Y H,DENG H B,et al.Study on microstructure and mechanical properties of TC4 titanium alloy by ultrasonic-assisted CMT arc additive manufacturing [J].Precision Forming Engineering,2019,11(5):142-148.(in Chinese)

    • [50] 何智.超声冲击电弧增材制造钛合金零件的组织性能研究 [D].武汉:华中科技大学,2016.HE Z.Study on the tissue properties of ultrasonic impact arc additive manufacturing of titanium alloy parts [ D].Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)

    • [51] GOU J,WANG Z J,HU S S,et al.Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti-6Al-4V thin wall structure[J].Journal of Manufacturing Processes,2020,54:148-157.

    • [52] 陈伟.CMT 电弧增材制造TC4钛合金组织及力学性能调控 [D].南昌:南昌航空大学,2019.CHEN W.Tissue and mechanical property tuning of TC4 titanium alloy by CMT arc additive manufacturing [ D ].Nanchang:Nanchang University of Aeronautics,2019.(in Chinese)

    • [53] 王斌.TC4 钛合金电弧熔丝沉积成形工艺研究[D].沈阳:沈阳航空航天大学,2018.WANG B.Research on TC4 titanium alloy arc fusion wire deposition forming process[D].Shenyang:Shenyang University of Aeronautics and Astronautics,2018.(in Chinese)

    • [54] 杨海欧,王健,周颖惠,等.电弧增材制造技术及其在TC4钛合金中的应用研究进展[J].材料导报,2018,32(11):1884-1890.YANG H O,WANG J,ZHOU Y H,et al.Research progress of electric arc additive manufacturing technology and its application in TC4 titanium alloy [J].Materials Guide,2018,32(11):1884-1890.(in Chinese)

    • [55] 李雷.TC4 钛合金电弧增材制造叠层组织演变及其机理研究 [D].上海:上海工程技术大学,2017.LI L.Study on the tissue evolution of TC4 titanium alloy stacked layers by arc additive manufacturing and its mechanism [ D].Shanghai:Shanghai University of Engineering and Technology,2017.(in Chinese)

    • [56] 张飞奇,陈文革,田美娇.Ti-6Al-4V 丝材电弧增材制造钛合金的组织与性能[J].稀有金属材料与工程,2018,47(6):1890-1895.ZHANG F Q,CHEN W G,TIAN M J.Organization and properties of Ti-6Al-4V wire arc additive manufacturing of titanium alloys [J].Rare Metal Materials and Engineering,2018,47(6):1890-1895.(in Chinese)

    • [57] WILSON-HEID A E,WANG Z,MCCORNAC B,et al.Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V [J].Materials Science and Engineering:A,2017,706:287-294.

    • [58] 高福洋,张毅,孙建刚,等.钛合金多层多道电弧增材制造成形特性研究[J].焊接技术,2019,48(5):23-27,7.GAO F Y,ZHANG Y,SUN J G,et al.Study on the forming characteristics of multi-layer multi-arc additive manufacturing of titanium alloy[J].Welding Technology,2019,48(5):23-27,7.(in Chinese)

    • [59] WANG J,LIN X,LI J,et al.A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti-6Al-4V [J].Materials Science and Engineering:A,2020,772:138703.

    • [60] 杨光,王斌,钦兰云,等.激光和电弧增材制造TC4钛合金组织和性能研究[J].稀有金属,2018,42(9):903-908.YANG G,WANG B,QIN L Y,et al.Study on the organization and properties of TC4 titanium alloy by laser and arc additive manufacturing[J].Rare Metals,2018,42(9):903-908.(in Chinese)

    • [61] TANRIKULU A A.Microstructure and mechanical properties of additive manufacturing titanium alloys after thermal processing [D].Porland:Porland State University,2017.

    • [62] WAAM3DA.Technology driven company providing comprehensive integrated technical solutions in the field of wire-based directed-energy-deposition additive manufacturing [ EB/OL].https://waam3d.com/parts.

    • [63] ZHUO Y,YANG C,FAN C,et al.Microstructure and mechanical properties of wire arc additive repairing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy [J].Materials Science and Technology,2020,36(15):1712-1719.

    • [64] 沈泳华.电弧增材制造成形系统设计及成形规律研究[D].南京:南京航空航天大学,2017.SHEN,Y H.Research on the design of electric arc additive manufacturing forming system and forming law [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)

    • [65] LI Y,HAN Q,HORVATH I,et al.Repairing surface defects of metal parts by groove machining and wire+arc based filling[J].Journal of Materials Processing Technology,2019,274:116268.

    • [66] FULLER C.An additive manufacturing technology undergoes tests and trials on numerous applications[R/OL].[2018-08-18].

    • [67] 金属与粉末冶金[J].新材料产业,2019(4):94-95.Metals and powder metallurgy[J].New Materials Industry,2019(4):94-95.(in Chinese)

    • [68] 曹勇,朱胜,孟凡军,等.机器人 GMAW& 数控铣削复合快速制造系统[J].焊接,2010(2):54-57,72.CAO Y,ZHU S,MENG F J,et al.Robotic GMAW & CNC milling composite additive manufacturing system[J].Welding,2010(2):54-57,72.(in Chinese)

  • 参考文献

    • [1] DONACHIE M J.Titanium:A technical guide [ M].Novelty:ASM International,2000.

    • [2] SCHAUERTE O.Titanium in automotive production [J].Advanced Engineering Materials,2003,5(6):411-418.

    • [3] CARROLL B E,PALMER T A,BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J].Acta Materialia,2015,87:309-320.

    • [4] SCHUTZ R W,BAXTER C F,BOSTER P L,et al.Applying titanium alloys in drilling and offshore production systems [J].Journal of Metals,2001,53(4):33-35.

    • [5] LUO L,JIANG Z Y,WEI D B,et al.Surface modification of titanium and its alloys for biomedical application[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,887:1115-1120.

    • [6] LENYENS,PENTERS M.Titanium and titanium alloys [ M].Hoboken:Wiley Online Library,2003.

    • [7] MELLOR S,HAO L,ZHANG D.Additive manufacturing:A framework for implementation [J].International Journal of Production Economics,2014,149:194-201.

    • [8] KUMAR M B,SATHIYA P.Methods and materials for additive manufacturing:A critical review on advancements and challenges [J].Thin-Walled Structures,2020:107228.

    • [9] 李绍伟,郜庆伟,赵健,等.电子束熔丝增材制造研究进展及展望[J].中国材料进展,2021,40(2):130-138.LI S W,GAO Q W,ZHAO J.Research progress and prospect of electron beam fused wire additive manufacturing [J].China Advances in Materials,2021,40(2):130-138.

    • [10] DING J,COLEGROVE P,MEHNEN J,et al.Thermo-mechanical analysis of wire and arc additive layer Manufacturing process on large multi-layer parts [J].Computational Materials Science,2011,50(12):3315-3322.

    • [11] DICKENS P M,PRIDHAM M S,COBB R C,et al.Rapid prototyping using 3-D welding [ C]//1992 International Solid Freeform Fabrication Symposium.1992.

    • [12] SPENCER J D,DICKENS P M,WYKES C M.Rapid prototyping of metal parts by three-dimensional welding [J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1998,212(3):175-182.

    • [13] GUNGOR B,KALUC E,TABAN E,et al.Mechanical and microstructural properties of robotic cold metal transfer(CMT)welded 5083-H111 and 6082-T651 aluminum alloys [J].Materials & Design(1980-2015),2014,54:207-211.

    • [14] COLEGROVE P A,MARTINA F,ROY M J,et al.High pressure interpass rolling of wire + arc additively manufactured titanium components[C]//Advanced Materials Research.Trans Tech Publications Ltd,2014,996:694-700.

    • [15] BOISSELIER D,SANKARÉ S.Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing[J].Physics Procedia,2012,39:455-463.

    • [16] ANTONYSAMY A A,MEYER J,PRANGNELL P B.Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting[J].Materials Characterization,2013,84:153-168.

    • [17] SHI S,TAN Y,JIANG D,et al.Removal of aluminum from silicon by electron beam melting with exponential decreasing power[J].Separation and Purification Technology,2015,152:32-36.

    • [18] ZHOU X,ZHANG H,WANG G,et al.Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J].International Journal of Heat and Mass Transfer,2016,103:521-537.

    • [19] WANG F,WILLIAMS S,COLEGROVE P,et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J].Metallurgical and Materials Transactions A,2013,44(2):968-977.

    • [20] 刘桐.激光立体成形 Ti-V-15Cr 系合金微观组织演化及性能 [D].西安:长安大学,2017.LIU T.Microstructural evolution and properties of laser stereolithographic Ti-V-15Cr system alloy[D].Xi'an:Chang'an University,2017.(in Chinese)

    • [21] 王普强,吴梦杰,王豫跃,等.不同热处理工艺下激光增材制造TC4钛合金组织与性能研究进展[J].航空制造技术,2020,63(10):56-65.WANG P Q,WU M J,WANG Y Y.Research progress on the organization and properties of laser additive manufactured TC4 titanium alloy under different heat treatment processes [J].Aerospace Manufacturing Technology,2020,63(10):56-65.(in Chinese)

    • [22] FATOBA O S,LASISI A M,IKUMAPAYI O M,et al.Icosahedral structure influence on the microstructural and mechanical properties of laser additive manufactured(LAM)titanium alloy grade 5[J].Materials Today:Proceedings,2020,44(1):1263-1270.

    • [23] 何杰,冯曰海,张林,等.高强 Al-Mg 合金钨极氩弧双丝增材制造工艺与组织性能 [J].焊接学报,2019,40(7):109-113,166.HE J,FENG Y H,ZHANG L,et al.Process and tissue properties of high-strength Al-Mg alloy tungsten-argon double-wire additive fabrication[J].Journal of Welding,2019,40(7):109-113,166.(in Chinese)

    • [24] 许磊,杜彦斌,张磊.表面损伤叶轮激光增材再制造研究 [J].重庆工商大学学报,2021,38(1):1-6.XU L,DU Y B,ZHANG L.Research on laser additive remanufacturing of surface damaged impellers [J].Journal of Chongqing University of Technology and Business,2021,38(1):1-6.(in Chinese)

    • [25] 夏玉峰,滕海灏,张雪,等.Ti-6Al-4V 合金电弧熔丝增材的组织性能研究进展[ J/OL].重庆大学学报:1-13[2021-07-26].http://kns.cnki.net/kcms/detail/50.1044.N.20201027.1708.004.html.XIA Y F,TENG H H,ZHANG X,et al.Progress in the study of the tissue properties of Ti-6Al-4V alloy arc fusion wire additive [J/OL].Journal of Chongqing University:1-13[2021-03-16].http://kns.cnki.net/kcms/detail/50.1044.N.20201027.1708.004.html.(in Chinese)

    • [26] MOTYKA M,KUBIAK K,SIENIAWSKI J,et al.Phase transformations and characterization of α+β titanium alloys[J].Comprehensive Materials Processing,2014,8(8):7-36.

    • [27] BAUFELD B,BIEST O V D,GAULT R.Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition [J].Science and Technology of Advanced Mate-rials,2009,100(11):1536-1542.

    • [28] BAUFELD B,BIEST O V D,GAULT R.Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties [J].Materials and Design,2010,31:106-111.

    • [29] 杜子杰,李文渊,刘建荣,等.CMT 增材制造 TC4-DT 合金组织均匀性与力学性能一致性研究[J].金属学报,56(12):1667-1680.DU Z J,LI W Y,LIU J R,et al.Study on the uniformity and mechanical properties of TC4-DT alloy for CMT additive manufacturing[J].Journal of Metals,56(12):1667-1680.(in Chinese)

    • [30] 杜子杰,李文渊,刘建荣,等.CMT 成型 TC4-DT 合金的组织及其形成机理的CET模型预测[J].材料研究学报,2020,34(7):518-526.DU Z J,LI W Y,LIU J R,et al.CET model prediction of the organization and formation mechanism of CMT-formed TC4-DT alloy [J].Journal of Materials Research,2020,34(7):518-526.(in Chinese)

    • [31] WANG X,ZHAO Y,WEI L,et al.In-situ SEM investigation of the fatigue behavior of additive manufactured titanium alloys [ C ]//European Workshop on Structural Health Monitoring.Springer,Cham,2020:612-621.

    • [32] 张飞奇.基于丝材电弧增材制造 Ti6A14V-xB 合金的组织性能及模拟[D].西安:西安理工大学,2017:39-40.ZHANG F Q.Tissue properties and simulation of Ti6A14V-xB alloy based on filamentary arc additive manufacturing[D].Xi’an:Xi’an University of Technology,2017:39-40.(in Chinese)

    • [33] 张萍,刘德波,柏久阳,等.电弧增材制造的沉积态TC4钛合金薄壁零件组织特征[J].焊接,2015(11):53-56,72.ZHANG P,LIU D B,BAI J Y et al.Organizational characteristics of thin-walled TC4 titanium alloy parts in the deposited state by arc additive manufacturing [J].Welding,2015(11):53-56,72.(in Chinese)

    • [34] 李雷,于治水,张培磊,等.TC4 钛合金电弧增材制造叠层组织特征[J].焊接学报,2018,39(12):37-43,130.LI L,YU Z S,ZHANG P L et al.Organizational characteristics of stacked layers of TC4 titanium alloy for arc additive manufacturing[J].Journal of Welding,2018,39(12):37-43,130.(in Chinese)

    • [35] JIAN G,SHEN J Q,HU S S.Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing [J].Journal of Manufacturing Processes,2019:41-50.

    • [36] AYED A,VALENCIA A,BRAS G,et al.Effects of WAAM process parameters on metallurgical and mechanical properties of Ti-6Al-4V deposits[M]//Advances in Materials,Mechanics and Manufacturing.Springer,Cham,2020:26-35.

    • [37] ROSENTHAL D.The theory of moving sources of heat and its application of metal treatments [J].Transactions of ASME,1946,68:849-866.

    • [38] WANG F,WILLIAMS S,COLEGROVE P,et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J].Metallurgical and materials transactions A,2013,44(2):968-977.

    • [39] ALMEIDA P S,WILLIAMS S.Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer(CMT)[C]//Proceedings of the twenty-first annual international solid freeform fabrication symposium,University of Texas at Austin,Austin,TX,USA.2010:25-36.

    • [40] SHCHITSYN Y D,KRIVONOSOVA E A,TRUSHNIKOV D N,et al.Use of CMT-surfacing for additive formation of titanium alloy workpieces[J].Metallurgist,2020,64:67-74.

    • [41] 马振书,陈广森,吴倩茹,等.脉冲频率和热输入对电弧增材制造TC4钛合金形貌和组织的影响[J].稀有金属材料与工程,2018,47(7):198-204.MA Z S,CHEN G S,WU Q R,et al.Effects of pulse frequency and heat input on the morphology and organization of TC4 titanium alloy by arc additive manufacturing [J].Rare Metal Materials and Engineering,2018,47(7):198-204.(in Chinese)

    • [42] YANG Z W,FU L Q,WANG S L,et al.Balance of strength and plasticity of additive manufactured Ti-6Al-4V alloy by forming TiB whiskers with cyclic gradient distribution [J].Additive Manufacturing,2021,39:101883.

    • [43] GOU J,WANG Z,HU S,et al.Effects of trace Nb addition on microstructure and properties of Ti-6Al-4V thin-wall structure prepared via cold metal transfer additive manufacturing [J].Journal of Alloys and Compounds,2020,829:154481.

    • [44] GOU J,WANG Z,HU S,et al.Microstructure evolution and mechanical properties of cold metal transfer additive manufactured Ti-6Al-4V wall with trace MoSi2 addition[J].Materials Science and Engineering:A,2020,798:140160.

    • [45] ZHANG H,WANG X,WANG G,et al.Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J].Rapid Prototyping Journal,2013,19(6):387-394.

    • [46] GU J,DING J,WILLIAMS S W,et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy [J].Materials Science and Engineering:A,2016,651:18-26.

    • [47] GU J,WANG X,BAI J,et al.Deformation microstructures and strengthening mechanisms for the wire + arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling [J].Materials Science and Engineering:A,2018,712:292-301.

    • [48] 何智,胡洋,曲宏韬,等.超声冲击电弧增材制造钛合金零件的各向异性研究[J].航天制造技术,2016(6):11-16.HE Z,HU Y,QU H,WANG ZM,et al.Anisotropy study of ultrasonic impact arc additive manufacturing of titanium alloy parts [J].Aerospace Manufacturing Technology,2016(6):11-16.(in Chinese)

    • [49] 许明方,陈玉华,邓怀波,等.超声辅助CMT电弧增材制造TC4钛合金微观组织和力学性能研究[J].精密成形工程,2019,11(5):142-148.XU M F,CHEN Y H,DENG H B,et al.Study on microstructure and mechanical properties of TC4 titanium alloy by ultrasonic-assisted CMT arc additive manufacturing [J].Precision Forming Engineering,2019,11(5):142-148.(in Chinese)

    • [50] 何智.超声冲击电弧增材制造钛合金零件的组织性能研究 [D].武汉:华中科技大学,2016.HE Z.Study on the tissue properties of ultrasonic impact arc additive manufacturing of titanium alloy parts [ D].Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)

    • [51] GOU J,WANG Z J,HU S S,et al.Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti-6Al-4V thin wall structure[J].Journal of Manufacturing Processes,2020,54:148-157.

    • [52] 陈伟.CMT 电弧增材制造TC4钛合金组织及力学性能调控 [D].南昌:南昌航空大学,2019.CHEN W.Tissue and mechanical property tuning of TC4 titanium alloy by CMT arc additive manufacturing [ D ].Nanchang:Nanchang University of Aeronautics,2019.(in Chinese)

    • [53] 王斌.TC4 钛合金电弧熔丝沉积成形工艺研究[D].沈阳:沈阳航空航天大学,2018.WANG B.Research on TC4 titanium alloy arc fusion wire deposition forming process[D].Shenyang:Shenyang University of Aeronautics and Astronautics,2018.(in Chinese)

    • [54] 杨海欧,王健,周颖惠,等.电弧增材制造技术及其在TC4钛合金中的应用研究进展[J].材料导报,2018,32(11):1884-1890.YANG H O,WANG J,ZHOU Y H,et al.Research progress of electric arc additive manufacturing technology and its application in TC4 titanium alloy [J].Materials Guide,2018,32(11):1884-1890.(in Chinese)

    • [55] 李雷.TC4 钛合金电弧增材制造叠层组织演变及其机理研究 [D].上海:上海工程技术大学,2017.LI L.Study on the tissue evolution of TC4 titanium alloy stacked layers by arc additive manufacturing and its mechanism [ D].Shanghai:Shanghai University of Engineering and Technology,2017.(in Chinese)

    • [56] 张飞奇,陈文革,田美娇.Ti-6Al-4V 丝材电弧增材制造钛合金的组织与性能[J].稀有金属材料与工程,2018,47(6):1890-1895.ZHANG F Q,CHEN W G,TIAN M J.Organization and properties of Ti-6Al-4V wire arc additive manufacturing of titanium alloys [J].Rare Metal Materials and Engineering,2018,47(6):1890-1895.(in Chinese)

    • [57] WILSON-HEID A E,WANG Z,MCCORNAC B,et al.Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V [J].Materials Science and Engineering:A,2017,706:287-294.

    • [58] 高福洋,张毅,孙建刚,等.钛合金多层多道电弧增材制造成形特性研究[J].焊接技术,2019,48(5):23-27,7.GAO F Y,ZHANG Y,SUN J G,et al.Study on the forming characteristics of multi-layer multi-arc additive manufacturing of titanium alloy[J].Welding Technology,2019,48(5):23-27,7.(in Chinese)

    • [59] WANG J,LIN X,LI J,et al.A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti-6Al-4V [J].Materials Science and Engineering:A,2020,772:138703.

    • [60] 杨光,王斌,钦兰云,等.激光和电弧增材制造TC4钛合金组织和性能研究[J].稀有金属,2018,42(9):903-908.YANG G,WANG B,QIN L Y,et al.Study on the organization and properties of TC4 titanium alloy by laser and arc additive manufacturing[J].Rare Metals,2018,42(9):903-908.(in Chinese)

    • [61] TANRIKULU A A.Microstructure and mechanical properties of additive manufacturing titanium alloys after thermal processing [D].Porland:Porland State University,2017.

    • [62] WAAM3DA.Technology driven company providing comprehensive integrated technical solutions in the field of wire-based directed-energy-deposition additive manufacturing [ EB/OL].https://waam3d.com/parts.

    • [63] ZHUO Y,YANG C,FAN C,et al.Microstructure and mechanical properties of wire arc additive repairing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy [J].Materials Science and Technology,2020,36(15):1712-1719.

    • [64] 沈泳华.电弧增材制造成形系统设计及成形规律研究[D].南京:南京航空航天大学,2017.SHEN,Y H.Research on the design of electric arc additive manufacturing forming system and forming law [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)

    • [65] LI Y,HAN Q,HORVATH I,et al.Repairing surface defects of metal parts by groove machining and wire+arc based filling[J].Journal of Materials Processing Technology,2019,274:116268.

    • [66] FULLER C.An additive manufacturing technology undergoes tests and trials on numerous applications[R/OL].[2018-08-18].

    • [67] 金属与粉末冶金[J].新材料产业,2019(4):94-95.Metals and powder metallurgy[J].New Materials Industry,2019(4):94-95.(in Chinese)

    • [68] 曹勇,朱胜,孟凡军,等.机器人 GMAW& 数控铣削复合快速制造系统[J].焊接,2010(2):54-57,72.CAO Y,ZHU S,MENG F J,et al.Robotic GMAW & CNC milling composite additive manufacturing system[J].Welding,2010(2):54-57,72.(in Chinese)

  • 手机扫一扫看